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Control of nonlinear systems is difficult because no
systematic mathematical tools exist to help find
necessary and sufficient conditions to guarantee

their stability and performance. The problem becomes
more complex if some of the parameters of the plant are un-
known. By using a Takagi-Sugeno-Kang (TSK) fuzzy plant
model [1]-[2], [8], [13], a nonlinear system can be expressed
as a weighted sum of some simple subsystems. This model
gives a fixed structure to some nonlinear systems and thus
facilitates analysis. There are two ways to obtain the fuzzy
plant model: 1) by applying identification methods with in-
put-output data from the plant [1]-[2], [8], [13] or 2) directly
from the mathematical model of the nonlinear plant.

In recent investigations into the stability of fuzzy systems
formed by a fuzzy plant model and a fuzzy controller, several
stability conditions have been obtained [4]-[5], [9]-[12],
[16]-[19]. A linear controller [14] was also proposed to con-
trol the plant represented by the fuzzy plant model. Most of
the fuzzy controllers proposed are functions of the grades of
membership of the fuzzy plant model. Hence, the member-
ship functions of the fuzzy plant model must be known. This
means that the parameters of the nonlinear plant must be
known or must be constant when the identification method
is used to derive the fuzzy plant model. Practically, the pa-
rameters of many nonlinear plants will change during opera-
tion (e.g., the load of a dc-dc power converter or the number
of passengers on board a train). In these cases, the robust-
ness property of the fuzzy controller is an important con-
cern. Moreover, the investigations [4]-[5], [9]-[12] tackled
only a regulation problem such that the controllers drive all
the system states to zero. In practice, we may face a nonzero
set-point regulation problem or a tracking problem. To
tackle these problems, some algorithms integrating fuzzy
logic with adaptive control theory [3], [7], [15] or with H ∞

control theory [6] can be found.
In this article, a switching controller is proposed to con-

trol nonlinear plants subject to unknown parameters within
known bounds. The nonlinear plant is represented by a
fuzzy plant model. This switching controller is able to drive
the system states to follow those of a reference model. The
switching controller consists of several linear controllers.
One of the linear controllers is employed at each moment
according to a switching scheme, which is derived based on
Lyapunov stability theory.

The remainder of the article is organized as follows. First,
we describe a reference model, a fuzzy plant model, and a

switching controller. Next, we investigate the system stabil-
ity of the switching control system. The switching scheme
will be derived based on Lyapunov stability theory, and the
gains of the switching controllers will be designed. Then, we
provide an application example of an inverted pendulum on
a cart. Finally, we present our conclusions.

Reference Model, Fuzzy Plant Model,
and Switching Controller
The nonlinear plant to be tackled is of the following form:

�( ) ( ( )) ( ) ( ( )) ( )x A x x B x ut t t t t= + (1)

where A x( ( ))t n n∈ℜ × and B x( ( ))t n m∈ℜ × are the system ma-
trix and input matrix, respectively, both of which have
known structure but may be subject to unknown parame-
ters (all matrices considered herein are real matrices);
x( )t n∈ℜ × 1 is the system state vector; and u( )t m∈ℜ × 1 is the
input vector. The system of (1) is represented by a fuzzy
plant model that expresses the multivariable nonlinear sys-
tem as a weighted sum of linear systems. A switching con-
troller is to be designed to close the feedback loop of the
nonlinear plant based on the fuzzy plant model such that the
system states follow those of a reference model.

Reference Model
The reference model is a stable linear system given by

��( ) �( ) ( )x H x B rt t tm m= + , (2)

where Hm
n n∈ℜ × is a constant stable system matrix,

Bm
n m∈ℜ × is a constant input matrix, �( )x t n∈ℜ × 1 is the sys-

tem state vector of this reference model, and r( )t m∈ℜ × 1 is
the bounded reference input.

Fuzzy Plant Model
Letting p be the number of fuzzy rules describing the
multivariable nonlinear plant of (1), the ith rule is of the fol-
lowing format:

Rule i: IF f t1( ( ))x is M 1
i and ... and f tψ( ( ))x is M ψ

i

THEN �( ) ( ) ( )x A x B ut t ti i= + , (3)

where M α
i is a fuzzy term of rule i corresponding to the func-

tion f tα ( ( ))x in terms of the system states and the unknown
parameters of the nonlinear plant, α ψ ψ= =1 2 1 2, , , , , , , ;… …i p is
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a positive integer, and Ai
n n∈ℜ × and Bi

n m∈ℜ × are known sys-
tem and input matrices, respectively, of the ith rule subsys-
tem. The system dynamics are described by

