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In this paper we present a fault detection strategy for wireless sensor networks. The strategy is based

on modeling a sensor node by Takagi–Sugeno–Kang (TSK) fuzzy inference system (FIS), where a sensor

measurement of a node is approximated by a function of the sensor measurements of the neighboring

nodes. We also model a node by recurrent TSK-FIS (RFIS), where the sensor measurement of the node is

approximated value of the node itself. Temporary errors in sensor measurements and/or communica-

tion are overcome by redundancy of data gathering. A node which has developed a faulty sensor is not

completely discarded because it is useful for relaying the information among the other nodes. Each

node has its own fuzzy model that is trained with input of neighboring sensors’ measurements and an

output of its actual measurement. A sensor is declared faulty if the difference between the outcome of

the fuzzy model and the actual sensor measurement is greater than the prescribed amount depending

on the physical quantity being measured. Simulations are performed using the fuzzy logic toolbox of

Matlab. We also give a comparison of obtained results to those from a feed-forward artificial neural

network, recurrent neural network and the median [1] of measured values of the neighboring nodes.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks are emerging as computing plat-
forms for monitoring various environments including remote
geographical regions, office buildings and industrial plants [2].
They consist of the following: a set of nodes that can commu-
nicate with each other; sensors that measure a desired physical
quantity; and the system base station for data collection, proces-
sing, and connection to the wide area network. Modern wireless
sensor nodes have microprocessors for local data processing,
networking, and control purposes [3]. WSNs have enabled numer-
ous advanced monitoring and control applications in environ-
mental, biomedical, and numerous other applications.

One of the motivations for WSN modeling stems from the need
for intelligent fault detection in complex distributed sensory
systems. Because sensor networks often operate in potentially
hostile and harsh environments, most of the applications are
mission critical. The sensors are often used to compute control
actions [4–6], where sensor faults can cause catastrophic events.
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For instance, the National Aeronautics and Space Administration
was forced to abort the launch of the space shuttle Discovery due
to a failure in one of the sensors in the sensor network of the
shuttle’s external tank (the failure was discovered through human
inspection) [7].

Sensors and actuators boarded on a WSN node are more prone
to faults as compared to traditional integrated semiconductor
chips. Feedback about the functionality status of nodes is man-
datory for multisensor systems so that they could eventually
recover and heal from possible faults. Components such as
sensors and actuators have significantly higher fault rates than
the traditional integrated semiconductor circuits-based systems.
Multisensor systems need feedback information about the health
status of their nodes in order to recover and heal from eventual
faults. This would enhance the reliability on the system. Due to
malfunctions or noise the sensor reading are more or less
uncertain in the sense that no sensor will render an accurate
reading at all times. Because low-cost sensor nodes are often
deployed in an uncontrolled or even harsh environment, they are
vulnerable to have faults. It is thus desirable to detect, locate the
faulty sensor nodes, and exclude them from the network during
normal operation unless they can be used as communication
node. Consequently we need to design a WSN that is capable of
fault detection [7–9]. Efficiency in converting data to features
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while consistently accommodating the uncertainty inherent in
the measurements forms a key issue for diagnosing and dealing
with sensor faults [8,9].

The ancient method for fault tolerance is to equip a node with
multiple sensors but doing so would not only increase the cost of
a node and hence that of the network but would also lead in more
complexity and power consumption. So recent works are cen-
tered around analytical redundancy [10,11] in which the sensor
measurements are processed analytically, and the mathematical
models are compared with the physical measurements. Therefore,
instead of using additional hardware we use analytical fault
detection, and model each node of a WSN through Takagi–
Sugeno–Kang (TSK) fuzzy inference system (FIS).

