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In this paper, a self adaptive real-coded genetic algorithm (SARGA) is implemented to solve the combined
heat and power economic dispatch (CHPED) problem. The self adaptation is achieved by means of tour-
nament selection along with simulated binary crossover (SBX). The selection process has a powerful
exploration capability by creating tournaments between two solutions. The better solution is chosen
and placed in the mating pool leading to better convergence and reduced computational burden. The
SARGA integrates penalty parameterless constraint handling strategy and simultaneously handles equal-
ity and inequality constraints. The population diversity is introduced by making use of distribution index
in SBX operator to create a better offspring. This leads to a high diversity in population which can increase
the probability towards the global optimum and prevent premature convergence. The SARGA is applied
to solve CHPED problem with bounded feasible operating region which has large number of local minima.
The numerical results demonstrate that the proposed method can find a solution towards the global opti-
mum and compares favourably with other recent methods in terms of solution quality, handling con-
straints and computation time.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing demand for power and heat resulted in the existence
of co-generation units which simultaneously produce power and
heat. The objective of economic dispatch (ED) problem in a conven-
tional power plant is to find the optimal point for the power pro-
duction such that the total demand matches the generation with
minimum fuel cost. However, the objective of combined heat and
power economic dispatch (CHPED) is to find the optimal point of
power and heat generation with minimum fuel cost such that both
heat and power demands are met while the combined heat and
power units are operated in a bounded heat versus power plane.
The mutual dependencies of heat and power generation introduce
a complication in the integration of co-generation units into the
power system economic dispatch. A technique was developed in
[1] to solve the CHPED problem using separability of the cost func-
tion and constraints. Here two-level strategy is adopted; the lower
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level solves economic dispatch for the values of power and heat
lambdas and the upper level updates the lambda’s sensitivity coef-
ficients. The procedure is repeated until the heat and power de-
mands are met. It was claimed in [2] that the Lagrangian
Relaxation method cannot deal with discontinuous and/or non-
monotonic input/output model for generator fuel cost characteris-
tics. However, a two-layer Lagrangian relaxation algorithm was
developed and solved the CHPED problem [3], and a customized
branch-and-bound algorithm was also developed and solved the
CHPED problem [4,5].

Alternatives to the traditional mathematical approaches: evolu-
tionary computation techniques such as genetic algorithm (GA)
[6,7], evolutionary programming (EP) [2], multi-objective particle
swarm optimization (MPSO) [8], harmony search (HS) [9], fuzzy
decision making (FDM) [10] and improved ant colony search algo-
rithm (ACSA) [11] have been successfully applied to CHPED prob-
lem. In [6], improved genetic algorithm with multiplier updating
(IGAMU) approach is implemented to solve the CHPED problem
using penalty based constraint handling method. However, certain
drawbacks regarding values of penalty parameters have been re-
ported in [6,7]. The real-coded GAs are more suitable for large
dimensional search spaces than binary-coded GAs since they are
more consistent, precise and lead to faster convergence [12–14].
In this paper, ability of real-coded GAs to make pair-wise compar-
ison in tournament selection are exploited to devise a penalty
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function approach that does not require any penalty parameter and
such an approach is implemented to solve CHPED problem. The
equality and bounded heat versus power plane constraints are
effectively handled by penalty parameterless approach. The perfor-
mance of the SARGA is compared with those of Lagrangian Relax-
ation method, branch-and-bound algorithms, ACSA, GA based
penalty function (GA_PF), PSO, EP, IGAMU and HS. The simulation
results show that SARGA integrated with penalty parameterless
approach performs better than these methods, in terms of solution
quality, handling constraints and computation time.

Section 2 describes the characteristics of a co-generation unit
and formulation of the CHPED problem, Section 3 deals with self
adaptive real-coded genetic algorithm, Section 4 describes imple-
mentation of SARGA to CHPED problem, and Section 5 presents
numerical results based on a simple co-generation system.

