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An Efficient Transient Analysis Algorithm for Mildly
Nonlinear Circuits
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Abstract—This paper presents a new and efficient transient
analysis method for mildly nonlinear circuits. The method is
based on Volterra series representation of nonlinear circuits. It
characterizes nonlinear circuits using a set of linear circuits called
Volterra circuits. The input of the first-order Volterra circuit is
identical to that of the nonlinear circuit, whereas that of higher
order Volterra circuits is obtained from the response of lower
order Volterra circuits. Fourier series interpolation is employed
to approximate the input of higher order Volterra circuits. These

dc operating point and the signals to be processed by these
circuits are the ac inputs. When the amplitude of these inputs is
small, the nonlinearities in these circuits can be characterized
adequately using the truncated Taylor series expansion of these
nonlinear characteristics at their dc operating point [6]. To
analyze these circuits effectively, methods that minimize the
cost of computation by taking the advantages of the mildly
nonlinear characteristics of these circuits, and at the same time

circuits are analyzed using the sampled-data simulation of linear
circuits for computational efficiency and the response of nonlinear
circuits is obtained at equally spaced intervals of time. The
accuracy of the method is controlled by the order of Volterra
and interpolating Fourier series. Various sources contributing
to the error are analyzed. The method has been implemented
in a computer program. Numerical results on example circuits
demonstrate that the accuracy of the method is comparable to
that of linear multistep predictor-corrector algorithms, but with
greatly improved speed.

possess good computational accuracy, are highly desirable.

In this paper, we give a new and efficient time-domain anal-
ysis method for mildly nonlinear circuits. The method extends
the sampled data analysis technique for linear circuits given in
[7] to nonlinear circuits by employing a Volterra functional se-
ries and interpolating Fourier series. It computes the response of
nonlinear circuits at equally spaced intervals of time. We show
that the accuracy of the method is comparable to that of PC algo-
rithms but with greatly improved speed. The paper is organized
as follows: In Section Il, a brief review of the sampled-data sim-
ulation of linear circuits is given. In Section Ill, the Volterra cir-
cuit of nonlinear circuits is derived and an efficient sampled-data
simulation technique for nonlinear circuits is developed. The

RANSIENT, or time-domain, analysis is the mosmethod is based on interpolating Fourier series. We show that

common analysis performed on nonlinear circuits. It ighe use of simulation window avoids repetitive calculation of
however, also the most computationally intensive analysiansition matrix and zero-state vector needed in analysis and
Among many time-domain analysis methods, linear multistignificantly speeds up simulation. An in-depth examination of
(LMS) formulas that are based on backward difference fovarious factors affecting the speed and accuracy of the method
mulas (BDF) are the most robust and widely used algorithrigsgiven in Section IV. In Section V, several nonlinear circuits
for nonlinear circuits, especially stiff circuits [1], [2]. Toare analyzed and the results are compared with those from PC
achieve better computational efficiency and accuracy, expliéinalysis.
and implicit LMS formulas are usually integrated to form the
so-called predictor-corrector (PC) algorithms in which an ex-

plicit LMS formula serves as the predictor and an implicit LMS bedi devel ith a brief revi f th
formula serves as the corrector. PC algorithms are universal andVe begin our development with a brief review of the sam-

effective in handling both mildly and harsh nonlinear circuitg_led'_dm_al analysistechniquef(_)rIin_e_ar circu_its. Consi(_je_ralinear
and are the main simulation engines of many commercﬂfcu'tw'th an inputw(t). The circuit in the time domain is de-
computer-aided design (CAD) tools [3]-[5]. Because of th@Ctecj by

need for Newton—Raphson iterations in every step of integra-
tion, these algorithms are computationally expensive. Many
circuits encountered in telecommunication systems have a fixed

Index Terms—interpolating Fourier series, nonlinear circuits,
transient analysis, Volterra series.

. INTRODUCTION

Il. SAMPLED-DATA SIMULATION OF LINEAR CIRCUITS

v()li=o- =v(07) (1)

, _ _ . wherev(t) is the network variable vectofz and C are the
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where ties often modeled using polynomials. Because these nonlinear
characteristics are usually continuously differentiable, they can
M(t) =N(@)C be represented using corresponding Taylor series expansion at
N(t) = £ L [Tfl(s)] their dc operating point. A nonlinear circuit in the time domain
P(t) = £ [T*l(s)gW(s)] is therefore represented by the differential equation
T(s) =G+ sC dv(t _
) avin)+ €™ g £ o] vl = v(07)
W (s) is the Laplace transform a#(#) and£ [ ] is the inverse (6)

Laplace transform operator. Notice tiel(¢) is the transition

matrix and is independent of the input, wher®4s) is the zero- whereG andC are, respectively, the conductance and capac-

state vector and is input-dependent. Without loss of generalityygnce matrices whose entries are made of the coefficients of

let the input bew(t) = e/*°. At t = T whereT is the time linear elements and the first-order term of the Taylor series ex-

step, we have pansion of the nonlinear characteristics. The higher order terms
are embedded in the nonlinear functigfv(¢)].

