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1 Introduction

Nonlinear state-space models with state-dependent variances (SDV) are common in many
fields of application, particularly financial time series. Important examples include stochas-
tic volatility (SV) models (Taylor, 1986) and affine term structure models (Duffie and Kan,
1996). Inference for nonlinear SDV models is complicated by the fact that the smoothing
distribution of the states is unavailable in closed form. Most existing methods, such as
simulated method of moments, do not provide the full smoothing distribution of the states.

Early literature on nonlinear state-space models relied on analytical approximations to
provide the smoothing distribution (Anderson and Moore, 1979). Zehnwirth (1988) derived
a Kalman filtering approach for models with state-dependent observation variances. More
recent approaches use Monte Carlo methods for smoothing. Carlin, Polson and Stoffer
(1992) provide a Markov chain Monte Carlo (MCMC) method for nonlinear state-space
models with nonnormal errors. Kitagawa (1996) and Geweke and Tanizaki (2001) consider
more general classes of models, and use sequential Monte Carlo and MCMC methods, re-
spectively. Carter and Kohn (1994) and Frithwirth-Schnatter (1994) develop an efficient
block sampling algorithm for conditionally Gaussian state-space models, and Shephard and
Pitt (1997) introduce a related block updating scheme for models with non-Gaussian ob-
servations.

In this paper, we propose a new methodology for state smoothing and parameter estima-
tion in nonlinear state-dependent variance (SDV) models. Our methodology draws upon the
literature on conditionally Gaussian models. The approach is simulation based and requires
the use of an auxiliary mixture model. The weights in the mixture model are allowed to be
adaptive and dependent on the state vector. Conditional on latent mixture indicators, the
auxiliary mixture model essentially reduces to a linear Gaussian state-space model (West
and Harrison, 1997). This allows us to generate the state variables in block fashion with
an efficient MCMC algorithm based on the methods of Carter and Kohn (1994), Shephard
(1994), Frithwirth-Schnatter (1994) and Carter and Kohn (1996). A key innovation of our
methodology is that the auxiliary mixture model weights are state dependent.

We illustrate our approach with two applications. First, we consider a logarithmic SV
model and show how to construct the auxiliary mixture model. We compare our method-
ology with the approaches of Shephard and Pitt (1997) and Geweke and Tanizaki (2001).
Our methodology provides the same efficiency as these other approaches, but applies more
generally. For example, we also implement a square-root SV model with jumps using daily
short-term interest rates in Hong Kong (HIBOR). The methods in Shephard and Pitt (1997)
do not directly apply due to the state-dependent variance in the evolution equation, and the
methods of Geweke and Tanizaki (2001) can lead to poor approximations due to the jumps

in the model. Whereas in our methodology, allowing for the possibility of jumps requires



only one additional mixture component in the auxiliary model. The algorithm provides the
smoothing distribution for three state variables, namely, the volatility of the interest rate
and its jump sizes and times.

The rest of the paper is outlined as follows. Section 2 describes our methodology for
estimation and smoothing of SDV models. We describe how to determine the auxiliary
mixture model and its use in our MCMC algorithm. Sampling from the full model is a
two-step procedure requiring simulation from a proposal distribution using conditionally
Gaussian state-space methodology and then a Metropolis step to re-weight these samples.
The proposal distribution is based on the auxiliary mixture model. Section 3 discusses
implementation of the proposed methods in SDV models. Section 4 illustrates our approach

with two applications. Finally, Section 5 concludes.

2 Nonlinear SDV Models

Nonlinear state-dependent variance models take the form

ye = filz) + e, et ~ N[0,V (z4)), (1)
i1 = gi(w) tw,  wp~ N[O, W ()], (2)
for times t = 1,...,T. Here y; is the observation vector, z; is the unobserved state vector,

and N (i, V) denotes a normal distribution with mean p and variance V. The observation
equation (1), and the evolution equation (2) have variance functions V(z;) and W (z,),
respectively, that depend on the unobserved state x;, and possibly on some unknown static
parameter vector A. The mean functions fi(z;) and g;(z;) are nonlinear in the states
and may also involve unknown static parameters. The error sequences {¢;} and {w;} are
mutually and serially independent given the states x;.