2. Characteristics and formulation of the CHPED problem

Combined heat and power generation is an established and
mature technology, which has higher energy efficiency and less
green house gas emission as compared with the other forms of
energy supply. The basic difference between conventional con-
densing plant and combined heat and power units is in the type
of the power obtained and the overall efficiency of each plant. In
conventional condensing plants the energy from the fuel is used
to produce electrical power only, while in combined heat and
power (CHP) systems, the energy from the fuel is used to produce
both electrical and thermal power thus increasing its efficiency.
The conventional condensing plant delivers power at an efficiency
of 35–55%. Using efficient flue gas condensation, the total effi-
ciency of CHP unit is found to be in the range of 80–111% (lower
heating value base) [15–17]. The heat production depends on
power generation and vice versa. This introduces complexity
due to the non-separable nature of electrical power and heat in
the CHP units.

The combined heat and power economic dispatch (CHPED)
problem of a system is to determine the unit heat and power pro-
duction, so that the system production cost is minimized, while the
heat and power demands and other constraints are met. Fig. 1
shows the feasible bounded region in the heat versus power plane
of a combined cycle co-generation unit. The feasible operating re-
gion is enclosed by the boundary curve MNOPQR. The upper and
lower bounds of power and heat units are restricted by their
own generation limits. The primary objective of the CHPED is to
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Fig. 1. Feasible operating region of a co-generation unit.
determine the most economic loading points of the combined heat
and power generation units such that both the heat and power de-
mands can be met and operated within the bounded region in the
heat versus power plane.

The objective function of the CHPED problem is given by

min fcos t ¼
XNp

i¼1

CiðPiÞ þ
XNc

j¼1

CjðOj;HjÞ þ
XNh

k¼1

CkðTkÞ ð1Þ

subjected to the equality constraints

XNp

i¼1

Pi þ
XNc

j¼1

Oj ¼ Pd ð2Þ

XNc

j¼1

Hj þ
XNh

k¼1

Tk ¼ Hd ð3Þ

and inequality constraints

Pmin
i � Pi � Pmax

i ; i ¼ 1; . . . ;Np; ð4Þ
Omin

j ðHjÞ � Oj � Omax
j ðHjÞ; j ¼ 1; . . . ;Nc ð5Þ

Hmin
j ðOjÞ � Hj � Hmax

j ðOjÞ; j ¼ 1; . . . ;Nc ð6Þ
Tmin

k � Tk � Tmax
k ; k ¼ 1; . . . ;Nh ð7Þ

with

CiðPiÞ ¼ ai þ biPi þ ciP
2
i ð8Þ

CjðOj;HjÞ ¼ aj þ bjOj þ cjO
2
j þ djHj þ ejH

2
j þ fjOjHj ð9Þ

CkðTkÞ ¼ ak þ bkTk þ ckT2
k ð10Þ

where min fcos t is the total minimum fuel cost; Ci, Cj and Ck are
the unit production costs of the conventional power, co-generation
and heat-alone units, respectively; ai, bi and ci are fuel cost coeffi-
cients of the ith conventional unit; aj, bj, cj, dj, ej and fj are fuel cost
coefficients of the jth co-generation unit; ak, bk and ck are fuel cost
coefficients of the kth heat-alone unit; Pi and Oj are power gener-
ations of conventional power and co-generation units; Hj and Tk

are heat generation of co-generation and heat-alone units; Hd

and Pd are heat and power demands; Np, Nc and Nh denote the
number of conventional power, co-generation and heat-alone
units, respectively; Pmin

i and Pmax
i are the minimum and maximum

power generation limits of the conventional units; Omin
j and Omax

j

are the minimum and maximum power generation limits of the
co-generation units; Hmin

j and Hmax
j are the minimum and maxi-

mum heat generation limits of the co-generation units; Tmin
k and

Tmax
k are the minimum and maximum heat generation limits of

the heat-alone units.
The mutual dependencies of heat and power generations from

(5) and (6) introduce a complication in the integration of co-gener-
ation units. Therefore, the optimization problem of the CHPED is
non-linear and highly constrained in nature.