v(T) =M(T)v(0") + P(D). In [8] and [9], it was shown that the response of a nonlinear

systemy(¢) can be represented by the Volterra functional series

At t € [nT, nT 4 T), the origin of the time is shifted from

t = 0tot = nT. Subsequently, the input is given y¢) = =

¢i“o(t+nT)  and the initial condition becomes(n"). Taking y(t) =3 ym(®) (7)

these into consideration, we arrive at m=t

, where
v(nT +T) = M(T)v(nT) + P(T)eo™ T, (3) y y
If w, and T’ are kept unchange®I(7") andP(7’) are constant U (?) = /_oo /_oo honlts 11 - T (1)
and need to be computed only once. The computation required (T )dmy - - dTy
in each step is only one matrix-vector multiplication and one
vector addition. The response of the circuit at equally spacidthe mth-order term of the Volterra series expansiony6f)

intervals of time can therefore be computed efficiently. If thendh,,,(¢, 71, ..., 7, ) is themth-order Volterra kernel. When
circuit has multiple exponential inputs, the response can be ahe input is changed from(¢) to ex(t), wheree is a nonzero
tained using superposition constant, the response becomes
K ) 2]
v(nT +T) = M(T)v(nT) + 3 Py(T)e/™= T (4) y(t) = > ym(t)e™ ®)
k=1 m=1
where P, (T) is the zero-state vector to the inpug(t) = Equation (8) indicates thaf(t) is a polynomial inc with the
edve.xt and K is the number of inputs. time-varying coefficients given by,,(¢). Making use of this

Itis worth noting that the use of complex exponential functioapprpach, representin@(t) in Volterra _series expansion, sub-
as inputs is instrumental in obtaining the simple relation givesiituting the results into (6), and equating the terms of the same
by (4). One special case of interestis= 0, corresponding to a order ine result is the following set of differential equations:
step input. Sinusoidal inputs can also be handled with ease. For o (2
E;ample, if the input isu(t) = sin(w,t), the response is given Gy, (¢) + C V:;t( ) =g fm[Vi(t), va(®), ...\ Vi1 (B)],

Vrn(t)|t:0* = Vrn(o_) (9)
v(nT + T) = M(T)v(nT) + Im [P(T)e!™*]  (5) _ _
wherev,,(¢) is themth-order term of the \olterra series ex-
whereZm].] denotes the imaginary part of a complex argumerRansion ofv(#), f[vi(t), ..., vm—1(#)] is the input of the
Similarly, if w(t) = cos(w,t), the response is obtained by reznth-order Volterra circuit, ang,,, is a constant vector speci-

placingZm[.] with Re[] in (5), whereRe[] denotes the real fying the nodes to which the input is connected. Nft¢t) =
part. w(t) andg; = g. The circuit depicted by (9) is termed the

mth-order Volterra circuit. It is observed that these Volterra cir-
. SAMPLED-DATA SIMULATION OF NONLINEAR CIRCUITS  Cuits are linear and are identical except their input in which
the nonlinear characteristics are embedded. Also, the input of
\olterra circuits is a function of the response of the lower order

Nonlinearities typically encountered in integrated circuits involterra circuits only. A pictorial illustration of the Volterra cir-

clude the exponential I-V characteristics of diodes and BJTayit of nonlinear circuits containing nonlinear resistors, capaci-
the square-law characteristics of the drain current of MOS trators, inductors, and VCVT with up to the third-order nonlinear
sistors, pn-junction capacitances, and other types of nonlineatiaracteristics considered is shown in Fig. 1. Taking Laplace

A. Volterra Circuits
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Fig. 1. Volterra circuits.

transform and its inverse, we obtain the time-domain respori2(4

of (9)

< gz(t)
V() = M(E)V,u (07) + L7 [TH(8)gm Fin(s)]  (10) \f,@/\/,\/

whereF,,,(s) = L{fm[v1(t), va(t), ..., Vm—_1(t)]} @nd L[]
is the Laplace transform operator. Clearly seen from (10) is tt -
to find v,,,(¢), f..(t) is needed. 0 T 2T 3T = @K-DT

-~ Y

B. Solution of Volterra Circuits Tw ‘ Tw ‘

Let the input of the nonlinear circuit be(t) = sin(w,t). Be- B V|‘ V|

cause the input of the first-order Volterra circuit is identical to

that of the nonlinear circuit, its responeg(t) is obtained using Fig: 2. Simulation window.