( )�( ) ( ( )) ( ) ( )x x A x B ut w t t t
i

p

i i i= +∑
=1

,
(4)

where

[ ]w t w t ii
i

p

i
=
∑ = ∈

1

1 0 1( )x x( ) , ( ( )) for all ,
(5)

and

w t

f t f t f
i

i i i

( ( ))

( ( ( ))) ( ( ( ))) (

x

x x

=
× ×⋅⋅⋅×µ µ µ

ψ
ψM M M1 2

1 2 ( ( )))

( ( ( ))) ( ( ( ))) ( (

x

x x x

t

f t f t fk k kµ µ µ
ψ

ψM M M1 2
1 2× ×⋅⋅⋅×( )( ))t

k

p

=1
∑

(6)
are nonlinear functions of the system states and the unknown
parameters. (For more details, see [1]-[2], [8], and [13].)

In this article, the fuzzy plant model of (4) is assumed to
have the following properties:

A A H B Di i m m i i p= − = =, , ,...,1 2 (7)

B x x B x B( ( )) ( ( )) ( ( ))t w t ti
i

p

i m= =∑
=1

α ,
(8)

where Di
m n i p∈ℜ =× , , ,...,1 2 , are constant matrices. α( ( ))x t is

an unknown nonzero scalar (because w ti( ( ))x is unknown)
but with known bounds and sign. It should be noted that be-
cause α( ( ))x t ≠0 is required, B x 0( ( ))t ≠ is assumed.

Switching Controller
A switching controller is employed to control the nonlinear
plant of (1). The switching controller consists of some sim-
ple subcontrollers that will be switched from one to another
to control the system of (1). The switching controller is de-
scribed by

( )u x G x r( ) ( ( )) ( )t m t tj j
j

p

= +
=
∑

1

,
(9)

where m t j pj( ( )), , ,...,x =1 2 , takes the value of −1/ minα or 1/ minα
according to the switching scheme to be discussed later,
α min is the minimum value ofα( ( ))x t , andG j

m n j p∈ℜ =× , , ,...,1 2 ,
are the feedback gains to be designed. It can be seen that (9)
is a linear combination of p linear state-feedback control-
lers. At each moment, one of the linear state-feedback con-

trollers will be chosen to control the nonlinear plant accord-
ing to the switching scheme.

Stability Analysis and Design of the
Switching Controller
In this section, the switching controller will be designed to
consider the system stability. The analysis results are sum-
marized by the following lemma.

Lemma 1: The system states of the nonlinear plant of (1)
represented by the fuzzy plant model of (4) will follow those
of the reference model of (2) if the fuzzy plant model satis-
fies the conditions of (7) and (8) and the switching control-
ler is designed by choosing

i) P 0∈ℜ >×n n

ii)
( )( )

m
t t t

i

T
m i=−

+sgn

sgn

e PB G x r( ) ( ) ( )

( ) minα α
i p=1 2, ,...,

iii) ( )Q H P PH 0=− + >m
T

m

iv) G Di i i p=− =, , ,...,1 2 ,  where

( ) [ ]sgn z
z

z
=

>
− ≤

∈




1 0

1 0
, ,min maxα α α and α αmax min .> >0

See the Appendix for the proof (it should be noted that Q
is needed to prove stability, not for control design). The de-
sign procedure of the linear controller is summarized in the
following steps:

• Step I: Obtain the fuzzy plant model of a nonlinear
plant by means of the methods in [1]-[2], [8], [13] or
other suitable ways.

• Step II: Choose a reference model in the form of (2).
• Step III: Check whether the fuzzy plant model satisfies

conditions (7) and (8).
• Step IV: Design the switching controller according to

conditions i) through iv) of Lemma 1.

Application Example
An application example will be given here to show the de-
sign procedure of the switching controller. A cart-pole in-
verted pendulum system [5] is shown in Fig. 1. A switching
controller will be designed for it by following the design pro-
cedure given in the previous section.

Step I: The dynamic equation of the cart-pole inverted
pendulum system is given by

��( )
sin( ( )) �( ) sin( ( ))/ cos( ( ))θ θ θ θ θ

t
g t aml t t a t= − −2 2 2 u t

l aml t
( )

/ cos ( ( ))
,

4 3 2− θ (10)

where θ is the angular displacement of the pendulum, g =9 8.
m/s2 is the acceleration due to gravity, [ ]m m m∈ =min max

[ ]0 5 2. kg is the mass of the pendulum, [ ]M M M∈ min max

[ ]= 8 80 kg is the mass of the cart, a=1/( ),m M+ 2 1l = m is the
length of the pendulum, and u is the force applied to the cart.
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and µ µ
M M1 1

11 11k f t f t( ( ( ))) ( ( ( )))x x= − for
k=3 4, ;

µ
M2

2
2 2

2 2

k f t
f t f

f f
( ( ( )))

( ( ))
max

max min

x
x

=
− +

−
for k=1 3,

and µ µ
M M2 2

12 21k f t f t( ( ( ))) ( ( ( )))x x= − for
k=2 4, .