3. Self adaptive real-coded genetic algorithm

Self adaptation is a phenomenon which makes the genetic algo-
rithms flexible and solves the CHPED problem with feasible oper-
ating region. SARGA [18,19] involves two critical issues:
evolutionary search direction and population diversity. As the evo-
lutionary direction is effective in searching, the strong evolutionary
direction can reduce the computational burden and increase the
probability of rapidly finding an optimal solution. Moreover, in-
crease in population diversity creates the genotype of the offspring
that differs more from the parents. Accordingly, a highly diverse
population can increase the probability of exploring the global
optimum and prevent the premature convergence to a local
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optimum. In the next section, SARGA implementation to CHPED
problem is presented.

3.1. Generation of initial population

In SARGA, each chromosome is encoded as a vector of floating-
point numbers, with the same length as the vector of decision vari-
ables. The real-coded representation of genetic algorithm is accu-
rate and efficient because it is closest to the real design space.
For convenience, (x1,x2, . . . ,xi, . . . ,xN) is represented as a vector of
chromosome to the solution of the CHPED problem. Initialization
of M individual population is generated using

xi ¼ xl
i þ riðxu

i � xl
iÞ ð11Þ

where xu
i and xl

i are the domain of xi and ri is a random number in
the range of 0–1.

Repeat (11) N times and produce the vector x1,x2, . . . ,xi, . . . ,xN.
Repeat the above procedure M times to create the M uniformly dis-
tributed individuals as initial feasible solutions in the search space.
The fitness of an individual is a measure of how close the solution
is to the global optimum.

3.2. Tournament selection

In this selection, tournaments are played between two parents
randomly chosen from initial feasible solution and better parent
is selected and placed in the mating pool. Two other parents are
picked up again and another slot in the mating pool is filled with
better parents. In this manner, each parent can be made to partic-
ipate in exactly two tournaments. The best parents in a population
will win both times, thereby making two copies of them in the new
population. Using this, worst parents will lose in both tournaments
and will be eliminated from the population. In this way, any par-
ents in a population will have zero, one or two copies in the new
population. This leads to better convergence in terms of solution
quality and computational time.

3.3. Simulated binary crossover

This crossover operator works with two parent solutions and
creates two offsprings. SBX simulates the working principle of
the single-point crossover operator on binary strings. During this
operation common interval schemata between the parents are pre-
served in the offsprings. The procedure of computing the offsprings
xð1;tþ1Þ

i and xð2;tþ1Þ
i from the parents xð1;tÞi and xð2;tÞi is described as fol-

lows: a spread factor bsi is obtained as the ratio of the absolute dif-
ference in the offspring values to that of the parents:

bsi ¼
xð2;tþ1Þ

i � xð1;tþ1Þ
i

xð2;tÞi � xð1;tÞi

�����
����� ð12Þ

First, a random number ui between 0 and 1 is created. Thereaf-
ter, from a specified probability distribution function, the ordinate
bqi is found so that the area under the probability curve from 0 to
bqi is equal to the chosen random number ui. The probability distri-
bution used to create an offspring is derived to have a similar
search power to that in a single-point crossover in binary-coded
GAs and is given as follows:

PðbsiÞ ¼
0:5ðgc þ 1Þbgc

si ; bsi � 1
0:5ðgc þ 1Þ 1

b
gcþ2
si

; bsi > 1

(
ð13Þ

In (13), a large value of the distribution index gc gives a higher
probability for creating offsprings closer to parents and a smaller
value of gc creates offspring distant from the parents. Using (13)
bqi is calculated by equating the area under the probability curve
equal to ui as follows:
bqi ¼
ð2uiÞ

1
gcþ1; ui � 0:5

1
2ð1�uiÞ

� � 1
gcþ1

; ui > 0:5

8<
: ð14Þ

After obtaining the value bqi from (14), the offsprings are calcu-
lated as follows:

xð1;tþ1Þ
i ¼ 0:5 ð1þ bqiÞx

ð1;tÞ
i þ ð1� bqiÞx

ð2;tÞ
i

h i
ð15Þ

xð2;tþ1Þ
i ¼ 0:5 ð1� bqiÞx

ð1;tÞ
i þ ð1þ bqiÞx

ð2;tÞ
i

h i
ð16Þ
3.4. Polynomial mutation

The polynomial mutation is similar to the non-uniform muta-
tion operator using polynomial probability distribution instead of
a normal distribution. Here, the probability of creating an offspring
closer to the parents is more than the probability of creating one
away from it. As the generation i proceeds, this probability of cre-
ating offspring closer to the parents gets higher and higher, and the
offsprings created are given as follows:

yð1;tþ1Þ
i ¼ xð1;tþ1Þ

i þ ðxu
i � xl

iÞ�di ð17Þ

where the parameter �di is calculated from the polynomial probabil-
ity distribution