Denote the sampling distribution defined in (1) by p(y:|z¢) and use z = (=o,...,zT)
and y = (y1,...,yr) to denote the entire vector of state parameters and data, respectively.
The full posterior smoothing distribution for the nonlinear SDV model (1) and (2) is

T
plaly) o plxo) [] plzilzi1) plydlay), (3)
t=1

where p(y|z:) = N[fe(x1), V(z4)], and p(z¢|zi-1) = Ngi(w1-1), W (z¢-1)]. Here p(zo) =
N (myg, Cy) describes the distribution on the initial state.

This joint posterior distribution is typically not available in closed form, even when the
functions f(x¢), V(z), g(z;) and W(z;) are known. Moreover, standard MCMC simulation
techniques are not applicable due to nonlinearities in the mean and the state dependence

in the variance function. Next we will describe a new algorithm which addresses this issue.



2.1 An Auxiliary Mixture Model

The key idea is to approximate the observation and evolution equations by an auxiliary
mixture model. The mixture model is denoted by p®(y¢|x¢, 2;), and is assumed to be con-
ditionally linear and Gaussian given a state-dependent mixture indicator z;. It is easier to
discuss the cases in which nonlinearity and state dependent variance occur in either the
observation or in the evolution equations. First, suppose that the state dependence only

occurs in the observation equation,

v = flze) + e, et ~ N0, V()]

Ti41 = G.’I)t + wy, W ~ N[O, W], (4)
t=1,...,T, where f(x;) is nonlinear and V (z;) is state dependent.
We now describe how the auxiliary mixture model. Let z = (z1,...,27) be a vector of
mixture indicators, z; € {1,..., K}. The auxiliary mixture model p®(y;|z;) is defined as
K
Pudz) = Y p*(wilae, z = k) mr(zy). (5)
k=1

where 7 (z¢) = p*(z = k|x;) are state-dependent weights. The special case of fixed weights
has been successfully used in recent literature, for example in Kim, Shephard and Chib
(1998). But state-dependent weights provide more flexibility.

Conditional on the mixture indicator, z;, we assume that the observation equation in

the auxiliary model is a linear regression with constant variance, namely
P (yelwe,ze = k) = Nlak + Bra, 77)- (6)
For the mixture weights, p®(z¢|z;), we choose standardized Gaussian kernels

a . ¢($talfmaz)
- - : 7
P =il She 1 b ok, %) ™

where ¢(z;m, s) denotes a normal density with mean m and variance s2, and the weights are

standardized to sum to 1 for all values of z;. The choice of the kernels is important. Later,
we exploit the Gaussian form of the kernel to define a dynamic linear model to generate
proposals in a Metropolis-Hastings scheme.

The choice of (ay, Bk, Tk, f1k, k) is guided by the aim that p®(y:|z;) should provide a good
approximation of p(y:|z:). For example, {ux} could be an evenly spaced grid and (o, Sk)
could correspond to linear expansions of f(x;) at ux. A linear Taylor series approximation
allows automated construction of the auxiliary model. This becomes important when the

mean function f(z, A) or the variance V(z;, A\) depends on a static parameter A, and the



auxiliary mixture model has to adapt with A. To achieve this, we allow the regression

parameters (ag, Bk, 7x) to depend on A. For given knots p; we could define

500 = LU 0 (3) = ) - e e and T2) = Vs ).

We use the auxiliary mixture model to define a proposal distribution in the Markov
chain Monte Carlo (MCMC) posterior simulation for model (4). Details are described in
Section 2.3.

