
Discrete Binary Cat Swarm Optimization Algorithm

Yousef Sharafi
Computer Department of
Islamic Azad university

Science and Research Branch
Tehran, Iran

Email: y.sharafi@srbiau.ac.ir

Mojtaba Ahmadieh Khanesar
Department of Electrical and Control Engineering,

Faculty of Electrical Engineering,
Semnan University, Semnan, Iran

Email: ahmadieh@profs.semnan.ac.ir

Mohammad Teshnehlab
Control engineering department
K. N. Toosi university of Tech.

Tehran, Iran
Email: teshnehlab@eetd.kntu.ac.ir

Abstract—In this paper, we present a new algorithm binary
discrete optimization method based on cat swarm optimization
(CSO). BCSO is a binary version of CSO generated by observing
the behaviors of cats. As in CSO, BCSO consists of two modes of
operation: tracing mode and seeking mode. The BCSO presented
in this paper is implemented on a number of benchmark opti-
mization problems and zero-one knapsack problem. The obtained
results are compared with a number of different optimization
problems including genetic algorithm and different versions of
binary discrete particle swarm optimization. It is shown that the
proposed method greatly improves the results obtained by other
binary discrete optimization problems.

Keywords—Cat Swarm Optimization, Binary Discrete Cat
Swarm Optimization, Zero-one Knapsack Problem, Particle Swarm
Optimization

I. INTRODUCTION

Optimization is prevalent in almost all field of science and
engineering. In recent years several optimization methods are
proposed and used such as Genetic Algorithms (GAs) [1],
[2], Particle Swarm Optimization Algorithm (PSO) [3], [4],
Cat Swarm optimization (CSO) [5] and etc. to solve different
optimization problems.

PSO was originally designed and introduced by Eberhart
and Kennedy [3], [4] in 1995. The PSO is a population based
search algorithm which aims to simulate the social behavior
of birds, bees or a school of fishes. Each individual within
the swarm is represented by a vector of multidimensional
position in the search space. The next movement of each
particle is determined using a velocity vector. The velocity
vector is designed such that each particle is directed towards
its best personal experience and the best experience of the
whole swarm. There is also a momentum term which directs
the particle according to its last velocity vector. PSO is found
to be useful in different optimization problems such as optimal
tuning of fuzzy systems [6], [7], clustering problem [8], least-
cost generation expansion planning [9], etc.

The original version of CSO is introduced in the year 2006
by Chu, Tsai, and Pan [5]. They studied the behavior of the cats
and modeled their behavior to introduce a novel optimization
algorithm [5], [10]. Based on their studies they suggested that
cats have two modes of behavior: seeking mode and tracing
mode. They notice that cat spends most of the time when they
are awake on resting. While they are resting, they move their
position carefully and slowly. This mode of behavior is called
seeking mode. In the tracing mode, a cat moves according to

its own velocities for every dimension. This algorithm will be
discussed in details later in this paper.

The CSO and PSO were originally developed for continu-
ous valued spaces. But there exists a number of optimization
problems in which the values are not continuous numbers
but rather discrete binary integers. Classical examples of such
problems are: integer programming, scheduling and routing
[11]. In 1997, Kennedy and Eberhart introduced a discrete
binary version of PSO for discrete optimization problems [12].
In binary PSO, each particle represents its position in binary
values which are 0 or 1. Each particles value can then be
changed (or better say mutate) from one to zero or vice
versa. In binary PSO the velocity of a particle defined as
the probability that a particle might change its state to one
and fails in so many binary discrete optimization problems.
The original version of binary discrete optimization problem
was later improved by introducing two velocity vectors [13].
The method shows significant improvement over its previous
version in [12].

In this paper a binary discrete cat optimization problem
(BCSO) is introduced and tested. To the best of authors
knowledge CSO is not used in binary discrete optimization
methods. As in the original version of CSO, its binary version
introduced in this paper has also two modes of operations
namely: seeking mode and tracing mode. The difference be-
tween the BCSO and CSO is that the parameters of BCSO can
take the values of zero and one, this makes the algorithm totally
difference. The velocity of CSO in tracing mode changes its
meaning to probability of change in the bits in BCSO. The
proposed BCSO is tested in a number of different benchmark
optimization problems and on binary knapsack problem. The
results are compared with those of genetic algorithm, BPSO
and NBPSO [13]. The results shows that the proposed method
highly outperform above mentioned algorithms.

This paper is organized as follows. The CSO is summarized
in section II. In section III, the proposed BCSO is introduced
in details. In section IV, the results of applying CSO to number
of different benchmark problems are presented. Finally the
concluding marks are gathered in section V.

