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Robust Stabilization of Normalized Coprime Factor 
Plant Descriptions with &-Bounded Uncertainty 

Abstract-The problem of robustly stabilizing a family of linear 
systems is explicitly solved in the case where the family is characterized by 
H ,  bounded perturbations to the numerator Nand denominator A o f  the 
normalized left coprime factorization of a nominal system. This problem 
can be reduced to a Nehari extension problem directly and gives an 
optimal stability margin J1- ll[N, mil f .  All controllers satisfying a 
suboptimal stability margin are characterized and explicit state-space 
formulas are given. 

I. INTRODUCTION 

HE problem of robust stability of closed-loop systems has T received a considerable amount of attention in recent years. In 
particular, the H, approach to optimal control system analysis 
and design has provided some promising results in the area of 
robust stabilization of plants with unstructured uncertainties. 
Unstructured uncertainty in a process is uncertainty about which 
there is no information available except that an upper-bound on its 
magnitude, as a function of frequency, can be estimated. 

In optimal H, design, it is necessary to model plant uncertainty 
as a separate transfer function from the nominal plant model, and 
two common approaches are to model the uncertainty in a 
multiplicative or additive way with respect to the nominal plant. 
These forms of uncertainty are investigated, for example, in 
Doyle and Stein [6] and Chen and Desoer [3], and necessary and 
sufficient conditions are established for a given controller to 
stabilize all such perturbed plants. The robust stability condition 
in [3] gives a test on the "-norm of a certain closed-loop transfer 
function, and hence the existence of a robustly stabilizing 
controller can be determined via H, optimization techniques 
originated by Zames [37]. (See the monograph by Francis [8] and 
the references therein.) The above observation for robust stabili- 
zation under unstructured perturbations was made by Kimura [ 181 
for the SISO case, with multivariable extensions in Vidyasagar 
and Kimura [35], Glover [IO], and Verma et al. [30]. 

An alternative expression for plant uncertainty has been 
advocated by Vidyasagar in [31]-[33] in terms of additive stable 
perturbations to the factors in a coprime factorization of the plant. 
He shows that such a family of perturbations is particularly 
appropriate for feedback system analysis. The present paper also 
considers this class of unstructured perturbation (which is 
assumed to have bounded H,-norm) and obtains a surprisingly 
explicit and intuitively appealing solution to the corresponding 
robust stabilization problem when the coprime factorization is 
normalized. In particular, it will be shown that if the plant 
transfer function is written with a coprime factorization 
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where A, A are normalized such that 

fifi* + "* = I 

then the family of plants 

6 , = { ( A + A , ) - l ( ~ + A , )  : Il[A,, A N I l l m < E J  

can be stabilized by a single linear time-invariant controller if and 
only if 

€ 2 5  1 - [I[&#, N I [ [ ; .  
The problem of finding a maximum E can be solved via standard 

H, optimization techniques (see [SI). However, it will be shown 
here that all optimal controllers maximizing E can be obtained 
from a Nehari extension problem: namely, if [;]is an optimal 
Nehari extension of the matrix function [ -31 satisfying 

then K = UV- I is a stabilizing controller achieving the maximum 
allowable stability margin, and ( U ,  V )  is a right coprime 
factorization of K .  

Section I1 gives some preliminary definitions, and some 
common results on coprime factors; Section 111 formulates the 
problem in the H, framework; Section IV then demonstrates that 
all optimal controllers can be obtained via the Nehari extension 
approach. In addition, the suboptima/ problem is introduced (that 
of obtaining all controllers which robustly stabilize a plant with a 
prespecified uncertainty level) and a parameterization of all such 
controllers is given. Section V gives explicit state-space formulas 
for all suboptimal controllers. Finally, concluding remarks are 
given in Section VI. 

11. PRELIMINARIES 

A .  Nomenclature and Definitions 

All systems will be assumed linear, finite-dimensional, and 
time-invariant. The following notation is used. Rational matrix 
transfer functions are denoted G(s)  or G to differentiate from 
constant matrices. RL, denotes the space of proper, real-rational 
functions with no pole on s = jo with norm denoted 11 . 11,. RH, 
denotes the subspace of RL, with no poles in the closed right-half 
plane. A * is the complex conjugate transpose of A ,  and for real- 
rational functions of s, G* denotes [G( -S)]*. {Xi(A),  1 5 i I 
n} denotes the set of eigenvalues of A .  A linear fractional 
transformation (LFT) will be denoted 

( 2 .  la) 
Alternatively, if P i '  exists, an LFT can also be denoted 

&J[KI=(U1,K+ Ul2)(UZlK+ U22)-I (2. lb) 
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where 

U =  ---- c Y" U21 ! U22 ""1 . 

