
FUZZY AND NEURAL CONTROL
DISC Course Lecture Notes (October 2001)

ROBERT BABUŠKA
Control Engineering Laboratory
Faculty of Information Technology and Systems
Delft University of Technology, Delft, the Netherlands

Delft University of Technology
Delft, the Netherlands

www.Matlabi.ir

www.Matlabi.ir
http://www.matlabi.ir

Copyright c© 2001 by Robert Babuška.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopy, recording, or any information storage and retrieval system, without

permission in writing from the author.

Contents

1. INTRODUCTION 1

1.1 Intelligent Control 1

1.2 Organization of the Book 2

1.3 WEB and Matlab Support 2

1.4 Acknowledgement 2

2. FUZZY SETS AND RELATIONS 3

2.1 Fuzzy Sets 3

2.2 Properties of Fuzzy Sets 5
2.2.1 Normal and Subnormal Fuzzy Sets 5
2.2.2 Support, Core and α-cut 6
2.2.3 Convexity and Cardinality 7

2.3 Representations of Fuzzy Sets 8
2.3.1 Similarity-based Representation 8
2.3.2 Parametric Functional Representation 8
2.3.3 Point-wise Representation 9
2.3.4 Level Set Representation 10

2.4 Operations on Fuzzy Sets 10
2.4.1 Complement, Union and Intersection 10
2.4.2 T -norms and T -conorms 12
2.4.3 Projection and Cylindrical Extension 13
2.4.4 Operations on Cartesian Product Domains 15
2.4.5 Linguistic Hedges 16

2.5 Fuzzy Relations 16

2.6 Relational Composition 17

2.7 Summary and Concluding Remarks 19

2.8 Problems 19

3. FUZZY SYSTEMS 21

3.1 Rule-Based Fuzzy Systems 23

3.2 Linguistic model 23
3.2.1 Linguistic Terms and Variables 24
3.2.2 Inference in the Linguistic Model 26

v

vi FUZZY AND NEURAL CONTROL

3.2.3 Max-min (Mamdani) Inference 31
3.2.4 Defuzzification 34
3.2.5 Fuzzy Implication versus Mamdani Inference 36
3.2.6 Rules with Several Inputs, Logical Connectives 38
3.2.7 Rule Chaining 40

3.3 Singleton Model 42

3.4 Relational Model 43

3.5 Takagi–Sugeno Model 48
3.5.1 Inference in the TS Model 49
3.5.2 TS Model as a Quasi-Linear System 49

3.6 Dynamic Fuzzy Systems 51

3.7 Summary and Concluding Remarks 52

3.8 Problems 53

4. FUZZY CLUSTERING 55

4.1 Basic Notions 55
4.1.1 The Data Set 55
4.1.2 Clusters and Prototypes 56
4.1.3 Overview of Clustering Methods 56

4.2 Hard and Fuzzy Partitions 57
4.2.1 Hard Partition 58
4.2.2 Fuzzy Partition 59
4.2.3 Possibilistic Partition 60

4.3 Fuzzy c-Means Clustering 61
4.3.1 The Fuzzy c-Means Functional 61
4.3.2 The Fuzzy c-Means Algorithm 62
4.3.3 Parameters of the FCM Algorithm 64
4.3.4 Extensions of the Fuzzy c-Means Algorithm 67

4.4 Gustafson–Kessel Algorithm 67
4.4.1 Parameters of the Gustafson–Kessel Algorithm 69
4.4.2 Interpretation of the Cluster Covariance Matrices 70

4.5 Summary and Concluding Remarks 71

4.6 Problems 71

5. CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 73

5.1 Structure and Parameters 74

5.2 Knowledge-Based Design 75

5.3 Data-Driven Acquisition and Tuning of Fuzzy Models 75
5.3.1 Least-Squares Estimation of Consequents 76
5.3.2 Template-Based Modeling 76
5.3.3 Neuro-Fuzzy Modeling 78
5.3.4 Construction Through Fuzzy Clustering 79

5.4 Semi-Mechanistic Modeling 85

5.5 Summary and Concluding Remarks 86

5.6 Problems 87

6. KNOWLEDGE-BASED FUZZY CONTROL 89

Contents vii

6.1 Motivation for Fuzzy Control 90

6.2 Fuzzy Control as a Parameterization of Controller’s Nonlinearities 90

6.3 Mamdani Controller 93
6.3.1 Dynamic Pre-Filters 93
6.3.2 Dynamic Post-Filters 94
6.3.3 Rule Base 95
6.3.4 Design of a Fuzzy Controller 97

6.4 Takagi–Sugeno Controller 102

6.5 Fuzzy Supervisory Control 103

6.6 Operator Support 106

6.7 Software and Hardware Tools 107
6.7.1 Project Editor 107
6.7.2 Rule Base and Membership Functions 107
6.7.3 Analysis and Simulation Tools 107
6.7.4 Code Generation and Communication Links 108

6.8 Summary and Concluding Remarks 108

6.9 Problems 109

7. ARTIFICIAL NEURAL NETWORKS 111

7.1 Introduction 111

7.2 Biological Neuron 112

7.3 Artificial Neuron 113

7.4 Neural Network Architecture 114

7.5 Learning 115

7.6 Multi-Layer Neural Network 115
7.6.1 Feedforward Computation 117
7.6.2 Approximation Properties 118
7.6.3 Training, Error Backpropagation 120

7.7 Radial Basis Function Network 125

7.8 Summary and Concluding Remarks 126

7.9 Problems 126

8. CONTROL BASED ON FUZZY AND NEURAL MODELS 129

8.1 Inverse Control 129
8.1.1 Open-Loop Feedforward Control 130
8.1.2 Open-Loop Feedback Control 130
8.1.3 Computing the Inverse 131
8.1.4 Inverting Models with Transport Delays 137
8.1.5 Internal Model Control 138

8.2 Model-Based Predictive Control 138
8.2.1 Prediction and Control Horizons 139
8.2.2 Objective Function 139
8.2.3 Receding Horizon Principle 140
8.2.4 Optimization in MBPC 140

8.3 Adaptive Control 144
8.3.1 Indirect Adaptive Control 144

viii FUZZY AND NEURAL CONTROL

8.3.2 Reinforcement Learning 146

8.4 Summary and Concluding Remarks 152

8.5 Problems 152

A– Ordinary Sets and Membership Functions 155

B– MATLAB Code 159

B.1 Fuzzy Set Class 159
B.1.1 Fuzzy Set Class Constructor 159
B.1.2 Set-Theoretic Operations 160

B.2 Gustafson–Kessel Clustering Algorithm 161

C– Symbols and Abbreviations 163

References 167

Index 173

1 INTRODUCTION

This chapter gives a brief introduction to the subject of the book and presents an outline
of the different chapters. Included is also information about the expected background
of the reader. Finally, the WWW and MATLAB support of the present material is
described.

1.1 Intelligent Control

Conventional control engineering approaches are based on mathematical models, typi-
cally using differential and difference equations. For such models, mathematical meth-
ods and procedures for the design, formal analysis and verification of control systems
have been developed. These methods, however, can only be applied to a relatively
narrow class of model structures, including linear models and some specific types of
nonlinear models.

Practical application of classical control design typically falls short in the situation
when no mathematical model of the process to be controlled is available, or when it is
nonlinear to such a degree that the available techniques cannot be applied.

This led scientists to the search for alternative modeling and control paradigms and
to the introduction of “intelligent” control. Intelligent methodologies employ biologi-
cally motivated techniques and procedures to develop models of reality and to design
controllers for dynamic systems. They use alternative representation schemes, such as
natural language, rules, semantic networks or qualitative models, and possess formal
methods to incorporate extra relevant information that conventional control cannot

1

2 FUZZY AND NEURAL CONTROL

handle (such as heuristic knowledge of process operators). Fuzzy control is an ex-
ample of a rule-based representation of human knowledge and deductive processes.
Artificial neural networks, on the other hand, realize learning and adaptation capabili-
ties by imitating the functioning of biological neural systems. With the advances in the
data processing and computer technology, large amounts of process data are becoming
available. This makes it possible to combine knowledge-based control with effective
data driven techniques for the acquisition of models and tuning of controllers.

