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Abstract: In this paper, a set invariance analysis and 
gain scheduling control design approach is proposed for 
the polytopic linear parameter-varying systems sub 
ject to actuator saturation. A set invariance condi- 
tion is first established. By utilizing this set invariance 
condition, the design of a timeinvariant state feed- 
back law is formulated and solved as an optimization 
problem with LMI constraints. A gain-scheduling con- 
troller is then designed to further improve the closed- 
loop performance. Numerical examples are presented 
to demonstrate the effectiveness of the proposed anal- 
ysis and design method. 
Keywords: Set invariance, linear parameter-varying 
systems, gain-scheduling, actuator saturation. 

1 Introduction 

In recent years there has been significant interest in 
the study of linear parameter-varying (LPV) systems, 
which is motivated by the gain scheduling control de- 
sign methodology 19, 10, l l ] .  LPV systems are s y s  
tems that depend on unknown but measurable t ime 
varying parameters. The measurement of these param- 
eters provides real-time information on the variations 
of the plant's characteristics. Hence, it is desirable to 
design controllers that are scheduled based on this in- 
formation. LPV control theory has proven to be useful 
to simplify the interpolation and realization problems 
associated with the conventional gain-scheduling. The 
analysis and synthesis of LPV systems have been in- 
vestigated recently in 11, 8, 13, 141 by the linear matrix 
inequality approach. The approach involves the design 
of several linear timeinvariant (LTI) controllers for a 
parameterized family of linear timeinvariant system 
models and the interpolation of these controller gains. 
Actuator saturation can severely degrade the closed- 
loop system performance and sometimes even make 
the otherwise stable closed-loop system unstable by 
some large perturbation. The analysis and synthesis 
of control systems with actuator saturation nonlinear- 
ities have been meiving increasing attention recently 
(see, for example, [Z, 5, 71 and the references therein). 
Very often, actuator saturation is dealt with by either 
designing low gain control laws that, for a given bound 
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on the initial conditions, avoid the saturation limits, 
or estimating the region of attraction in the presence 
of actuator saturation. In this paper, we will ana- 
lyze the stability of LPV systems with actuator satu- 
ration. The recent analysis approach proposed in [5 ,  61 
is used to analyze the set invariance and then a gain- 
scheduled optimal control design is proposed. The re- 
sulting closed-loop system not only possesses a large 
domain of attraction that.contains Q priori given set of 
initial conditions, but also guarantees a minimal per- 
formance index. 

2 Problem Statement and Preliminary 

We consider the polytopic LPV systems, whose system 
matrices are affine functions of a parameter vector p ( t ) ,  
subject to actuator saturation, 

w = Ab(t))z(t) + B b ( t M U ( t ) ) ,  (1) 
4 = Cb(t)).(t) + WJ(t))o(u(t)) ,  (2) 

where 

7 

C b ( t ) )  = C p j ( t ) C j ,  DM~))  = C ~ j ( t ) D j ,  

with z E W" denoting the state, U E lip" the in- 
put, 2 E W p  the control output vector and p(t) = 
[ pl(t)  p z ( t )  . ' .  pv(t) 1' E WT the timevarying 
parameter vector. It is assumed that vector p ( t )  b e  
longs to the unit simplex P, where 

j=1 j=1 

P:= c p j = l , o < p j 5 1  } . (3) r j=1 

Therefore, when p;(t) = 1 and pj(t) = 0 for j E 
[l, r], j # i, LPV model (1-2) reduces to its i-th 
LTI ''local'' model, i.e., ( A b ) ,  Bb), C@) ,  Db)) = 
(A,, Bi, C;, 0:). That is, the LPV system matrices 
vary inside a corresponding polytope R whose vertices 
consist of r local system matrices 

R = c o { ( A i ,  B;, Ci, Di) ,  i~ [Lr]}, (4) 
where CO denotes the convex hull. 
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The function U : W" - R" is the standard saturation 
function of appropriate dimensions defined as follows 

4%) = [ &I) 4.2) " '  U(%) I T ,  
where .(U;) = sign(%) min{l, /U;/}. Also note that it 
is without loss of generality to assume unity saturation 
level. In this paper, we will study the design of a state 
feedback law 

U(t) = Fz( t ) ,  ( 5 )  