[all (2.2) 

A state-space system is denoted G = ( A ,  B ,  C ,  D )  or 

where G(s) = C(sI  - A ) - ' B  + D. If G E RH, with a state- 
space realization as in (2.2), then the controllability and observ- 
ability Gramians, P and Q, respectively, are defined as the 
solutions to the following Lyapunov equations: 

AP+PA*+BB*=O (2.3) 

A*Q+ QA+C*C=O. (2.4) 

The Hankel singular values of G are defined { U ;  A Xf12(PQ), 1 
I i I n }  and the Hankel norm, denoted 1 1  [ I H  is the largest of 
these. A transfer is called all-pass if it is square and G*G = I ,  
inner if it is stable and G*G = I ,  and coinner if it is stable and 
GG* = I .  

B. Coprime Factorization 

Some results on coprime factorizations are now given. Only 
left coprime factor descriptions are stated here, as similar results 
for the right coprime factor cas_e ca_n be obtained by duality. 

Definition 2.1: Matrices M ,  N E RH, constitute a left 
coprime factorization (LCF) of G if and only if 

a) A? is square, and det (A) f O  

b) G = M - ' m  (2.5) 

c) there exists V, U E RH, such that 

M V + N U = I .  (2.6) 

An arbitrarily large number of LCF's can be generated for a 
single plant G (see Vidyasagar [33, Theorem 4.431). A partisula: 
left coprime factorization of G is one in which the factors N ,  M 
are normalized. 

Definition 2.2: A left coprime factorization of G as defined 
above is normalized if and only if 

NN* +MM* = I for aII s (2.7) 

or equivalently, if and only if the matrix [m, a] is coinner. 

A state-space construction for the normalized left (respectively, 
right) coprime factorizations can be obtained in terms of the 
solution to the generalized control (respectively, filter) algebraic 
Riccati equation. 

Generalized Control Algebraic Riccati Equation (GCARE): 

( A  - BS- 'D*C)*X+X(A  -BS- 'D*C)  

- XBS - ' B * X +  C*( I  - DS - ~ D * ) c =  o (2.8) 

where S 4 I + D*D; and 
Generalized Filter Algebraic Riccati Equation (GFARE): 

( A - B D * R - ' C ) Z + Z ( A  -BD*R-IC)* 

-zc*R-'cz+B(I-D*R-~D)B*=o (2.9) 

where R A I + DD*. Some results on solutions to GCARE and 
GFARE are given in Appendix A. 

Meyer and Franklin [25] state the state-space construction for 
normalized right coprime factors and this has been extended by 

el 

t 

"2 e2 

Fig. 1. Left coprime factor perturbations. 

Vidyasagar [34] to the case where G is not necessarily strictly 
proper. The equivalent normalized LCF construction is now 
given. 

Lemma2.I: Let G ( s )  = C(sI - A ) - ' B  + D with (A ,  B, C )  
minimal. If 

H = - (ZC* + BD*) R - I 

where Z is the unique, positive definite solution to GFARE, then 

(2.10a) 

(2. lob) 

A 4 R -1/2C(sI-  A - H C ) - ' ( B +  HD) + R -1'2D 

M R - I / 2  + R -1'2C(sI- A - H C )  -IH 

is a normalized LCF of G such that G = &!-IN. 

111. PROBLEM FORMULATION 

A particular robust stabilization problem is now going to be 
considered which uses the normalized left coprime factorization 
representation of the nominal plant G(s). (In Section IV it is 
shown that this choice of coprime factorization has a number of 
advantages over other coprime factorizations.) 

Let the nozinalplant model have a normalized left coprime 
factorization N ,  M such that 

G = M - ' N .  (3.1) 

G A = ( A + ~ M ) - I ( N + ~ , )  (3.2) 

Then any perturbed plant can be written 

where A,,,, AM are stable unknown transfer functions which 
represent the uncertainty in the nominal plant model. 

The robust design objective is to stabilize not only the nominal 
plant G ,  but the family of perturbed plants defined by 

S f = { ( a + ~ M ) - ' ( f l + ~ , )  : I I I A , ~ ,  A N I I J ~ < E )  (3.3) 

using a feedback controller K (see Fig. 1). 
It is demonstrated by Vidyasagar [3 11-[33] that this description 

of plant uncertainty has a number of advantages over additive or 
multiplicative unstructured uncertainty models. For example, the 
number of unstable poles may change as the plant is perturbed. 

Some preliminary definitions will now be given for this 
particular problem. 

Definition 3. I :  The feedback system of Fig. 1 (with A M  = A,,, 
= 0 )  will be denoted ( C ,  K )  and called internally stable if and 
only if 

a) ( I -  G K ) - l ,  K ( I -  G K ) - ' ,  ( I -  G K ) - ' G ,  
( I - K G ) - '  E RH, 

b) det ( I - G K ) ( m ) # O .  

Definition 3.2: The feedback system of Fig. 1, denoted (M, 
N ,  K ,  E )  is robustly stable if and only if (CA, K )  is internally 
stable for all GA E 6,. 
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The maximum value of E while retaining stability is called the 
stability margin for this problem. Hence, E is a limitation on the 
size of perturbation that can exist without destabilizing the closed- 
loop system of Fig. 1. 