Fault detection and fault tolerance in wireless sensor networks
have been investigated in many research works. In [12] diagnosis for
sensor networks has been carried out with additional attention to
the congestion avoidance at the central node. In [13] Koushanfar
et al. have proposed an online detection technique for faulty sensors,
where nonparametric statistical methods are used to identify the
sensors that have the highest probability to be faulty. In [14] the
problem of fault identification in ad hoc networks is addressed. The
diagnostic model lies upon the comparison-based one-to-many
communication paradigm. In [15] Ruiz et al. have developed a
management architecture for detection of faults in event-driven
WSNs. In [1] the identification of faulty sensors in reach of events is
discussed. The proposed generic algorithms are localized and thus
scalable for large networks, however those are limited due to
uneven distribution of nodes. In [7] a node is identified as faulty
depending upon the comparison of the output from a modified
recurrent neural network to real measurement. In [16] a solution to
the fault-feature disambiguation problem in sensor networks is
proposed in the form of Bayesian fault-recognition algorithms
exploiting the notion that measurement errors due to faulty equip-
ment are likely to be uncorrelated, while environmental conditions
are spatially correlated. In [17] the fault correction problem for
distributed event detection in a WSN is studied. This distributed
fault-tolerant detection scheme achieves optimal results when the
neighborhood size is chosen based on the given detection error
bound such that better balance between detection accuracy and
energy usage is obtained.

In [18] the authors have presented a localized fault detection
algorithm to identify the faulty sensors. It uses local comparisons
with a modified majority voting, where each sensor node makes a
decision based on comparisons between its own sensing data and
neighbors’ data, while considering the confidence level of its
neighbors. The scheme, however, is a little complex in the sense
that information exchange between neighboring nodes has to occur
twice to reach a local decision based on a threshold. In addition, it
does not allow transient faults in sensor reading and internode
communication, which could occur for most normal sensor nodes
[19]. Transient faults in sensing and communication have been
investigated in [20], where a simple distributed algorithm has been
proposed to tolerate transient faults in the fault detection process. In
[21,22] the authors have proposed a filtering approach for the fault
detection that is robust to false alarms. Our proposed approach does
not require a false alarm. In [23], the authors have developed an
adaptive intelligent technique based on artificial neural networks
combined with advanced signal processing methods for systematic
detection and diagnosis of faults in industrial systems based on
classification method. In [24] the authors have presented a neuro-
fuzzy networks based scheme for fault detection and isolation of a
u-tube steam generator in a nuclear power plant. Some other fault
management schemes can be found in the survey written by Yu
et al. [25].

The rest of the paper is organized as follows: Section 2 presents
the system model and the assumptions made. In Section 3 we discuss
how we are treating the problem of fault detection. Sections 4 and 5
respectively represent the fuzzy inference modeling and the neural
network modeling for the sensor fault detection. In Section 6 we
discuss the implementation of the proposed approach. In Section 7
we present and discuss the simulation results, and finally in Section 8
we conclude this paper.
2. System model

The system under consideration accommodates n number of
localized stationary homogeneous sensor nodes with unique iden-
tity number and same transmission range, which communicate via a
packet radio network. The proposed algorithm assumes all nodes are
fault free during deployment and during the training of the fuzzy
inference system. For each node an FIS is computed and carried out
at the base station and not on the node itself as is done in [7], where
each node has a modified recurrent neural network installed on it.
The communication algorithm ensures that each sensor knows the
identity of its neighbor, MAC protocol solves contention problem
over logical link, the link level protocol provides one hop broadcast.

2.1. Communication model

The communication graph of a WSN is represented as a graph
G(V,E), where V represents the set of sensor nodes in the network
and E represents the set of edges connecting sensor nodes. The
Cartesian coordinates of the node Ai are represented by ðAi,1,Ai,2Þ.
Two nodes Ai and Aj are said to have an edge in the graph if the
distance

dði,jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAi,1�Aj,1Þ

2
þðAi,2�Aj,2Þ

2
q

ð1Þ

between them is less than r (transmission range). That is

dði,jÞrr3ðAi,AjÞAE ð2Þ

For convenience we assume that G is undirected, which means that
if ðAi,AjÞAE then ðAj,AiÞAE. The communication graph can be a test
graph in our fault detection if two nodes with an edge connecting
them are compared. If some of the edges are not involved in the
fault detection or ignored based on the previous test results, a test
graph in our fault detection can be a subgraph of the communication
graph. For simplicity, we assume that communication graph and test
graph are the same. For the graph G(V,E) and AiAV , the set of the
neighbors of Ai, NðAiÞ is defined to be