1.2 Organization of the Book

The material is organized in eight chapters. In Chapter 2, the basics of fuzzy set
theory are explained. Chapter 3 then presents various types of fuzzy systems and their
application in dynamic modeling. Fuzzy set techniques can be useful in data analysis
and pattern recognition. To this end, Chapter 4 presents the basic concepts of fuzzy
clustering, which can be used as one of data-driven techniques for the construction of
fuzzy models from data. These data-driven construction techniques are addressed in
Chapter 5. Controllers can also be design without using a process model. Chapter 6
is devoted to model-free knowledge-based design of fuzzy controllers. In Chapter 7,
artificial neural networks are explained in terms of their architectures and training
methods. Neural and fuzzy models can be used to design controller or can become a
part of a model-based control scheme, as explained in Chapter 8.

Three appendices have been included that provide background on ordinary set the-
ory (Appendix A), MATLAB code of some of the presented methods and algorithms
(Appendix B) and a list of symbols used throughout the text (Appendix C).

It has been one of the author’s aims to present the new material (fuzzy end neural
techniques) in such a way that no prior knowledge about these subjects is necessary for
understanding the text. It is assumed, however, that the reader has some basic knowl-
edge of mathematical analysis (univariate and multivariate functions), linear algebra
(system of linear equations, least-square solution) and systems and control theory (dy-
namic systems, state-feedback, PID control, linearization).

1.3 WEB and Matlab Support

The material presented in the book is supported by a WEB page containing the ba-
sic information about the course: http://lcewww.et.tudelft.nl/ d̃iscfuzz.
MATLAB tools, demos and the overhead sheets used in the lectures can be downloaded
from the page.

1.4 Acknowledgement

I wish to express my sincere thanks to my colleagues Janos Abonyi and Stanimir
Mollov who read parts of the manuscript and contributed by their comments and sug-
gestions.

2 FUZZY SETS AND RELATIONS

This chapter provides a basic introduction to fuzzy sets, fuzzy relations and operations
with fuzzy sets. For a more comprehensive treatment see, for instance, (Klir and
Folger, 1988; Zimmermann, 1996; Klir and Yuan, 1995).

Zadeh (1965) introduced fuzzy set theory as a mathematical discipline, although the
underlying ideas had already been recognized earlier by philosophers and logicians
(Pierce, Russel, Łukasiewicz, among others). A comprehensive overview is given
in the introduction of the “Readings in Fuzzy Sets for Intelligent Systems”, edited
by Dubois, Prade and Yager (1993). A broader interest in fuzzy sets started in the
seventies with their application to control and other technical disciplines.

2.1 Fuzzy Sets

In ordinary (non fuzzy) set theory, elements either fully belong to a set or are fully
excluded from it. Recall, that the membership µA(x) of x of a classical set A, as a
subset of the universeX , is defined by:1

µA(x) =
{

1, iff x ∈ A,
0, iff x �∈ A . (2.1)

This means that an element x is either a member of set A (µA(x) = 1) or not
(µA(x) = 0). This strict classification is useful in the mathematics and other sciences

1A brief summary of basic concepts related to ordinary sets is given in Appendix A.

3

4 FUZZY AND NEURAL CONTROL

that rely on precise definitions. Ordinary set theory complements bi-valent logic in
which a statement is either true or false. While in mathematical logic the emphasis
is on preserving formal validity and truth under any and every interpretation, in many
real-life situations and engineering problems, the aim is to preserve information in the
given context. In these situations, it may not be quite clear whether an element belongs
to a set or not.

For example, if setA represents PCs which are too expensive for a student’s budget,
then it is obvious that this set has no clear boundaries. Of course, it could be said that
a PC priced at $2500 is too expensive, but what about PCs priced at $2495 or $2502?
Are those PCs too expensive or not? Clearly, a boundary could be determined above
which a PC is too expensive for the average student, say $2500, and a boundary below
which a PC is certainly not too expensive, say $1000. Between those boundaries,
however, there remains a vague interval in which it is not quite clear whether a PC is
too expensive or not. In this interval, a grade could be used to classify the price as
partly too expensive. This is where fuzzy sets come in: sets of which the membership
has grades in the unit interval [0,1].

A fuzzy set is a set with graded membership in the real interval: µA(x) ∈ [0, 1].
That is, elements can belong to a fuzzy set to a certain degree. As such, fuzzy sets can
be used for mathematical representations of vague concepts, such as low temperature,
fairly tall person, expensive car, etc.

Definition 2.1 (Fuzzy Set) A fuzzy set A on universe (domain)X is a set defined by
the membership function µA(x) which is a mapping from the universeX into the unit
interval:

µA(x):X → [0, 1] . (2.2)

F(X) denotes the set of all fuzzy sets onX .

If the value of the membership function, called the membership degree (or grade),
equals one, x belongs completely to the fuzzy set. If it equals zero, x does not belong
to the set. If the membership degree is between 0 and 1, x is a partial member of the
fuzzy set:

µA(x)




= 1 x is a full member of A
∈ (0, 1) x is a partial member of A
= 0 x is not member of A

(2.3)

In the literature on fuzzy set theory, ordinary (nonfuzzy) sets are usually referred to
as crisp (or hard) sets. Various symbols are used to denote membership functions and
degrees, such as µA(x), A(x) or just a.

Example 2.1 (Fuzzy Set) Figure 2.1 depicts a possible membership function of a
fuzzy set representing PCs too expensive for a student’s budget.

According to this membership function, if the price is below $1000 the PC is cer-
tainly not too expensive, and if the price is above $2500 the PC is fully classified as too
expensive. In between, an increasing membership of the fuzzy set too expensive can
be seen. It is not necessary that the membership linearly increases with the price, nor
that there is a non-smooth transition from $1000 to $2500. Note that in engineering

FUZZY SETS AND RELATIONS 5

1

25001000

�

0
price [$]

too expensive

Figure 2.1. Fuzzy set A representing PCs too expensive for a student’s budget.

applications the choice of the membership function for a fuzzy set is rather arbitrary.
✷

2.2 Properties of Fuzzy Sets

To establish the mathematical framework for computing with fuzzy sets, a number of
properties of fuzzy sets need to be defined. This section gives an overview of only the
ones that are strictly needed for the rest of the book. They include the definitions of the
height, support, core, α-cut and cardinality of a fuzzy set. In addition, the properties
of normality and convexity are introduced. For a more complete treatment see (Klir
and Yuan, 1995).

2.2.1 Normal and Subnormal Fuzzy Sets

We learned that the membership of elements in fuzzy sets is a matter of degree. The
height of a fuzzy set is the largest membership degree among all elements of the uni-
verse. Fuzzy sets whose height equals one for at least one element x in the domainX
are called normal fuzzy sets. The height of subnormal fuzzy sets is thus smaller than
one for all elements in the domain. Formally we state this by the following definitions.

Definition 2.2 (Height) The height of a fuzzy set A is the supremum of the member-
ship grades of elements in A:

hgt(A) = sup
x∈X

µA(x) . (2.4)

For a discrete domain X , the supremum (the least upper bound) becomes the maxi-
mum and hence the height is the largest degree of membership for all x ∈ X .

Definition 2.3 (Normal Fuzzy Set) A fuzzy set A is normal if ∃x ∈ X such that
µA(x) = 1. Fuzzy sets that are not normal are called subnormal. The operator
norm(A) denotes normalization of a fuzzy set, i.e., A′ = norm(A) ⇔ µA′(x) =
µA(x)/ hgt(A), ∀x.