Further, if there exists K such that (kf, m, K ,  E )  is robustly 
stable, then (A, m, E )  is said to be robustly stabilizable with 
stability margin E .  

Necessary and sufficient conditions for robust stability [3] will 
now be stated, and then it will be shown that this problem fits 
neatly into the standard H ,  framework. - 

Lemma 3.1: The feedback system ( M ,  A, K ,  E )  is robustly 
stable if and only if ( G ,  K )  is internally stable and 

Equivalently, (A, N ,  E )  is robustly stabilizable if and only if 

where the infimum is chosen over all stabilizing controllers K .  

Equation (3.5) is in the form of an H ,  optimization problem, 

The problem stated above can be converted to the general 
which allows E - ]  to be chosen as small as possible. 

formulation of Doyle [5]. Let 

for this particular problem, the maximum stability margin can be 
calculated exactly, in a simple way. 

The main results of this section will now be stated, which relate 
the solution of the LCF robust stabilization problem to the solution 
of a particular Nehari extension problem, and in addition, the 
optimal stability margin for this problem is explicitly stated. 

Theorem 4.1: A controller K is stabilizing and satisfies 

(4.1) 

if and only if K has an RCF: K = UV-I for some U ,  V E  RH, 
satisfying 

Theorem 4.2: 

tion problem give 
a) Optimal solutions to the normalized LCF robust stabiliza- 

where the infimum is taken over all stabilizing K .  
b) The maximum robust stability margin is 

E,,, = { 1 - 11 [ N ,  All1 :,} 1/2> 0. (4.4) 

c) All optimal controllers are given by K = U V- I where U,  
V,  E RH, satisfy 

Then (3.5) is equivalent to 

where K is chosen over all stabilizing controllers. ( P i s  referred to 
as the H ,  standard plant.) 

The normalized coprime factor robust stabilization problem is 
now in the standard form for an H, optimization problem. The 
next section gives an explicit solution to this particular problem. 

Remark 3. I :  It should be noted that the problem as stated so far 
could be applied to any left coprime factorization of G .  The H ,  
optimization problem in (3.5) was formulated in Vidyasagar and 
Kimura [35] for any left coprime factorization, and could be 
solved using the standard iterative procedures outlined, for 
example, in Francis [8], Chu et al. [4], or Foo and Postlethwaite 
[7]. Sections IV and V show that an advantage of selecting the 
normalized coprime factorization is that the problem can be 
solved exactly in a remarkably simple way and that the computa- 
tionally expensive iterative procedure can be avoided. 

IV. CHARACTERIZING ALL SOLUTIONS 

A .  Solution Via a Nehari Extension Approach 

In Section 111, the H ,  standard plant was formulated for the 
normalized LCF robust stabilization problem to which the 
standard solution procedure of [8] can be applied. The results 
presented in this section, however, present a diversion from these 
standard solution methods. It will be shown that the coprime 
factors of the controller can be generated directly from the 
normalized coprime factors of the plant by obtaining a Nehari 
extension of the matrix transfer function [-$$I. It is hoped that 
this surprisingly explicit result will provide new insight into the 
H ,  optimization procedure and its links with Nehari and Hankel 
norm approximation problems. In addition, it will be shown that, 

The proof of Theorem 4.1 will need the following lemma. (The 

Lemma 4.1: 
proof is given in Appendix C.) 

a) Let E l ,  E2 E RL, satisfy 

(4.6) 

Then, EI(Z - E&’ E RL, and 

/ ) E ,  (Z-&- 1 11, 5 a(1 - a 2 ) -  112. (4.7) 

b) For any F E RH, satisfying llFll, 5 a(1 - a2)-1’2,  
there exists E l ,  E2 E RH, such that El (I  - E2)-I = Fand (4.6) 
is satisfied. 

Proof of Theorem 4.1: 
a) Necessity: Suppose K _  is a stabilizing controller 

satisfying (4.1) and with RCF (0, V), then an equivalent RCF is 
(U,  V) with 

since (AV - No)-] E RH, by internal stability requirements. 
Further, substituting for K and G in the closed loop gives 

and as [ -F :*I is all pass (where ( N ,  M) is a normalized RCF 
of G satisfying N*N +- M*M = I ) ,  we can exploit the unitary 
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invariance of the H ,  norm to obtain 

Now consider 

and necessity is proven. 

(4.2) and define 
6) Sufficiency: Assume now that U ,  V E RH, satisfies 

1 M * U + N * V  
I + ( A V - i S U )  . (4.10) 

ThenI()[Ei]lli 5 1 - y-2 by assumption. Further, for K = 
uv- 

and applying Lemma 4.1 

Finally, K-will be stabilizing (and U ,  V is an RCF of K )  since 
( A V  - N U ) - ’  = (E2 - Z)-’ E RH, by the small gain 
theorem since (lE21Im < 1 by assumption and E2 E RH,. H 

Proof of Theorem 4.2: This is an immediate consequence 
of Theorem 4.1 and Nehari’s theorem, and the following lemma. 
(The proof is given in Appendix C.) 

