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a b s t r a c t

In this paper, we consider the time-optimal control of a single-input, single-output second-order system
with bounded input anddescribe amethod for calculating the number of switches and the switching times
to drive the system from any initial state to a target state in a particular class. A pair of affine mappings
are derived that transform the original system into one where the switching curve becomes a collection
of similar sections of a logarithmic spiral. In this coordinate system, the number of switches and the times
of those switches are calculated and a feedback control law is synthesized.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

ThePontryaginMaximumPrinciple (PMP) (Pontryagin, Boltyan-
skii, Gamkrelidze, &Mishchenko, 1962) shows that a time-optimal
solution for steering a linear systemwith bounded inputs between
two states can be achieved by a series of switches between the
extremes of the control. Time-optimal methods have been ap-
plied successfully in, for example, the control of hard disk drives
(Iamratanakul, Jordan, Leang, & Devasia, 2008; La-orpacharapan
& Pao, 2004; McCormick & Horowitz, 1991) and of quantum spin
systems (Khaneja, Brockett, & Glaser, 2001; Khaneja, Reiss, Kehlet,
Schulte-Herbrüggen, & Glaser, 2005).

Current schemes do not easily yield the number of switches or
the switching times needed to effect the transfer. While this in-
formation can be calculated through simulation, a simpler solu-
tion would be useful when doing online optimization of the path
to move through a collection of target states in minimum time by
using the transition times between any two targets to formulate a
traveling salesman problem. Two examples of this are moving be-
tween measurement locations when tracking multiple but widely
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separated objects using a single mobile sensor (Shen & Anders-
son, 2011) or when moving the tip of an atomic force microscope
through a random selection of measurement locations to reduce
the total number of measurements needed to produce an image
(Andersson & Pao, 2012).

In this paper, we consider a second-order, single-input, single-
output (SISO), linear time-invariant (LTI) system and develop a
pair of affine maps which convert the system into a standard
form. In this form, the switching curve is given by a collection of
similar logarithmic spirals and the boundaries between regions of
constant control by another such collection. For equilibrium points
for which there is sufficient control authority to hold the system
at the target state, we determine the number of switches, the
switching times, and synthesize a feedback controller. Themethod
allows for control bounds that do not include the zero input in their
range.

2. Problem formulation

Consider a strictly proper, second-order, LTI, SISO system with
transfer function given by

Y (s)
U(s)

=
b1s + b2

s2 + a1s + a2
. (1)

The input is assumed to be bounded, u ∈ [umin, umax] ⊂ R. Note
that umin and umax are allowed to have the same sign and therefore
0 does not need to be in the set.

We express the system in observable canonical form

ẋ = Ax + Bu, (2)
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where

A =


0 1

−a2 −a1


, B =


b1

b2 − a1b1


.

The eigenvalues of A are

λ1,2 = −
a1
2

± iω, ω =


4a2 − a21

2
. (3)

We assume

a1 ≠ 0, 4a2 > a21, (4)

such that the eigenvalues are neither pure real nor pure imaginary.
We consider the following problem.

Problem 1. Given (2) satisfying (4)with control bounds umin, umax,
an initial state xo, and a target state xr , find a control law to steer
the system from xo to xr in minimum time.

Target states can be categorized into three types.

Definition 1. A target state xr is called a

• holdable equilibrium if ∃uo ∈ (umin, umax) such that Axr + Buo =

0.
• non-holdable equilibrium if ∃uo ∈ (−∞, umin)∪ (umax,∞) such

that Axr + Buo = 0.
• non-equilibrium if Axr + Buo ≠ 0 ∀uo ∈ R.

The holdable equilibrium target states are those for which there is
sufficient control authority to hold the system fixed at the target
point after the transition while the non-holdable equilibrium
states are those for which the system could be held fixed if there
was additional control authority. The combined set of equilibrium
target points lie on the line defined by

Xeq =

x ∈ R2

|x = −A−1Buo, uo ∈ R

.

Points off the line are non-equilibrium points.