2.2 Mixtures in the Evolution Equation

Our approach is equally applicable for models with nonlinearities or SDVs in the evolution
equation. For example, assume a state-space model that is linear in the observation equation

but with state-dependent variances in the evolution equation

Y = F.’Et‘l‘ﬁt, GtNN[OaV]a
Tiy1 = g(wt) + wy, Wy ~ N[Oa W(ﬂ”t)]- (8)

To implement inference in (8) we define an auxiliary mixture model p®(z;|z;_1) and latent

indicators as in (5)—(7). Details of the posterior simulation are described in Section 2.3.
For problems where both f(z:) and g(z:) are nonlinear, or V(z;) and W (z:) are state-

dependent two auxiliary mixture models. In Section 4.2, we consider an example with SDVs

in both the observation and the evolution equation.

2.3 Simulating from the Smoothing Distribution

We describe posterior inference for model (4), with nonlinearity and SDV in the observation
equation only. Inference for (8) and for the general nonlinear SDV model (1)-(2) proceeds
analogously. The following three steps define one iteration in the simulated chain. Assuming
currently imputed parameter values z, we first generate latent indicators z (step 1) for the
auxiliary mixture model. Given the indicators we propose new values for z by recognizing
p*(z|z,y) as essentially a Gaussian linear state space model (step 2). Finally, step 3 accepts
the candidate = generated in step 2 with appropriate Metropolis-Hastings acceptance prob-
ability, defined to maintain the smoothing distribution p(z|y) as the stationary distribution
of the Markov chain. The mixture indicators z are generated in step 1, and dropped from

the state vector again at the end of step 3.

1. Generating mixture indicators z = (z1,...,2r). We augment the state vector z with

a vector of mixture indicators z;, using p®(z|z,y). The full conditional posterior



distribution of the mixture indicators under the auxiliary model is

pi(elz,y) o T p* (el ze) 7 ().
t=1
Given the state vector z, the indicator variables z1,. ..,z are conditionally indepen-

dent, and can be sampled independently from multinomial distributions with proba-

bilities p®(z¢|@s, yi) o p®(yel 2, T1) P* (2¢|¢)-

. Generating a proposal Z. Consider the full conditional distribution p?®(z|z,y) under

the auxiliary mixture model

T
p*(zlz,y) o p(zo) H p(zt|zi—1) p*(ye|ze, 3¢) p*(2t|me).-
t=1

To devise an efficient proposal distribution for the state variables, we factor this
distribution into two parts. The first part will include all terms that are linear in
the states. This will be used as the proposal distribution in a Metropolis-Hastings
simulation step (Tierney, 1994). The second part will be used in the acceptance
probability in step 3. Let c(z;) = Y, #(@4; px,0x) denote the denominator in (7).
Substituting (7) for p*(z¢|z:) we get

T
1

p*(zlzy) o plzo) [[p@ilmir) p*(wilze, x0) $las; pyr 02,) )’ 9)

t=1

. 7

q(z|2,y)

The first factor, denoted by ¢(z|z,y), corresponds to the smoothing distribution in
another linear, Gaussian state space model. The probability model g(z|z,y) will serve
as a proposal distribution in a Metropolis-Hastings step. Details are explained below.
The importance of augmenting our model by a mixture of linear regressions with
Gaussian kernel weights now becomes clear. We can use the efficient block sampling
algorithms of Carter and Kohn (1994) and Frithwirth-Schnatter (1994) to generate
candidate values Z of the state vector, & ~ ¢(z|z,y). The algorithm is known as

forward-filtering, backward-sampling (FFBS).

The following state-space model has a smoothing distribution given by ¢(z|z,y):

Yo = Tyt €, et ~ N0, V]
Tiy1 = Gzp+ wy, wg ~ N0, W], (10)

where §; = V; [(y: — @2,) B T2 + piz,/02] and V, = (B% /72 +1/02)~1. The value §
is chosen so that the likelihood in (10) equals the last two factors in the definition of



q(z|z,y); i.e., the observation equation in (10) is formed by combining the linearized

observation equation (6) with the Gaussian weighting kernel (7).

Since (10) is a linear state-space model, the smoothing distribution ¢(z|z,y) can be

sampled directly using FFBS. We use it to generate a proposal for the state variables
i ~ q(z|z,y).