Lemma 4.2: A normalized left coprime factorization (m, A?) 
satisfies 

I l r R  AlIIH< 1. 

Hence, 1 - y-2 2 )I [m, [I;, with equality achievable by 
choosing [ :] to be an optimal Nehari extension of [ -:$I. Lemma 
4.2 guarantees that E,,, > 0. 

Remark 4. I :  The main implication of Theorems 4.1 and 4.2 is 
that all H,  optimal controllers for this problem can be obtained by 
solving a related Nehari extension problem. Theoretically, this is 
a more straightforward approach than a general H ,  approach, and 
it is hoped that this will give greater insight into the nature of this 
problem. 

Remark 4.2: The maximum stability margin given in (4.4) is 
surprisingly explicit. The H, optimization problem posed in (3.5) 
is a “two-block” problem for which an iterative solution is 
normally required to approximate emax. It is possible to show [13] 
that (4.4) can be obtained in an alternative way by a simplification 
of the approach of [ 81. 

Remark 4.3: It is possible to obtain a dual result for the 
maximum stability margin if a normalized right coprime factori- 
zation ( N ,  M )  of the nominal plant is used. For any nominal 
plant, the optimal stability margin for the normalized left and right 
coprime factor problems is the same. It is also obvious that all 
optimal controllers for the normalized RCF problem can be 
obtained from U, V E RH, such that K = T- Io, where [U,  P ]  
is the optimal Nehari extension of [ - N * ,  M*].  The choice 
between the two approaches in design is related to particular 
robust stability and performance objectives, and this is discussed 
elsewhere [22]. 

Remark 4.4: In the robust stabilization of ( G  + A )  with 1) A 11, 
< /3 it has been observed that the largest robustly stabilizable 
region with a single controller has a nonstabilizable plant on its 
boundary [lo]. This result has been exploited by Khargonekar 
et al. [ 171 to show, for example, that nonlinear and time-varying 
controllers can do no better. The same comments apply to 
unstructured multiplicative perturbations. However, in the case of 
coprime factor uncertainty, it can be shown th_at, in general, the 
nearest unstabilizable system to a nominal [ N ,  MI (in the H ,  
norm) is beyond the boundary of the largest robustly stabilizable 
set, where by “nearest unstabilizable system,” we mean here the 
nearest G, = ( N  + A,)(M + AM)-I such that the pair ( N  + 
A N ,  M + A,) is no longer coprime. That is, there is RHP pole/ 
zero cancellation. 

Consider the following second-order example. A nominal plant 
G = 12/s(s + 5) has a normalized left coprime factorization 
given by 

[ m, A?] = [ 12, S(S + 5)]/(s + 3)(s + 4). 

Routine calculations yield that ( 1  [m, A ]  \ I H  = 0.79156, and hence 
E,,, = 0.61 109. However, in the single-input, single-output case, 
the distance to the nearest stabilizable plant is given by 

d =  inf (11512+ lM(2)’” 

and a search on Re (s) > 0 indicates that-d = 0.6146, and thus 
the nearest unstabilizable system to [ N ,  MI in this norm is very 
slightly beyond the boundary of the largest robustly stabilizable 
set. Hence, the above remarks concerning nonlinear and time- 
varying controllers do not necessarily apply in this case. 

B. Parametrizing All Controllers 

A related problem to the optimal H ,  problem posed in Section 
111 is the so-called suboptimal problem of obtaining the set of 
stabilizing controllers K such that 

Re(s)>O 

where y(> E;:,) is some prespecified tolerance level for the 
allowable uncertainty. Theorem 4.1 shows that (his is equivalent 
to finding all stable extensions of [ -GI, designated Q, such that 

where (Y = ( 1  - y-2)1/2.  

(4.12) 
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Appendix B gives a characterization of all such Q, and it is thus 

Theorem 4.3: For 1 > (y > 11 [ N ,  M] [ I H ,  let the parametriza- 
possible to characterize all controlkrs Zchieving (4.1 1 ) .  

tion of all extensions of [ such that Q E RH, and 

be given by (see Appendix B) 

Q=3,[@1 (4.13) 

9 E RHkP+f")xP, )I9pII, 5 1 ,  andJ E RHP+f")+P)x(m+P+P) 

JII -aJ12 j J i 2  
J =  - _ - _ _ _ _ _ _ _ _ _  r---I . (4.14) [ 521 I - a J 2 2  I Jzz 

Then, all stabilizing controllers satisfying (4.11) are given by 

K = (Jl I U 6 + Jl Z U  )( Jl I "  6 + 112")  - (4.15) 

= UV-l, then appropriate partitioning of J l l ,  J i 2  as [;!;:I, 
yields the desired result. 

Remark 4.5: It is interesting to note that although there are ( p  
+ m )  x p degrees of freedom associated with Q (via the 
arbitrary contraction a), there are only m x p degrees of 
freedom associated with the resulting suboptimal controller (via 
6). The reason for this is that the suboptimal extension can 
generate right coprime factorizations by multiplying any one 
solution by a p  x p unit in RH,. The remaining m x p degrees 
of freedom are associated with the controller (rather than the 
factorization) and would also be obtained had the controller been 
derived via the standard H ,  methods [23]. 