II. CAT SWARM OPTIMIZATION CONTINUES ALGORITHM

By close investigation on the behavior of cats in nature
Chu et. al. proposed a novel optimization algorithm based on
cats behavior. According to their findings, cats spend most
of their time when they are awake on resting. While they

978-1-4673-5885-9/13/$31.00 © 2013 IEEE

are resting, they move their position carefully and slowly,
sometimes they don’t move at all. Based on this behavior Chu
et. al. proposed that cats have two modes of behavior: seeking
mode and tracing mode. In seeking mode the moves are slow
and near the original position. In the tracing mode, a cat moves
according to its own velocities for every dimension.

The first parameter in CSO is the number of cats considered
for solving the optimization problem. For each cat a position
vector of M-dimensions and a velocity for each dimension is
considered. After evaluating the position of each cat in the
fitness function a fitness value is also considered for each cat.
In order to identify the mode of cats a flag is assigned to
each cat. To combine the two modes into the algorithm, a
mixture ratio (MR) is defined. This parameter is chosen from
the interval of [0, 1] and it determines what percentage of cats
are in seeking mode and what percentage are in tracing mode.
The best solution of each cat is saved in accordance with the
corresponding cat and the algorithm is iterated until the stop
criteria is achieved.

A. Seeking Mode

Seeking mode corresponds to the resting state of the cats.
In this mode they look around and seek for the next position
to move to. There are four essential factors in this mode:
seeking memory pool (SMP), seeking range of the selected
dimension (SRD), counts of dimension to change (CDC), and
self-position considering (SPC).

∙ SMP is used to define the size of seeking memory for
each cat. SMP indicates the points explored by the cat.
This parameter can be different for different cats.

∙ SRD declares the mutation ratio for the selected
dimensions.

∙ CDC indicates how many dimensions will be varied.

∙ SPC is a Boolean flag, which decides whether current
position of cat will be one of the candidates to move
to or not.

Seeking mode can be described in simple five steps as
follows.

Step 1: If SPC flag is one produce as many as SMP-1
copies of the present position of each cat and take the current
position as one of the candidates. Else if SPC flag is zero make
SMP copies of the present position of each cat.

Step 2: For each copy, take as many as CDC dimensions
and randomly plus or minus SRD percents of the present values
And replace the old ones.

Step 3: Evaluate the fitness values (FS) of all candidate
points.

Step 4: If it happens that the fitness functions for all of the
cats have exactly the same values, assign a similar probability
to all of the candidates, else calculate the selecting probability
of each candidate point according to (1).

Pi =
FSi−FSb

FSmax−FSmin
(1)

in which FSi is the fitness of ith cat and FSb = FSmax if we
want to find the minimum solution and FSb = FSmin if it is
intended that we find the maximum solution.

Step 5: Use roulette wheel to pick the point to move to from
the candidate points, and replace the current position with the
selected candidate.

B. Tracing Mode

In tracing mode cat tries to trace targets. In this mode, the
next move of each cat is determined based on the velocity of
the cat and the best position found by members of cat swarm.
This mode can be summarized in 3 steps as follows.

Step1: Update the velocities for every dimension (vk,d)
according to the following equation equation (2).

vk,d = vk,d + r1c1
(
xgbest,d− xk,d

)
, d = 1, ...,M (2)

in which xgbest,d is the position of the cat with the best fitness
value; xk,d is the current position of catk in dth dimension. c1 is
a constant value which is generally selected from the interval
of [0, 2] and r1 is a uniform random value in the range of
[0,1].

Step2: Check if the velocities are within the bounds of
velocity. In case the new velocity falls out of the range, set it
to the limits.

Step3: Update the position of catk according to equation
(3).

xk,d = xk,d + vk,d (3)

III. THE PROPOSED BINARY DISCRETE CAT ALGORITHM

In this article, based on the CSO algorithm, a novel discrete
binary optimization algorithm is proposed. Different from the
continuous version of CSO, in BCSO the position vector is
composed of ones and zeros. This change produces some major
differences between CSO and BCSO. Similar to the continuous
version of CSO, BCSO is composed of two modes: seeking
and tracing.

A. Seeking Mode

Much like what happens in the continuous version of CSO,
the seeking mode of BCSO models the cats in the resting
mode by introducing slight changes to the current position
of each cat in the swarm. In Seeking Mode of BCSO, four
essential factors are defined as in Fig. 1. Since all of the values
in BCSO are zero and one change in the current position of
a cat can be defined as a binary mutation. In this case, the
parameter probability of mutation operation (PMO) replaces
the parameter SRD in the original version of the CSO. The
other parameters of CSO are exactly the same as continuous
version of CSO. Much like the seeking mode of CSO, BCSO
has also 5 steps as follows.