3. Metropolis-Hastings rejection step. Evaluate the acceptance probability

a(x,i)Zmin{l,H - plufre) __ el pa(y”mt)}. (11)

o (@) pr(yel @) p(yila)

Here p®(y:|z:) is the approximation to the likelihood p(y¢|z;) implied in the auxil-
. . . K .

iary mixture model, i.e., c(zs) p®(yelme) = Yopy G(2e; pk, ok) P (ye|ze, ¢ = k). With
probability a(z, %) replace the currently imputed state parameters z by Z. Otherwise

discard the proposal Z and leave z unchanged.

Use of the acceptance probability a(z,Z) ensures an ergodic distribution equal to p(z|y),
as desired. This is seen by considering an augmentation of p(z|y) to p(z,z|y) = p(z|y)-
p*(z|z,y), i.e., add z to the probability model p(z|y) by defining the conditional distribu-
tion for z given z and y as in model p*. Steps 1 through 3 define a Markov chain with
ergodic distribution p(z, z|y). Step 1 replaces z by sampling from the complete condi-
tional distribution p(z|z,y) = p®(z|z,y). Step 2 generates a Metropolis-Hastings proposal
Z ~ q(Z|z,y). Step 3 accepts the proposal with the correct Metropolis-Hastings accep-
tance probability min {1, p(Z|z,v) ¢(z|z,v)/[p(z|z,v) ¢(Z|2,y)]}. To verify the acceptance
probability (11) note that

p(z|z,y) o p(zly) p(z|z,y) = p(z|y) p*(2|z, y)

P (Yt|2t, 1) G(Tt; phzys 0
plarkei-t) pluled) gt T ATl Oz)
1 Yokt P (ytlze = K, xt) d(@e; pk, 0k)

o p(o)

=

-+
Il

If the model includes static parameters A, an additional step is used to update A, given
the currently imputed states ;. This is typically carried out using a Metropolis-Hastings

step. Details depend on the specific model.

2.4 Extensions

An important part of the proposed algorithm is the choice of the knots {p}. Although in
principle arbitrary, a good choice is important for a computationally efficient implementa-

tion. Typically, the state process z; is stationary, and we can choose the knot locations and



kernels based on the marginal prior p(z;). This is true, for example, for the SV model dis-
cussed in Section 4.1. However, when the support of the state vector changes significantly
over time, the set of knots uj; needs to be adaptive.

To fix ideas, consider model (4) with non-linearity and SDV in the observation equation
only. Assume that some approximation of marginal posterior means and standard deviations
for the states z; is available. Such approximations could be obtained, for example, using
methods proposed in Shephard and Pitt (1997). Alternatively, any ad-hoc estimation of the
unknown states z; could be used. Based on these approximate moments we now define an
adaptive grid of knots {u }, for example, as a grid over mean plus/minus several posterior
standard deviations. We complete the construction of an auxiliary mixture model for each
period ¢ by defining linear approximations with parameters By = f'(uw), e = f(ek) —
pk Bu and 77, = V(ug). The auxiliary mixture model (5) with p®(yi|z; = k, z) = N (cug +
Bk x4, thk) is then used to proceed as in Section 2.3.

In many applications, it is necessary to do the updating of the state vector = in sub-
blocks to achieve reasonable acceptance probabilities in (11). Let z = ({1, ..., z())) denote
a partition of the states into subvectors. We repeat steps 1 through 3 of the proposed
algorithm J times, proposing at each iteration new values () for one subvector only. The
choice of the block size is a trade-off between attaining a reasonable Metropolis acceptance
probability and the computational efficiency obtained by block updating. As a rule of
thumb, the average acceptance probability should be between 5% and 95%. Similar blocking
strategies are proposed in Shephard and Pitt (1997).