In the next section, a state-space characterization of all 
suboptimal controllers will be given. 

v. A STATE-SPACE REPRESENTATION FOR ALL SUBOPTIMAL 
CONTROLLERS 

A .  Characterizing AN Controllers 

and 6 E RHzXP such that l16\lm 5 1. 
Proof: From (4.14), all Q are given by 

Q = ( J I  I @ I  - a JIZ% + J i 2  J Z I  @ I  + (1- a J22 1% + J z z )  - I (4.17) 

where 9 = [Xi], and GI  E RHEXP, a2 E RHCP. Noting that as 
Q E RH, and J E RH, that (Jz1a1 + ( I  - aJzz)9z  + Jzz )  is a 
unit in RH,, then from basic coprime factorization theory (see 
[33]) all coprime factors of the controller (given by Q)  are also 
given by 

Q ' = ( J i ~ @ i - ~ J ~ z @ z + J i z )  

= Ji1@1 + J l z ( l - o 1 @ 2 )  (4.18) 

where ( I  - aa2) E RH,, and also ( I  - a9z)-1 E RH, by the 
small gain theorem. Hence, without loss of generality, coprime 
factorizations of all controllers are given by 

Q" = J 1 1 @ I ( Z - ~ @ ~ ) - i + J 1 2 .  

Next, noting that 

(4.19) 

then by Lemma 4.1 aj  

= l \a@*(I- CY@& I \I, sa(1 - a 2 ) - 1 / 2  

* \ ~ 6 1 ~ \ m 5 ( l - a z ) - l ' 2  (4.20) 

E RH,. Conversely, by Lemma 4.1 
E 

where 6l 4 (I - 
b), for any ai E RH, satisfying (4.20) there exists 
RH, satisfying (4.19). 

Hence, coprime factors of all controllers are now given by 

Q" =J1161+ Jlz (4.21) 

where GI  E RHEXp and I1611\y 5 ( 1  - a2)-II2 (= y). 
Alternatively, by scaling (PI by y- and JII by y 

Q" =Jl,&+Jl2 (4.22) 

where Ill = yJ l l ,  J12 = J I 2 ,  6 E RHEXP, and \16\1, 5 1 .  
Noting that Q " = [ 3, where U ,  Yare coprime factors of K: K 

(5.1) 

and solutions to the associated Lyapunov equations [see (2.3) and 
(2.4)] are given by 

P =  -X(I+ZX)-l by (A.18) (5.2) 

and 

(5.3) Q= -Z by (A.16). 

The results of Theorem 4.3 combined with Lemma B.2 
(Appendix B) yield the following state-space parametrization for 
all suboptimal controllers achieving tolerance level y . 

Lemma 5.1: All controllers for the normalized LCF robust 
stabilizstion problem satisfying 11 5 ( P ,  K )  11, 5 y, for y > (1 - 
Il[N, M] l l ~ ) - l / z ,  are given by 

where L has the state-space form 

Lli j LIZ 

Lz1 I Lzz 

( 5 . 5 )  

where ( = (y2 - l)II2, 

9 E RHZXP with I( 9 11, 5 1 ,  and all other terms are as defined 
in Appendix A. 

Proof: As [ -fi A?] is a coinner function, the suboptimal 
extension will have the form given in (B.6) in Appendix B. Noting 
from Theorem 4.3 that only the ( 1 ,  1)  and ( I ,  2) blocks of this 
state-space expression are required to determine all controllers, 
the state-space form of L [as required for (5.4)] can immediately 
be written as 
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and by noting that 

is a suitable unitary completion of 

[ ylq 

then 

I 

Fig. 2.  Construction of KO from coprime factors. 

A L = A o  
( 5 ' 7 )  Scaling of L I I ,  L Z l ,  as in (4.22), then noting that y - ' L  also gives a 
( 5 . 8 )  parametrization of all suboptimal controllers (a- '  = y(yz - B~ = [ W*-lBS - 112 a - I W * -  lQC*R - 1 / 2  1 

1)-1'2) yields the required result given in (5.5). 
D*R -112 (B+HD)* 

'L= [ - ( - H *  ) p +  ( - R  - I / 2  ) -"2c] (5'9) B. The Central Controller 

In addition 

W e PQ-(Y'I 

and P and Q are defined in (5.2) and (5.3). 
Now, by noting that 

w =  XZ(  I + X Z )  - ' - a2I 

= ( ~ - ~ ( z + x z ) - z ) ( z + x z ) - ~  as c y 2 =  1 - y - 2  

* W * - l = y 2 ( I + Z X ) W T - '  (5.11) 

where WI P I + (XZ - y2Z), then, (5.8) can be written 

BL = yz( I + Z X )  WT [ BS ' I 2 ,  - (Y - IZC* R ' I 2 ] .  (5.12) 

Next note that 

H * P -  R -IC= - H * X ( Z + Z X ) - I -  R-IC 

= R - I  (DB * X -  C)(Z+ ZX)- l  

= - ( C + D F ) ( Z + Z X ) - '  

by (A. 10) 

by (A.5), (A.6), and (A.9) 

and 

B P + D * ( H * P - R - ' C )  

= (B*X+ D*(C+ DF))(Z+ ZX)- '  by (5.2) 
= - F ( I + Z X ) - '  by (A.9). 

