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Abstract

In this study, an adaptive fuzzy sliding-mode control (AFSMC) system with an integral-operation switching
surface is adopted to control the position of an electrical servo drive. The AFSMC system is comprised
of a fuzzy control design and a hitting control design. In the fuzzy control design a fuzzy controller is
designed to mimic a feedback linearization (FL) control law. In the hitting control design a hitting controller
is designed to compensate the approximation error between the FL control law and the fuzzy controller.
The tuning algorithms are derived in the sense of the Lyapunov stability theorem, thus the stability of the
system can be guaranteed. Moreover, to relax the requirement for the bound of approximation error, an error
estimation mechanism is investigated to observe the bound of approximation error real-time. Experimental
results verify that the proposed control systems can achieve favorable tracking performance and robust with
regard to parameter variations and external load disturbance.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy control (FC) using linguistic information possesses several advantages such as robustness,
model-free, universal approximation theorem and rule-based algorithm [3,4,10]. However, the huge
amount of fuzzy rules for high-order systems makes the analysis complex. Recently, some researchers
proposed fuzzy sliding-mode controllers (FSMC) [2,8,15]. Since only one variable (sliding surface) is
de;ned as the fuzzy input variable, the main advantage of FSMC system is that the number of fuzzy
rules is smaller than that for FLC which usually use the error and the change-of-error as the fuzzy
input variables. Choi et al. used a single-input fuzzy variable called signed distance to design the
fuzzy sliding-mode controller; however, the membership functions must be assumed to be isosceles
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triangles with equal widths [2]. Palm proposed a sliding-mode fuzzy controller, which generates the
absolute value of switching magnitude in the sliding-mode control law using the error and the change-
of-error; however, too many fuzzy rules are required in the control process [8]. Yu et al. established
a set of linear models to design the controller; however, their design method is not easy analytic for
high-order systems [15]. Another researchers developed the adaptive fuzzy control (AFC) [11,13,14].
Based on the universal approximation theorem, the AFC design methods can provide stabilizing
controller in the Lyapunov sense even for nonlinear systems with dominant uncertain nonlinearities
by using suDciently complex approximation functions [13]. With these approaches, the fuzzy rules
can be automatically adjusted to achieve satisfactory system response by some dynamic adaptation
laws. Since these control schemes use the error and the change-of-error as the fuzzy input variables,
too many fuzzy rules are required in practical applications. Moreover, some strict constraints and
prior knowledge of the controlled plant are necessary in the design process.

In recent years, the FC systems have been adopted to control electrical servo drives [5,12]. Liaw
and Lin proposed a model following fuzzy adaptation mechanism to reduce the eEects of parameter
variations; however, the fuzzy rules must initially be constructed prior by a time-consuming trial-
and-error tuning procedure [5]. Tzou and Lin proposed a fuzzy-tuning current-vector control scheme;
however, the stability of the system cannot be guaranteed [12]. On the other hand, the combination
of adaptive technique and intelligent control (fuzzy control or neural network control) for electrical
servo drives has also grown rapidly [6,7]. Lin and Chiu developed an adaptation law to obtain the
upper bound of uncertainties for an adaptive fuzzy sliding-mode control system; however, when the
system parameters have large variations, the serious chattering phenomena will results in the control
eEort [6]. Lin et al. combined a linear model-following controller and an on-line trained neural
network to compensate for the uncertainties of an induction servo motor drive; however, the design
procedure is overtly complex [7].

The motivation of this study is to design an adaptive fuzzy sliding-mode control (AFSMC) scheme
to overcome the mentioned drawbacks in preview works. The AFSMC possesses the advantages
that it can automatically adjust the fuzzy rules like the AFC and can reduce the fuzzy rules like
FSMC. The developed AFSMC system tries to address those problems: (1) assume no mathematical
model of the system; (2) can incorporate linguistic information from human experts directly into the
controllers; and (3) guarantee stability of the resulting closed-loop system in the sense of Lyapunov
stability theorem. Moreover, to relax the requirement for the bound of approximation error, a simple
estimation algorithm is investigated to observe the bound of approximation error real-time. According
to the on-line adjustment, the chattering control eEort can be much reduced. In addition, experimental
results are provided to verify the eEectiveness of the AFSMC systems.