6 FUZZY AND NEURAL CONTROL

2.2.2 Support, Core and α-cut

Support, core and α-cut are crisp sets obtained from a fuzzy set by selecting its ele-
ments whose membership degrees satisfy certain conditions.

Definition 2.4 (Support) The support of a fuzzy set A is the crisp subset ofX whose
elements all have nonzero membership grades:

supp(A) = {x | µA(x) > 0} . (2.5)

Definition 2.5 (Core) The core of a fuzzy set A is a crisp subset of X consisting of
all elements with membership grades equal to one:

core(A) = {x | µA(x) = 1} . (2.6)

In the literature, the core is sometimes also denoted as the kernel, ker(A). The core of
a subnormal fuzzy set is empty.

Definition 2.6 (α-Cut) The α-cut Aα of a fuzzy set A is the crisp subset of the uni-
verse of discourse X whose elements all have membership grades greater than or
equal to α:

Aα = {x | µA(x) ≥ α}, α ∈ [0, 1] . (2.7)

The α-cut operator is also denoted by α-cut(A) or α-cut(A,α). An α-cutAα is strict
if µA(x) �= α for each x ∈ Aα. The value α is called the α-level.

Figure 2.2 depicts the core, support and α-cut of a fuzzy set.

0

1

core()A

supp()A

�

x

�-level

�

A
�

A

Figure 2.2. Core, support and α-cut of a fuzzy set.

The core and support of a fuzzy set can also be defined by means of α-cuts:

core(A) = 1-cut(A) (2.8)

supp(A) = 0-cut(A) (2.9)

FUZZY SETS AND RELATIONS 7

2.2.3 Convexity and Cardinality

Membership function may be unimodal (with one global maximum) or multimodal
(with several maxima). Unimodal fuzzy sets are called convex fuzzy sets. Convexity
can also be defined in terms of α-cuts:

Definition 2.7 (Convex Fuzzy Set) A fuzzy set defined in R
n is convex if each of its

α-cuts is a convex set.

Figure 2.3 gives an example of a convex and non-convex fuzzy set.

0

non-convex

1

A
�

x

�

B

convex

Figure 2.3. The core of a non-convex fuzzy set is a non-convex (crisp) set.

Example 2.2 (Non-convex Fuzzy Set) Figure 2.4 gives an example of a non-convex
fuzzy set representing “high-risk age” for a car insurance policy. Drivers who are too
young or too old present higher risk than middle-aged drivers.

✷

Definition 2.8 (Cardinality) Let A = {µA(xi) | i = 1, 2, . . . , n} be a finite discrete
fuzzy set. The cardinality of this fuzzy set is defined as the sum of the membership

1

64 age [years]

�
high-risk age

483216

Figure 2.4. A fuzzy set defining “high-risk age” for a car insurance policy is an example

of a non-convex fuzzy set.

8 FUZZY AND NEURAL CONTROL

degrees:

|A| =
n∑

i=1

µA(xi) . (2.11)

2.3 Representations of Fuzzy Sets

There are several ways to define (or represent in a computer) a fuzzy set: through an
analytic description of its membership function µA(x) = f(x), as a list of the domain
elements end their membership degrees or by means of α-cuts. These possibilities are
discussed below.

2.3.1 Similarity-based Representation

Fuzzy sets are often defined by means of the (dis)similarity of the considered object x
to a given prototype v of the fuzzy set

µ(x) =
1

1 + d(x, v)
. (2.12)

Here, d(x, v) denotes a dissimilarity measure which in metric spaces is typically a
distance measure (such as the Euclidean distance). The prototype is a full member
(typical element) of the set. Elements whose distance from the prototype goes to
zero have membership grades close to one. As the distance grows, the membership
decreases. As an example, consider the membership function:

µA(x) =
1

1 + x2
, x ∈ R,

representing “approximately zero” real numbers.

2.3.2 Parametric Functional Representation

Various forms of parametric membership functions are often used:

Trapezoidal membership function:

µ(x; a, b, c, d) = max
(
0,min

(x− a
b− a , 1,

d− x
d− c

))
, (2.13)

where a, b, c and d are the coordinates of the trapezoid’s apexes. When b = c, a
triangular membership function is obtained.

Piece-wise exponential membership function:

µ(x; cl, cr, wl, wr) =




exp(−(x−cl

2wl
)2), if x < cl,

exp(−(x−cr

2wr
)2), if x > cr,

1, otherwise,
(2.14)

where cl and cr are the left and right shoulder, respectively, and w l, wr are the left
and right width, respectively. For cl = cr and wl = wr the Gaussian membership
function is obtained.

FUZZY SETS AND RELATIONS 9

Figure 2.5 shows examples of triangular, trapezoidal and bell-shaped (exponential)
membership functions. A special fuzzy set is the singleton set (fuzzy set representation
of a number) defined by:

µA(x) =
{

1, if x = x0,
0, otherwise .

(2.15)

0

1
triangular trapezoidal bell-shaped singleton

�

x

Figure 2.5. Different shapes of membership functions.

Another special set is the universal set, whose membership function equals one for
all domain elements:

µA(x) = 1, ∀x . (2.16)

Finally, the term fuzzy number is sometimes used to denote a normal, convex fuzzy set
which is defined on the real line.

2.3.3 Point-wise Representation

In a discrete set X = {xi | i = 1, 2, . . . , n}, a fuzzy set A may be defined by a list of
ordered pairs: membership degree/set element:

A = {µA(x1)/x1, µA(x2)/x2, . . . , µA(xn)/xn} = {µA(x)/x | x ∈ X}, (2.17)

Normally, only elements x ∈ X with non-zero membership degrees are listed. The
following alternatives to the above notation can be encountered:

A = µA(x1)/x1 + · · ·+ µA(xn)/xn =
n∑

i=1

µA(xi)/xi (2.18)

for finite domains, and

A =
∫
X

µA(x)/x (2.19)

for continuous domains. Note that rather than summation and integration, in this con-
text, the

∑
, + and

∫
symbols represent a collection (union) of elements.

A pair of vectors (arrays in computer programs) can be used to store discrete mem-
bership functions:

x = [x1, x2, . . . , xn], µ = [µA(x1), µA(x2), . . . , µA(xn)] . (2.20)

10 FUZZY AND NEURAL CONTROL

Intermediate points can be obtained by interpolation. This representation is often used
in commercial software packages. For an equidistant discretization of the domain it is
sufficient to store only the membership degrees µ.

2.3.4 Level Set Representation

A fuzzy set can be represented as a list of α levels (α ∈ [0, 1]) and their corresponding
α-cuts:

A = {α1/Aα1 , α2/Aα2 , . . . , αn/Aαn} = {α/Aαn | α ∈ (0, 1)}, (2.21)

The range of α must obviously be discretized. This representation can be advanta-
geous as operations on fuzzy subsets of the same universe can be defined as classical
set operations on their level sets. Fuzzy arithmetic can thus be implemented by means
of interval arithmetic, etc. In multidimensional domains, however, the use of the level-
set representation can be computationally involved.

Example 2.3 (Fuzzy Arithmetic) Using the level-set representation, results of arith-
metic operations with fuzzy numbers can be obtained as a collection standard arith-
metic operations on their α-cuts. As an example consider addition of two fuzzy num-
bers A and B defined on the real line:

A+B = {α/(Aαn +Bαn) | α ∈ (0, 1)}, (2.22)

where Aαn +Bαn is the addition of two intervals.
✷

2.4 Operations on Fuzzy Sets

Definitions of set-theoretic operations such as the complement, union and intersection
can be extended from ordinary set theory to fuzzy sets. As membership degrees are no
longer restricted to {0, 1} but can have any value in the interval [0, 1], these operations
cannot be uniquely defined. It is clear, however, that the operations for fuzzy sets
must give correct results when applied to ordinary sets (an ordinary set can be seen as
a special case of a fuzzy set).