Hence, (5.9) can be written 

(5.14) 

w1 = I +  (XZ - y2Z). 

Proof: Fig. 2 demonstrates that KO = LI2L;; can be 
written as a unity feedback system, and the nth-order state-space 
form of KO can be readily constructed from this and (5.5) without 
any state inflation. (The construction is straightforward and is 
omitted here.) 

Remark 5.  I :  As has been recently stated by Glover and Doyle 
[9], the controller for the suboptimal H ,  problem requires only 
the solution to two Riccati equations (as is required for an LQG 
controllerr. Th_e present problem requires one Riccati equation to 
obtain [ N ,  MI, and hence pose a standard H ,  problem. 
Thereafter, one more Riccati equation need be solved as shown in 
Corollary 5.1. Further, noting from (5.2) and (5.3) that 

II [N AI II ;= X,,,(ZX(I+ Z X )  - I 1 (5.16) 

then by (5 .2) ,  (5.3), and (4.4), it can be seen that (after some 
manipulation) 

yfi,=E;:,= 1+h,, ,(ZX).  (5.17) 

Hence, for the normalized LCF robust stabilization problem, the 
Riccati solutions are sufficient to specify the maximum achievable 
stability margin. Note that X,(ZX) are precisely the closed-loop 
characteristic values defined in [ 151. 

Remark 5.2: The H ,  solution procedure proposed in [9] can be 
used to illustrate why the normalized LCF robust stabilization 
problem has an exact solution. This paper gives conditions for the 
existence of a stabilizing controller achieving tolerance level y.  In 
particular, the stabilizing solutions, X ,  and Y,, to two Riccati 
equations must be positive semidefinite, and the spectral radius, 
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p(X,  Y,) ,  be less than or equal to y2.  To achieve an optimal 
solution, an iteration on y yields the minimum tolerance such that 
these conditions hold. However, in the normalized LCF problem 
it can be shown [23] that 

x,  = - y2 w, IX= - y2(I+ xz-  y 2 I ) -  1x 
Y,=O 

where the matrices X, Z solve GCARE and GFARE, respec- 
tively, and y is the required tolerance level. Hence, Y ,  h 0 and 
p ( X ,  Y,) < y2  for all y, and 

X , r O  

0722 1 + X,,,(XZ). 

We, therefore, have an explicit condition on y, and no iteration is 
required. 

Remark 5.3: The following manipulation demonstrates that the 
so-called two-block problem being considered in this paper is 
equivalent to a four-block problem; noting that the H, norm is 
invariant under right multiplication by a coinner function, we have 

Hence, the optimal controller for the normalized LCF robust 
stabilization problem is also the optimal controller for the 
problem: find 

Here, a combination of the closed-loop transfer function objec- 
tives ( I  - G K ) - l ,  ( I  - GK)-IG, K(Z - G K ) - ' ,  and K(Z - 
GK)-'G is being minimized. Using the procedure of [9] the 
solution to this four-block problem yields 

X , = -  y2  x 
7 2 -  1 

Y , = Z  

which are positive semidefinite for y > 1, and 

p ( X ,  Y,) = 3- p ( X Z )  5 y2 
y2- 1 

a y 2 2  1 +X,,,(XZ) 

as before. (In [14], Grimble also shows the existence of an exact 
solution to a particular four-block problem.) 

Remark 5.4: If the tolerance level is set to the minimum value 
specified in (5.17), a controller of degree s n - 1 is predicted 
[19]. For this, the optimal case, it can be shown [29] that as y + 

ymln only n - r states will exist in the realization in (5.15), where 
r is the multiplicity of A,,, ( Z X ) .  All such optimal controllers can 
be constructed from the optimal Nehari extension of [-%](see 
Theorem 4.2) following the state-space construction in [12]. 

Remark 5.5: When D # 0, the feedback system is always 
well-posed since det ( I  + OD*) # 0. However, if we now 
require that the system is well-posed in the face of infinitesimal 
time delays (see Willems [36]), the condition 6 ( D )  < 1 is 
sufficient. 

VI. CONCLUSIONS 

This paper has achieved the following: 
1) introduced the idea of normalized coprime factors as a tool 

for obtaining robust stability using optimal H ,  theory; 
2) shown that the maximum stability margin in the normalized 

LCF robust stability problem can be simply and directly calcu- 
lated; 

3) demonstrated a link between robust stabilization using H, 
optimization and Nehari extension problems and shown that the 
normalized LCF robust stabilization problem can be solved in this 

4) given an explicit state-space characterization of all subopti- 
mal controllers for the normalized LCF robust stabilization 
problem. 