2.1. PMP and the switching curve

Applying the PMP to Problem 1 yields the bang–bang law

u∗(t) =


umin, ifψT (t)B < 0,
umax, ifψT (t)B > 0,

(5)

with u∗
∈ [umin, umax] arbitrary forψT (t)B = 0. Hereψ(t) ∈ R2 is

the costate vector with dynamics

ψ̇(t) = −ATψ(t). (6)

Under the optimal control law, a switch occurs when ψT (t)B = 0.
In addition, at the final time the following boundary condition is
satisfied:

ψT (tf )(Ax(tf )+ Bu∗(tf )) ≥ 0. (7)

The standard solution to this problem is as follows (see, e.g. Pon-
tryagin et al. (1962)). Define a line segment in the costate space by
the two points v1,2 = Bumin,max (see Fig. 1). The costate space is
divided into two half-planes by the line passing through the origin
and perpendicular to the line segment v1–v2. Under the switch-
ing law (5), the optimal control takes the value umin (umax) if the
costate is in the half-plane containing v1 (v2). Unlike our approach,
this assumes that zero is an allowed control input.

The costate rotates at the rate ω given in (3). As a result, along
an optimal trajectory the control is constant for no longer thanπ/ω
units of time. The time interval before the first switch and the in-
terval between the final switch and arrival at the target state are
Fig. 1. The switching condition divides the costate space into two half-planes with
the optimal control being umin (umax) whenψ is in the half-plane containing v1 (v2).

Fig. 2. The switching curve and optimal trajectories in state space for a target
point xr . Evolving backwards in time from xr under umin (A1xr , red) or umax (B1xr ,
blue) produces two final trajectories. Rotating and scaling these as described in
Section 2.1 produces the switching curve (alternating red–blue). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

determined by the initial and final values of the costate (and there-
fore by the initial and final values of the state) while all intermedi-
ate intervals last exactly π/ω units of time.

The switching condition similarly divides the state space as
follows. Define the vectors e1 and e2 according to

e1,2 = −A−1Bumin,max. (8)

Under the bang–bang law (5), the system evolves as

ẋ = A

x − e1,2


. (9)

Thus, under application of umin (umax) the system rotates clockwise
about e1 (e2)with an angular velocityω. Since switchesmust occur
after no longer than π/ω units of time, the switching curve can
be constructed in the state space as follows (see Fig. 2). Beginning
from xr , two possible state trajectories are described by solving (9)
backwards in time for π/ω units of time, yielding the curves A1xr
and B1xr . The segment B2A1 is obtained by rotating B1xr about e1 by
an angle π and scaling it by exp

 a1π
2ω


. Similarly the segment A2B1

is obtained by rotating A1xr about e2 and scaling it by the same
amount. This procedure is then repeated.

If the target point is equal to either of the points e1,2, then there
is no time-optimal solution as one of the rotation centers is also
the target point; under application of the corresponding control
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value the systemwill spiral in to the target in infinite time. For the
remainder of this paper, then, we explicitly exclude e1,2 as target
points.

This constructive procedure describes the switching curve but
does not allow one to easily calculate the number of switches and
switching times.

3. A pair of affine mappings

The normal coordinates are defined such that the final state
trajectory under each control extreme is mapped to a logarithmic
spiral. The coordinate transformation is achieved using one of two
mappings. To construct them consider again (2) with a target point
xr . Shift the target point to the origin by defining x̂ = x − xr . The
dynamics are then

˙̂x = Ax̂ + Axr + Bu.

Let Φ(t, τ ) denote the state transition matrix of the system, x̂s a
state on the final state trajectory, and ts ≥ 0 the time to go from x̂s
to the origin (or, equivalently, to xr in the unshifted coordinates).
Under an optimal control law, the evolution of the system from x̂s
to the origin is given by the variation of constants formula to be

0 = Φ(ts, 0)x̂s +

 ts

0
Φ(ts, τ )(Axr + Bu)dτ . (10)

Pre-multiplying both sides of (10) byΦ(0, ts) andusing x̂s = xs−xr ,
we obtain

xs = xr −

 ts

0
Φ(0, τ )(Axr + Bu)dτ . (11)

Define the complex matrix

P =


1 1
λ1 λ2


, (12)

where λ1,2 are the eigenvalues of the system. Then

 ts

0
Φ(0, τ )dτ = P


(1 − e−λ1ts)

λ1
0

0
(1 − e−λ2ts)

λ2

 P−1. (13)