PðdiÞ ¼ 0:5ðgm þ 1Þð1� jdijÞgm ð18Þ

�di ¼
ð2riÞ

1
gmþ1 � 1; ri < 0:5

1� ½2ð1� riÞ�
1

gmþ1; ri � 0:5

(
ð19Þ

In (18) and (19), gm the mutation constant is any non-negative
real number and ri is a random number between 0 and 1; gm pro-
duces a perturbation of the order 1

gm

� �
in the normalized decision

variable. For handling bounded decision variables, the mutation
operator is modified for two regions. i.e., ½xl

i; xi� and ½xi; xu
i �, which

is similar to non-uniform mutation. The shape of the probability
distribution is directly controlled by an external parameter gm

and the distribution is not dynamically changed with generations.
This leads to slight perturbation and prevents the individuals from
premature convergence.

3.5. Stopping rules

The algorithm stops when maximum number of generations is
reached or it terminates early depending on the unsuccessful gen-
eration of the algorithm. Two rules for terminating the progress of
the unsuccessful generations of the algorithm are used: (i) the best
solution not changing for a prespecified interval of generations (ii)
otherwise, the algorithm stops if the termination condition.

fcos t;i � fcos t;i�1

�� ��= fcos t;i

�� �� � 0:001 is satisfied ð20Þ

where fcos t,i and fcos t,i�1 are feasible solutions at generation i and
i � 1, respectively.

3.6. Constraint handling strategy

In penalty parameter based method [20], an external penalty
parameter which penalizes infeasible solutions is used. Based on
the constraint violation concerning gp(x) or Zq(x) a bracket-opera-
tor penalty term is added to the objective function and a penalized
function is formed:

Fcos tðxÞ ¼ fcos tðxÞ þ
XP

p¼1

RphgpðxÞi þ
XQ

q¼1

rqjZqðxÞj ð21Þ

where RP and rq are penalty parameter; P is the total number of
inequality constraints and Q is the total number of equality
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constraints. In (21), the bracket-operator h i denotes the absolute
value of the operand, if the operand is negative; if the operand is
non-negative, it returns value of zero. Since different constraints
may take different orders of magnitude, it is essential to normalize
all constraints before using the above equation. A constraint
gpðxÞP bp can be normalized by using the following equation:

g0pðxÞ �
gpðxÞ

bp
� 1 P 0 ð22Þ

Equality constraints Zq(x) can also be normalized similarly. Nor-
malizing the constraints in this manner, has the advantage: all nor-
malized constraint violations take more or less the same order of
magnitude and hence, they all can be simply added as the overall
constraint violation and thus only one penalty parameter R will
be needed to make the overall constraint violation of the same or-
der as the objective function:

Fcos tðxÞ ¼ fcos tðxÞ þ R
XP

p¼1

hgpðxÞi þ
XQ

q¼1

jZqðxÞj
" #

ð23Þ

The optimal solution of Fcos t(x) depends on penalty parameter R.
Users usually have to try different values of R to find which value
would steer the search towards the feasible region. The most diffi-
cult aspect of the penalty function approach is to find appropriate
penalty parameters needed to guide the search towards the opti-
mal solution. This requires extensive experimentation to find any
reasonable solution. In this paper, GA’s population–based approach
and its ability to make pair-wise comparison in tournament selec-
tion are exploited to devise a penalty function approach that does
not require any penalty parameter and such an approach is given
below:

Fcos tðxÞ ¼ fcos tðxÞ; if x is feasible

¼ fcos t;max þ
XP

p¼1

hgpðxÞi þ
XQ

q¼1

jZqðxÞj; otherwise
ð24Þ

In (24), fcos t,max is the objective function value of the worst fea-
sible solution in the population. The fundamental difference be-
tween this approach and that using the penalty parameter is that
the objective function value is not computed for any infeasible
solution. Since all feasible solution has zero constraint violation
and all infeasible solutions are evaluated according to their con-
straint violation only, both objective function value and constraint
violation are not combined in any solution in the population. Thus,
there is no need to have any penalty parameter for this approach.
The SARGA with this constraint handling approach has been imple-
mented on CHPED problem. From the numerical results, the pen-
alty parameterless approach has repeatedly found solution closer
to the global optimal solution.
4. Implementation of SARGA to CHPED problem

The real-coded genetic algorithm combines the SBX along with
the polynomial mutation. The tournament selection is inserted be-
tween initialization of population and SBX crossover. Then, the sys-
tematic reasoning ability is incorporated in the crossover
operations to select the better genes for crossover, and conse-
quently enhance the real-coded genetic algorithm. The steps of
the SARGA approach are depicted in Fig. 2 and are described as
follows:

� Step 1 Parameter setting.
� Input: population size M, crossover rate pc, SBX crossover con-

stant gc, mutation rate pm, mutation constant gm and number
of generations.
� Step 2 Initial population is generated. The function values of the
population are then calculated using fcos t.

� Step 3 Tournament selection operation is performed.
� Step 4 Crossover operations using simulated binary crossover.

The probability of crossover is determined by crossover rate
pc.

� Step 5 Mutation operations using polynomial mutation. The
probability of mutation is determined by mutation rate pm.

� Step 6 Offspring population is generated.
� Step 7 Sort the fitness values in increasing order among the gen-

erated population.
� Step 8 Select the better M, chromosomes as parents of the next

generations.
� Step 9 Check for the stopping criteria.
� Step 10 Display the optimal chromosome and the optimal fitness

value.
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Fig. 3. Feasible operating regions of co-generation unit 1.
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5. Numerical results based on a simple co-generation system

This section considers a single area co-generation system to
illustrate the effectiveness of the proposed SARGA in terms of qual-
ity of solution and computation time. The example [3] consists of
one conventional power unit, two co-generation units and one
heat-alone unit. The power generation limits of the power unit
are 0 and 150 MW and heat generation limits of heat-alone units
are 0 and 2695.2 MWth. The feasible operating regions of the two
co-generation units are given in Fig. 3 and 4. The system power de-
mand Pd and the heat demand Hd are 200 MW and 115 MWth,
respectively.

The fuel cost characteristics of conventional, co-generation and
heat-alone units are given in (26)–(29). The objective function of
the CHPED problem is

min fcos t ¼ C1ðP1Þ þ
X2

j¼1

CjðOj;HjÞ þ C1ðT1Þ ð25Þ

where

C1ðP1Þ ¼ 50P1 ð26Þ
C1ðO1;H1Þ ¼ 2650þ 14:5O1 þ 0:0345O2

1 þ 4:2H1

þ 0:03H2
1 þ 0:031O1H1 ð27Þ

C2ðO2;H2Þ ¼ 1250þ 36O2 þ 0:0435O2
2 þ 0:6H2

þ 0:027H2
2 þ 0:011O2H2 ð28Þ

C1ðT1Þ ¼ 23:4T1 ð29Þ
Table 1
Comparison of various methods for CHPED problem.