It has also been indicated that the theoretical simplifications 
allow a significant reduction in the computational effort required 
to obtain the H ,  optimal controller for this problem since no 
iteration on y is required. 

Although only a particular H ,  design approach has been 
considered here, it is claimed by the authors to be appropriate in a 
wide class of design problems. This is further discussed in 
McFarlane and Glover [22], where it will be shown that the 
normalized LCF robust stability problem can be incorporated into 
a systematic loop shaping design technique which considers 
performance as well as robust stability. A design example using 
this procedure is given in [2 1 1 .  

Appropriate methods for producing reduced-order controllers 
in this framework have been derived in [24] and are related to the 
work of Liu and Anderson [20], Anderson and Liu [ 11, and Meyer 
1261. 

way ; 

APPENDIX A 

The Algebraic Riccati Equation 

Consider the state-space model of the form 

X=Ax+Bu 
Y = C X + D U  

where x E an, y E am, U E ar and A ,  B,  C, D are time- 
invariant matrices of compatible sizes. This system is denoted ( A ,  
B ,  C, D )  and in all further results, it is assumed to be a minimal 
realization of its transfer matrix 

G(s )  & C ( d - A ) - ' B + D .  (A.2) 

The two particular algebraic Riccati equations (ARE'S) of interest 
in this work are the generalized control algebraic Riccati equation 
(GCARE) 

( A  - B S - ' D * C ) * X + X ( A - B S - ' D * C )  

-XBS- 'B*X+ C*R - 'C=O (A.3) 

and the generalized filtering algebraic Riccati equation (GFARE) 

( A  - BD*R - I C ) Z  + Z ( A  - BD *R - I C)* 

- Z C * R - ' C Z + B S - ' B * = O  (A.4) 

where 

S g ( I + D * D )  (A.6) 

and by inspection R-l  = I - DS-lD*, S-' = I - D*R-ID, 
DS-1 = R-ID , and DS = RD. 

Associated with these Riccati equations are the closed-loop 
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control and filtering matrices, defined, respectively, as 

A' G A+BF (A.7) 

A' A + H C  (A. 8) 

where F, the control gain, and H ,  the filter gain, are defined 

F G - S - ' ( D * C + B * X )  (A.9) 

H A  -(BD*+ZC*)R-I .  (A.10) 

Noting that the controllability of ( A  - BS-'D*C, BS-'12) is 
uniquely implied by the controllability of ( A ,  B )  and that the 
observability of ( R-"2C, A - BD*R - IC) is uniquely implied 
by the observability of (C, A )  (both can be shown by simple PBH 
tests), then the following theorems give sufficient (but not 
necessary) conditions for the existence and uniqueness of particu- 
lar solutions to GCARE. 

Theorem A.1 (Kalman [16J): If ( A ,  B )  is completely 
controllable, and (C, A )  is completely observable, then there 
exists a unique solution, X = X* > 0 to GCARE and the 

Remark A . l :  It should be noted that considerably weaker 
conditions would be sufficient to yield the solutions stated in 
Theorems 1 and 2. The condition of minimality is assumed as this 
is compatible to assumptions made in the rest of the paper. 

Remark A.2:  Theorem 1 can be applied directly to GFARE 
and equivalent results obtained, if the system ( A ,  B, C, D )  is 
replaced by (A*,  C*, B*, D*), X replaced by Z ,  and hence A' 
replaced by A ". 

It can also be shown that X and Z defined in (A.3), (A.4), 
respectively, solve 

eigenvalues of A' have strictly negative real parts. 

( A  - B S - ' D * C ) * Z - ' + Z - ' ( A  -BS- 'D*C)  

+ Z 'BS - ' B *Z  - ' - C*R - I  C = 0 (A. 1 1) 

(A-BD*R-~c)x-~+x-~(A-BD*R-~c) 

+ X -  IC*R - I C X -  - BS - 'B* = 0. (A. 12) 

It is also possible to relate the stabilizing solutions of GCARE 

Theorem A . 2  (Bucy [2J): 
and GFARE. 

A = ( I +  Z X )  A ' ( I +  Z X )  - ' (A.13) 

( A  ")* = ( I  + X Z )  ' ( A  ')*( I +  X Z ) .  (A. 14) 

(These were proven by Bucy for the case D = 0, but can easily 
be shown to apply to the D # 0 case as well.) 

Finally for completeness, the stabilizing solutions of GCARE 
and GFARE can be shown to satisfy the following related 
Lyapunov equations: 

X A C + ( A C ) * X =  - ( C  + OF)* ( C  + DF) - F *F 

= -C*R- 'C-XBS- 'B*X  (A.15) 

A"Z+ Z ( A  ")* = - ( B  + HD)(B + HD)* - HH * 
= -BS- 'B*-ZC*R-'CZ.  (A.16) 

These are a direct result of (A.3) and (A.4). Further, two 
Lyapunov equations can be obtained by combining (A.3) with 
(A. 14) and (A.4) with (A. 14) 

APPENDIX B 

Suboptimal Nehari Extensions 

A state-space characterization will be derived here for all 
suboptimal extensions of an unstable function that is constrained 
to satisfy an inner requirement. We first state a more general 
result characterizing all suboptimal extensions of any unstable 
function. This is derived from [ 1 I ] .  