Step II: The system matrix and the in-
put vector of the reference model are
chosen as follows:

Hm =
− −











0 1

8 8 (14)

Bm =










0

1
.

(15)

It can be seen that the reference model
is a stable system.

Step III: Conditions i) and ii) of
Lemma 1 are satisfied if we choose

[ ] [ ]D D1 2 1 8 8 17 8= = + =f
min

(16)

[ ] [ ]D D3 4 1 8 8 28 8= = + =f
max

. (17)

It can be seen that

α( ( )) ( ( ))x xt f t= <2 0. (18)

Step IV: The switching controller is
designed as

( )u t m t tj j
j

( ) ( ( )) ( )= +
=
∑ x G x r

1

4

,
(19)

where

( )( )
m

t t r t
i

T
m i=−

+sgn

sgn

e PB G x( ) ( ) ( )

( ) minα α
,

i =1 2 3 4, , , ;

P Q=








 =

−
−











10625 0 0625

0 0625 0 0703

1 0

0 1

. .

. .
; ;

G Di i i=− =, , , , ;1 2 3 4

[ ] [ ]α α α∈ =min max . .0 001 0 2 .
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Figure 4. Responses of x( )t and � ( )x t with the linear state-feedback controller under the
initial conditions of x( ) [ . . ]0 0 5 0 5= T (response 1), x( ) [( / ) . ]0 22 45 0 5= π T (response 2),
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Figure 5. Responses of x( )t and � ( )x t with the switching controller under the initial
conditions of x( ) [ . . ]0 0 5 0 5= T (response 1), x( ) [( / ) . ]0 22 45 0 5= π T (response 2),
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We let [ ]x( ) ( ) ( ) [ ( ) �( )]t x t x t t t
T T= =1 2 θ θ , [ ]θ θ θ( ) min maxt ∈ =

[ ]−( / ) ( / )22 45 22 45π π , and [ ]�( ) [� � ]min maxθ θ θt ∈ = −5 5 . Then the
state-space representation of (10) is given by

�( ) ( ) ( )
( ( ))

( )
( ( ))

x Ax B
x x

t t u t
f t

x t
f t

= + =








 +

0 1

0

0

1 2





u t( ).

(11)

By comparing (11) to (10), we can see that

f t
g amlx t x t

l aml x t1
2

2
1

2
14 3

( ( ))
( ) cos( ( ))

/ cos ( ( ))
s

x = −
−

in( ( ))
( )
x t

x t
1

1









and

f t
a x t

l aml x t2
1

2
14 3

( ( ))
cos( ( ))

/ cos ( ( ))
x =−

−
.

The inverted pendulum of (10) can be modeled by a fuzzy
plant model having four rules. The ith rule can be written as
follows:

Rule i: IF f t1( ( ))x is M1
i AND f t2( ( ))x is M2

i

THEN �( ) ( ) ( )x A x Bt t u ti i= + for i =1 2 3 4, , , (12)

so that the system dynamical behavior
is described by

( )�( ) ( ) ( )x A x Bt w t u ti i i
i

= +
=
∑

1

4

,

(13)

where

A A

A A

1 2
1

3 4
1

0 1

0

0 1

0

= =










= =










f

f

min

max

;

and

B B1 3
2

0
= =









f

min

and B B2 4
2

0
= =









f

max

;

f f t1 19
min

( ( ))= ≤ x and f f t1 220
max

( ( ))= ≥ x ;

f f t

f f t
2 2

2 2

0 2

0 001
min

max

. ( ( ))

. ( ( ));

= − ≤

= − ≥

x

x

and

and

w
f t f t

f t
i

i i

l

=
×

×

µ µ

µ µ

M M

M M

1 2

1 2

1 2

1

( ( ( ))) ( ( ( )))

( ( ( )))

x x

x( )l f t
l

( ( ( )))2
1

4

x
=
∑

.