the sampled-data analysis technique for linear circuits given ear-

lier the order is high [11]. In addition, computation rises rapidly with
the order of interpolation. Exponential interpolation [12] is ef-
fective only if the exponents are known and becomes expensive
once the exponents are to be determined. Fourier series based
interpolation is an efficient interpolation method [11], [14]. The
To solve the second-order Volterra circuft,(t) is needed. To order of the interpolation can be well above 1000 while still
obtain f>(¢), we use an interpolating function that interpolategreserving the numerical stability. An attractive advantage of
f2(nT) = f2[v1(nT)] to approximatef(¢). There are many using high-order Fourier series interpolation is the accuracy of
interpolation techniques available. Polynomial-based interpokpproximation. To minimize the cost of computation, a simula-
tion, such as, Lagrange and Newton finite difference [10], ation window A = [0, (2K — 1)T] shown in Fig. 2 is used. The
effective for low-order interpolation and become unstable oneampled value of.(¢) in the window is first computed and a set

vi(nT +T) = M(T)vi(nT) + Im [P(T)e’™T] . (11)
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of data{ f2(0), f=(T), ...
te A is obtained from

, f2[(2K —1)]} is obtained > () for

fa() + Afa(t) (12)

f2t) =

whereA f,(t) is the error of interpolation anfi(t) is obtained
from interpolating Fourier series [12], [13]

F(t) = Ffa(nD)]

K-1
a2 o4 Z ag,  cos(bwst) + ba g sin(kw,t)]
k=1

+ % cos(Kw,t) (13)

whereF|.] denotes interpolating Fourier series operatgr—

2r /T, whereT,, is the width of the window, and the coeffi-
cientsas, i, andb, ; are determined from the equations shown

at the bottom of the page.
The second-order Volterra circuit fore A is depicted by

u
<
®

®)

G’V2 (t) + C n

e
=l
[

1
= {% + [a2.k cos(kwst) + ba g sin(kwst)]
=1

bl

+ “QTI cos(Kw,t) + Afalt) }g2 (14)

Using the sampled-data analysis technique for linear circuits
and superposition, and neglecting the interpolation error

Af>(t), we obtain the response of the circuit in the window
VQ(TLT + T)

= M(T)vs(nT) + Re{% P,(T) + “2K “2 K P (1)

K-1
3 ejnlstT+ § : ankPk(T)ejnkwsT}
k=1

665

where

22

Pk(T) = [,_1 T_I(S) m
sdt=T

is the zero-state vector of the circuit to the input »(¢) =
e/k«<t_Once the solution of the first- and second-order \Volterra
circuits is available, the sampled-data value of the input of the
third-order Volterra circuit at = n7’, t € A is obtained from
f3(nT) = f3[v1(nT), v2(nT)], and the solution of the circuit
can be computed in a similar manner. The above process can be
continued for higher order Volterra circuits with the number of
samples per simulation window and the width of the window
kept unchanged. It is evident from (7) that the response of the
nonlinear circuit is obtained by summing up that of all Volterra
circuits

v(nT +T) =M(I)v(nT) + Im (P(T)c!"")

+Re{%PO(T) +

PK(T)ejanST
K-1
+ Z akPk e]nkaT}
{Z kPk ejnkwsT}7
k=
=1, 2,

a2, K
2

2K —1 (16)
where
V(TLT) = Z Vrn,(nT)a
m=1
ap = Z A, ks and bk = Z b"lzk'
m=2 m=2

IV. DISCUSSION
In this section we examine important factors affecting the ef-
ficiency and accuracy of the method.

A. Efficiency
In the preceding derivation we have shown that if the number

K-1
+7Im Z by 1 Pr(T)ei ™™ (15) of samples per simulation window and the step izare kept
= unchangedM(T), P(T), andPp(T), k = 0,1,2,..., K
a2,0 ] M1 1 fQ(O)
az1 | 1 | 1 cos(w,T) COS[(2K — Dw, 1] f2(T)
as, r | L 1 cos(KwsT) cos[(2K — 1)ngT)] f2[(2K — )T
ba1 ] [ sin(w,T) sin(2w,T) sin[(2K — 1)w,T)] F(T)
boo | L | sin(2w,T) sin(4w,T) sin[2(2K — 1)w,T)] f2(2T)
bo K1 Lsin[(K — 1w, 2] sin[2(K—1)w, T sin[(K—1)2K -1)w,I7] L f2 [(2K — )T
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will be constant. They can be computed in a preprocessing s¥(® 4
prior to the start of simulation. The cost of computation of th
preprocessing step is dominated by that for compulgr’),

k=0,1,2, ..., K. Tominimize this cost, the relationship be-w(0} ¢

tweenP;(T’), the zero-state vector of the circuit to the inpu M N
ed“st andPy(T), the zero-state vector to the inptit«-t, can

be employed. It was shown in [15] thB, (7") and P (T") are

related to each other by

‘ 0 T 2T 3T 4T ST 6T 7T 8T "' t
(G + jkw,C)P(T) T 2F 3T 4T ST 6T 7T

= (G +jw,C)P(T) +g (ejk“"ST - ej“"sT) Fig. 3. Piecewise linear input.

from which P.(T’) can be obtained fror®,(T"). For each by summing up its response to the basis functions. As anillustra-
P.(T"), one LU-factorization of G + jkw,C) is needed. LU tion, consider a nonlinear circuit with a piecewise-linear input

factorization is less expensive as compared with computigBiown in Fig. 3. The input h[nT, nT+T] is represented by
P, (T") from numerical integration. OncBI(T"), P(7’), and