Define variables v, z, m, n as:

Axr + Bumin = [m n]T , (14a)

Axr + Bumax = [v z]T . (14b)

Since the points e1,2 defined in (8) are excluded as target points, it
cannot be that all the vectors in (14) are zero. The two branches of
the final state trajectory, denoted xmin,max, can then be described
in terms of ts and xr by substituting (3), (12) and (13) into (11).
Carrying out some routine but tedious calculations yields

xmin,max(ts) = Amin,max


X(ts)
Y (ts)


+ Bmin,max (15)

where

R(t) = e
a1
2 t , (16a)

X(t) = R(t) cos(ωt), Y (t) = R(t) sin(ωt), (16b)

Amin =

−
a1m + n

a2
−

m(4ω2
− a21)− 2a1n
4a2ω

m −
a1m + 2n

2ω

 , (16c)

Bmin = xr +


a1m + n

a2
− m

T

, (16d)
Amax =

−
a1v + z

a2
−
v(4ω2

− a21)− 2a1z
4a2ω

v −
a1v + 2z

2ω

 , (16e)

Bmax = xr +


a1v + z

a2
− v

T

. (16f)

The relations in (15) give the final state trajectory in terms of the
time to go and define the affine mappings,

M+

min,
max

: R2
→ R2,

X
Y


→


x1
x2


= Amin,

max


X
Y


+ Bmin,

max
. (17)

Note that there is a small abuse of notation here in reusing (X, Y )
both as the curves in (16) and as the coordinates under the map-
pingM+

min orM
+
max. The following lemma establishes the invertibil-

ity of the mappings.

Lemma 1. Consider (2) satisfying (4). If the target state xr ≠ e1,2,
then M+

min and M+
max are invertible mappings with inverses M−

min and
M−

max given by

M−

min,
max

: R2
→ R2


x1
x2


→


X
Y


= A−1

min,
max


x1
x2


− Bmin,

max


. (18)

Proof. To show M+

min is invertible, we need only show that Amin is
invertible. Its determinant is

det (Amin) =
(n − λ1m)(n − λ2m)

a2ω
. (19)

By assumption, xr ≠ e1 and so Axr + Bumin ≠ 0. From (14), then,
at least one of m and n is non-zero. Then, from (19), det(Amin) is
non-zero and thus Amin is nonsingular. A similar argument holds
for M+

max. �

For space reasons, in the remainder of this paper we arbitrarily
focus onM+

min. Similar results hold forM+
max.

We call the variables (X, Y ) the normal coordinates. The map-
ping M−

min transforms the original state variables into the normal
coordinates according to (18). It is straightforward to show that
Ẋ(t) Ẏ (t)

T
= An [X(t) Y (t)]T + Bnu + Cn

where

An = A−1
minAAmin =

−
a1
2

ω

−ω −
a1
2

 ,
Bn = A−1

minB, Cn = A−1
minABmin.

A simple calculation shows that Bnumin+Cn = 0.As seen from (16),
M−

min transforms the optimal final state trajectory corresponding to
umin to a logarithmic spiral in the normal coordinates. The follow-
ing theorem establishes that the optimal final state trajectory cor-
responding to umax is similar to the one corresponding to umin (in a
geometric sense).

Theorem 1. If xr ≠ e1,2, then the two final state trajectories corre-
sponding to umin and umax under the map M−1

min are related by a rota-
tion, dilation, and translation. Further, the angle of rotation between
the two is given by

tan θ =


2ω(mz − nv)

m(2a2v + a1z)+ n(a1v + 2z)


, (20)
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the dilation is

η =


(λ1v − z)(λ2v − z)
(λ1m − n)(λ2m − n)

, (21)

and the translation is

ν = A−1
min (Bmax − Bmin) . (22)

Proof. The final state trajectory corresponding to umin under the
map M−

min is the spiral curve (16). Consider now the final state
trajectory corresponding to umax, given by (15). Transforming this
withM−

min yields
Xmax
Ymax


= A−1

minAmax


Xmin
Ymin


+ A−1

min (Bmax − Bmin) (23)

where we have denoted the final state trajectory under the M−

min
mapping as [Xmin Ymin]

T . Defining ν as in (22) establishes the trans-
lation term. A simple calculation shows that A−1

minAmax is given by
(a1n + 2a2m)v + (a1m + 2n)z

2(λ1m − n)(λ2m − n)
ω(nv − mz)

(λ1m − n)(λ2m − n)

−
ω(nv − mz)

(λ1m − n)(λ2m − n)
(a1n + 2a2m)v + (a1m + 2n)z

2(λ1m − n)(λ2m − n)

 .
Since the diagonal terms in this matrix are equal while the skew-
diagonal terms differ only by a sign, this matrix represents a rota-
tion and a dilation.