The membership functions, shown in Fig. 2, are given as fol-
lows:

µ
M1

1
1 1

1 1

k f t
f t f

f f
( ( ( )))

( ( ))
max

max min

x
x

=
− +

−
for k=1 2,
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To show the merits of the proposed
switching controller, we compare the
simulation results of the system under
the switching controller to those under a
linear state-feedback controller. The lin-
ear state-feedback controller is designed
based on the linearized model of the in-
verted pendulum around the origin. The
dynamics of the linearized model of the
inverted pendulum are given by

�( )
~

( )
~

( )x Ax Bt t u t= + , (20)

where

~
,

~
A B= +

















=
−

















0 1

0

0

1M m
M l

g
M l

o o

o o

,

m
m m

o = +min max

2
,  and M

M M
o = +min max

2
.

The linear state feedback controller
output is given by

u t t M lro( ) ( )= −Gx . (21)

The feedback gain is set asG=[ . . ]130 0 320
such that the dynamics of the closed-
loop system are the same as that of the
reference model. The simulation results
are obtained by using the actual plant of
(10) and the switching controller of (19)
or the linear state-feedback controller of
(21). A disturbance is also injected into
the simulated system to reflect the prac-
tical situation of the real process. Distur-
bances are injected into the system
states and the control input. The actual
system state used by the switching con-
troller in the simulation is x x( ) ( )t td+ .
Here, x d t( ) is the disturbance of the sys-
tem states defined as [ ]x d

T
t( )= 0 0

when t ≤15 and [ ]x d

T
t( ) ( / )= π 20 0 when

15 20< ≤t . x d t( )reaches about 10% of the
maximum value of x t1( ). The actual con-
trol signal fed to the input of the inverted
pendulum is u t u td( ) ( )+ in the simula-
tion. u td( ) is the disturbance defined as
u td( )=0 when t ≤10, u td( )=1000 when
10 15< ≤t , and u td( )=0 when 15 20< ≤t .
u td( )reaches about 20% of the maximum
value of u t( ). Figs. 3 and 4 show the re-
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sponses of x( )t and � ( )x t under the initial conditions of
[ ]x( ) . .0 0 5 0 5= T

(dotted lines), [ ]x( ) ( / ) .0 22 45 0 5= π (dashed
lines), and [ ]� ( )x 0 0 0= T

(solid lines), with m=0 5. kg, M =8 kg,
and r t( )=8. Figs. 5 and 6 show the responses for m=0 5. kg and
M =80 kg. Figs. 7 and 8 show the responses for m=2 kg and
M =8 kg. Figs. 9 and 10 show the responses for m=2 kg and
M =80 kg. The simulation results show that the proposed
switching controller gives a better performance under different
combinations of the values of the uncertain parameters than
the linear state-feedback controller.

Conclusion
A switching controller has been designed for nonlinear plants
subject to unknown parameters. Under some conditions, this
switching controller has the ability to drive the system states
to follow those of a reference model. An application example
of an inverted pendulum on a cart has been given.
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Appendix
The proof of Lemma 1 is given in this Appendix. From (2) and
(4), writing w t wi i( ( ))x = , m tj( ( ))x as mj , and α( ( ))x t as α,
and using the property of (5) that
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where A A Hi i m= − , i p=1 2, ,..., . From (8), (A1) becomes
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Putting (9) into (A2)
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From (7), (8), and (A3),
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Letting

G Di i=− , i p=1 2, ,..., , (A5)
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To investigate the stability of (A6), the following Lyapunov
function is employed:

V t t=1
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(A7)

February 2002 IEEE Control Systems Magazine 13



where P∈ℜ ×n n is a constant symmetric positive definite ma-
trix. Differentiating (A7), we have
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where
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T

m . (A10)

Q ∈ℜ ×n n is a constant symmetric positive definite matrix. As
α is bounded, we can consider that [ ]α α α∈ min max , where
α αmax min> >0. We choose mi, i p=1 2, ,..., , as follows:
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From (A9) and (A11),
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Since ( / ) , , ,...,minα α ≥ ≥ =1 1 2w i pi , (A12) becomes

� ( ) ( )V t t≤ − ≤1
2

0e QeT .
(A13)

Equality holds when e 0( )t = . From (A13), it can be con-
cluded that e 0( )t → or equivalently x x( ) � ( )t t→ as t →0. This
ends the proof.
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How Feedback Control Saved My Life–A True Story

Once I filled the trunk of my car with patio stones. Driving over a
high bridge on a windy day, I realized that the rear of the car was
swaying, so I steered to suppress the motion, only to see it grow in
amplitude to a dangerous level. Luckily, I realized that this was a

classic case of a nonminimum phase zero with a loop gain that was too high. So I
lowered the bandwidth, stabilized the system, and lived to tell the story.

–D.S. Bernstein