NðAiÞ :¼ fAjAV : ðAi,AjÞAEg ð3Þ

For two connected nodes ðAi,AjÞAE we define a set

Di,j :¼ NðAjÞ�ðNðAiÞ [ fAigÞ ð4Þ

2.2. Fault model

The value measured by node Ai at kth instant of time, tk, is
denoted by xi

k. If the time instant is not explicitly required the
sensor measurement shall simply be denoted by xi. Nodes with
permanent faulty sensors are to be identified but are not excluded
from the network because they are useful in relaying data packets
among the nodes. Nodes with transient errors in sensor reading
are termed as fault-free.

For a homogeneous physical quantity the difference, between
the measured value at a fault-free sensor with the measured
values of its fault-free neighbors, is bounded. Thus, if Ai and Aj are
neighbors then in case of possessing fault-free sensors the
following condition is satisfied:

9xi�xj9rd ð5Þ
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where d may vary depending on the application. If temperature is
the physical quantity being measured, for example, then a sensor
node and its neighbors are expected to have similar temperatures.
Hence d is expected to be a small number. If the local binary
decision at each node, instead of the sensed data, is transmitted to
its neighbors, d is set to 0.
3. Fault detection

Two nodes Ai and Aj are compared only if ðAi,AjÞAE. Thus at
time instant tk if two such nodes have fully functional sensors
then

9xk
i�xk

j 9rdk
i,j ð6Þ

Suppose Ai has m neighbors, i.e., 9NðAiÞ9¼m. As shown in Fig. 1, let
these neighbors be denoted by

NðAiÞ ¼ fAi1 ,Ai2 , . . . ,Aim g

So for this particular node we have

9xk
i�xk

ij
9rdk

i,ij0
for 1r jrm

Equivalently we can write it as

xk
i ¼ xk

ij
þEk

i,ij
for 1r jrm

where Ek
i,ij

is the difference between the ith sensor measure-
ment and that of its jth neighbor at the instant tk. Whence
A i

A i1

A i3

A i2

A im

Fig. 1. Neighbors of node Ai.

Fig. 2. Recurrent fuzzy inference syste
we get

mxk
i ¼

Xm

j ¼ 1

ðxk
ij
þEk

i,ij
Þ

or

xk
i ¼

1

m

Xm
j ¼ 1

ðxk
ij
þEk

i,ij
Þ ð7Þ

Eq. (7) represents a relation between the real sensor measure-
ment of the node Ai and the sensor measurements of all of its
neighbors. Which means the sensor measurement of Ai can be
approximated by an m-variable function f of neighboring sensor
measurements. That is

xk
i � f ðxk

i1
,xk

i2
, . . . ,xk

im
Þ ð8Þ

Hence for this node we create a TSK FIS which is trained with
inputs as the sensor measurements of NðAiÞ nodes and output as
the real sensor measurement of the node Ai.
4. TSK fuzzy treatment

The fuzzy logic system (FLS) [26,27] is an inference system which
mimics the human thinking and its basic configuration consists of a
fuzzifier, some fuzzy IF–THEN rules, a fuzzy inference engine and a
defuzzifier. A fuzzy rule is written as the following statement:

Rl : IF x1 is Bl
1 and x2 is Bl

2 and � � � xn is Bl
n THEN y is yl

where Rl
ðl¼ 1;2, . . . ,MÞ denotes the lth implication,

xj ðj¼ 1;2, . . . ,nÞ are input variables of the FLS, yl is a singleton, Bj
l

is the fuzzy membership function which can represent the uncer-
tainty in the reasoning. When we use the product inference, center-
average and singleton fuzzifier, the output of the fuzzy system for an
input x¼ ðx1,x2, . . . ,xnÞ