P,(T") are available, the response of nonlinear circuits is

. w (nT—i—T) —w (nT)
computed at equally spaced intervals of time and simulation w(t) =w (”T> u(t) +

12

proceeds in a window-by-window fashion. The response of the R r
circuit in thenth step of therth window is given by te [0, T} (18)
v(nT +T) whereu(t) is a unit step input. Note that the time origin has been

ineoT (1) (2K —1)wuT shifted from¢ = 0 to ¢t = »n7". The zero-input response of the
=M(T)v(nT)+Im {P(T)CJ orel ‘ } circuit is independent of the input and is determined solely from

a . the transition matri¥V(¢). It can be shown that the response is
+ Re{ % P,(T) + 2271‘ P (T)e/m KT obtained from [16]
K v(nT +T) = M(T)v(nT) + w (nT) U(T)
JnkwsT N N R
+ ; ar, kPr(T)e } w (nT + T) —w (nT)
- + = R(T) (19)
+Im{ > b,,,kPk(T)ej"’WsT} . 17 where
k=1
. . [T
For different windows, because only. ;, andb,. ;. need to be U =L — g (20)
computed and they can be computed with little additional cost, ) =T
better efficiency is achieved. R(T) = £~ [T 2(s)} . 21)
§ t=T

B. Stability are constant for fixed step siZé The two basis functions in this
The proposed method is an extension of the sampled-datse are the unit step function

analysis technique of linear circuits and inherits many of its
properties thereby. The stability of the method can be exam- u(t) = { 1, t=20
ined from that of the interpolating Fourier series and the sam- 0, t<0
pled-data simulation of linear circuits. Interpolating Fourier semd the unit ramping function
ries has superior numerical stability over polynomial-based in-

A . . t, t>0
terpolation schemes, as demonstrated in [11]. It was shown in rt) =4 [
[7] that sampled-data analysis technique for linear circuits is an 0, t<0.

A-stable numerical integration algorithm. For a stable linear cir- This approach can be generalized to use an infinite number of

cuit it guarantees a stable numerical solution. basis functions, such as Fourier series and wavelets, to represent
arbitrary input waveforms. Once the solution of the first-order
C. Input Waveforms \olterra circuit is available, higher order \Volterra circuits can be

Although in the preceding development, a sinusoidal inp§elved subsequently.
signal was used, the input waveform is not restricted to be ei-
ther sinusoidal or exponential and can be extended to include
other functions. For linear circuits superposition applies and aThe upper bound of the step size is subject to the constraint set
given input waveform can be represented by a set of basis fubg-Nyquist theorem. Specifically, because the highest frequency
tions (possibly infinite). The response of the first-order Volterraf the input signal is the frequency of the highest order term
circuit to each of these basis functions is first computed sepa-the interpolating Fourier series given by, .. = Kws, the
rately and the complete response of the circuit is then obtainedier bound of the sampling frequency is therefore given by

The Maximum Step Size
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Wmin = 2wmax. SUbsequently, the maximum step size is givethird Volterra circuits, respectively, as shown in Fig. 1. If the
by Thax = 7/wmax- The actual step size is usually less thafourth-order Volterra series expansion is considered, we have
Tmax and is determined from simulation accuracy and speed. vt — Rii
rl 16r1
E. Accuracy vp2 = Ryiyg + Rai2) (24)
The accuracy of the method depends upon: 1) the order of | vrs = Riirs + 2Ryip1ir2 + Raid
Taylor series expansion in representation of nonlinear charac- \ ,, = Ryé,4 + 2Rpi,1ips + Rai2y + 3R3i2 6.
teristics; 2) the order of \olterra series expansion in depicti
nonlinear circuits; 3) the order of the interpolating Fourier seri
in approximation of the input of high-order Volterra circuits; 4
simulation window; and 5) error propagation. We examine ea
of them in detail.
1) The Order of Taylor Series Expansioffthe order of

glﬂw difference is the last equation in (24) that takes into con-
ideration the effect of fourth-order nonlinear characteristics.
uation (23) will be considered adequate if the difference be-
tween the response of the circuit with the third and fourth-order
\olterra series expansions considered is negligible. A nonlinear

Taylor series expansion of nonlinear elements depends upon(EHglu't IS Sa'g to\l/)e;rplldly nonlmeanf It can be cha:;’:lcterlztedth
characteristics of the nonlinearities, the amplitude of the inpﬁ OWer order Volterra series expansions, usually up to the

signal, and the error of approximation. When thih-order fith-order.