(6) 

or a time-varying parameter-dependent control law 

u(t) = i l ( t )z( t )  = -j-Pi(t)F,Z(t), 
;=I 

which asymptotically stabilizes LPV system (1) with 
actuator saturation. Control law (5) is a constant feed- 
back law, while (6) is a timevarying feedback law, 
which is the s&called gain-scheduled controller. 
In this paper, we will consider the optimal control prob- 
lem of the LPV plants subject to actuator saturation. 
That is, we will design a control U, which minimizes 
the following worst-case performance 

Let f, be the i-th row of the matrix F. We define the 
symmetric polyhedron 

L ( F ) = { x E W " : I J ; z j < l ,  i = 1 , 2 , . . . , m }  

If the control U does not saturate for all i = 1,2,. . . , m, 
that is z E L ( F ) ,  then nonlinear system ( I )  admits the 
following linear representation 

t ( t )  = ( A W )  + B@(t))F)z(t). (8)  

Let P E W""" be a positivedefinite matrix. 
positive number p, denote 

For a 

O ( P , p ) = { z E W "  : x T P z < p } .  

f;(P/p)-lj:Sl, i = l , 2 , . . "  . 
An ellipsoid Q(P,p) is inside L ( F )  if and only if 

Let V be the set of m x m diagonal matrices whose 
diagonal elements are either 1 or 0. There are 2"' e l e  
ments in V. Suppose that each element of V is labeled as 
E;, i = 1 , 2 , .  I ' ,  2'", and denote E; = I - E;. Clearly, 
E,: is also an element of V if E; E V. 

Lemma 1 [S] Let F, H E W"'" be given. For z E R", 
i f .  E L ( H ) ,  then 

o ( F z ) ~ c o { E & + E ; H z :  Z E  [1,2"]}, 

This means that we can rewrite o ( F z )  as 

2" 
~ ( F x )  = xo ; (E ;F+E;H)x ,  

,=I 
m 

where 0 5 7; 5 1, E:=, 7; = 1. 

Lemma 2 Suppose that matrices Mi E WmX",i = 
1,2 , .  . . , r, and a positive semi-definite matriz P E 
Wmx" are given. If p ;  = 1 and 0 5 p; 2 1, then 

3 A Set Invariance Condition 

For a given LPV system with actuator saturation and 
a given control law U = F x ,  we first need to establish a 
set invariance condition. For simplicity, we will denote . 

A;,j =A;+B;(EjF+E;H),  

C;,j =C;+D;(E,F+E17H). 

Theorem 3 For a given system (1) and a given state 
feedback contml mat& F, the ellipsoid O(P,7) is an 
invariant set of the closed-loop system under linear 
state feedback control law (5) if there ezists a mat& 
H E WmX" satisfying the folloving inequalities 

A f j ~ + ~ A ; , j + C $ ; , j  < o , ~ E  [ I , r ] , j E  [ 1 , ~ j  (10) 

and O(P,7)  C L ( H ) .  Moreover, for any zo E O(P,7),  
the performance objective function (7) satisfies 

J 5 x:Pxo 5 7. 

Proof: 
Then, 

By Lemma 1, we have 

Choose a Lyapunov function V(x) = xrPx.  

V = 2xTP[A@)z + E@)u(Fz)] .  

7. 2" 
v = C C P i o j x ~ [ ( ~ i + ~ , ( ~ j ~ + ~ ; ~ ) ) T ~  

;=1 JSl 

+P(Ai+B;(EjF+E;H))]  z. 

On the other hand, (10) implies that 

& P + P A ; , ~ < o ,  v ~ E [ I , ~ ] ,  j ~ [ 1 , 2 ~ ] .  

So, we have V < 0, for 2: E O(P,7)\{O}. Thus, if 
z;Pzo 5 7, then z'(t)Pz(t) 5 7 fort  2 0, i.e., Q(P, 7) 
is a positively invariant set. This also implies that 
system (1) is asymptotically stable at the origin with 
O ( P , 7 )  contained in the domain of attraction. 
To complete the proof, we note that 

where J( t )  = t'(t)z(t) + V(x). By Lemma 1, we can 
rewrite (2) as 

r 2" 

Z ( t )  = C C P i o j C i , j z ( t )  
;=I j=l 
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Hence, by Lemma 2, 

r 2m 

i=l j=l 
J ( t )  5 CP'"zyAT,jP + PAi,j + QjCi,j)x 

AZjP + PAij + f2:jTi9,j < 0, 

It is easy to see that if (10) hold, i.e., 

then J ( t )  5 0, which implies J 5 X~PZO 5 7. 