Finally, for a high dimensional state vector x; we recommend a partitioning strategy
(Cargnoni, Miiller and West, 1997). Partition the state vector into z; = (z41,Zw). At
each iteration of the MCMC we first update 1 = (241, ¢t = 1...T) conditional on zy =
(242, t =1...T) proceeding as before. Then we follow up with updating x5 conditioning on
the currently imputed values z;. In practice, partitioning might be advantageous for state

vectors beyond three dimensions.

3 Stochastic Volatility Modeling and Jumps

3.1 A Standard SV Model

SV models are commonly used to describe the evolution of equity returns (Ghysels, Harvey
and Renault, 1996). A standard approach is to assume that equity prices S(¢) follow a
geometric Brownian motion with volatility v(¢) that is modeled as a mean-reverting process:

dlog S(t) = (p—v(t)/2)dt + /v(t)dW(t)
dlogv(t) = ky(0y —loguv(t))dt + op dW1(t).



Here W(t) and Wy(t) are independent Brownian motions, x, governs the speed of mean
reversion, 6, is the long-run mean of log-volatility, and o, is the volatility of volatility.
Discretizing on a unit time step, and setting y; = log(Sy+1/S:) and z; = logv;, we obtain a

nonlinear SDV model:

wo= (-2 + e

Tir1 = T+ KOy — ) + 0y wy. (12)

Here we have nonlinearity in the mean and state-dependence in the variance of the observa-
tion equation, whereas the evolution equation for log-volatility is a standard normal linear
regression model with constant variance. We now show how to form the auxiliary mixture
model for the observation equation.

The choice of K, the number of mixture components, is a trade-off between a fast
algorithm for the auxiliary mixture model with a slower algorithm but higher acceptance
probability in the Metropolis step. Clearly, the choice of K is problem specific and is
related to the degree of departure from linearity of the mean and the nature of the state
dependence in the variance function. For example, when the mean and variance functions
are exponentials as in (12), we can achieve a good approximation using a small number of
mixture components.

Figure 1 shows an example with mean and variance function given by f(z;) = e*
and V(z;) = e®. To approximate this model, we choose a mixture of size K = 3, with
pr € {—1,0,1} and o = 1. Figures 1(a) and 1(b) show the mean and variance functions,
f(xy) and V(x;), respectively, along with the approximating linear regression lines and

variance levels. The regression lines are defined by a linear Taylor expansion around gy

fe (@) = ag + Brxy, where By = f'(ux) and o = f(pk) — pBr-

The stepwise variance levels are defined by 72 = V(uy). The bottom panels in Figure 1
show the Gaussian weighting kernels ¢(z; uk, ok ), along with the knots, u, denoted by
triangles.

Hence, at each time period, we have a locally-weighted mixture of linear regressions
with constant variance. The mixture weights are the Gaussian kernels at the bottom of
Figure 1, and the linear regression models are given by the approximating mean and variance
functions in the top panel of Figure 1. We can now simulate from the smoothing distribution

as described in Section 2.3.
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Figure 1: Construction of the auxiliary mixture model. Top panels: (a) Mean function f(z;) =
e” and approximating linear regression lines, ay + Brx;. (b) Variance function V(x;) = e®t and
approximating variance levels 72. Bottom panels: Gaussian weight kernels ¢(z; ux, o) and knots

b, denoted by triangles.

3.2 A Two-Factor SV Model with Jumps

A commonly used model for short-term interest rates is the Cox-Ingersoll-Ross (CIR) model
(Cox, Ingersoll and Ross, 1985). It is a two-factor SV model where the future interest rate
depends on the current short rate r(t) and its volatility v(t). We consider the following

extension of the CIR model allowing for jumps:

dlogr(t) = k(0 —logr(t))dt + /v(t)r(t)~LdW (t) + £(t) dJ(¢)

dv(t) = Ky(0y —v(t))dt + oyr/v(t) dW1(1). (13)
Here r(t) is the short-term interest rate, v(¢) is its volatility and W (t) and Wi(t) are
uncorrelated Brownian motions. An exogenous jump shock is incorporated in the term
&(t) dJ(t) where J(t) is a counting process for the jumps, and £(¢) denotes the corresponding
jump size. The first equation defines the sampling model (“observation equation”) for
the observable data r(¢) conditional on unobservable dynamic state parameters v(¢) and
additional static parameters k, and 6,.. The second equation defines the evolution of the

state variable v(t).