Taylor series expansion is employed to represent the output. 3) ITthe Or.dzr of tlrr:ter:pc;:au?r? Fo;r|erf$etr|es$c|)rtg g||\:/en .
of a nonlinear element, the truncation error is given by simufation window, the higher the order ot Interpolating Fourier

series, the more accurate the approximation. A downside of
v (EAY) using high-order interpolation is the increased cost of computa-
(n+1)! tion because a large number of zero-state vectors are to be com-
where Av is the displacement from the operating point an

uted. The solution of the first-order Volterra series will be ac-
0 < ¢ < 1. As an example, consider a forward biased dioqfeurate 'fM(T) gndP(T) are accurate. In this wor'k, npmenca}I
. o v/ Vi P aplace inversion, an A-stable high-order numerical integration
characterized by, = Is[e"” — 1], wherev), andip are technique [2], is used to compute these quantities. In our im-
the voltage and current of the diode, respectivBlyis the satu- q ' P q :

etloncurtent, and. s hehemalvotage. ety — iV DTSN 1 0der o iegaton s 1 n aden, ot
whereVp andwv, are the dc and ac components«gf. Ex- b P 9 9 P

andinge®s/ V™ in Tavlor series at the dc operating point iVespendix is employed to minimize the error due to the large time
P 9 y P 9 POINtIVESterval. The error in computinyI(7T") andP(7) is therefore

(Av)™ Tt

iy = LocVo/Vr <E N g N vg N v} considered to be negligible. We thereby conclude that the error
Vi 2VE  6VE o 24V% in solving the second-order \olterra circuit is dominated by the
w3 interpolation errorA f>(¢). To estimate this error, the input of
+ 120V + ) the second-order Volterra circuit is derived with the step sizes

o . andT'/2, respectively. The order of interpolation is determined
Where'Ld is the ac component Ob. If the fourth-order Taylor from the normalized mean sguare error (NMSE) [17]
series expansion is used, the truncation error is estimated from

ISeVD/VT(Ui e/ 120V, wherevy .y is the peak value of QKil [va, 7(nT) — v T/Q(nT)]2

vd- NMSE = +=0 7 25
2) The Order of Volterra Series Expansio&imilar to L T (25)

Taylor series expansion in representation of nonlinear ele- kgo UQ:T/2(” )

ments, the order of Volterra series expansion in depicting the _
nonlinear circuits depends upon the nonlinear characteristé8€révz, (nI) andw, 1/>(nT’) are the response of the cir-
of the circuits and the error of approximation. Consider GHit With the step sizes df’ and/2, respectively. In order to
nonlinear resistor characterized by computevy, ¢ (nT) and vy, 15(nT), M(T), M(T'/2), P(T),
P(T/2), Py,(T), andP(7T/2) are needed. To minimize the

vp = Ry, + Roi® + Rzi® (22) computation, the relationship

; i - T
Where_zv,, andi,. are the voltage and current of the r_e5|stor, re M(T) = M2 (L (26)
spectively, andR;, R,, R are constants. Representingand 2
1, in their Volterra series expansions to the order of three aadd

L . X ' T T

substituting the results into (22) yields P(T) = {GWO(T/Q)I M <_>} p <_) 27)

vpy = Ryt 2 2

Ups = Ryiyy + Roi?, (23) wherel is an identity matrix of appropriate dimensions, can be

employed (see the Appendix for details).

4) Simulation Window:When a simulation window is em-
Equation (23) reveals that the nonlinear resistor can be reppésyed it is assumed that the truncated data series by the window
sented by three linear resistors characterized, hy= R;i,,,, IS periodic with the period to be the width of the window. The
m = 1, 2, 3, together with added voltage sources given brate of convergence of the interpolating Fourier series depends
E> = Ryi%, andEs = 2Ryi,i,.0 + Rai3, for the second and upon the boundary conditions of the data series. It was shown

Upz = Ridps + 2Rt 0,0 + Rail,.
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0 T 2T 3T 4T 5T ... (2K-1)T t @ f3(nT) f3<o+Af3(t>+A?3: Third—order | v, (T)+Av;(nT)
Volterra circuit
G.C.g3
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Fig. 5. Error analysis.
Fig. 4. Aperiodic sequence to periodic sequence transformation.

: S . wherea, , and 2’2,k are the coefficients of the interpolating
in [17] and [18] that a large error will arise if the function to bqiourier series that interpolatdg.(0), g2(7), ..., g2[(2K —

represented by interpolating Fourier series is discontinuouslﬁx]t}_ The response of the circuit in the window is obtained from
the boundary. The error will be further increased if the deriva:

tives of the function are also discontinuous [19]. To minimizery(nT + T) = M(T)v2(nT)

the error due to the discontinuity of the function value at the S P o

boundary, the window should be chosen such that the input —l—Re{ 20 P (1) + =2 Py (T)ed KT

of Volterra circuits be periodic with respect to the simulation 2 2

window. For circuits with only one sinusoidal input, the window K-1 ,

size that is the same as the period of the sinusoidal input meets + Z (2, kPk(T)C]nkwsT)}

this requirement because the frequency components in the cir- k=1

cuits are the frequency of the input and its harmonics, as re- AL e

vealed by (22). For circuits with nonsinusoidal inputs or mul- +Img Y (52,kPk(T)@m e ) —rR(T)
k=1

tiple sinusoidal inputs, this approach becomes ineffective. Alter-
natively, a technique that reduces the effects of the discontinuity (29)