T can be expressed as

y¼

Pn
i ¼ 1 aiy

iPn
i ¼ 1 ai

ð9Þ

where ai implies the overall truth value of the premise of the ith
implication, and is computed as

ai ¼
YM
l ¼ 1

Ai
lðxiÞ ð10Þ

We are also using a recurrent FIS in which the added input is the
previously approximated value, as shown in Fig. 2. The structure of
the fuzzy controller is depicted in Fig. 3.
m for fault detection of a sensor.
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The first block in the fuzzy controller is fuzzifier, which
converts each piece of input data degrees of membership by a
lookup in one or several membership functions. The fuzzification
block thus matches the input data with the conditions of the rules
to determine how well the condition of each rule matches that
particular input instance. The fuzzy rule base uses several vari-
ables both in the condition and the conclusion of the rules. The
rules are presented in the if–then format. In the fuzzy inference

engine the corresponding rules are activated and all the activa-
tions are accumulated using max–min operations. In the defuzzi-

fier the crisp output value (9) is calculated which is the abscissa
under the center of gravity of the fuzzy set.
5. Neural network treatment

Neural networks (NNs) imitate the human brain to perform
intelligent tasks. They can represent complicated relationships
between input and output variables, and acquire knowledge about
these relationships directly from the data [28,29]. In this work we
have used a multilayer perceptron (MLP) NN that consists of an
input layer, a nonlinear hidden layer and a linear output layer, as
shown in Fig. 4. The input vector a¼ ½a1,a2,a3,a4,a5� has
Fig. 3. The fuzzy controller as shown in Fig. 2.

Fig. 4. Three layered neural network for node A6 with five input variables and one

output variable.
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components ½xk
1,xk

2,xk
7,xk

11,xk
12�, which are the sensed values at the

neighbors of node A6, as would be discussed latter in this paper. The
5�6 matrix U¼ ½bi,j� represents the input-to-hidden layer weights.
The activation function of each of the hidden layer neuron is
denoted by si for i¼1,2,y,6. Each of the si is the logsigmoid
function. These activation functions are represented by a vector
rT ¼ ðs1,s2, . . . ,s6Þ. The vector wT ¼ ðw1,w2, . . . ,w6Þ represents the
hidden-to-output layer weights. The activation function of the
output layer is denoted by Z and is the linear identity function.
The single scalar output xNN is the sensor measurement approxi-
mated by the neural network

xNN � Z
X6

j ¼ 1

wjsj

X5

i ¼ 1

aibi,j

 !8<
:

9=
; ð11Þ

In matrix form which is written as

xNNðaÞ ¼ ZfwTrðUTaÞg ð12Þ
6. Implementation of the proposed approach

Suppose we want to measure the health status of the node Ai.
So for this node we train an initial TSK FIS with input
xFIS ¼ ðxi1 ,xi2 , . . . ,xim Þ

T and output yFIS ¼ xi. The type of membership
function is Gaussian. The number of membership functions for
each component of input vector depends upon the range of
temperature being measured. Here we are using five membership
functions for each neighboring sensed value xij for j¼1,2,y,m. So
the fuzzy rules for node Ai are given by

Rl : IF xk
i1

is Fl
1 and xk

i2
is Fl

2 � � � and xk
im

is Fl
m THEN yl

FIS ¼ xk
i

for l¼1,2,y,M, where M is the total number of rules (in present
case M¼5m). Here Fj

l are the membership functions. The plot of
membership functions of the variable xi3 (where i¼6) obtained
through fuzzy tool box of Matlab is shown in Fig. 5. After training
FIS we apply it through simulation on a WSN scenario. So at an
instant tk the output of a fuzzy controller is yFIS ¼ yk

i as shown in
Fig. 6. Then we compare this output value with the actual sensed
measurement at node Ai and if

9yk
i�xk

i 9ZTOLERENCE ð13Þ

holds true then the sensor of the node Ai is identified as faulty.
Now we talk about the members of NðAiÞ that can participate in
finding health status of the node Ai.