10



To implement inference in this model, we use an Euler discretization of the continuous-
time model. As Pritsker (1998) shows, for daily interest rate data the corresponding dis-
cretization error is insignificant compared to the estimation error. See more discussion in

Elerian, Shephard and Chib (2001) and Eraker (2001).
Discretizing equation (13) gives an SDV model of the form

Yir1 = Y+ Ke(Or —yr) + Vxre V¢ + &y,
Ter1 = T+ Ky(0y — 1) + 0u/Tr w4, (14)

where y; = log 4, £y = v¢, and ¢; and w; are i.i.d. standard normal errors. The observational
error term comprises two components, the stochastic volatility term and the jump term.
We assume that jumps are i.i.d., J; ~ Ber(\), and that the jump sizes are normal & ~
N (ug,og). In addition to the observed data y; and the state parameters z; the model
includes static parameters (k;,0r, Ky, Oy, 0y, A, tig, 0¢), and the jumps J; and jump sizes &;.
Implementing the algorithm outlined in Section 2.3 we require additional steps to update
the static parameters and the jumps &; J;. All static parameters and &; J; can be updated
by generating from the appropriate complete conditional posterior distributions, each of
which takes the form of a well-known distribution. Model (14) does not explicitly constrain
x; to positive values. In the application reported later in Section 4.2, the posterior is
centered safely away from negative volatilities. With different data, it might be necessary
to introduce a constraint in the evolution equation.

If we marginalize with respect to the jump term in the observation equation, model (14)
becomes a SDV model with non-normal errors. The marginal error distribution, integrating

over the jump process, is given by a discrete mixture of normals
(1= NN,z Y] + IN[ug, ze”% + of].

The addition of the jump component allows the model to capture “outlying” behavior in
the series that cannot be explained by a change in the stochastic volatility state variable
z¢. A further extension of these models is to also include jumps in the volatility equation,
see Eraker, Johannes and Polson (2001).

4 Examples

First we discuss a simulation study. In a simple setting of a logarithmic SV model we
compare our approach with those of Shephard and Pitt (1997) and Geweke and Tanizaki
(2001). Second, we model the movements in the daily short-term interest rate in Hong
Kong from 1986-2000 using a SV model with jumps. The short-term interest rate in Hong
Kong is known as the HIBOR (Hong Kong Dollar Interbank Offered Rates). Allowing for

11



jumps or discontinuities is critical for modeling periods such as the Asian financial crisis.
In Nov. 1997 and again in Jan. 1998 the short interest rate jumped from its average level
of 6% to over 50%. Such rapid movements cannot be explained by a standard stochastic
volatility model. Alternative approaches are proposed in recent work by Barndorff-Nielsen
and Shephard (2001).

4.1 A Logarithmic SV Model

To study the efficiency of our algorithm we simulated T' = 1500 observations from a standard

logarithmic stochastic volatility model:

Yt = H+€ta EtNN[anmt]a
Ti+1 — a+ﬁwt+wt, thN[O,W],

with g = 0, a = —.085, 8 = .99, W = .04, and zo = —8.5. These are typical parameter
values for daily equity returns (see Jacquier, Polson and Rossi, 1994). Figure 2(a) shows
simulated observations y; under these parameter values.

For the analysis reported below, we fixed the parameters u, o, 8, and W at their given
values, and assumed a diffuse prior on the initial state: zg ~ N (—8.5,100). We then fitted
the model using three different MCMC algorithms: the locally-weighted mixture method
(LWM) introduced in Section 2; the Laplace block updating algorithm of Shephard and Pitt
(1997) (SP); and the single-state updating method of Geweke and Tanizaki (2001) (GT).
For each algorithm, we simulated 5000 MCMC samples and collected the last M = 4000

for inference.