2. Electrical servo drive

In general, the mechanical equation of an electrical servo drive (e.g. direct-current motor drive,
induction motor drive or permanent magnet synchronous motor drive) can be represented as [1]

J H�(t) + B�̇(t) + Tl = Te; (1)

where J is the moment of inertia; B is the damping coeDcient; � is the rotor position; Tl represents
the external load disturbance, nonlinear friction and unpredicted uncertainties; Te denotes the electric
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torque. With suitable impressed current or ;eld oriented control [1,5], the electromagnetic torque
can be simpli;ed as

Te = Kti; (2)

where Kt is the torque constant and i is the control current. Substituting (2) into (1), then the
electrical servo drive system can be rewritten in the following form:

H�(t) = −B
J
�̇(t) +

Kt

J
i(t) − 1

J
Tl ≡ Ap�̇(t) + Bpu(t) + DpTl; (3)

where Ap= − B=J , Bp=Kt=J¿0, Dp= − 1=J and u(t)= i(t) is the control eEort.

3. Fuzzy sliding-mode control

The block diagram of a FSMC system for electrical servo drive is depicted in Fig. 1, in which
�c(t) is the tracking command. The control problem is to ;nd a suitable control law so that the rotor
position can track speci4c reference trajectories. De;ne a tracking error as

e(t) = �(t) − �c(t): (4)

The ;rst step of sliding-mode control design is to select a sliding surface that models the desired
closed-loop performance in state variable space. Then design the control such that the system state
trajectories are forced toward the sliding surface and stay on it. Now, suppose that an integral-
operation sliding surface is given as

s(t) = �̇(t) −
∫ t

0
[ H�c(�) − k1ė(�) − k2e(�)] d�; (5)

where k1 and k2 are non-zero positive constants. From (5), if the state trajectory of system (3) is
trapped on the sliding surface, namely s(t)= ṡ(t)=0, then the equivalent dynamics of system (3) is
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Fig. 1. Fuzzy sliding-mode control for electrical servo drive.



298 R.-J. Wai et al. / Fuzzy Sets and Systems 143 (2004) 295–310

……

1
sF

2
sF

c-2
sF

c-1
sF

c
sF c+1

sF c+2
sF

m
sFm-1

sF

… …

α1 α2 αc-2 αc-1 αc αc+1 αc+2 αm-1 αm

(a)

(b)

Fig. 2. (a) Membership function of IF-part; (b) membership function of THEN-part.

governed by

He(t) + k1ė(t) + k2e(t) = 0: (6)

It is obvious that the tracking error e(t) will converge to zero exponentially if the gains, k1 and k2,
are selected properly.

The complete rule base of a conventional fuzzy system with n input variables has pn rules, where
p is the number of linguistic terms per input variable. As the dimension and complexity of a system
increase, the size of the rule base increases exponentially. By de;ning the sliding surface as the input
variable of fuzzy rules, the number of fuzzy rules for FSMC is smaller than that for FC, which
usually uses the error and the change-of-error as the input variables. The fuzzy rules are given in
the following form [2]:

Rule i: IF s is Fis; THEN u is �i; (7)

where �i; i=1; 2; : : : ; m are the singleton control actions and Fis is the label of the fuzzy set. The
triangular-typed functions and singletons are used to de;ne the membership functions of IF-part and
THEN-part, which are depicted in Figs. 2(a) and (b), respectively. The defuzzi;cation of the control
output is accomplished by the method of center-of-gravity [4]

ufz(s) =
∑m

i=1 wi × �i∑m
i=1 wi

; (8)

where wi is the ;ring weight of the ith rule.