A node Aij ANðAiÞ shall participate in the fault identification of
the node Ai if the condition (18) is satisfied, in which the node Aij

shall tally its own status with that of the elements of Di,ij . So there
is a possibility that one or more elements of NðAiÞ shall not be
urement at A 7 ( °C)

very highhighm

65 70 75 80 85 90

for the variable xi3 , where i¼6.
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involved in Ai’s fault identification. If 9NðAiÞ9¼m and l of these
nodes are not participating then there are

m

l

� �
�

m!

l!ðm�lÞ!

combinations for the participating neighboring nodes with l

varying from 1 to m�1. The total number of possible combina-
tions is

Xm�1

l ¼ 1

m

l

� �
¼ 2m

�2

where each combination corresponds to an FIS. Now we describe
the condition (18). For the node Aij , we have

Di,ij ¼NðAij Þ�ðNðAiÞ [ fAigÞ ð14Þ

Let 9Di,ij 9¼ r and these nodes be denoted by u1,u2, . . . ,ur . The
sensor measurement of the node Aij is compared with the sensor
measurements of the nodes u1,u2, . . . ,ur . To tackle the transient
faults we shall have this comparison for multiple times
ðt1,t2, . . . ,tkÞ. Let us denote xq

ij
by TðAij ,tqÞ where q¼1,2,y,k. So

on the same pattern we shall have sensor measurements of these
r nodes as Tðug,tqÞ for g¼ 1;2, . . . ,r and q¼1,2,y,k. Let us define a
function

gðxq
ij
,Tðug,tqÞÞ ¼

1 if Aij and ug satisfy condition ð6Þ

0 otherwise

(
ð15Þ

So the results from function (15) are stored in an r� k matrix
H¼ ½hg,q� where

hg,q ¼ gðxq
ij
,Tðug,tqÞÞ ð16Þ

A label Cij ,ug is attached to Aij with

Cij ,ug ¼
1 if

Xk

q ¼ 1

hg,qZðk�mÞ

0 otherwise

8>><
>>: ð17Þ

where m depends upon the number of instances the data is
gathered. Now, if

Xr

g ¼ 1

Cij ,ug Zl ð18Þ

where l is selected as a threshold for this condition, on whose
fulfilment the node Aij participates in the fuzzy fault identification
of the node Ai.
7. Simulation results

We have simulated a sensor network with 15 sensor nodes as
shown in Fig. 7 and one sensor per node. Each node has at least
three 1-hop neighbors. The quantity being measured is the
temperature. The temperature of all nodes is gathered for a
period of 80 h equally divided into 100 instances. For the simula-
tion purpose the temperature T at a point (x,y) and at time t is
given by

Tðx,y,tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
þL cosðfþ2pftÞþsinð52tÞþ60 ð19Þ

where L¼25, f¼0.025 and f¼ p. The reason for choosing this
particular heuristic function is that with this expression the
temperature varies from 34.15 1C to 88.88 1C. The temperature
changes smoothly and there are no sudden jumps or disconti-
nuities. The differences in the data output are small enough to
guarantee and justify the theoretical approach described in
Section 3. Each sensor is modeled using an FIS as described in
previous sections. An FIS has inputs consisting of the sensor
measurements of the neighboring nodes. Each input variable to
FIS has five membership functions of type Gaussian. An FIS is
generated by using the grid partition and is trained by using
hybrid method. We have used Matlab as a simulation software.
Here we consider and discuss the status of the node A6 with