(Gibb effect) at the window edges can be employed. Spegifnere R(7") was given earlier. This approach can be further

ically, consider the input of the second-order Volterra CirCUfeveloped to minimize the error due to the discontinuity of the
{£2(0), f2(T), ..., FI(2K — 1)T]} shown in Fig. 4. We con- gerivatives of the function.

struct a new functiom(¢) from 5) Error Propagation: In this section we estimate the
92(t) = fo(t) + 7t output error due to the error in mterpolqtlor?. The error d_ue_to
the truncation of Taylor and Volterra series is usually insignif-
wherer is a constant, and impoge(0) = g2[(2K —1)T7]. The icant for mildly nonlinear circuits. To simplify the analysis,
value ofr is therefore given by only up to the third-order Taylor and Volterra series expansions
 plRK = DT - £(0) are conS|dered..Th§- approa(_:h can be generallzed to a higher
T=— . order \olterra circuits. Consider a nonlinear element model
(2K — )T ) . ) - )
. _ S by (22). Let the interpolation error in deriving the input of the
Because there is no discontinuity ifig>(0), g2(Z). ..., second-order Volterra circuit bA f,(t), as shown in Fig. 5.

g2[(2K — 1)]}, interpolating Fourier series can be employetthe response of the second-order Volterra circuit is given by
to derive g>(¢) without introducing a large error. OnN@e(t) vy(nT’) 4+ Avy(nT), where

is available, f>(t) can be obtained from the inverse of the Lt
transform Avy(nT) = L7 [T7H(s)gAF(s)],_.p,  (30)

f2(t) = ga(t) — rt. is the response to the errdxfa(¢) and AL (s) = LIAf2(2)].
The sampled-data value of the input of the third-order Volterra
circuit is computed from

Using this technique, (14) becomes
f3(nT) = f3[va(nT), vo(nT) + Ava(nT)]

dvo(t
Gw@+cl%l = [2a201 (NT)v2 (nT) + azv®(nT))
no + 2a2v1 (nT) Ava(nT) (31)
=4 =+ cos(Kw,t) . . . . o .
2 2 from which the input is approximated using interpolation
K-1 3
N t)y=F|2 T T T
+ Z |:€L27k COS(kwst) + b27k Sln(lﬂwgt)} —rt g2 f3( ) F [ azv1 (n )UQ (n ) + CL3U1 (n )]
P + 2a0 F[v1(nT)Ave(nT)] + Afs(t)

(28) = fa(t) + Afa(t) + Afa(t). (32)
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AC equivalent circuit

Fig. 6. Diode circuit. 02

The response of the third-order Volterra circuit is given by
vs(nT) + Avs(nT), where

0.1k

o

Avs(nT) = ﬁ_l{T_l(s)ggAﬁ’g(s)}t=
+L71 {T_l(s)g?,AFz(S)}t:nT (33)

and AF3(s) and AFs(s) are the Laplace transform af f5(¢)
and A f3(t), respectively. The total error is obtained by sum-
ming up that of the second and third-order Volterra circuits

Absolute Error [mV]

Av(nT) = Avy(nT) + Avs(nT).

. . . ; : . . \ :
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [s]

V. EXAMPLES

The algorithm presented in the paper has been implementéd 8. Error between SDSN and PC.
in a computer program Sampled-Data Simulation of Nonlinear
(SDSN) circuits. To assess the accuracy and efficiency of tekemples per simulation window in PC analysis is chosen to be
method, a first-order PC algorithm implemented using forwartDO. It was found that lowering the number of steps would result
Euler as the predictor and the backward Euler as the corredtora large error. The number of steps per simulation window
and a first-order PC algorithm implemented using BDF hawe SDSN is 20. The termination criterion for Newton—Raphson
also been implemented in SDSN. Several nonlinear circuits amealysis in PC analysis is set to 10 The ac voltage across
analyzed using both SDSN and PC, and the results are pttee diode is computed using both SDSN and PC, and the results

sented. are plotted in Fig. 7 for various input amplitude. The difference
_ o between SDSN and PC is plotted in Fig. 8. It is seen that the
A. Diode Circuit results from SDSN are in a good agreement with those from PC

Consider a diode circuit shown in Fig. 6. The diode is chagnalysis. The maximum normalized difference is about 1%.
acterized byip(t) = Is[e»®/Vt — 1], wherels = 1016 A, _
andV; = 26 mV at 300 K. The dc operating point is obtained®- Current Mirror
by solving the circuit using Newton—-Raphson iterations. Using The second example investigated is a current mirror cell
the fifth-order Volterra series expansion, the ac behavior of teeown in Fig. 9. The cell is a building block for contin-

circuit is depicted by uous-time current-mode circuits [21]. Both transistors are
e Tea®) 2 W3 () biased in saturation. Neglecting chaljnel—length modulation and
w(t) = Rl P/Vr v 512 T evE T aqya other second-order effects, we obtain the ac component of the
T T ,(T) T channel current
vy (t
+ 2077 +wg(t). (34) id = g1 Vs + Gmat?,