4. Adaptive fuzzy sliding-mode control

Assume that the system dynamics are well known and the external load disturbance is measurable,
a feedback linearization (FL) control law that achieves ṡ(t)=0 can be obtained from (3) and (5)

u∗(t) = B−1
p [−Ap�̇(t) − DpTl + H�c(t) − k1ė(t) − k2e(t)]: (9)
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Substituting (9) into (3) gives

He(t) + k1ė(t) + k2e(t) = 0: (10)

If the control gains k1 and k2 are properly chosen such that the characteristic polynomial of (10) is
strictly Hurwitz, that is a polynomial whose roots lie strictly in the open left half of the complex
plane, it implies that limt→∞ e(t)=0 meaning that the closed-loop system is globally asymptotically
stable. Since the system dynamics and the external load disturbance may be unknown or perturbed,
the FL control law u∗(t) cannot be implemented in practical applications. Therefore, an AFSMC
system is proposed to mimic the FL control law in this study. If �i is chosen as an adjustable
parameter, (8) can be rewritten as

ufz(s; Q) = QT^; (11)

where Q=[�1; �2; : : : ; �m]T is a parameter vector and ^=[�1; �2; : : : ; �m]T is a regressive vector with
�i de;ned as

�i =
wi∑m
i=1 wi

: (12)

According to the universal approximation theorem [13], there exists an optimal fuzzy control system
u∗fz(s; Q∗) in the form of (11) such that

u∗(t) = u∗fz(s; Q∗) + � = Q∗T^+ �; (13)

where � is the approximation error and is assumed to be bounded by |�|¡E. Employing a fuzzy
control system ûfz(s; Q̂) to approximate u∗(t)

ûfz(s; Q̂) = Q̂T^; (14)

where Q̂ is the estimated vector of Q∗.
The block diagram of an AFSMC system for electrical servo drive is depicted in Fig. 3. The

control law for the developed AFSMC is assumed to take the following form:

u(t) = ûfz(s; Q̂) + uvs(s); (15)

where the fuzzy control ûfz is the main tracking controller to mimic the FL control law u∗(t) and
the hitting control uvs is designed to compensate the diEerence between the FL control law and the
fuzzy controller. By substituting (15) into (3), it is revealed that

H�(t) = Ap�̇(t) + Bp[ûfz + uvs] + DpTl: (16)

After some straightforward manipulation, the error equation governing the closed-loop system can
be obtained through (5), (9) and (16) as follows:

He(t) + k1ė(t) + k2e(t) = Bp[ûfz + uvs − u∗] = ṡ(t): (17)
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Fig. 3. Adaptive fuzzy sliding-mode control for electrical servo drive.

And, ũfz is denoted as

ũfz ≡ ûfz − u∗ = ûfz − u∗fz − �: (18)

For simplicity of discussion, de;ne Q̃= Q̂− Q∗ to obtain a rewritten form of (18) via (13) and (14)
as

ũfz = Q̃T^− �: (19)

The basic philosophy of Lyapunov’s method is the mathematical extension of a fundamental
physical observation: if the total energy of a system is continuously dissipated, then the system
must eventually settle down to equilibrium states. Thus, it may conclude the stability of a system
by examining the descent variation of an energy function (Lyapunov function) for introducing a
suitable control law and associated adaptation rules. In order to force the states s(t) and Q̃ tend to
zero, consider a Lyapunov function candidate in the following form:

V1(s(t); Q̃) =
1
2
s2(t) +

Bp
2�1

Q̃TQ̃; (20)

where �1 is a positive constant. DiEerentiating (20) with respect to time, it can obtain that

V̇ 1(s(t); Q̃) = s(t)ṡ(t) +
Bp
�1
Q̃T ˙̃Q = s(t)Bp(ûfz + uvs − u∗) +

Bp
�1
Q̃T ˙̃Q

= s(t)Bp(Q̃T^+ uvs − �) +
Bp
�1
Q̃T ˙̃Q = BpQ̃T

(
s(t)^+

1
�1

˙̃Q
)

+ s(t)Bp(uvs − �): (21)

For achieving V̇160, the adaptation law and hitting controller are designed as

˙̃Q = ˙̂Q = −�1s(t)^; (22)

uvs = −E sgn(s(t)); (23)



R.-J. Wai et al. / Fuzzy Sets and Systems 143 (2004) 295–310 301

where sgn(·) is a sign function. Then (21) can be rewritten as

V̇ 1(s(t); Q̃) =−E|s(t)|Bp − �s(t)Bp6− E|s(t)|Bp + |�||s(t)|Bp
=−(E − |�|)|s(t)|Bp60 (24)

This implies that V̇1 is a negative semi-de;nite function. De;ne the following term