Power/heat Lagrange relaxation techniques Branch-and-bound algor

P1 (MW) 0.00 0.00
O1 (MW) 160.00 160.00
O2 (MW) 40.00 40.00
H1 (MWth) 40.00 40.00
H2 (MWth) 75.00 75.00
T1 (MWth) 0.00 0.00
Pd (MW) 200.00 200.00
Hd (MWth) 115.00 115.00
Total cost (US$) 9257.10 9257.10
Execution time in seconds 3.98 4.27
subjected to the equality constraints:

Z1 : P1 þ O1 þ O2 ¼ Pd

Z2 : H1 þ H2 þ T1 ¼ Hd

and the inequality constraints:

g1 : 1:781914894H1 � O1 � 105:7446809 � 0

g2 : 0:177777778H1 þ O1 � 247:0 � 0

g3 : �0:169847328H1 � O1 þ 98:8 � 0

g4 : 1:158415842H2 � O2 � 46:88118818 � 0

g5 : 0:151162791H2 þ O2 � 130:6976744 � 0

g6 : �0:067681895H2 � O2 þ 45:07614213 � 0

g7 : 0:0� P1 � 0

g8 : P1 � 150:0 � 0

g9 : 0:0� T1 � 0 and

g10 : T1 � 2695:2 � 0

The system consists of six decision variables (P1, O1, H1, O2, H2,
T1) power balance constraint, heat balance constraint and ten
inequality constraints.

5.1. Simulation results and discussion

This section presents the simulation results of the chosen
CHPED problem with focus on the comparison of SARGA with
Lagrangian Relaxation [3], branch-and-bound algorithm [4,5],
ACSA [11], GA_PF [7], PSO [8], EP [2], IGAMU [6] and HS [9]. All
these methods are coded in MATLAB and executed using a Pentium
ithm ACSA GA_PF PSO EP IGAMU HS SARGA

0.08 0.00 0.05 0.00 0.00 0.00 0.00
150.93 159.23 159.43 160.00 160.00 160.00 159.99
49.00 40.77 40.57 40.00 40.00 40.00 40.01
48.84 39.94 39.97 40.00 39.99 40.00 39.99
65.79 75.06 75.03 75.00 75.00 75.00 75.00
0.37 0.00 0.00 0.00 0.00 0.00 0.00
200.00 200.00 200.00 200.00 200.00 200.00 200.00
115.00 115.00 115.00 115.00 115.00 115.00 115.00
9452.20 9267.28 9265.10 9257.10 9257.09 9257.07 9257.07
5.26 4.32 3.09 7.96 5.53 4.21 3.76



Fig. 5. Convergence characteristics of SARGA in CHPED problem.

Table 3
Influence of population size in SARGA for CHPED problem.

Polpulation size 50 75 100

Best solution 9257.2 9257.4 9257.07
Worst solution 9962.1 9960.7 9301.2
Mean solution 9306.3 9275.7 9265.0
Standard deviation 94 58 7.44
No. of hits to global minimum 92 98 100
CPU time 2.89 3.01 3.76

Table 4
Performance of SARGA based on different constraint handling strategy.

Population size 100, gc = 5,
gm = 1

With penalty parameter Without penalty
parameter

Penalty R 10 102 103 –

Best solution Infeasible 9258.2 9257.3 9257.07
Worst solution Infeasible 9650.5 9724.8 9301.2
Mean solution Infeasible 9283.1 9271.8 9265.0
Standard deviation -NA- 61.89 52.43 7.43
No. of hits to global

minimum
0 91 97 100

CPU time 6.83 6.70 6.95 3.76
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IV based PC as the test platform. To verify the performance of the
SARGA, the program is run a hundred times on the example. The
resulting fuel costs and average CPU times are used to compare
the performance of the SARGA with those of other methods. During
this evolutionary process, the following parameter setting is used
in SARGA: population size M = 100 crossover rate pc = 0.9 mutation
rate pm = 0.01 crossover constant gc = 5 and mutation gm = 1. The
parameter settings for ACSA, GA_PF, PSO, EP, IGAMU and HS are ta-
ken from [11,7,8,2,6,9], respectively. The best optimal solution ob-
tained for this example by [3,21] is $ 9257. The results obtained for
this example using SARGA method are given in Table 1, and the re-
sults are compared with those of Lagrangian relaxation technique,
branch-and-bound algorithm, ACSA, GA_PF, PSO, EP, IGAMU and
HS. Among these algorithms, PSO, GA_PF and ACSA converge to a
much higher cost due to their premature convergence. Even
though PSO requires less computational time, it fails to approach
near global optimal solution. Lagrangian relaxation technique,
branch-and-bound algorithms, IGAMU and HS algorithms obtain
better solution at the expense of computational time. From Table
1, it can be seen that the proposed method, SARGA obtains mini-
mum cost with less computational time.