Remark 1 If we don't consider the optimal perfor- 
mance indez (7), Theorem 3 is a set invariance condi- 
tion of LPV system subject to actuator satumtion. For 
the special case of r = 1, Theorem 3 recovers the set 
invariance condition for an LTI system with actuator 
saturation 151. Additionally, Theorem 3 also addressed 
the quadmtic performance problem for linear systems 
subject to actuator satumtion. 

By Theorem 3, we can present the following optimiza, 
tion problem minimizing the upper bound of perfor- 
mance function (7) for a given initial condition set XO : 

Condition c) is equivalent to 

min 7, s.t. 
P>O,F,H 

(11) 

a) xo c W',7), 

c)  V%iZI 5 1, vx E Q(P,7 ) ,  i = [l,m], 
b) inequalities (IO), i E [l,r], j E [1,2"'], 

where h, denotes the a-th row of H. 
The feasibility of the above optimization problem (11) 
ensures the existence of a stabilizing state feedback ma- 
trix F such that the given initial condition set Xo is con- 
tained in the domain of attraction of the system (l)-@), 
and the performance index J 5 7. On the other hand, 
for a given constant control matrix F designed for the 
systems without considering actuator saturation, (11) 
can also he used to determine if an initial condition,set 
Xo is contained in the domain attraction of the origin 
when the system is subject to actuator saturation.. In 
what follows, we will show that the optimization prob  
lem (11) can be solved as an LMI optimization problem. 
For simplicity, we assume that the initial condition set 
X, is the combination of some given points, 

xo := co{x;,z;,. . . ,xo} ,  1 

where x i  E Rn,i = 1 , 2 , .  . . , 1 ,  are 1 given points. Let 
Q = (P/y)?' ,  Y = FQ, Z = HQ. Then, Condition 
a) is equivalent to 

Condition b) is equivalent to 

a ] < 0. (12) A,Q + B,(EJY + E;Z) + (:)T [ C.Q + D,(EJY i E;Z) -yI 

Also let the i-th row of Z be &, i.e., z; = hi&. The 
optimization problem (11) can then be reduced to the 
following one with LMI constraints, 

1 (xb)' 4 [ zb 3 t 0, i E [1,1], 

b) LMI (U), i E [1,r], j E [1,2"'], 

Theorem 4 For a qiven system (1). the state feedback 
control mat& F that minimizes the upper bound of 
performance function (7) can be solved by 

F = YQ-' ,  

where (Q > 0, Y) is the solution of the LMI optimiza. 
tion problem (13). 

In the optimization problem (13), the amplitude of con- 
trol law (5) is not constrained, i.e., there is no control 
amplitude constraint on the control law. In [SI, the 
authors proved that this controller design method is 
less conservative than the approaches based on circle 
criterion and Popov criterion [4]. On the other hand, 
to avoid the controller gain being too large, we may 
eonstrain it to be bounded hy po > 1, i.e., If;zl 5 pol 
which is equivalent to the following LMI 

where y, denotes i-th row of Y. 
If we require Y = Z,  then we recover the design al- 
gorithm which constrains the optimal control law to 
be unsaturated 13). The unsaturated control algorithm 
can be described as: 

min 7, s.t. (14) 
Q>O,Y 

Note that constraints (14) imply that n ( Q - l , l )  C 
L(F)  and hence the control U = F x  will never reach 
saturation limits. In (13), we permit the control to 
be saturated and hence our algorithm will result in a 
larger domain of attraction. It is known that low-gain 
controllers that avoid saturation will often result in low 
levels of performance, especially for the cases where the 
disturbance is intermediate or small amplitude. 
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4 Gain-Scheduled Control Law Design 

The approach to gain-scheduling involves the design of 
several LTI controllers for a parameterized family of 
timeinvariant system models and the interpolation of 
these controller gains. If the timevarying parameter 
vector p ( t )  can be measured or estimated on-line, then 
we may design a gain-scheduled control law (6). It 
is reasonable to expect that this kind of control laws 
can result in a larger domain of attraction and better 
performance. Note that F in (5) is a constant matrix, 
while F in (6) is a timevarying matrix function of p ( t )  
although matrices Fj's are constant. 
With control law (6), the closed-loop system (1-2) can 
be rewritten as 

i ( t )  = C p , A i x ( t )  + &B;o ( F x ( t ) )  , 
i=1 ;=1 

By Lemma 1, we haye that for any matrix H of the 
same dimensions of F such that x E L ( H ) ,  

m 
.where 0 5 q, ( t )  5 1, x2=lq,(t) = 1, for all s E 
[1,2"']. If we let fi = c ; = , p j H j ,  then 

*- 

2- r P  

4 t )  = Cq.(t) C p i  C p j C + j x ( t ) ,  (16) 
a=l i=l j=l  

where 

&;,j := A; + E;(E,Fj + E Y H j ) ,  
CS,;,j := C; + D;(E,Fj + k y H j ) .  