Step 1: If SPC flag is true it means that the original position
of the catk can be a possible candidate so we need additional
SMP-1 copies of the present position of each cat and take the
current position as one of the candidates. But if SPC flag is
not true make SMP copies of the present position of each cat.

Step 2: This step is the main difference between the
BCSO and CSO. For each of SMP copies, select as many as

Fig. 1. Four important factors In seeking mode.

CDC dimensions and randomly mutate this CDC dimensions
according to PMO and replace the old ones. As can be seen
from this step since the values of BCSO are binary, SRD
changes to probability of mutation PMO.

Step 3: Considering the cost function, find the fitness values
(FS) of all candidate points.

Step 4: If it happens that fitness values are exactly the
same, assign a similar probability to all of the candidates,
else calculate the selecting probability of each candidate point
according to the following equation.

Pi =
FSi−FSb

FSmax−FSmin
(4)

In which FSb = FSmax for finding the minimum solution and
FSb = FSmin for finding the maximum solution.

Step 5: Apply roulette wheel to the candidate points, select
one candidate and replace the current position with the selected
candidate.

B. Tracing Mode

Similar to what happens in CSO, in the tracing mode of
BCSO, cats are moving towards the best target. The main
difference between CSO and BCSO is in the definition of
velocity. In CSO velocity defines the difference between the
current and previous position of a cat, but in BCSO the velocity
vector changes its meaning to the probability of mutation in
each dimension of a cat. The velocity vector which is now
changes its meaning to probability of change is updated as
follows. Two velocity vector one for each cats are defined as
V 1

kd and V 0
kd . V 0

kd is the probability of the bits of the particle to
change to zero while V 1

kd is the probability that bits of particle
change to one. Since in update equation of these velocities,
which will be introduced later, the inertia term is used, these
velocities are not complement. The update process of V 1

kd and

Fig. 2. Tracing Mode Strategy.

V 0
kd are as follows.

V 1
kd = wV 1

kd +d1
kd

V 0
kd = wV 0

kd +d0
kd d = 1, ...,M (5)

in which d1
kd and d0

kd are updated as in (6).

i f Xgbest,d = 1T hend1
kd = r1c1 and d0

kd =−r1c1

i f Xgbest,d = 0T hend1
kd =−r1c1 and d0

kd = r1c1 (6)

in which r1 has a random values in the interval of [0,1], w is
the inertia weight and c1 is a constant which is defined by the
user. According to current position catk, the velocity of catk is
calculated as:

V ′kd =

{
V 1

kd i f Xkd = 0
V 0

kd i f Xkd = 1
(7)

The probability of mutation in each dimension is defined by the
parameter t which is calculated using the following equation.

tkd = sig(V ′kd) =
1

1+ e−V ′kd
(8)

In which tkd takes a value in the interval of [0, 1]. Based on
the value of tkd the new position of each dimension of cat is
updated as follows.

xkd =

{
Xgbest,d i f rand < tkd

xkd i f tkd < rand d = 1, ...,M (9)

It should be noted that the maximum velocity vector of V ′kd
should be bounded to a value Vmax. If the value of V ′kd becomes
larger than Vmax, Vmax should be selected for velocity in
the corresponding dimension. Fig. 3 depicts the flowchart of
BCSO.

IV. EXPERIMENTAL RESULTS

The BCSO algorithm is simulated on a zero-one knapsack
problem and a number of benchmark functions. All calcu-
lations are done using MatLab R2010a running on an Intel
Corei5 with 4GB memory. The results obtained using BCSO
are compared with that of Genetic Algorithm [14], and two
versions of PSO [12], [13] are compared. The parameter of
BCSO are selected as SMP = 3, CDC = 0.2, SPC = True

Fig. 3. Flowchart of binary cat swarm optimization algorithm.

and PMO = 0.2. In order to have a better comparison, the
simulations are performed in 10 independent runs. The aver-
age, standard deviations, best and worst results found in the
simulations are reported.