The convergence nature of the different algorithms is shown in
Fig. 5 from which it is evident that SARGA and PSO have the fastest
convergence. However, PSO fails to approach towards global opti-
mal solution which has been shown also in Table 1.

In order to get more insights into the working of SARGA, the
influence of the evolutionary parameters on the performance of
SARGA is brought out as shown in Tables 2 and 3. The parameters:
crossover constant gc and mutation constant gm in SARGA affect
the solution quality and convergence. Influence of these parame-
ters in CHPED problem is shown in Table 2. For gc = 5 and gm = 1
the solution exhibits better results in terms of standard deviation,
mean solution and worst solution. Moreover, out of 100 trials the
solution hits towards global optimal solution 100 times.
Table 2
Influence of gm and gc in SARGA for CHPED problem.

Population size 100 pc = 0.9, pm = 0.01, gc = 5

gm = 5 gm = 10 gm = 15

Best solution 9257.7 9257.4 9257.2
Worst solution 10107.1 9352.9 9742.8
Mean solution 9271.8 9264.6 9269.3
Standard deviation 84.54 13.23 50.17
No. of hits to global minimum 99 93 89
CPU time 3.87 3.79 3.79
The best solutions obtained by SARGA are summarized in Table
3 for different sizes of population. During this performance analy-
sis, pc = 0.9, gc = 5, pm = 0.01, gm = 1 are fixed. When population size
is small, the algorithm does not guarantee a 100% hit towards glo-
bal optimal solution. Moreover, the standard deviation, worst and
mean solutions obtained for smaller population size, exhibit larger
deviation as shown in Table 3. For population size below 50 the
algorithm may not approach towards global optimal solution.

During this simulation process, SARGA is implemented and
tested for constraints handling strategy. The constraint handling
abilities are evaluated next and the results are presented in Table
4. With R = 10 it is not able to find a single feasible solution in
100 trails. This happens because smaller values of R do not force
the feasibility of the solution. With large penalty parameters, the
pressure for the solution to become feasible is more and it hits
97 times towards global optimal solution resulting in smaller value
of standard deviation.

In penalty parameterless approach, there is no need to have any
penalty parameter: the objective function value is not computed
for any infeasible solution. All feasible solutions and all infeasible
solutions are handled according to (24).

SARGA searches from a population of points and hence, discov-
ers the nearest global point and directly use the fitness function
information in the search procedure. The search is based on the
stochastic operations. In SBX crossover, the two offsprings are sym-
metric about the parent solutions thereby avoiding a bias towards
any particular parent solution in a single crossover operation. Bin-
ary GA requires large population size for larger strings. The large
population size increases the computational complexity. The
pc = 0.9, pm = 0.01, gm = 1

gm = 20 gc = 20 gc = 15 gc = 10 gc = 5

9257.2 9257.2 9257.2 9257.4 9257.07
9430.5 10157.6 10107.3 9960.8 9301.2
9274.1 9294.2 9283.3 9281.2 9265.0
33.75 117.81 87.45 78.94 7.4390
90 93 96 94 100
3.82 3.74 3.78 3.80 3.76
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real-coded GA uses real parameters directly without any string
coding thereby reducing the computational complexity.

6. Conclusion

This paper presents an approach for solving the combined heat
and power economic dispatch problem (CHPED) considering the
feasible operating region. SARGA has effectively provided the glo-
bal optimal solution satisfying both equality and inequality con-
straints. For the chosen example, SARGA has superiority to the
other algorithms viz. ACSA, GA_PF, PSO, EP, IGAMU and HS in terms
of solution accuracy, handling constraints and computation time.
Moreover, the results of SARGA method are very close to those of
the conventional numerical methods. Combined with their rela-
tively low computational requirements as well as their suitability
for parallel implementation, the algorithm provides global optimal
solution to a real world CHPED problem. Hence, SARGA has the
merits of global exploration, fast convergence, robustness and sta-
tistical soundness.
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