This section presents the basic definitions of fuzzy intersection, union and comple-
ment, as introduced by Zadeh. General intersection and union operators, called trian-
gular norms (t-norms) and triangular conorms (t-conorms), respectively, are given as
well. In addition, operations of projection and cylindrical extension, related to multi-
dimensional fuzzy sets, are given.

2.4.1 Complement, Union and Intersection

Definition 2.9 (Complement of a Fuzzy Set) Let A be a fuzzy set in X . The com-
plement of A is a fuzzy set, denoted Ā, such that for each x ∈ X:

µĀ(x) = 1− µA(x) . (2.23)

FUZZY SETS AND RELATIONS 11

0

1

�

x

_
A A

Figure 2.6. Fuzzy set and its complement Ā in terms of their membership functions.

Figure 2.6 shows an example of a fuzzy complement in terms of membership func-
tions. Besides this operator according to Zadeh, other complements can be used. An
example is the λ-complement according to Sugeno (1977):

µĀ(x) =
1− µA(x)
1 + λµA(x)

(2.24)

where λ > 0 is a parameter.

Definition 2.10 (Intersection of Fuzzy Sets) Let A and B be two fuzzy sets in X .
The intersection of A and B is a fuzzy set C, denoted C = A ∩ B, such that for each
x ∈ X:

µC(x) = min[µA(x), µB(x)] . (2.25)

The minimum operator is also denoted by ‘∧’, i.e., µC(x) = µA(x) ∧ µB(x). Fig-
ure 2.7 shows an example of a fuzzy intersection in terms of membership functions.

A B�

A B

min

0

1

�

x

Figure 2.7. Fuzzy intersection A ∩B in terms of membership functions.

Definition 2.11 (Union of Fuzzy Sets) Let A and B be two fuzzy sets in X . The
union of A and B is a fuzzy set C, denoted C = A ∪B, such that for each x ∈ X:

µC(x) = max[µA(x), µB(x)] . (2.26)

The maximum operator is also denoted by ‘∨’, i.e., µC(x) = µA(x) ∨ µB(x). Fig-
ure 2.8 shows an example of a fuzzy union in terms of membership functions.

12 FUZZY AND NEURAL CONTROL

max

0

1

�

x

A B�

A B

Figure 2.8. Fuzzy union A ∪B in terms of membership functions.

2.4.2 T -norms and T -conorms

Fuzzy intersection of two fuzzy sets can be specified in a more general way by a binary
operation on the unit interval, i.e., a function of the form:

T : [0, 1]× [0, 1]→ [0, 1] (2.27)

In order for a function T to qualify as a fuzzy intersection, it must have appropriate
properties. Functions known as t-norms (triangular norms) posses the properties re-
quired for the intersection. Similarly, functions called t-conorms can be used for the
fuzzy union.

Definition 2.12 (t-Norm/Fuzzy Intersection) A t-norm T is a binary operation on
the unit interval that satisfies at least the following axioms for all a, b, c ∈ [0, 1] (Klir
and Yuan, 1995):

T (a, 1) = a (boundary condition),
b ≤ c implies T (a, b) ≤ T (a, c) (monotonicity),
T (a, b) = T (b, a) (commutativity),
T (a, T (b, c)) = T (T (a, b), c) (associativity) .

(2.28)

Some frequently used t-norms are:
standard (Zadeh) intersection: T (a, b) = min(a, b)
algebraic product (probabilistic intersection): T (a, b) = ab
Łukasiewicz (bold) intersection: T (a, b) = max(0, a+ b− 1)

The minimum is the largest t-norm (intersection operator). For our example shown
in Figure 2.7 this means that the membership functions of fuzzy intersections A ∩ B
obtained with other t-norms are all below the bold membership function (or partly
coincide with it).

Definition 2.13 (t-Conorm/Fuzzy Union) A t-conormS is a binary operation on the
unit interval that satisfies at least the following axioms for all a, b, c ∈ [0, 1] (Klir and
Yuan, 1995):

S(a, 0) = a (boundary condition),
b ≤ c implies S(a, b) ≤ S(a, c) (monotonicity),
S(a, b) = S(b, a) (commutativity),
S(a, S(b, c)) = S(S(a, b), c) (associativity) .

(2.29)

FUZZY SETS AND RELATIONS 13

Some frequently used t-conorms are:
standard (Zadeh) union: S(a, b) = max(a, b),
algebraic sum (probabilistic union): S(a, b) = a+ b − ab,
Łukasiewicz (bold) union: S(a, b) = min(1, a+ b) .

The maximum is the smallest t-conorm (union operator). For our example shown
in Figure 2.8 this means that the membership functions of fuzzy unionsA∪B obtained
with other t-conorms are all above the bold membership function (or partly coincide
with it).

2.4.3 Projection and Cylindrical Extension

Projection reduces a fuzzy set defined in a multi-dimensional domain (such as R
2 to

a fuzzy set defined in a lower-dimensional domain (such as R). Cylindrical extension
is the opposite operation, i.e., the extension of a fuzzy set defined in low-dimensional
domain into a higher-dimensional domain. Formally, these operations are defined as
follows:

Definition 2.14 (Projection of a Fuzzy Set) Let U ⊆ U1×U2 be a subset of a Carte-
sian product space, where U1 and U2 can themselves be Cartesian products of lower-
dimensional domains. The projection of fuzzy set A defined in U onto U 1 is the map-
ping projU1

:F(U) → F(U1) defined by

projU1
(A) =

{
sup
U2

µA(u)/u1
∣∣∣u1 ∈ U1} . (2.30)

The projection mechanism eliminates the dimensions of the product space by taking
the supremum of the membership function for the dimension(s) to be eliminated.

Example 2.4 (Projection) Assume a fuzzy set A defined in U ⊂ X × Y × Z with
X = {x1, x2}, Y = {y1, y2} and Z = {z1, z2}, as follows:

A = {µ1/(x1, y1, z1), µ2/(x1, y2, z1), µ3/(x2, y1, z1),
µ4/(x2, y2, z1), µ5/(x2, y2, z2)} (2.31)

Let us compute the projections of A ontoX , Y andX × Y :

projX(A) = {max(µ1, µ2)/x1, max(µ3, µ4, µ5)/x2} , (2.33)

projY (A) = {max(µ1, µ3)/y1, max(µ2, µ4, µ5)/y2} , (2.34)

projX×Y (A) = {µ1/(x1, y1), µ2/(x1, y2),
µ3/(x2, y1), max(µ4, µ5)/(x2, y2)} . (2.35)

✷

Projections from R
2 to R can easily be visualized, see Figure 2.9.

14 FUZZY AND NEURAL CONTROL

�

x

projection onto x
projection onto y

y

A
B

A B�

Figure 2.9. Example of projection from R
2 to R .

Definition 2.15 (Cylindrical Extension) Let U ⊆ U1 × U2 be a subset of a Carte-
sian product space, where U1 and U2 can themselves be Cartesian products of lower-
dimensional domains. The cylindrical extension of fuzzy set A defined in U 1 onto U is
the mapping extU :F(U1) → F(U) defined by

extU (A) =
{
µA(u1)/u

∣∣∣u ∈ U} . (2.37)

Cylindrical extension thus simply replicates the membership degrees from the existing
dimensions into the new dimensions. Figure 2.10 depicts the cylindrical extension
from R to R

2.

A

x

cylindrical extension

µ

y

Figure 2.10. Example of cylindrical extension from R to R
2.

It is easy to see that projection leads to a loss of information, thus for A defined in
Xn ⊂ Xm (n < m) it holds that:

A = projXn(extXm(A)), (2.38)

FUZZY SETS AND RELATIONS 15

but

A �= extXm(projXn(A)) . (2.39)

Verify this for the fuzzy sets given in Example 2.4 as an exercise.

2.4.4 Operations on Cartesian Product Domains

Set-theoretic operations such as the union or intersection applied to fuzzy sets defined
in different domains result in a multi-dimensional fuzzy set in the Cartesian product
of those domains. The operation is in fact performed by first extending the original
fuzzy sets into the Cartesian product domain and then computing the operation on
those multi-dimensional sets.