To calculate the rotation angle and dilation factor, consider
Fig. 3. In the original coordinates, under umin (umax), the system ro-
tates about Bmin (Bmax), proceeding to the target xr . Under the map
M−1

min, xr is mapped to the point [1 0]T (denoted O in Fig. 3), the
final trajectory under umin is mapped to the standard spiral curve
defined in (16), the point Bmin is mapped to the origin (denoted C0
in the figure), and the point Bmax is mapped to C1. ApplyingM−

min to
Bmax shows that

C1 =

1 −
m(2a2v + a1z)+ n(a1v + 2z)

2(u1m − n)(u2m − n)
ω(nv − mz)

(u1m − n)(u2m − n)

 . (24)

θ is the angle from C0 to C1 while η is the ratio of the lengths of the
line segments∥C1O∥/∥C0O∥. Using (24), these are given by (20) and
(21), respectively. �

4. The switching curve in normal coordinates

The properties of M−

min allow for a general method for the
construction of the switching curve in the normal coordinates. For
the remainder of this paper, we consider only holdable equilibrium
target states.

Lemma 2. For holdable equilibrium target states, the relative orienta-
tion angle of the two final state trajectories in the normal coordinates
is θ = π .

Proof. From Definition 1 and the assumption that xr ≠ e1,2, there
exists a uo ∈ (umin, umax) such that Axr + Buo = 0. Using this in
(14) yields

v = b1(umax − uo), z = (b2 − a1b1)(umax − uo),

m = b1(umin − uo), n = (b2 − a1b1)(umin − uo).

From this it follows that mz − nv = 0. Using this in (20) yields
θ = tan−1(0) and thus θ = 0 or π . As stated in the proof of
Fig. 3. The two final state trajectories under umin (red) and umax (blue) in the normal
coordinates (under M−

min). The trajectory under umin is mapped to a logarithmic
spiral passing through the point O = [1 0]T (the target point), and rotating about
the origin (C0). The trajectory under umax is also a spiral curve passing through O
but rotating about C1 . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Theorem 1, the rotation centers e1,2 are mapped to C0 and C1. For a
holdable equilibrium point, these are

C0 = [0 0]T , C1 = [1 − q 0]T

where

q =
m (2a2v + a1z)+ n (a1v + 2z)

2

n2 + a1mn + a2m2

 .

The inner product between the vectors C0O and C1O (see Fig. 3) is
given by q. Therefore θ = π if q < 0. Plugging m, n, v, and z into
the definition of q yields

q = −2


ω2b21 +


a1b1
2

+ b2

2

(uo − umin) (umax − uo) .

For a holdable equilibrium point, umin < uo < umax and therefore
q < 0. Thus, θ = π . �

Due to (7), the final switching curve is in general only a portion
of the final state trajectory. The next theorem establishes that for
holdable equilibrium target states the final switching curve is the
entire final state trajectory.

Theorem 2. For a holdable equilibrium target state, if the switching
curve exists, then the final switching curve is the entire final state
trajectory for both umin and umax.

Proof. From the definition of a holdable target state, we have that
Axr + Buo = 0 for some uo ∈ (umin, umax). Adding and subtracting
either Bumin or Bumax to this and rearranging yields the two results

Axr + Bumin,max = B

umin,max − uo


.

Thus the vectors Axr + Bumin,max lie along the line in the costate
space defined by Bumin,max (see Fig. 1), perpendicular to the switch-
ing line. Since they have opposite direction, the boundary condi-
tion (7) is satisfied for any ψ(tf ) in the half-plane corresponding
to either umin or umax. Therefore, the final switching curve can be
extended backwards for π/ω units of time, corresponding to the
entire final state trajectory. �

With these results, it follows that the switching curve in normal co-
ordinates is made of segments of logarithmic spirals. An example
switching curve is shown in Fig. 4. The two final portions corre-
sponding to umin (red, A1O) and umax (blue, B1O) both terminate at
the target state O. The component of the switching curve B2A1 is
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Fig. 4. An example switching curve for a holdable equilibrium target state in
normal coordinates.