NðA6Þ ¼ fA1, A2, A7, A11, A12g ð20Þ

The initial FIS is trained with input of sensor measurements of
all the five neighboring (in order) nodes. The kth sample input
vector to FIS has the components

xk
1 xk

2 xk
7 xk

11 xk
12

where k is varied from 1 to 100, that is, the FIS is trained with the
temperature values of neighborhood nodes for the entire period
of 80 h. Similarly the neural network is also trained from these
data spanned over 80 h.
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Fig. 8 shows a comparison of the actual measurement of node
A6 with the FIS model, NN model, and the median of the real
sensor measurements from N(A6). The advantage of FIS model
over the median method is that it always takes into account the
individual measurement from each of the neighbor nodes. An
individual erroneous sensor measurement extends its error to the
combined input when we take the median. The estimation for the
sensed measurement of A6 by FIS outperforms the approximated
values both from NN and median models. Since the temperature
data in Fig. 8 is condensed and the approximated values from
different models are not clearly distinguishable so a portion has
been zoomed in and is shown in Fig. 9.

The absolute value of the difference between the approxima-
tions by different models and the real measurement is shown in
Fig. 10. Since the FIS model closely approximates the real value
and the difference between the two is very small therefore, we are
using a logarithmic scale on the temperature measurement axis.

In order to detect a fault in the sensor of node A6 we
introduced an increasing deviation, as a function of time, in its
temperature measurement

EðtÞ ¼ sin
t

4
þ

t�10

5

� �
Hðt�10Þ ð21Þ

where t is in hours and H : R-f0;1g is the unit step function

HðxÞ ¼
1, xZ0

0, xo0

(

Then we plotted the gradually deviating real measurement of
node A6 and the approximated measurements by the FIS for the
entire period of 80 h. The results are shown in Fig. 11. The
temperature measurement for the first 10 h behaves normally
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but after that there arise a gradually increasing difference
between the real value at A6 and the value estimated by the FIS.
The absolute value of the difference between the two measure-
ments is shown in Fig. 12. Once again the difference between the
two measurements for the first 18 h is so small that it is better to
scale the temperature measurement axis logarithmically. From
t¼20 onwards the real measurement starts differing from the FIS
estimated value by more than 1 1C. Also from Fig. 12 one can
decide when to identify the node as faulty depending upon the
tolerance allowed by the application.
7.1. Transient fault tolerance

Now we discuss the fault tolerance of the proposed approach.
By fault tolerance we mean an intermittent perturbation in the
sensor measurement of a node that shall be ignored by our
scheme. The results for the estimated value for node A6 are
discussed here to elucidate the fault tolerance aspect in the
presented method. On its turn every member of N(A6), as men-
tioned in (20), is made to show an irregular behavior. The
transient error and hence the disturbed sensor reading, ~xk

j , of
neighboring nodes at an instance tk is as follows:

~xk
j ¼ xk

j þEB sin
tk

4

� �
ð22Þ

for j¼1,2,7,11,12, where EB is the bound on the introduced
perturbation. The number of neighboring nodes with transient
fault is varied from 1 to m, for the present example m¼5. Then
these perturbed values are used as an input to FIS and obtained
output value is compared with the real observed value of the
sensor measurement, x6

k in this case. The results for different
values for EB are shown in Tables 1 and 2, and in Figs. 13 and 14.
From Table 1 we can infer that even if 50% of the neighbors
are manifesting a disturbed behavior than usual, the difference
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between the real sensed measurement and the FIS estimated
value is acceptably small.

As shown in Fig. 15 the measurement of node A1 is perturbed
and the rest of the N(A6) sensor measurements show the usual
behavior. Still the difference between the sensor measurement of
node A6 and its estimated value is very less as is shown in Fig. 16
which is a magnified portion of Fig. 15.
Table 2
Transient fault with absolute value less than 2.

Nodes with transient
faults

Min. diff. (1C) Max. diff. (1C) Average diff.
(1C)

1 0.0040496 0.90014 0.24740

2 0.0091450 1.53390 0.48816

3 0.0083028 1.91960 0.73420

4 0.0074602 2.06490 0.98838

5 0.0066175 2.01350 1.25680

Table 1
Transient fault with absolute value less than 1.