In SDSN analysis, the width of the simulation window is set twhereg,,,1 = 1, C.. . (W/L)(Vas — V) is the linear transcon-
one-tenth of the period of the signal, i.e., 0.1 s. The number ddictanceg,,> = (1/2)4:,C,,.(W/L) is the second-order non-
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of nonlinear elements with ac component of the collector current
i,(0 given by

q o~ 2
i, (D=Asin(o1) RL te = Om, 1Vbe + Gm, 2V
% M2

é Voo bilize the gain. In our analysis, two BJTs are considered as the
V)T

where Im,1 = IC/VT and Im,2 = IC/2V12, Ic =
Blse¥BE/VT | 3is the current gainyz z andu,. are the biasing
and ac voltages, respectively. The biasing current is 5.5 mA,
(a) Current mirror cell resulting ing,,, 1 = 0.2115 A/V and g,,,, » = 4.068 AIV2. The

Cat 0 ac equivalent circuit of the amplifier is shown in the figure.

| The ac parameters of the BJTs are given as follaiys: = 6

l
#D %> @ pF, Cy. = 6 fF, Ry = 500 Q, R.. = 100k{}, the base
Cys Veo T Cas

resistance is 1X2. The input is a sinusoidal voltage signal
Enes with frequency 1 GHz and amplitude 1 mV. The amplifier
b T is analyzed using SDSN, together with the BDF-based PC
algorithm implemented using Tableau formulation [2]. The
results are plotted in Fig. 12. It is seen that both agree very
well. The amplifier provides a voltage gain of about 16 dB.

(b) AC equivalent circuit

Fi

g. 9. Current mirror.

D. Nonlinear Circuit With Capacitors

To further assess the method, the nonlinear circuit shown in
1 Fig. 13 is investigated. The element values &e = 0.1 S,
C1 = 1.0 F, andC> = 0.1 F. The nonlinear conductor is char-
acterized byi(t) = v(t) + 0.5v2(t) + 0.2503(¢) + 0.1v(t) +
0.1v°(¢). The voltage acros§, is computed using both SDSN
and PC. The number of steps per simulation window for SDSN
and PC is 20 and 100, respectively. The results are shown in
Fig. 14 for various input amplitudes. It is seen that the results
from SDSN match those from PC analysis well. The differ-
Y ence between SDSN and PC is plotted in Fig. 15 with the max-
With - 1 imum normalized difference near 1%. To show that the number

1.5

Output [mV]

No capacitances capacitances ) i R . . .

o capacitineess of steps per simulation window in PC analysis should be suffi-

-1.5 o5 : T 25 p =5 . Ciently large. The circuit is solved Wlth the window size set to
Time [s] 0.5 s and the number of steps per window for SDSN remains

Fig. 10. Response of current mirror. unchanged but that for PC is varied. The results are plotted in

Fig. 16. The error due to a smaller number of steps per window
linear transconductancg,, is the surface mobility of free elec-jn pC analysis is evident. The error due to the truncation of
trons,C;, is the gate capacitance per unitardaandL are the \plterra series is also examined by computing the difference
width and length of the transistors, respectivélys andVr are  petween the response of the circuit with the order of Volterra
the biasing and threshold voltages, respectively. The load regjgries expansion to be 3 and 4, respectively, and the results are
tance is 541, Cy; = Cgq = 1 pF. The mirror is biased such thatp|otted in Fig. 17 with the input amplitude 0.5 V. It is observed
gm1 = 100 MAV and g,z = gm1. The ac circuit of the cell is that the normalized error due to the truncation of Volterra se-
shown in Fig. 9. The input is a sinusoidal current source wites is about 0.1%. The computational efficiency of SDSN is
amplitude 1 mA and frequency 1 GHz. In our simulation, thgemonstrated in Fig. 18 where the CPU time of both SDSN and
current gain of the mirrow is set to unity. The output currentpc analysis plotted as a function of the number of simulation
is computed using both SDSN and PC. The results are shoymdows. CPU time is measured for both SDSN and PC pro-
in Fig. 10 with and without the gate-to-source and gate-to-drajiams coded in Matlab, an interactive mathematical language
capacitances considered. It is seen that when the capacitagggfruns in an interpretive mode [20]. The program was exe-
are not considered, the mirror realizgs~ —cvi;,,. When these cyted on a Sun Ultra 1 workstation with 450-MHz CPU and
capacitances are considered, the output current is reduced. 386-MB RAM. Itis seen the initial cost of computation of SDSN
results.from SDSN is in a good agreement with those from R higher than that of PC, mainly due to the cost of the pre-
analysis. processing step whedd(7"), P(T), andP(T) are computed.
CPU time of PC analysis arises rapidly with the number of sim-
ulation windows, whereas that of SDSN rises slowly, indicating