Fig. 5. A logarithmic spiral overπ radianswith center C , size ∥CA∥ and scaling factor
∥CB∥/∥CA∥.

obtained by rotating the curve B1O about the point C0 by π radi-
ans and scaling it by a factor of exp[ a1π2ω ]. Similarly, the component
of the switching curve A2B1 is obtained by rotating A1O about the
point C1 by π radians and scaling it by the same factor. The next
portion of the curve is generated by rotatingA2B1 about C0 and B2A1
about C1 and scaling both the factor exp[ a1π2ω ]. Repeating this pro-
cess yields the entire switching curve.

The construction procedure above gives rise to three types of
spiral curve segments defining the time-optimal solution. The first
(in red in Fig. 4) corresponds to switches along trajectories that end
with the control umin, the second (in blue) corresponds to switches
along trajectories that end with umax and the third (in green)
denotes boundaries separating regions of these trajectories. Any
trajectory that begins in the same region has the same sequence of
controls and number of switches.

5. Calculating the number of switches and the switching times

Consider a standard logarithmic spiral that begins on the x-axis
and rotates for π radians (Fig. 5). This curve can be described by its
center C defined by the point about which the curve spirals, its size
d defined by the length ∥CA∥, and its scaling factor γ defined by the
ratio

γ = ∥CB∥/∥CA∥. (25)

Consider the switching curve in Fig. 4. Denote the rotation centers
for each segment of the switching curve for a holdable equilibrium
target point as Ck, k = . . . ,−2,−1, 0, 1, 2, . . . , with k < 0 for
those segments of the switching curve to the left of the origin,
k = 0 for the origin, and k > 0 for those to the right of the origin.
Similarly, let dk, k = . . . ,−2,−1, 0, 1, 2, . . . , denote the size of
each spiral segment of the switching curve. All of the spirals have
the same scaling factor, given by

γ = e
a1π
2ω . (26)

Define c = ∥C0 −C1∥ as the distance between the rotation centers.
From Fig. 4, it is clear that the boundary spirals separate the
space into regions. States in one region have the same number
of switches. Determining the number of switches is equivalent to
finding which region the initial point sits in. The following lemma
establishes that we need only consider initial points in the upper
closed-half-plane.

Lemma 3. Let xo be any initial state in the original coordinates and
define the two points pmin and pmax by

pmin,max =

Xo
min,max Y o

min,max

T
= M−

min,maxxo.

Then one of pmin, pmax is in the upper closed-half-plane and the other
is in the lower closed-half-plane.

Proof. From the definition ofM−
max in (18) we have that

pmax = A−1
max (xo − Bmax) .

Rearranging yields xo = Amaxpmax+Bmax. Then, from the definition
ofM−

min in (18),

pmin = A−1
min (xo − Bmin)

= A−1
min (Amaxpmax + Bmax − Bmin) .

This is the same as (23). Thus the two points are related by a
rotation θ , a dilation η, and a translation ν along the X-axis. From
Lemma 2, θ = π , proving the lemma. �

Consider now the boundary spirals in the upper half-plane. From
Fig. 4, the first is the final switching curve A1O, the second is the
curve B1B2 and so on. Index these curves with k = 1, 2, 3, . . .. All
have their center at the origin C0 and scaling factor γ . Denote the
size of the kth as dBk . The following lemma establishes these sizes.

Lemma 4. Let dB0 = 0 and dB1 = 1. Then the sizes of the boundary
spiral segments are given by

dB2k =
((c − 1)γ + 1) γ 2k−1

− c
γ − 1

, (27a)

dB2k+1 = 1 +


γ 2k

− 1

(γ + c − 1)

γ − 1
, (27b)

for k = 1, 2, 3, . . ..