Example 2.5 (Cartesian-Product Intersection) Consider two fuzzy sets A1 and A2
defined in domains X1 and X2, respectively. The intersection A1 ∩ A2, also denoted
by A1 ×A2 is given by:

A1 × A2 = extX2(A1) ∩ extX1(A2) . (2.40)

This cylindrical extension is usually considered implicitly and it is not stated in the
notation:

µA1×A2(x1, x2) = µA1(x1) ∧ µA2(x2) . (2.41)

Figure 2.11 gives a graphical illustration of this operation.

�

A2

x2

A1

x1

Figure 2.11. Cartesian-product intersection.

✷

16 FUZZY AND NEURAL CONTROL

2.4.5 Linguistic Hedges

Fuzzy sets can be used to represent qualitative linguistic terms (notions) like “short”,
“long”, “expensive”, etc. in terms of membership functions define in numerical do-
mains (distance, price, etc.).

By means of linguistic hedges (linguistic modifiers) the meaning of these terms can
be modified without redefining the membership functions. Examples of hedges are:
very, slightly, more or less, rather, etc. Hedge “very”, for instance, can be used to
change “expensive” to “very expensive”.

Two basic approaches to the implementation of linguistic hedges can be distin-
guished: powered hedges and shifted hedges. Powered hedges are implemented by
functions operating on the membership degrees of the linguistic terms (Zimmermann,
1996). For instance, the hedge very squares the membership degrees of the term which
meaning it modifies, i.e., µvery A(x) = µ2A(x). Shifted hedges (Lakoff, 1973), on the
other hand, shift the membership functions along their domains. Combinations of the
two approaches have been proposed as well (Novák, 1989; Novák, 1996).

Example 2.6 Consider three fuzzy sets Small, Medium and Big defined by triangular
membership functions. Figure 2.12 shows these membership functions (solid line)
along with modified membership functions “more or less small”, “nor very small” and
“rather big” obtained by applying the hedges in Table 2.6. In this table, A stands for

linguistic hedge operation linguistic hedge operation

very A µ2
A more or less A

√
µA

not very A 1 − µ2
A rather A int (µA)

the fuzzy sets and “int” denotes the contrast intensification operator given by:

int (µA) =
{

2µ2A, µA ≤ 0.5
1− 2(1− µA)2 otherwise.

✷

2.5 Fuzzy Relations

A fuzzy relation is a fuzzy set in the Cartesian productX1×X2×· · ·×Xn. The mem-
bership grades represent the degree of association (correlation) among the elements of
the different domainsXi.

Definition 2.16 (Fuzzy Relation) An n-ary fuzzy relation is a mapping

R:X1 ×X2 × · · · ×Xn → [0, 1], (2.42)

which assigns membership grades to all n-tuples (x1, x2, . . . , xn) from the Cartesian
productX1 ×X2 × · · · ×Xn.

FUZZY SETS AND RELATIONS 17

not very smallmore or less small

0 5 10 15 20 25
0

0.5

1

x1

Small

rather big

Medium Big

µ

Figure 2.12. Reference fuzzy sets and their modifications by some linguistic hedges.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

x
y

m
em

be
rs

hi
p

gr
ad

e

Figure 2.13. Fuzzy relation µR(x, y) = e−(x−y)2 .

For computer implementations, R is conveniently represented as an n-dimensional
array: R = [ri1,i2,...,in].

Example 2.7 (Fuzzy Relation) Consider a fuzzy relation R describing the relation-
ship x ≈ y (“x is approximately equal to y”) by means of the following membership
function µR(x, y) = e−(x−y)2 . Figure 2.13 shows a mesh plot of this relation.

✷

2.6 Relational Composition

The composition is defined as follows (Zadeh, 1973): suppose there exists a fuzzy
relation R in X × Y and A is a fuzzy set in X . Then, fuzzy subset B of Y can be
induced by A through the composition of A and R:

B = A ◦R . (2.43)

The composition is defined by:

B = projY
(
R ∩ extX×Y (A)

)
. (2.44)

18 FUZZY AND NEURAL CONTROL

The composition can be regarded in two phases: combination (intersection) and pro-
jection. Zadeh proposed to use sup-min composition. Assume that A is a fuzzy set
with membership function µA(x) and R is a fuzzy relation with membership function
µR(x, y):

µB(y) = sup
x

min
(
µA(x), µR(x, y)

)
, (2.45)

where the cylindrical extension of A intoX ×Y is implicit and sup and min represent
the projection and combination phase, respectively. In a more general form of the
composition, a t-norm T is used for the intersection:

µB(y) = sup
x

T
(
µA(x), µR(x, y)

)
. (2.46)

Example 2.8 (Relational Composition) Consider a fuzzy relation R which repre-
sents the relationship “x is approximately equal to y”:

µR(x, y) = max(1 − 0.5 · |x− y|, 0) . (2.47)

Further, consider a fuzzy set A “approximately 5”:

µA(x) = max(1− 0.5 · |x− 5|, 0) . (2.48)

Suppose that R and A are discretized with x, y = 0, 1, 2, . . ., in [0, 10]. Then, the
composition is:

µB(y) =

µA(x)︷ ︸︸ ︷


0
0
0
0
1
2
1
1
2
0
0
0
0




◦

µR(x, y)︷ ︸︸ ︷


1 1
2 0 0 0 0 0 0 0 0 0

1
2 1 1

2 0 0 0 0 0 0 0 0
0 1

2 1 1
2 0 0 0 0 0 0 0

0 0 1
2 1 1

2 0 0 0 0 0 0
0 0 0 1

2 1 1
2 0 0 0 0 0

0 0 0 0 1
2 1 1

2 0 0 0 0
0 0 0 0 0 1

2 1 1
2 0 0 0

0 0 0 0 0 0 1
2 1 1

2 0 0
0 0 0 0 0 0 0 1

2 1 1
2 0

0 0 0 0 0 0 0 0 1
2 1 1

2
0 0 0 0 0 0 0 0 0 1

2 1




=

FUZZY SETS AND RELATIONS 19

= max
x

min(µA(x), µR(x, y))︷ ︸︸ ︷


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

2
1
2

1
2 0 0 0 0 0

0 0 0 0 1
2 1 1

2 0 0 0 0
0 0 0 0 0 1

2
1
2

1
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0




=

=

max
x

min(µA(x), µR(x, y))︷ ︸︸ ︷(
0 0 0 1

2
1
2 1 1

2
1
2 0 0 0

)
This resulting fuzzy set, defined in Y can be interpreted as “approximately 5”. Note,
however, that it is broader (more uncertain) than the set from which it was induced.
This is because the uncertainty in the input fuzzy set was combined with the uncer-
tainty in the relation.

✷

2.7 Summary and Concluding Remarks

Fuzzy sets are sets without sharp boundaries: membership of a fuzzy set is a real num-
ber in the interval [0, 1]. Various properties of fuzzy sets and operations on fuzzy sets
have been introduced. Relations are multi-dimensional fuzzy sets where the member-
ship grades represent the degree of association (correlation) among the elements of
the different domains. The composition of relations, using projection and cylindrical
extension is an important concept for fuzzy logic and approximate reasoning, which
are addressed in the following chapter.

2.8 Problems

1. What is the difference between the membership function of an ordinary set and of
a fuzzy set?

2. Consider fuzzy set C defined by its membership function µC(x):R → [0, 1]:
µC(x) = 1/(1 + |x|). Compute the α-cut of C for α = 0.5.

3. Consider fuzzy sets A and B such that core(A) ∩ core(B) = ∅. Is fuzzy set
C = A ∩ B normal? What condition must hold for the supports of A and B such
that card(C) > 0 always holds?