A low-noise amplifier shown in Fig. 11 is investigated. Thehat the computational cost of SDSN is nearly independent of
amplifier consists of two stages. In addition to the emitter feethe number of simulation windows. SDSN is significantly faster
back in both stages, the shunt feedback is also employed to #iti@n PC. Also observed is that doubling the number of samples

C. Low-Noise Amplifier
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Vs Ry
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(a) Low—noise amplifier
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(b) AC equivalent circuit
Fig. 11. Low-noise amplifier.
C

w(t)=Asin(t) Q) G, W) C2 v,

QOutput [mV]

Fig. 13. Circuit with nonlinear resistor.

that are linear and topologically identical. These Volterra cir-
cuits are solved using sampled-data simulation. As compared to
traditional SPICE-like methods, the proposed method does not
. ‘ ‘ ‘ , : ‘ ‘ require Newton—Raphson iterations or predictor-corrector inte-

0 05 1 w2 " 25 3 35 4 grations at each time step. Instead, it requires matrix/vector op-

Fig. 12. Response of amplifier. erations and FFT calculations for each time window, which is
expected to require less computation in some, but not all cases.
per simulation window only increases the computation of thlg analysis of a given circuit th? prgposed algorithm performs
ome (expensive) precomputation, i.e., the calculation dMhe

preprocessing step. Its effect on the cost of computation for the : . . ;
coefficients of interpolating Fourier series is marginal. andP matrices/vectors in a preprocessing step only once, little

computation is needed thereafter for each additional time point.
The method will therefore be computationally efficient if we
need the response of the circuit for many time points where the
Inthis paper, we have introduced a new method for analysisiottial expensive calculation is amortized over many time points.
mildly nonlinear circuits at equally spaced intervals of time. Th8PICE-like simulators, however, recompute the solution of the
method is based on Volterra series representation of nonlineacuit at every time instant, even if the circuit has gone through
systems and interpolating Fourier series approximation. It chéine same state at some previous time instants, i.e., SPICE-like
acterizes mildly nonlinear circuits using a set of Volterra circuitsimulators simply recompute the solution without making use

VI. CONCLUSION
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few terms of their Taylor series expansion at the dc operating
point (mildly nonlinear). The method is applicable to circuits
with either a single input or multiple inputs. Although the wave-
form of the inputs can be arbitrary, implementation will be sig-
nificantly simplified if the inputs are sinusoidal.

The accuracy of the proposed method is determined by both
the accuracy of modeling and that of simulation algorithm. For
a given nonlinear circuit with known nonlinear characteristics,
modeling accuracy can be predetermined prior to the start of
simulation. This allows us to set the order of Taylor series expan-
sion in characterization of the nonlinear elements and the order
of Volterra series expansion in representation of the circuit. Both
orders are usually set to be the same. The accuracy of simulation
is mainly determined by the order of interpolating Fourier series
used to approximate the input of high-order Volterra circuits and

of the past information. Thus, there are many tradeoffs in tliee size of the simulation window. The error generated during
traditional SPICE-like algorithms and the method presentedéomputingM andP is usually negligible when high-order nu-

this paper.

merical Laplace inversion algorithms are employed. Anincrease

The proposed method is most suitable for nonlinear circuitsthe order of interpolating Fourier series lowers the interpola-
with a fixed dc operating point and small ac inputs. In these cition error, subsequently better accuracy. The price paid, how-
cuits, nonlinear elements can be characterized by using onlg\r, is an increase in the computational time of the prepro-
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cessing step wherB; vectors are computed. Due to the error [g]
caused by Gibb effect, the use of very low-order interpolating

) . . [9]
Fourier series should be avoided.

APPENDIX

It has been shown th&¥(T), P(T), U(T), andR(T) play
a critical role in sampled-data analysis of nonlinear circuits. it
this Appendix, we give an efficient algorithm to compute thesg12]
quantities. Using numerical Laplace inversion, we obIN{’)
directly [2]

[10]

[13]

1 R [14]
N(T) = -7 ; K |G+ =z c| a5
wherez; and K; are complex numbers readily available [2] and
J is the order of integration. Numerical Laplace inversion islt
based on the Padé approximationesf at the origin. Its ac-
curacy deteriorates if the displacement from the origin is large{17]
This drawback can be minimized by employing a multistep al-
gorithm. In doing so, the interval is divided into/V subinter-  [1g
vals of equal widthh = T/N. Att = h

[19]

J ~
N(h)z—% S K [G+%C} ' (35)
=1

In the second step, the origin is shifted fram= 0 to ¢ = h.
Consequently, the response of the circuit at » becomes the
initial condition of the second step. It can be shown that

N(2h) = Q(h)N()
whereQ(h) = N(h)C. Continuing this process we obtain
N(nh 4+ h) = Q(nh)N(h) (36)
whereQ(nh) = Q™(h). Similarly, P(h) is obtained from

J
1 25 -1 g
Py =—5 2 K (¢+%©) L__ﬁ} . @)
Employing the multistep approach,#at nh we have
P(nh +h) = P(h)e*>"" 1 Q(h)P(nh).

(20]

(21]
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