0.10 (a)

ylitl
o
&
X[t]

T T T T
0 500 1000 1500 0 500 1000 1500
time (t) time (t)

Figure 2: SV model. (a) Simulated observations y;. (b) Simulated states x;, and smoothed means
using three MCMC algorithms: LWM, SP, and GT. The three lines are practically indistinguishable,

indicating that the algorithms have converged to the same smoothed mean estimates.
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To ensure reasonable acceptance probabilities for the LWM algorithm, we used 10 blocks
to update the state vector. For the LWM method, we used K = 7 equally-space knots
between p; = —3 and p7; = —14, and a kernel width of o, = 1 for k = 1,...,7. Figure 2(b)
shows the simulated state variables, z;, along with the smoothed means for each of the three
algorithms. The three lines are nearly indistinguishable, indicating that all three algorithms
have converged to the same smoothed mean estimates.

Next, we examined graphical summaries of convergence. Figure 3 shows trace plots
and autocorrelation plots of z599 for the three algorithms. For LWM, the autocorrelation

function decays rapidly to zero, indicating a fast-mixing Markov chain.

LWM SP GT
-10.0 4 -10.0 q -10.0 1
-10.5 A -10.5 A -10.5 4
1<) 1<) 1<)
8110 3,-11.0 3,-11.0 A
< < B
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0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
iteration iteration iteration

1.0 1.0

038 08
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0.4 4 0.4

0.2 02 ]

0.0 & HEHH R AR A A A i AT -

00 L auting: -~ anliasannisaonans:

Figure 3: SV model. Trace plots and autocorrelation plots for z;, t = 500 for three MCMC
algorithms: LWM (left); SP (center); and GT (right). The average acceptance probabilities for
the two blocking schemes were about 30% for LWM and 10% for SP. Taking into account that the
implementation of SP and GT could likely be further fine tuned, we consider the performance of the

three algorithms approximately comparable.

We also computed summary diagnostics proposed by Raftery and Lewis (1992). Table
1 shows dependence factors for four selected state variables, z;, ¢ € {1,500,1000, 1500},
obtained using the software BOA (Smith, 2001). Overall, the dependence factors for LWM
are smaller than for SP and GT, indicating faster convergence of the LWM algorithm. (A
smaller dependence factor indicates a faster mixing Markov chain.)

On the basis of these results and taking into account that SP could likely be further
fine-tuned for this application, we conclude that the performance of LWM and SP is roughly
comparable, and both are more efficient than GT. The conclusion is not surprising. GT
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state | Mixture (LWM) Laplace (SP) Single-State (GT)
variable | 5% 50% 95% | 5% 50% 95% | 5% 50% 95%
T 15 17 13 55 46 13 | 82 97 19
500 7 13 10 72 54 19 13 50 18
zi00 | 21 24 34 | 131 46 48 | 20 54 10
0 | 16 24 14 | 94 45 64 | 15 34 22

Table 1: SV model. Raftery and Lewis (1992) convergence diagnostics for three algorithms: LWM,
SP, and GT. Convergence was monitored for the 5th, 50th, 95th percentiles for four selected state
variables, z;, t € {1,500, 1000, 1500}.

is very general but does not exploit any of the special time series structure in the model
as does LWM. The important advantage of LWM over SP is the general structure of the
evolution equation and the possibility to include state-dependent variances. This aspect is

critical in finance applications where models often include nonlinearities and SDVs.

4.2 Hong Kong Interest Rates (HIBOR)

Hong Kong short interest rates provide a good illustration of the need to model jumps with
the stochastic volatility model. Figure 4 shows the daily HIBOR rate for the period 1986 to
2000. The period of dramatic jumps started in Nov. 1997, when the short rate moved from
a level of 6% on Nov. 17 to 50% on Nov. 23, and continued on into the beginning of 1998.
One possible reason for jumps in this series is that the Hong Kong dollar operates under
a currency board and the currency is pegged to the U.S. Dollar. Therefore, in periods of
market stress, when there is an increased probability of a currency devaluation, the short
rate has to be raised to very high levels.