Proof. The sizes can be expressed inductively as

dB2k+3 − dB2k+2 = (1 + γ )γ 2k+1, (28a)

dB2k+2 − dB2k+1 = (c − 1)(1 + γ )γ 2k, (28b)

for k = 0, 1, 2, . . .. Combining these two yields

dB2k+3 − dB2k+1 = (1 + γ ) γ 2k+1
+ (c − 1) (1 + γ ) γ 2k.

Summing both sides of this equation from 0 to k yields

dB2k+3 − dB1 =

k
i=0

{(1 + γ )γ 2i+1
+ (c − 1)(1 + γ )γ 2i

}.

Carrying out the sum and using dB1 = 1 yields

dB2k+3 = 1 + (γ + c − 1)
γ 2k+2

− 1
γ − 1

. (29)

Rearranging (28) for dB2k+2 and replacing in (29) yields

dB2k+2 =
((c − 1)γ + 1)γ 2k+1

− c
γ − 1

.

Reassigning 2k for 2k + 2 results in the form in (27a) and doing so
similarly in (29) yields (27b). �
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Fig. 6. A starting angle for a given initial condition po .

Note that for an unstable system, a1 < 0 and thus, from (26),
0 < γ < 1. As a result,

lim
k→∞

dB2k = lim
k→∞

dB2k+1 = c (1 − γ )−1 .

This implies that the boundary trajectories converge to a spiral seg-
ment of size c

1−γ . Only initial conditions inside this boundary can
be driven to the target state due to the limitations on the magni-
tude of the control signal.

Lemma 5. The centers and sizes of the spiral curve segments of the
switching curve are given by

Ck =


γ dBk + dBk+1

1 + γ
, k = 1, 2, 3, . . . ,

0, k = 0,
γ


γ dB

−k + dB1−k


1 + γ

, k = −1,−2,−3, . . . ,

(30)

and

dk =


dBk+1 − dBk
1 + γ

, k = 1, 2, 3, . . . ,

1, k = 0,
γ


dB1−k − dB

−k


1 + γ

, k = −1,−2,−3, . . . .

(31)

Proof. By construction (see Fig. 4), for k > 0, the rotation center Ck
lies on the positive X-axis between dBk and dBk+1. Using this in (25)
yields

γ =
dBk+1 − Ck

Ck − dBk
.

For k < 0, Ck is on the negative X-axis at a distance between γ dB
−k

and γ dB1−k. Using this in (25) yields

γ =
Ck − γ dB1−k

γ dB
−k − Ck

.

Rearranging these two equations yields (30). Consider now the kth
spiral segment, k > 0. By construction of the boundary trajectories,
the distance between the two endpoints of the segment on the
X-axis is dBk+1 − dBk . Using (25), it is also given by dk + γ dk. Thus

dk + γ dk = dBk+1 − dBk .

Equating the distances analogously for k < 0 yields

dk + γ dk = γ dB1−k − γ dB
−k.

Rearranging these two yields (31). �
Fig. 7. A shooting angle for a given initial condition po .

5.1. Calculating the number of switches

Consider the kth switching curve section, k < 0. Let S(Ck, dk)
denote the region formed by the X-axis and this section (Fig. 4).
The number of switches, K , to drive an initial state to the target
state and the initial control value can be calculated by the following
algorithm.

Algorithm (Number of Switches).
0. Map the initial state xo to pmin and pmax using M−

min and M−
max

respectively. Select one that lies on or above the X-axis. Denote
the selected point as po.

1. Find the integer k ≥ 0 such that

dBk < ∥po∥e−
a1θ
2ω ≤ dBk+1

where θ is the angle from the X-axis to po (with counter-
clockwise being positive).

2. If po ∈ S(C−k, d−k) the number of switches is K = k + 1 and
the initial control value is umax (umin) if M−

min (M
−
max) was used.

Otherwise K = k and the initial control value is umin (umax) if
M−

min (M
−
max)was used.

5.2. Calculating the switching times

In Section 2.1 it was shown that the duration between interme-
diate switches is π/ω units of time while those of the first and last
are determined by the initial and final direction of the costate. To
calculate these intervals in the normal coordinates, we first define
two angles as follows.

Definition 2. Consider an initial condition po above the X-axis as
illustrated in Fig. 6. If po ∈ S(C−k, d−k) then the starting angle α is
the angle bywhich the switching curve segment is rotated counter-
clockwise about C1 (so that α is positive) until it intersects with po.
Otherwise, α is the angle by which the switching curve segment is
rotated clockwise about C0 until it intersects with po.