Remark 2 It is easy to find that the closed-loop sys- 
tem described by  (15)-(16) can be Jurther simplified ZJ 

the subsystems (A;, B,, C;, 0;) possess common input 
matrices B and D ,  namely B; L B,  D, = D for all 
i. In this case, the closed-loop system (1)-(2) can be 
simplified as 

2- 
= X P ;  (Ai + B(E,Fi + EFHi))  2, 

s=1 .=I 

Theorem 5 Suppose that system (1)-(2) and the local 
state feedback contml matrices Fj ,  j = 1 , 2 , .  . . , T ,  are 
given. The ellipsoid O(P, y) is an invariant set of the 
closed-loop system under the gain-scheduled state feed- 
back law (6) i f  there exist matrices Hj E P"", j = 
1 , 2 ,  . . . , r, satisfying 

A:,i,jP + PA*,,,j + C:;&,i,j < 0, 
i , j  E [1,rl, s E I1,2"'1, 

(17) 
(18) 

and Q(P, 7 )  c nb, L(H;).  Moreover, for any xo E 
O(P, y), the performance objective function (7) satisfies 

J 5 x:Pxo 5 y. 

Corollary 6 For the special case of E; = B and D; = 
D for all i, the ellipsoid O(P, y) is an invariant set of 
the closed-loop system under the gain-scheduled state 
feedback contml law (6), if there ezist r matrices H; E 
W"X" , satisfying 

Af,;,;P + PAs,;,; + C.$;&,;,; < 0, vz, vs, (19) 

and O(P,y)  c &L(H;). Moreover, for any xo E 
Q(P, y), the performance objective function (7) satisfies 
J 5 X ~ P X O  5 y. 

In what follows, we present a less conservative set in- 
variance condition. Let 

Then, 0 5 psr 5 1, xrF1)/*p~ = 1. Thus, system 
(15)-(16) can be rewritten as 
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Theorem 7 Suppose that the system (1)-(2) and the 
local state feedback control matrices Fj, j E [l ,r] ,  are 
given. The ellipsoid Q(P,  7) is an invariant set of the 
closed-loop system under the gain-scheduled control law 
(S), if there exist matrices H j  E WmX", satisfying 

AZ,;,;P + PA,,;,; + c;;,;G,;,i < 0, 

(A8j, j  + A.,j,i)TP + P(A,,i,j + A d  
+ p s , ; , j  + G J , i ) = ( G i , j  + CS,j,i) < 0, 

(20) 

(21) 
1 -  

f o r i  E [l ,r] ,  j < i, s E [1,2"'], and R(Pi.7) C n:=, f.(H;). Moreover, for any xo E Q(P,y ) ,  the per- 
formance objective function ('7) satisfies J < 7. 
Remark 3 In Comparison with Theorem 5, the num- 
ber of mat% inequalities in Theorem 7 is reduced by 
r(r - 1) . Zm-'. In Comparison with Corollary 6, an- 
other r ( r  - 1) .  2"'-' mat% inequalities can be removed 
for the special case of B; = B and 0; = D,Vi 

Let Q = (P/T) - ' ,  6 = FjQ, Z j  = HjQ.  Denote the 
i-th row of the matrix Zj BS 4. Then (20) and (21) are 
equivalent to the following LMIs 

* 3 < 0; (22) Ai& + Bi(E,Y; + E;Zi) + (*)T [ ciQ+Di(E.Y,+E;Z;) -71 

< 0, (23) 

+cjQ + Dj(E.Y, + E;Zi) * I  + B;(E.Yj + E;Zj) + (*)T 

+E;Z;)+(*)T 
C<Q + Q(E.5 + E;Zj) 

respectively. Then, we have the following theorem 

Theorem 8 Suppose that system (1-2) and local con- 
trol matrices F, are given. Then gain-scheduled state 
feedback control law (6) minimizing the upper bound of 
perfonnance function (7) can be solved by 