A. test functions

In this section we investigate our proposed method on the
minimization of test functions set which are used commonly in
the literature. The test functions used here are: Sphere, Rastri-
gin, Ackley and Rosenbrock which are represented in equation
(10)-(13). The global minimum of all of these functions is zero.
The expression of these test functions are as follows.

f1(x) =
n

∑
i=1

x2
i (10)

f2(x) = 10n+
n

∑
i=1

x2
i −10cos(2πxi) (11)

f3(x) = −20exp(−0.2

√
1
n

n

∑
i=1

x2
i)− exp(

1
n

n

∑
i=1

cos(2πxi))

+ 20+ exp(1) (12)

f4(x) =
n−1

∑
i=1

[100(xi+1− x2
i)

2 +(xi−1)2] (13)

In this experiments 20 bits are used to represent binary values
for the real numbers. Population size is 100, the number of
iteration is 500, Dimension of the input space is 20 and Range
of the particles are set to [-50, 50]. The results of solving
the test functions are shown in Table I. Table I. summarizes
the results of applying four different optimization methods
to benchmark problems in terms of mean value, standard
deviation, the best result found and the worst results. As can be
seen from the table, the proposed method outperforms BPSO,
NBPSO and GA considerably. In addition the convergence
trend of the proposed method is compared with that of BPSO,
NBPSO and GA on Rastrigin function, Rosenbrock function
and Sphere function and are presented in Fig. 5, Fig. 6 and Fig.
7 respectively. These figures show that the proposed BCSO
converges much faster than above mentioned algorithms.

B. Zero-one knapsack problem

The knapsack problem is a problem in combinatorial opti-
mization. In this problem it is assumed that there are multiple
items on hand each with a specific value and weight. The goal
of this problem is to maximize the total value while the total
weight is less than or equal to a given limit [15], [16]. The
Zero-one knapsack problem can be mathematically formulated
as follows.

max f (x) =
n

∑
i=1

bixi (14)

sub ject to
n

∑
i=1

rixi ≤ α i = 1,2, ...,n

Let there be n items, x1 to xn where xi have a value bi and
weight ri. The maximum weight that we can carry in the bag
is α . It is common to assume that all values and weights
are nonnegative. In this simulation we used random integers
of the interval of [1, 15] as the weights and values of each
item. The results of solving the knapsack problem are shown
in Table II in terms of mean value, standard deviation, best
value and worst value in 10 times of run of the simulation
with different starting points. As can be seen from the table
BCSO outperforms BPSO, NBSPO and GA. Figure 4 shows
the trends of different optimization algorithms for solving the
knapsack problem with 400 items and 1500 Iteration. As can
be seen from the figure, BCSO converges much faster than
other mentioned optimization algorithms.

V. CONCLUSION

In this paper, a new binary discrete optimization algorithm
based on behavior of group of cats is presented. In binary dis-
crete optimization problems the position vector are binary zero
and one values. This causes significant change in BCSO with
respect to CSO. In fact in BCSO in the seeking mode the slight
change in the position takes place by introducing the mutation
operation. The interpretation of velocity vector in tracing mode
also changes to probability of change in each dimension of
position of the cats. The proposed BCSO is implemented and
tested on zero-one knapsack problem and a number of different
benchmark problems. The obtained results are compared with
that of BPSO, NBPSO and GA. The simulation results shows
the proposed method greatly outperforms the above mentioned
algorithms in terms of accuracy of the obtained results and
speed of convergence.

TABLE I. THE RESULTS OF APPLYING DIFFERENT OPTIMIZATION

ALGORITHMS TO THE MINIMIZATION OF BENCHMARK FUNCTIONS

function Result Binary cat BPSO [12] BPSO [13] Ga [14]
sphere mean 9.559E-06 4069.325 253.726 226.251

std 1.832E-05 521.741 78.870 120.151
best 4.547E-08 3450.172 125.292 72.408

worst 4.767E-05 4985.068 411.183 404.530
rastrigin mean 62.926 4427.068 405.578 426.687

std 14.477 344.204 61.063 158.943
best 39.247 3949.418 290.560 230.027

worst 85.536 5108.891 482.262 688.226
ackley mean 0.520 2.278 2.440 1.341

std 0.076 0.016 0.006 0.102
best 0.396 2.247 2.432 1.211

worst 0.622 2.298 2.448 1.479
rosenbrock mean 978.645 183591333.6 974594.660 936010.460

std 906.829 52644778.07 791245.182 645696.927
best 53.078 82596214.35 176676.042 440545.444

worst 2535.926 261891281 2643866.996 2684943.349

REFERENCES

[1] S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine
Learning. Mit Pr, 2012.

[2] K. Deb, “An introduction to genetic algorithms,” Sadhana, vol. 24, no.
4-5, pp. 293–315, 1999.

[3] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS’95., Pro-
ceedings of the Sixth International Symposium on. IEEE, 1995, pp.
39–43.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neu-
ral Networks, 1995. Proceedings., IEEE International Conference on,
vol. 4. IEEE, 1995, pp. 1942–1948.