The time α/ω represents the duration it would have taken the
system to proceed either from the previous switch to the initial
condition (if α is negative) or from the initial condition to the next
switch (if α is positive).

Definition 3. Consider an initial condition po above the X-axis (see
Fig. 7). If po ∈ S(C−k, d−k) evolve the system forward in time along
the optimal trajectory until the switching curve is intersected, else
evolve backward in time. Denote the intersection as p. The shooting
angle β is the angle between the line p-C−k and the X-axis.

By similarity of the switching curve segments, p represents
where the systemwill intersect the final switching curve. Thus the
final interval will be β/ω units of time. Using these definitions,
the switching times and the total transition time can be calculated
according as follows.
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(a) Original state space. (b) Normal coordinates.

Fig. 8. Switching curves, initial conditions, and optimal trajectories from xo = [10.0401 491.0869]T in both the original and the normal coordinates.
Algorithm (Switching Times).
0. Map the initial state xo to pmin and pmax using M−

min and M−
max

respectively. Select one that lies on or above the X-axis. Denote
the selected point as po.

1. Calculate (numerically) the starting angle α and the shooting
angle β .

2. Calculate the total number of switches K .
3. The time of the first switch is

t1 =


π + α

ω
, α < 0,

α

ω
α ≥ 0.

(32)

The times of the intermediate switches are

tk = t1 +
π

ω
(k − 1), k = 2, 3, . . . , K − 1. (33)

The total time to make the transfer is

Ts = t1 +
(K − 1)π + β

ω
. (34)

5.3. A feedback control law

The switching structure in the normal coordinates allows for
a simple feedback control law to generate an optimal trajectory.
Given the current state x(t), map it to the normal coordinates using
either M−

min or M−
max such that the mapped point lies on or above

the X-axis; denote this point p. Determine the integer k ≥ 0 such
that

dBk < ∥p∥e−
a1θ
2ω ≤ dBk+1.

Then anoptimal feedback control law is as follows. IfM−

min wasused
then

u∗(p) =


umax, p ∈ S (C−k, d−k) ,
umin, else, (35)

while ifM−
max was used then

u∗(p) =


umin, p ∈ S (C−k, d−k) ,
umax, else. (36)

6. An example

To illustrate the algorithm in this paper, consider a second order
system in observable canonical form given by

ẋ =


0 1

−36 −2


x +


50
36


u , Ax + Bu. (37)
The eigenvalues are λ1,2 = −1±5.92i. Let the control be restricted
to u ∈ [−1, 1] and let the target state be xr = [0.5 − 6.6176]T .
This target is a holdable equilibrium point since Ax + Buo = 0
is satisfied for uo = 0.13235. We consider the initial condition
xo = [10.0401 491.0869]T . This point is plotted in both the
original and normal coordinates in Fig. 8(a,b). From the position
of the initial condition in the normal coordinates, it is clear that
there are two switches and that the initial control value is −1. The
initial and shooting angleswere 169.83° and 78.310°, respectively.
From these, the first switching time was found to be 0.50103 s and
the second at π/ω = 0.53103 s later (i.e. at 1.03206 s). The total
transition time was 1.26319 s.

7. Conclusions and future work

In this work we proposed a new approach to construct the
switching curve for the time-optimal control of a second-order LTI
system. Using one of a pair of affine mappings, the system is trans-
formed into normal coordinates in which the switching pattern is
given by similar logarithmic spirals. The construction allows for
simple algorithms to determine the number of switches and the
total switching time required to transfer the system from a given
initial condition to the target state as well as the time of each of the
switches in the sequence.

The results are limited to holdable equilibrium points since for
other target points, the final switching curve may no longer cor-
respond to the entire final state trajectory. In addition, it is well
known that the bang–bang control law is sensitive to both exter-
nal disturbances and modeling uncertainty. Despite this concern,
however, the ability to know a priori the total switching time can
be useful in problems where the system needs to move through a
sequence of points. Optimizing the entire transit time can be done
by knowing the transit time between any pair of points and then
solving the corresponding ‘‘traveling salesman’’ problem.
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