Fj = YjQ-', V j  E [ l , ~ ] ,  

where (Q > O , Y , )  is a solution of the following LMI 
optimization problem 

- 
b)  LMI (22), (23), Vi E [I,  r ] , j  < i,s E [1,2"'], 

5 Numerical Examples 

Example 1. First, we consider a simple LPV system 
with the following system matrices 

The system output is y = xl. The input is subject to 
saturation umaX = 1. We are interested in designing 
an optimal controller such that the initial dondition 
xo = [ 4 -1 1' is contained in the domain of attrac- 
tion of the origin. The unsaturated control algorithm 
(14), the constant control algorithm (13) and the gain- 
scheduling control algorithm (24) are used to design the 
control law respectively, and the minimum 7 obtained 
are 120.4165, 120.3905 and 32.6565 respectively. 
Figure 1 shows the outputs and inputs of the system 
by the different controllers with 

pl = 0.5 - O.Bsin(O.l?rt - 0 . 5 ~ ) ,  pz = 1 -pl  

The dotted curves correspond to the controller com- 
puted by algorithm (14), the dotted dash curves corre 
spond to algorithm (13) and the solid curves correspond 
to algorithm (24). It is obvious that the gain-scheduled 
controller has the shortest rising time and the smallest 
performance cost while the unsaturated controller has 
the longest rising time with the largest cost. 

If setting xo = 1.3 x [ 4 -1 ]', we find the unsat- 
urated control algorithm (14) and the constant con- 
trol algorithm (13) cannot obtain a feasible solution 
while the gain-scheduling control algorithm (24) can 
still work well. This implies that the gain-scheduled 
controller results in a larger domain of attraction. 

0 ,  * a 1 I .  I . ,  30 

Figure 1: The outputs and inputs of Example 1 -with 
different controllers. 

Figure 2: Coupled spring-mass systems. 

Example 2. The second example is about the control 
of a twc-massspring system shown in Figure 2. The 
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system is given by the following equations [12] 

r o o i o i  r n i  

0. , , , , , , , , , 
, ,. . . . ... .. . ... . . 

Y = 52 

Here, XI and x2 are the positions of the two carts 
respectively, and x3 and x p  are their respective ve- 
locities. ml and m2 are the masses of the two bod- 
ies and K is the spring constant. For the nominal 
system ml = m2 = 1 with appropriate units. The 
spring constant is assumed to he uncertain in the range 
K,j. = 0.5 5 K 5 K,, = 2. It is mumed that exact 
measurement of the state is available. In the simula- 
tion, we set the performance output as 

and we assume that the saturation limit is 
and that the time-varying parameter is given as 

2K = Kmin(1 + sin(0.0lnt)) + K,,,,(l - sin(0.0lat)). 

We compare the simulation results by the different con- 
trol algorithms: unsaturated control algorithm (14), 
the constant control algorithm (13) and the gain- 
scheduling control algorithm (24). The computed per- 
formance bounds 7 by the above 3 algorithms are 
6.0788, 6.0780 and 5.9481, respectively. 

Figure 3 shows the computed outputs and inputs, 
where the dotted curves are obtained by using the un- 
saturated control algorithm (14), dotted dash curves 
by using the constant control algorithm (13) and the 
solid curves by the gain-scheduling control algorithm 
(24). We see that the controller computed by the un- 
saturated control algorithm (14) leads to  the largest 
overshoot and the longest rising time. This is because 
the input is not able to reach the saturation limit due to  
the conservatism of algorithm (14). It is also observed 
that the gain-scheduling control algorithm can result in 
a faster response than constant control algorithm (13). 
n o m  simulation results, we can conclude that gain- 
scheduling control algorithm (24) improve the perfor- 
mance with both output and input reaching the set- 
point in shorter time. 

= 0.5 

6 Conclusions 

In this paper, we have addressed the set invariance and 
the gain-scheduling control for LPV systems subject 
to actuator saturation. The positively invariant set 
of LPV systems subject to actuator saturation is an- 
alyzed by vertex system analysis approach. The opti- 
mal control problem for the given initial condition, i .e. ,  
steering it to the origin with the minimal performance 
cost, is solved with the LMI optimization approach. A 
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Figure 3: The outputs and inputs of the tw-mass-spring 
system with different controllers. 

gain-scheduled controller design method is proposed to 
reduce the conservativeness. The numerical examples 
also demonstrate the effectiveness of our design. 
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