P(t) ≡ (E − |�|)|s(t)|Bp6− V̇ 1(s(t); Q̃): (25)

Because V1(s(0); �̃) is bounded and V1(s(t); Q̃) is non-increasing and bounded, then
∫ t

0
P(�) d�6V1(s(0); Q̃) − V1(s(t); Q̃)¡∞: (26)

Also, Ṗ(t) is bounded, it can be shown that limt→∞ P(t)=0 by Barbalat’s Lemma [9]. That is,
s(t)→ 0 as t→∞. In summary, the AFSMC system is presented in (15), where ûfz is given in (14)
with the parameters Q̂ adjusted by (22) and uvs is given in (23). By applying this adaptive law and
hitting control law, the AFSMC system can be guaranteed to be stable in the Lyapunov sense.

5. Adaptive fuzzy sliding-mode control with bound estimation

In Section 4, the application of the AFSMC system requires the bound of approximation error.
However, the bound of approximation error E is diDcult to measure for practical applications in
industry. If E is chosen too large, the control eEort results large chattering. The chattering phe-
nomenon in the control eEort will wear the bearing mechanism and excite unstable dynamics. If E
is chosen too small, the control system may be unstable. For an application in practical design, the
bound of approximation error is chosen large enough to avoid unstable. To relax the requirement
for the bound of approximation error, the AFSMC system with bound estimation for electrical servo
drive is depicted in Fig. 4. Replacing E by Ê(t) in (23), the following equation can be obtained:

uvs = −Ê(t) sgn(s(t)); (27)

where Ê(t) is the estimated bound value of the approximation error. De;ne an estimated error as

Ẽ(t) = Ê(t) − E: (28)

In order to force the states s(t), Q̃ and Ẽ tend to zero, de;ne a Lyapunov function candidate as

V2(s(t); Q̃; Ẽ) =
1
2
s2(t) +

Bp
2�1

Q̃T Q̃+
Bp
2�2

Ẽ
2
; (29)

where �2 is a positive constant. DiEerentiating (29) with respect to time and using (22) and (27),
it can obtain that

V̇ 2(s(t); Q̃; Ẽ) = s(t)ṡ(t) +
Bp
�1
Q̃T ˙̃Q+

Bp
�2
Ẽ ˙̃E
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Ê

 ̂

e

�c

�

�c

�
.

.

α

�
--

++

-

+

Fig. 4. Adaptive fuzzy sliding-mode control with bound estimation for electrical servo drive.

=BpQ̃T(s(t)^+
1
�1

˙̂Q) + s(t)Bp(uvs − �) +
Bp
�2
Ẽ ˙̃E

=−Ê(t)|s(t)|Bp − �s(t)Bp +
Bp
�2

[Ê(t) − E] ˙̂E(t): (30)

For achieving V̇260, the estimation law is designed as

˙̂E(t) = �2|s(t)|; (31)

then (30) can be rewritten as

V̇ 2(s(t); Q̃; Ẽ) =−Ê|s(t)|Bp − �s(t)Bp + (Ê − E)|s(t)|Bp
=−�s(t)Bp − E|s(t)|Bp 6 |�‖s(t)|Bp − E|s(t)|Bp = −(E − |�|)|s(t)|Bp60: (32)

By Barbalat’s lemma [9], it can conclude that s(t)→ 0 as t→∞. In summary, the AFSMC system
with bound estimation is presented in (15), where ûfz is given in (14) with the parameters Q̂ adjusted
by (22); uvs is given in (27) with the parameter Ê adjusted by (31). By applying this estimation
law, the AFSMC system with bound estimation can be guaranteed to be stable in the Lyapunov
sense.