Nodes with transient
faults

Min. diff. (1C) Max. diff.
(1C)

Average diff.
(1C)

0 6.8143�10�5 0.070821 0.014657

1 0.00054166 0.323710 0.125320

2 0.00472610 0.578390 0.249150

3 0.00956560 0.774180 0.374370

4 0.00914440 0.911180 0.501320

5 0.00872320 1.013200 0.630710
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Fig. 13. Transient faults in neighboring n
7.2. Recurrent FIS treatment

We have also conducted our approach with recurrent fuzzy
inference system (RFIS). Also we have done a comparison with
recurrent neural network (RNN) and median of the neighboring
node sensor measurements. The RFIS is demonstrated in Fig. 2.
The RFIS is trained with input xk ¼ ðxk

i1
,xk

i2
, . . . ,xk

im
,yk�1

i Þ
T and out-

put yk
i ¼ xk

i . We use three membership functions for each neigh-
boring sensed value xij for j¼1,2,y,m. So the fuzzy rules for node
Ai are given by

Rl : IF xk
i1

is Fl
1 � � � and xk

im
is Fl

m and yk�1
FIS is Fl

mþ1

THEN yl
FIS ¼ xk

i

for l¼1,2,y,M, where M is the total number of rules (in present
case M¼ 3mþ1). The plot of membership functions of the variable
xi3 (where i¼6) obtained through fuzzy tool box of Matlab is
shown in Fig. 17. Since, for the sake of example we have chosen
node A6, therefore, the k input to RFIS sample vector has the
components

xk
1 xk

2 xk
7 xk

11 xk
12 yk�1

6

Fig. 18 shows a comparison of the real measurement of node A6

with the RFIS model, RNN model, and the median of the real
sensor measurements from NðA6Þ. Since the temperature data in
Fig. 18 is condensed and the approximated values from different
models are not clearly distinguishable so a portion has been
zoomed-in and is shown in Fig. 19. The absolute value of the
difference between approximations by different models and the
real measurement is shown in Fig. 20. Fig. 21 shows the RFIS
approximated values and the real sensor measurement of node A6
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with increasing deviation introduced. For the recurrent technique,
the results for different values for EB, in (22), are shown in
Tables 3 and 4. From the tables we can see that RFIS is performing
better than FIS. Once again, like earlier, from Fig. 21 we can decide
when to declare the node as faulty depending on the desired
difference between the real and RFIS approximated value.
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Table 3
Transient fault with absolute value less than 1.

Nodes with transient
faults

Min. diff. (1C) Max. diff. (1C) Average diff.
(1C)

0 3.996�10�7 3.473�10�4 6.522�10�5

1 0.00049349 0.25241218 0.13505085

2 0.00090606 0.47156798 0.26456387

3 0.00130369 0.66836709 0.39195162

4 0.00168033 0.83957573 0.51623019

5 0.00204862 0.99968624 0.63941108

Table 4
Transient fault with absolute value less than 2.

Nodes with transient
faults

Min. diff. (1C) Max. diff. (1C) Average diff.
(1C)

1 0.00094208 0.56351787 0.26891727

2 0.00176691 1.02979571 0.52720860

3 0.00256196 1.42193454 0.78187899

4 0.00331539 1.73497709 1.03106361

5 0.00405246 1.99931670 1.27880158
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8. Conclusion

In this paper we have described a sensor fault identification
scheme for a wireless sensor network. Each node of the sensor
network is modeled by a fuzzy inference system which approx-
imates the measurement of that node as a function of the real
measurements of the neighboring nodes. In an online environ-
ment the difference between the real value detected at a node and
the estimated value given by its corresponding FIS model is used
to decide whether or not to declare the node as faulty. Since the
scheme is distributed and that the computations are performed at
the base station the suggested method is less energy consuming.
Simulation results show the efficiency of proposed scheme and
that the fuzzy inference model outperforms the results given by
artificial neural network and median of the one-hop neighbor
measurements.
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