4. Consider fuzzy set A defined inX × Y withX = {x1, x2}, Y = {y1, y2}:

A = {0.1/(x1, y1), 0.2/(x1, y2), 0.7/(x2, y1), 0.9/(x2, y2)}

20 FUZZY AND NEURAL CONTROL

Compute the projections of A ontoX and Y .

5. Compute the cylindrical extension of fuzzy set A = {0.3/x1, 0.4/x2} into the
Cartesian product domain {x1, x2} × {y1, y2}.

6. For fuzzy sets A = {0.1/x1, 0.6/x2} and B = {1/y1, 0.7/y2} compute the
union A ∪B and the intersection A ∩B. Use the Zadeh’s operators (max, min).

7. Given is a fuzzy relation R:X × Y → [0, 1]:

R =

y1 y2 y3

x1 0.7 0.3 0.1
x2 0.4 0.8 0.2
x3 0.1 0.2 0.9

and a fuzzy set A = {0.1/x1, 1/x2, 0.4/x3}. Compute fuzzy set B = A ◦ R,
where ’◦’ is the max-min composition operator.

8. Prove that the following De Morgan law (A ∪B) = Ā∩ B̄ is true for fuzzy sets A
and B, when using the Zadeh’s operators for union, intersection and complement.

3 FUZZY SYSTEMS

A static or dynamic system which makes use of fuzzy sets and of the corresponding
mathematical framework is called a fuzzy system. Fuzzy sets can be involved in a
system1 in a number of ways, such as:

In the description of the system. A system can be defined, for instance, as a collec-
tion of if-then rules with fuzzy predicates, or as a fuzzy relation. An example of a
fuzzy rule describing the relationship between a heating power and the temperature
trend in a room may be:

If the heating power is high then the temperature will increase fast.

In the specification of the system’s parameters. The system can be defined by an
algebraic or differential equation, in which the parameters are fuzzy numbers in-
stead of real numbers. As an example consider an equation: y = 3̃x1+ 5̃x2, where
3̃ and 5̃ are fuzzy numbers “about three” and “about five”, respectively, defined by
membership functions. Fuzzy numbers express the uncertainty in the parameter
values.

The input, output and state variables of a system may be fuzzy sets. Fuzzy in-
puts can be readings from unreliable sensors (“noisy” data), or quantities related to

1Under “systems” we understand both static functions and dynamic systems. For the sake of simplicity,
most examples in this chapter are static systems.

21

22 FUZZY AND NEURAL CONTROL

human perception, such as comfort, beauty, etc. Fuzzy systems can process such
information, which is not the case with conventional (crisp) systems.

A fuzzy system can simultaneously have several of the above attributes. Fuzzy systems
can be regarded as a generalization of interval-valued systems, which are in turn a
generalization of crisp systems. This relationship is depicted in Figure 3.1 which
gives an example of a crisp function and its interval and fuzzy generalizations. The
evaluation of the function for crisp, interval and fuzzy data is schematically depicted.

crisp argument

fuzzy function

interval function

x

y

crisp function

interval or fuzzy argument

x

y

x

y

x

y

x

y

x

y

Figure 3.1. Evaluation of a crisp, interval and fuzzy function for crisp, interval and fuzzy

arguments.

A function f :X → Y can be regarded as a subset of the Cartesian productX ×Y ,
i.e., as a relation. The evaluation of the function for a given input proceeds in three
steps (Figure 3.1):

1. Extend the given input into the product spaceX × Y (vertical dashed lines).

2. Find the intersection of this extension with the relation (intersection of the vertical
dashed lines with the function).

3. Project this intersection onto Y (horizontal dashed lines).

This procedure is valid for crisp, interval and fuzzy functions and data. Remember this
view, as it will help you to understand the role of fuzzy relations in fuzzy inference.

Most common are fuzzy systems defined by means of if-then rules: rule-based
fuzzy systems. In the rest of this text we will focus on these systems only. Fuzzy

FUZZY SYSTEMS 23

systems can serve different purposes, such as modeling, data analysis, prediction or
control. In this text a fuzzy rule-based system is simply called a fuzzy model, regardless
of its eventual purpose.

3.1 Rule-Based Fuzzy Systems

In rule-based fuzzy systems, the relationships between variables are represented by
means of fuzzy if–then rules in the following general form:

If antecedent proposition then consequent proposition.

Fuzzy propositions are statements like “x is big”, where “big” is a linguistic label,
defined by a fuzzy set on the universe of discourse of variable x. Linguistic labels are
also referred to as fuzzy constants, fuzzy terms or fuzzy notions. Linguistic modifiers
(hedges) can be used to modify the meaning of linguistic labels. For example, the
linguistic modifier very can be used to change “x is big” to “x is very big”.

The antecedent proposition is always a fuzzy proposition of the type “x is A” where
x is a linguistic variable and A is a linguistic constant (term). Depending on the par-
ticular structure of the consequent proposition, three main types of models are distin-
guished:

Linguistic fuzzy model (Zadeh, 1973; Mamdani, 1977), where both the antecedent
and consequent are fuzzy propositions. Singleton fuzzy model is a special case
where the consequents are singleton sets (real constants).

Fuzzy relational model (Pedrycz, 1984; Yi and Chung, 1993), which can be re-
garded as a generalization of the linguistic model, allowing one particular an-
tecedent proposition to be associated with several different consequent propositions
via a fuzzy relation.

Takagi–Sugeno (TS) fuzzy model (Takagi and Sugeno, 1985), where the consequent
is a crisp function of the antecedent variables rather than a fuzzy proposition.

These types of fuzzy models are detailed in the subsequent sections.

3.2 Linguistic model

The linguistic fuzzy model (Zadeh, 1973; Mamdani, 1977) has been introduced as a
way to capture qualitative knowledge in the form of if–then rules:

Ri: If x is Ai then y is Bi, i = 1, 2, . . . ,K . (3.1)

Herex is the input (antecedent) linguistic variable, andA i are the antecedent linguistic
terms (labels). Similarly, y is the output (consequent) linguistic variable and B i are
the consequent linguistic terms. The values of x (y) are generally fuzzy sets, but since
a real number is a special case of a fuzzy set (singleton set), these variables can also
be real-valued (vectors). The linguistic terms A i (Bi) are always fuzzy sets

24 FUZZY AND NEURAL CONTROL

3.2.1 Linguistic Terms and Variables

Linguistic terms can be seen as qualitative values (information granulae) used to de-
scribe a particular relationship by linguistic rules. Typically, a set of N linguistic
terms A = {A1, A2, . . . , AN} is defined in the domain of a given variable x. Because
this variable assumes linguistic values, it is called a linguistic variable. To distinguish
between the linguistic variable and the original numerical variable, the latter one is
called the base variable.

Definition 3.1 (Linguistic Variable) A linguistic variable L is defined as a quintuple
(Klir and Yuan, 1995):

L = (x,A, X, g,m), (3.2)

where x is the base variable (at the same time the name of the linguistic variable),
A = {A1, A2, . . . , AN} is the set of linguistic terms, X is the domain (universe of
discourse) of x, g is a syntactic rule for generating linguistic terms andm is a semantic
rule that assigns to each linguistic term its meaning (a fuzzy set in X).

Example 3.1 (Linguistic Variable) Figure 3.2 shows an example of a linguistic vari-
able “temperature” with three linguistic terms “low”, “medium” and “high”. The base
variable is the temperature given in appropriate physical units.

1

t (temperature)

3020 40

base variable

linguistic
terms

linguistic variable

membership
functions

semantic
rule

0

µ

highmediumlow

TEMPERATURE

0
10

Figure 3.2. Example of a linguistic variable “temperature” with three linguistic terms.

✷

It is usually required that the linguistic terms satisfy the properties of coverage and
semantic soundness (Pedrycz, 1995).