[5] S.-C. Chu, P.-W. Tsai, and J.-S. Pan, “Cat swarm optimization,” in
PRICAI 2006: Trends in Artificial Intelligence. Springer, 2006, pp.
854–858.

[6] M. Khanesar, M. Shoorehdeli, and M. Teshnehlab, “Hybrid training of
recurrent fuzzy neural network model,” in Mechatronics and Automa-
tion, 2007. ICMA 2007. International Conference on. IEEE, 2007, pp.
2598–2603.

[7] M. A. Khanesar, M. Teshnehlab, E. Kayacan et al., “A novel type-
2 fuzzy membership function: Application to the prediction of noisy
data,” in Computational Intelligence for Measurement Systems and
Applications (CIMSA), 2010 IEEE International Conference on. IEEE,
2010, pp. 128–133.

[8] D. Van der Merwe and A. Engelbrecht, “Data clustering using particle
swarm optimization,” in Evolutionary Computation, 2003. CEC’03. The
2003 Congress on, vol. 1. IEEE, 2003, pp. 215–220.

[9] J.-B. Park, Y.-M. Park, J.-R. Won, and K. Y. Lee, “An improved genetic
algorithm for generation expansion planning,” Power Systems, IEEE
Transactions on, vol. 15, no. 3, pp. 916–922, 2000.

[10] S.-C. Chu and P.-W. Tsai, “Computational intelligence based on the
behavior of cats,” International Journal of Innovative Computing,
Information and Control, vol. 3, no. 1, pp. 163–173, 2007.

[11] A. P. Engelbrecht, Fundamentals of computational swarm intelligence.
Wiley Chichester, 2005, vol. 1.

[12] J. Kennedy and R. C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” in Systems, Man, and Cybernetics, 1997.
Computational Cybernetics and Simulation., 1997 IEEE International
Conference on, vol. 5. IEEE, 1997, pp. 4104–4108.

[13] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, “A novel
binary particle swarm optimization,” in Control & Automation, 2007.
MED’07. Mediterranean Conference on. IEEE, 2007, pp. 1–6.

[14] J. Sadri and C. Y. Suen, “A genetic binary particle swarm optimization
model,” in Evolutionary Computation, 2006. CEC 2006. IEEE Congress
on. IEEE, 2006, pp. 656–663.

[15] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., 1990.

[16] D. Pisinger, “Where are the hard knapsack problems?” Computers &
Operations Research, vol. 32, no. 9, pp. 2271–2284, 2005.

TABLE II. THE RESULTS OF APPLYING FOUR DIFFERENT OPTIMIZATION ALGORITHMS TO THE MAXIMIZATION OF ZERO-ONE KNAPSACK PROBLEM

Population Number of item Maximum Weight Maximum iteration Result BCSO BPSO [12] BPSO [13] Ga [14]
size backpack

mean 163.200 2.348 158.200 152.800
30 75 50 1000 std 2.683 0.264 3.421 4.147

best 167.000 2.634 162.000 157.000
worst 161.000 2.022 153.000 147.000
mean 232.800 2.240 218.000 210.200

30 100 85 1000 std 3.899 0.105 8.426 4.919
best 238.000 2.360 227.000 216.000

worst 229.000 2.123 207.000 203.000
mean 356.600 1.657 167.223 73.273

40 200 170 1000 std 10.854 0.029 144.766 141.877
best 368.000 1.691 312.000 327.000

worst 344.000 1.621 6.667 7.250
mean 585.000 1.371 2.537 2.321

50 400 160 1500 std 21.703 0.021 0.033 0.206
best 599.000 1.393 2.559 2.516

worst 560.000 1.351 2.499 2.106

0 500 1000 1500
10

0

10
1

10
2

10
3

Iteration

V
al

ue
 B

ac
kp

ac
k

binary CSO
binary PSO [12]
binary PSO [13]
binary GA [14]

Fig. 4. The convergence trend of four different optimization algorithms when
they are applied to maximization of zero-one knapsack problem

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

Iteration

C
os

t

binary CSO
binary PSO [12]
binary PSO [13]
binary GA [14]

Fig. 5. The convergence trend of four different optimization algorithms when
they are applied to minimization of Rastrigin function

0 200 400 600 800 1000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Iteration

C
os

t

binary CSO
binary PSO [12]
binary PSO [13]
binary GA [14]

Fig. 6. The convergence trend of four different optimization algorithms when
they are applied to minimization of Rosenbrock function

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

10
4

Iteration

C
os

t

binary CSO
binary PSO [12]
binary PSO [13]
binary GA [14]

Fig. 7. The convergence trend of four different optimization algorithms when
they are applied to minimization of sphere function

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