We model the interest rate in two subsamples: first from Jan. 1986 to Dec. 1993 and
then from Jan. 1994 to Jan. 2000. We fit a square-root stochastic volatility model (14)
with jumps in the level of interest rates. For comparison we also analyze a two-factor
stochastic volatility CIR model without jumps. Figure 4 plots the data in these periods.
Clearly, jumps are present in the later subsample. All inference reported below is based on
the second subsample for 1994-2000. We implemented inference using the proposed LWM
algorithm described in Section 2. For both models, we chose 10 equally-spaced knots for
the observation and evolution equations based on the marginal prior distribution p(z;).

The first row of Table 2 shows the posterior means and standard deviations of the
model parameters for the no-jump model. These results are based on M = 4000 MCMC
samples after a burn-in period of 1000. The model is forced to estimate a high level of o,.
The residual plots (not shown) are highly non-normal indicating a very poor description of

the underlying series. The second row in Table 2 shows the posterior moments under the
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Figure 4: HIBOR data, 1986—2000. Top panels: Short term interest rates, using different scales
before and after 1994. Bottom panels: Squared residuals (proxies for volatility) from a linear

regression model. The plot illustrates the need to allow for jumps in the model.

model with jumps. The major difference is that, after allowing for jumps, the estimate of
oy decreases, whereas our estimate of the mean reversion parameter s, increases, implying
more persistence in the volatility sequence. This leads to very different pricing implications
under the two models. Our methodology also provides inference for the jump component
of the model. Figure 5 shows the posterior distributions of the jump probability A and
mean p¢ and standard deviation o¢ of the jump sizes. The prior specification represents
our initial beliefs that the jump component of the model is infrequent and captures large
jump sizes relative to the underlying stochastic volatility term. We choose a prior for

the jump frequency, A ~ Beta(1,75), giving a mean of 1.3% per year. To complete the

: |
No Jumps .0200 .990  .0010  .900  .0250

(.09) (.03)  (.008)  (.103)  (.005)
Jumps 0218  .987  .0001  .935  .0002

(.007) (.004) (.00001) (.011) (.00003)

Model Krlr 1 — kK, Ky By 1— Ky, o

Table 2: HIBOR data. Posterior means (and standard deviations) of model parameters.
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Figure 5: HIBOR data. Posterior distribution of jump process parameters: jump probability A,

and mean p¢ and standard deviation o¢ of the jump sizes.

analysis, Figure 6 shows the smoothed states: the posterior probability of jump occurrences
p(Jy = 1|y) and the volatility states, E(v;|y). The observed log-rate series y; is also provided

for comparison.

5 Conclusions

This paper develops a general likelihood-based approach for inference in nonlinear dynamic
models with state-dependent variances. This class of models is very flexible, including both
stochastic volatility (SV) and affine term structure models. To carry out parameter inference
and smoothing, we provide a novel block sampling MCMC algorithm. A key step in the the
algorithm is the specification of an auxiliary mixture model with state-dependent weights.
This allows the algorithm to exploit the conditionally Gaussian structure embedded in the
mixture model. This leads to an efficient MCMC simulation scheme for this general class
of models.

One advantage of our methodology is that it applies to nonlinearities and SDVs in both
the observation and evolution equations. It also is straightforward to incorporate jumps and
mixture of normals in the innovation and error terms. On the other hand, the researcher
has to construct an auxiliary mixture for the problem at hand. This requires some a priori
knowledge of the support of the state vector. One direction for future research is to provide
methods for filtering. As in Pitt and Shephard (1999) our block sampling approach lends
itself naturally to provide an algorithm for tackling the computationally demanding problem

of filtering in these models.
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Figure 6: HIBOR data. (a) Log HIBOR rates, y;, (1994-2000). (b) Posterior probability of jump

occurrences p(J; = 1|y). (c) Smoothed volatility estimates E(v¢|y).
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