FUZZY SYSTEMS 25

Coverage. Coverage means that each domain element is assigned to at least one
fuzzy set with a nonzero membership degree, i.e.,

∀x ∈ X, ∃i, µAi(x) > 0 . (3.3)

Alternatively, a stronger condition called ε-coverage may be imposed:

∀x ∈ X, ∃i, µAi(x) > ε, ε ∈ (0, 1) . (3.4)

For instance, the membership functions in Figure 3.2 satisfy ε-coverage for ε = 0.5.
Clustering algorithms used for the automatic generation of fuzzy models from data,
presented in Chapter 4 impose yet a stronger condition:

N∑
i=1

µAi(x) = 1, ∀x ∈ X, (3.5)

meaning that for each x, the sum of membership degrees equals one. Such a set of
membership functions is called a (fuzzy partition). Chapter 4 gives more details.

Semantic Soundness. Semantic soundness is related to the linguistic meaning
of the fuzzy sets. Usually, Ai are convex and normal fuzzy sets, which are sufficiently
disjoint, and the number N of subsets per variable is small (say nine at most). The
number of linguistic terms and the particular shape and overlap of the membership
functions are related to the granularity of the information processing within the fuzzy
system, and hence also to the level of precision with which a given system can be
represented by a fuzzy model. For instance, trapezoidal membership functions, such
as those given in Figure 3.2, provide some kind of “information hiding” for data within
the cores of the membership functions (e.g., temperatures between 0 and 5 degrees
cannot be distinguished, since all are classified as “low” with degree 1). Well-behaved
mappings can be accurately represented with a very low granularity.

Membership functions can be defined by the model developer (expert), using prior
knowledge, or by experimentation, which is a typical approach in knowledge-based
fuzzy control (Driankov, et al., 1993). In this case, the membership functions are
designed such that they represent the meaning of the linguistic terms in the given
context. When input–output data of the system under study are available, methods
for constructing or adapting the membership functions from data can be applied, see
Chapter 5.

Example 3.2 (Linguistic Model) Consider a simple fuzzy model which qualitatively
describes how the heating power of a gas burner depends on the oxygen supply (as-
suming a constant gas supply). We have a scalar input, the oxygen flow rate (x), and
a scalar output, the heating power (y). Define the set of antecedent linguistic terms:
A = {Low,OK,High}, and the set of consequent linguistic terms: B = {Low,High}.
The qualitative relationship between the model input and output can be expressed by
the following rules:

R1: If O2 flow rate is Low then heating power is Low.
R2: If O2 flow rate is OK then heating power is High.
R3: If O2 flow rate is High then heating power is Low.

26 FUZZY AND NEURAL CONTROL

The meaning of the linguistic terms is defined by their membership functions, depicted
in Figure 3.3. The numerical values along the base variables are selected somewhat
arbitrarily. Note that no universal meaning of the linguistic terms can be defined. For
this example, it will depend on the type and flow rate of the fuel gas, type of burner,
etc. Nevertheless, the qualitative relationship expressed by the rules remains valid.

75501 32 00 100

LowOK

O flow rate [m /h]2

3

25

Low HighHigh

heating power [kW]

11

Figure 3.3. Membership functions.

✷

3.2.2 Inference in the Linguistic Model

Inference in fuzzy rule-based systems is the process of deriving an output fuzzy set
given the rules and the inputs. The inference mechanism in the linguistic model is
based on the compositional rule of inference (Zadeh, 1973).

Each rule in (3.1) can be regarded as a fuzzy relation (fuzzy restriction on the
simultaneous occurrences of values x and y): R: (X × Y) → [0, 1] computed by

µR(x,y) = I(µA(x), µB(y)) . (3.6)

For the ease of notation the rule subscript i is dropped. The I operator can be either a
fuzzy implication, or a conjunction operator (a t-norm). Note that I(·, ·) is computed
on the Cartesian product spaceX × Y , i.e., for all possible pairs of x and y.

Fuzzy implications are used when the rule (3.1) is regarded as an implicationA i →
Bi, i.e., “Ai implies Bi”. In classical logic this means that if A holds, B must hold
as well for the implication to be true. Nothing can, however, be said about B when A
does not hold, and the relationship also cannot be inverted. When using a conjunction,
A∧B, the interpretation of the if-then rules is “it is true that A and B simultaneously
hold”. This relationship is symmetric (nondirectional) and can be inverted.

Examples of fuzzy implications are the Łukasiewicz implication given by:

I(µA(x), µB(y)) = min(1, 1− µA(x) + µB(y)), (3.7)

or the Kleene–Diene implication:

I(µA(x), µB(y)) = max(1− µA(x), µB(y)) . (3.8)

FUZZY SYSTEMS 27

Examples of t-norms are the minimum, often, not quite correctly, called the Mamdani
“implication”,

I(µA(x), µB(y)) = min(µA(x), µB(y)), (3.9)

or the product, also called the Larsen “implication”,

I(µA(x), µB(y)) = µA(x) · µB(y) . (3.10)

More details about fuzzy implications and the related operators can be found, for in-
stance, in (Klir and Yuan, 1995; Lee, 1990a; Lee, 1990b; Jager, 1995).

The inference mechanism is based on the generalized modus ponens rule:

If x is A then y is B
x is A′

y is B′

Given the if-then rule and the fact the “x is A ′”, the output fuzzy set B ′ is derived by
the relational max-t composition (Klir and Yuan, 1995):

B′ = A′ ◦R . (3.11)

For the minimum t-norm, the max-min composition is obtained:

µB′(y) = max
X

min
X,Y

(µA′(x), µR(x,y)) . (3.12)

Figure 3.4a shows an example of fuzzy relation R computed by (3.9). Figure 3.4b
illustrates the inference of B ′, given the relation R and the input A ′, by means of the
max-min composition (3.12). One can see that the obtained B ′ is subnormal, which
represents the uncertainty in the input (A ′ �= A). The relational calculus must be
implemented in discrete domains. Let us give an example.

Example 3.3 (Compositional Rule of Inference) Consider a fuzzy rule

If x is A then y is B

with the fuzzy sets:

A = {0/1, 0.1/2, 0.4/3, 0.8/4, 1/5},
B = {0/− 2, 0.6/− 1, 1/0, 0.6/1, 0/2} .

Using the minimum t-norm (Mamdani “implication”), the relation RM representing
the fuzzy rule is computed by eq. (3.9):

RM =




0 0 0 0 0

0 0.1 0.1 0.1 0

0 0.4 0.4 0.4 0

0 0.6 0.8 0.6 0

0 0.6 1 0.6 0



. (3.14)

28 FUZZY AND NEURAL CONTROL

R
A B

= min(,)

x

�

y

A
B

(a) Fuzzy relation (intersection).

A’

min(A’,R)

max(min(A’,R))

x

y

R

B

B’

µ

A

(b) Fuzzy inference.

Figure 3.4. (a) Fuzzy relation representing the rule “If x is A then y is B”, (b) the

compositional rule of inference.

The rows of this relational matrix correspond to the domain elements of A and the
columns to the domain elements of B. Now consider an input fuzzy set to the rule:

A′ = {0/1, 0.2/2, 0.8/3, 1/4, 0.1/5} . (3.15)

The application of the max-min composition (3.12), B ′
M = A′ ◦ RM , yields the fol-

lowing output fuzzy set:

B′
M = {0/− 2, 0.6/− 1, 0.8/0, 0.6/1, 0/2} . (3.16)

FUZZY SYSTEMS 29

By applying the Łukasiewicz fuzzy implication (3.7), the following relation is ob-
tained:

RL =




1 1 1 1 1

0.9 1 1 1 0.9

0.6 1 1 1 0.6

0.2 0.8 1 0.8 0.2

0 0.6 1 0.6 0



. (3.17)

Using the max-t composition, where the t-norm is the Łukasiewicz (bold) intersection
(see Definition 2.12), the inferred fuzzy set B ′

L = A′ ◦RL equals:

B′
L = {0.4/− 2, 0.8/− 1, 1/0, 0.8/1, 0.4/2} . (3.18)

Note the difference between the relations RM and RL, which are also depicted in
Figure 3.5. The implication is false (zero entries in the relation) only whenA holds and
B does not. When A does not hold, the truth value of the implication is 1 regardless
of B. The t-norm, however, is false whenever either A or B or both do not hold, and
thus represents a bi-directional relation (correlation).