6. Experimental results

The electrical servo drive used in this study is a three-phase Y-connected four-pole 800 W 60 Hz
120 V=5:4 A type induction servomotor. For the position control system, the braking machine is
driven by a current source drive to provide the braking torque (external load disturbance). A servo
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Table 1
Fuzzy rules of FSMC system for electrical servo drive

s NB NM NS ZO PS PM PB

Q 5.00 3.00 1.00 0.00 −1:00 −3:00 −5:00

control card is installed in a control computer, which includes multi-channels of D/A and encoder
interface circuits. Digital ;lter and frequency multiplied by four circuits are built into the encoder
interface circuit to increase the precision of position feedback. The proposed control systems are
realized in a Pentium CPU via “Turbo C” language and the control interval of the position control
loop is set at 2ms. It is worth to mention that the limitation of the control eEort is ±10A according
to the D/A resolution of the servo control card and the electrical speci;cation of the induction motor
in real drive system. This limitation may discount the trajectory tracking quality of the proposed
control systems, and it can be solved via a servo control card with high resolution or the selection of
the control parameters carefully. Two examined conditions are given to verify the robustness of the
proposed control schemes. One is the external disturbance condition, that is the nominal inertia with
1N m braking-load disturbance occurring at 4:5 s, and the other is the parameter variation condition,
that is the increasing of the rotor inertia to approximately three times the nominal value with 1 N m
braking-load disturbance occurring at 4:5 s.

The parameters of the proposed control systems are selected as follows:

k1 = 10; k2 = 25; �1 = 200; �2 = 0:5; E = 1: (33)

Properly choosing the values of k1 and k2, the desired system dynamics such as rise time, overshoot,
and settling time can be easily designed by the second-order system shown in (10). Moreover,
the gains, �1 and �2, in the proposed control systems are chosen to achieve the superior transient
responses by trial and error in the experimentation considering the requirement of stability and the
limitation of control eEort. Note that, introducing �1 and �2 into the derivation process can tune
the convergent speed of the adaptation and estimation laws, and it also can be ignored in (20) and
(29). In addition, the ;xed bound E in the AFSMC system can be determined roughly according
to the possible operating conditions. Note that, the bound value increases as the amplitude or the
frequency of reference trajectory raises since it is concerned with the kind of reference trajectory.

First, a FSMC with ;xed fuzzy rules is adopted to control the electrical servo drive for comparison.
The associated fuzzy rules are summarized in Table 1, in which the fuzzy labels used in this study
are negative big (NB), negative medium (NM), negative small (NS), zero (ZO), positive small
(PS), positive medium (PM) and positive big (PB). The position responses, control eEorts and
tracking errors of the FSMC system for periodic sinusoidal and triangular commands at examined
conditions are depicted in Figs. 5 and 6, respectively. Although favorable tracking responses can be
obtained at nominal condition; however, the fuzzy rules must be tuned by time-consuming trial-and-
error procedure and the stability of the control system cannot be guaranteed at all times. Besides,
when the external disturbance and parameter variations occur, the degenerate tracking responses are
resulted. To solve these problems, an AFSMC system for electrical servo drive is developed. With
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Fig. 5. Experimental results of FSMC system for periodic sinusoidal command: (a) position response at external disturbance
condition; (b) control eEort at external disturbance condition; (c) tracking error at external disturbance condition; (d)
position response at parameter variation condition; (e) control eEort at parameter variation condition; (f) tracking error at
parameter variation condition.

this approach, the fuzzy rules can be automatically adjusted to achieve satisfactory system response
by adaptation laws and the stability of the system can be guaranteed in the Lyapunov sense. The
position responses, control eEorts and tracking errors of the AFSMC system for periodic sinusoidal
and triangular commands at examined conditions are depicted in Figs. 7 and 8, respectively. The
robust control performance of the AFSMC system is obvious under the occurrence of the param-
eter variations and external load disturbance. However, the undesirable chattering phenomena in
the control eEorts, which are depicted in Figs. 7(b), (e), 8(b) and (e), are serious due to the
excess selection of a bound value in the hitting controller (23). The undesired chattering con-
trol eEorts will wear the bearing mechanism and might excite unstable system dynamics. Now, an
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Fig. 6. Experimental results of FSMC system for periodic triangular command: (a) position response at external disturbance
condition; (b) control eEort at external disturbance condition; (c) tracking error at external disturbance condition; (d)
position response at parameter variation condition; (e) control eEort at parameter variation condition; (f) tracking error at
parameter variation condition.