Lemma B. I :  All suboptimal extensions of a function R, R* E 
RHEXP, of degree n, with state-space form R = ( A ,  B, C, D ) ,  
given by 

II R + Q II-50 

can be written Q E RHP,", where 

where - Q (respectively, - P) is the controllability (respectively, 
observability) Gramian of R*, and W 2 (PQ - a21). 

We now characterize all suboptimal extensions of an unstable 
function R satisfying R*R = I .  (That is, R* is coinner.) 

Lemma B.2: Given a coinner function R* E RHEXP, m I p ,  
of degree n, with R having state-space realization R = ( A ,  B, C, 
D ) ,  then all transfer functions Q E RHP,", achieving 

I1 R + Q 11- 5 a (B.3) 

can be written 

Q = ~ u [ + . ]  (B.4) 

where @ is an arbitrary transfer function constrained to satisfy @ 
E RHP,", II@pII, I 1 ,  and 

03.5) 
U,, I-au2, ! U,, 

With state-space form 

UII I U12 

U21 I U22 

= [ ~~] ------_______ _ _ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ - - - - - - - - - - - -  (B.6) 

a - ' I  

and - Q (respectively, - P) is the controllability (respectively, 
observability) Gramian of R*, W i (PQ - a2Z),  and D ,  is the 
unitary completion of D, i.e., [ D l ,  D ]  is square unitary. 

Proof: Noting that in Lemma B.l that 4 is an arbitrary 
contraction, VI, ,  V2, can be postmultiplied by a unitary matrix 
without changing the parametrization in (B.1). Next note that 
R*R = I = D*D = I .  Hence, if the unitary completion of D, 
D L  is chosen, so that the matrix 

S =  [DL,  Dl 03.7) 
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is unitary, i.e., SS* = S*S = I ,  then a matrix U ,  where The proof of Lemma 4.2 is-then as follows, 
i) It is well knoyn that ll[N, mllH 5 ll[N, &flIlm = 1. 
ii) Suppose \ \ [N,  = 1, then from Lemma C . 2 ,  there 

v2,s I vzz exists g(s), f ( s )  E RH2 such that 

will also parametrize all Q in (B. 1) and @ = 
II@ll, 5 1. Note from (B.2) that 

again satisfies 

[ E;:] = [ 
W*-‘C*D,  W*-’C*D =[,I 

(C.3) 

(i.e., R = { -’$I, and X = 0 in Lemma C.2). 

Definition 2.1) is that there exist U ,  V E RH, 
But, one of the requirements for a coprime factorization (see 

(C .4) u*N* + v*a* = I .  

Premultiplying (C.3) by [ U*, V*] yields 

(B. 8) g(s)=tU*,  V*I f ( - s )  

Further, R* has a state-space realization given by ( - A * ,  C*, 
- B*, D*) ,  and noting from [12], [5] that for a coinner function 
C*D = - QB, then the result in (B.6) is immediate. ACKNOWLEDGMENT 

which is a contradiction as the right-hand side RH2. 

APPENDIX C 

Proof of Lemma 4.1: The proof is straightforward by 

Lemma C.1 (Redheffer f281): For J ,  K E RL, with )I JIIm 

Proof of Lemma 4.1: First, to prove a), let F be defined as 

noting the following lemma due to Redheffer. 

5 U, )I JzzKll, < 1, then IISL(J, K)II, I U if llKllm I U - ’ .  

where 

Noting that as JJ* = ( Y - ~ I ,  then 

l lF l l sa - i  (by Lemma C.l). 

Now by (2.la) 

= (1 &(I- Ez)-  1 (Im 501 (1 - 012)- ‘’2. 

To prove b), note that the selection El = (1 - d ) F ,  Ez = CYI 
demonstrates that for any F E RH, satisfying 11 Fll, I ( ~ ( 1  - 
( Y ~ ) - ~ ’ ~  there exists E l ,  E2 E RH, such that & ( I  - EZ)-l = F 
satisfying 

Proof of Lemma 4.2: The proof of this lemma uses a well- 
known result from the Hankel operator theory. 

Lemma C.2 (Francis 18, p.  701): Let 

((R-XIIm= ((R*((H 2 a , (R*)  (C.1) 

where R*, X E RH,. Then, there exist vectors g(s) and f ( s )  E 
RH2 independent of X such that 

( R -  X M 4  = a1(R*)f(- s). (C .2 )  

The authors would like to thank Prof. M. Vidyasagar for 
convincing them of the importance of the coprime factor 
approach, and Prof. N. J .  Young for helpful comments. 
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