AFSMC system with bound estimation is applied to control the electrical servo drive. The posi-
tion responses, control eEorts and tracking errors of the AFSMC system with bound estimation
for periodic sinusoidal and triangular commands at examined conditions are depicted in Figs. 9
and 10, respectively. From the experimental results, the robust control performance also can be
obtained; moreover, the chattering phenomena are much reduced in the control eEorts according
to the on-line adjustment of the bound value in the hitting controller. Compared the experimental
results shown in Figs. 5–10, the proposed AFSMC system with bound estimation is more suit-
able to control the rotor position of the electrical servo drive under the possible occurrence of
uncertainties.
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Fig. 7. Experimental results of AFSMC system for periodic sinusoidal command: (a) position response at external distur-
bance condition; (b) control eEort at external disturbance condition; (c) tracking error at external disturbance condition;
(d) position response at parameter variation condition; (e) control eEort at parameter variation condition; (f) tracking error
at parameter variation condition.

The conventional non-adaptive fuzzy control scheme is easy to perform in industry due to their
simple control structure, ease of design, and inexpensive cost. However, the FSMC with ;xed fuzzy
rules cannot provide perfect control performance if the controlled plant is highly nonlinear and
uncertain. Though the AFSMC system with bound estimation expenses extra time with more mem-
ory bank to execute the adaptation and estimation laws, it results in superior control performance
than the FSMC system. Moreover, recent development in microelectronics and very large scale in-
tegration (VLSI) has pushed the performance of microprocessors to an unprecedented level with
ever lower-cost. Today high-performance microprocessors and digital signal processor (DSP) can
be eEectively used to provide Texible environments with high execution rate for advanced control
schemes.
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Fig. 8. Experimental results of AFSMC system for periodic triangular command: (a) position response at external distur-
bance condition; (b) control eEort at external disturbance condition; (c) tracking error at external disturbance condition;
(d) position response at parameter variation condition; (e) control eEort at parameter variation condition; (f) tracking error
at parameter variation condition.

7. Conclusions

In this study, a fuzzy sliding-mode control (FSMC), an adaptive fuzzy sliding-mode control
(AFSMC) and an AFSMC with bound estimation have been adopted to control the rotor posi-
tion of a computer-controlled electrical servo drive. This study has successfully demonstrated the
adaptive technique applied to the design of the stable fuzzy controller. The adaptation laws based
on the Lyapunov stability theorem can automatically adjust the fuzzy rules. Thus, the stability
of the developed AFSMC system can be guaranteed. Moreover, to relax the requirement for the
bound value in the hitting control, an AFSMC system with bound estimation was investigated to
control the electrical servo drive. According to the experimental results of the AFSMC system
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Fig. 9. Experimental results of AFSMC system with bound estimation for periodic sinusoidal command: (a) position
response at external disturbance condition; (b) control eEort at external disturbance condition; (c) tracking error at external
disturbance condition; (d) position response at parameter variation condition; (e) control eEort at parameter variation
condition, (f) tracking error at parameter variation condition.

with bound estimation, not only favorable tracking responses can be ensured but also the chatter-
ing phenomenon can be much reduced by the estimation mechanism. Two main contributions of
this paper are (1) automatic design of fuzzy controller based on stability theory, i.e. the design
of such controller is surely stable; and (2) using sliding-mode control technique enables simpler
rule base. A comparison of the control characteristics of the FSMC, AFSMC, and AFSMC with
bound estimation is summarized in Table 2. From Table 2, the AFSMC with bound estimation de-
sign method yields superior control performance without chattering phenomena than other control
schemes.



R.-J. Wai et al. / Fuzzy Sets and Systems 143 (2004) 295–310 309

Fig. 10. Experimental results of AFSMC system with bound estimation for periodic triangular command: (a) position
response at external disturbance condition; (b) control eEort at external disturbance condition; (c) tracking error at external
disturbance condition; (d) position response at parameter variation condition; (e) control eEort at parameter variation
condition, (f) tracking error at parameter variation condition.

Table 2
Comparison of FSMC, AFSMC and AFSMC with bound estimation

Control system Fuzzy Robust Control Chattering
rule base characteristic eEort phenomenon

Fuzzy sliding mode Trial-and error Degenerate Medium None
control system
Adaptive fuzzy sliding On-line learning Good Medium Large
mode control system
Adaptive fuzzy sliding mode control On-line learning Good Medium Small
system with bound estimation
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