−2
−1

0
1

2

1

2

3

4

5

0

0.5

1

yx

m
em

be
rs

hi
p

de
gr

ee

(a) Minimum t-norm.

−2
−1

0
1

2

1

2

3

4

5

0

0.5

1

yx

m
em

be
rs

hi
p

de
gr

ee

(b) Łukasiewicz implication.

Figure 3.5. Fuzzy relations obtained by applying a t-norm operator (minimum) and a

fuzzy implication (ILukasiewicz).

This difference naturally influences the result of the inference process. Since the
input fuzzy set A′ is different from the antecedent set A, the derived conclusion B ′ is
in both cases “less certain” than B. The difference is that, with the fuzzy implication,
this uncertainty is reflected in the increased membership values for the domain ele-
ments that have low or zero membership in B, which means that these output values
are possible to a greater degree. However, the t-norm results in decreasing the mem-
bership degree of the elements that have high membership in B, which means that
these outcomes are less possible. This influences the properties of the two inference
mechanisms and the choice of suitable defuzzification methods, as discussed later on.

✷

30 FUZZY AND NEURAL CONTROL

The entire rule base (3.1) is represented by aggregating the relationsR i of the indi-
vidual rules into a single fuzzy relation. If R i’s represent implications, R is obtained
by an intersection operator:

R =
K⋂
i=1

Ri, that is, µR(x,y) = min
1≤i≤K

µRi(x,y) . (3.19)

If I is a t-norm, the aggregated relation R is computed as a union of the individual
relations Ri:

R =
K⋃
i=1

Ri, that is, µR(x,y) = max
1≤i≤K

µRi(x,y) . (3.20)

The output fuzzy set B ′ is inferred in the same way as in the case of one rule, by using
the compositional rule of inference (3.11).

The above representation of a system by the fuzzy relation is called a fuzzy graph,
and the compositional rule of inference can be regarded as a generalized function
evaluation using this graph (see Figure 3.1). The fuzzy relation R, defined on the
Cartesian product space of the system’s variablesX1×X2×· · ·Xp×Y is a possibility
distribution (restriction) of the different input–output tuples (x 1, x2, . . . , xp, y). An α-
cut of R can be interpreted as a set of input–output combinations possible to a degree
greater or equal to α.

Example 3.4 Let us compute the fuzzy relation for the linguistic model of Exam-
ple 3.2. First we discretize the input and output domains, for instance: X = {0, 1, 2, 3}
and Y = {0, 25, 50, 75, 100}. The (discrete) membership functions are given in Ta-
ble 3.1 for the antecedent linguistic terms, and in Table 3.2 for the consequent terms.

Table 3.1. Antecedent membership functions.

domain element
linguistic term 0 1 2 3

Low 1.0 0.6 0.0 0.0
OK 0.0 0.4 1.0 0.4
High 0.0 0.0 0.1 1.0

The fuzzy relations Ri corresponding to the individual rule, can now be computed
by using (3.9). For rule R1, we have R1 = Low × Low, for rule R2, we obtain
R2 = OK × High, and finally for rule R3, R3 = High × Low. The fuzzy relation
R, which represents the entire rule base, is the union (element-wise maximum) of the

FUZZY SYSTEMS 31

Table 3.2. Consequent membership functions.

domain element
linguistic term 0 25 50 75 100

Low 1.0 1.0 0.6 0.0 0.0
High 0.0 0.0 0.3 0.9 1.0

relations Ri:

R1 =




1.0 1.0 0.6 0 0
0.6 0.6 0.6 0 0
0 0 0 0 0
0 0 0 0 0




R2 =




0 0 0 0 0
0 0 0.3 0.4 0.4
0 0 0.3 0.9 1.0
0 0 0.3 0.4 0.4




R3 =




0 0 0 0 0
0 0 0 0 0
0.1 0.1 0.1 0 0
1.0 1.0 0.6 0 0







R =




1.0 1.0 0.6 0 0
0.6 0.6 0.6 0.4 0.4
0.1 0.1 0.3 0.9 1.0
1.0 1.0 0.6 0.4 0.4


 .

(3.21)
These steps are illustrated in Figure 3.6. For better visualization, the relations are
computed with a finer discretization by using the membership functions of Figure 3.3.
This example can be run under MATLAB by calling the script ling.

Now consider an input fuzzy set to the model, A ′ = [1, 0.6, 0.3, 0], which can be
denoted as Somewhat Low flow rate, as it is close to Low but does not equal Low. The
result of max-min composition is the fuzzy set B ′ = [1, 1, 0.6, 0.4, 0.4], which gives
the expected approximately Low heating power. For A ′ = [0, 0.2, 1, 0.2] (approxi-
mately OK), we obtain B ′ = [0.2, 0.2, 0.3, 0.9, 1], i.e., approximately High heating
power. Verify these results as an exercise. Figure 3.7 shows the fuzzy graph for our
example (contours of R, where the shading corresponds to the membership degree).

✷

3.2.3 Max-min (Mamdani) Inference

We have seen that a rule base can be represented as a fuzzy relation. The output of a
rule-based fuzzy model is then computed by the max-min relational composition. It
can be shown that for fuzzy implications with crisp inputs, and for t-norms with both
crisp and fuzzy inputs, the reasoning scheme can be simplified, bypassing the rela-
tional calculus (Jager, 1995). This is advantageous, as the discretization of domains

32 FUZZY AND NEURAL CONTROL

0
1

2
3

0

50

100
0

0.5

1

R1 = Low and Low

x
y 0

1
2

3

0

50

100
0

0.5

1

R2 = OK and High

x
y

0
1

2
3

0

50

100
0

0.5

1

R3 = High and Low

x
y 0

1
2

3

0

50

100
0

0.5

1

R = R1 or R2 or R3

x
y

Figure 3.6. Fuzzy relations R1, R2, R3 corresponding to the individual rules, and the

aggregated relation R corresponding to the entire rule base.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Figure 3.7. A fuzzy graph for the linguistic model of Example 3.4. Darker shading corre-

sponds to higher membership degree. The solid line is a possible crisp function representing

a similar relationship as the fuzzy model.

and storing of the relationR can be avoided. For the t-norm, the simplification results
in the well-known scheme, in the literature called the max-min or Mamdani inference,
as outlined below.

Suppose an input fuzzy value x = A ′, for which the output value B ′ is given by
the relational composition:

µB′(y) = max
X

[µA′(x) ∧ µR(x,y)] . (3.22)

FUZZY SYSTEMS 33

After substituting for µR(x,y) from (3.20), the following expression is obtained:

µB′(y) = max
X

{
µA′(x) ∧ max

1≤i≤K
[µAi(x) ∧ µBi(y)]

}
. (3.23)

Since the max and min operation are taken over different domains, their order can be
changed as follows:

µB′(y) = max
1≤i≤K

{
max
X

[µA′(x) ∧ µAi(x)] ∧ µBi(y)
}
. (3.24)

Denote βi = maxX [µA′(x) ∧ µAi(x)] the degree of fulfillment of the ith rule’s an-
tecedent. The output fuzzy set of the linguistic model is thus:

µB′(y) = max
1≤i≤K

[βi ∧ µBi(y)], y ∈ Y . (3.25)

The max-min (Mamdani) algorithm, is summarized in Algorithm 3.1 and visualized in
Figure 3.8.

Algorithm 3.1 Mamdani (max-min) inference

1. Compute the degree of fulfillment for each rule by: β i = max
X

[µA′(x) ∧ µAi(x)],

1 ≤ i ≤ K . Note that for a singleton set (µA′(x) = 1 for x = x0 and µA′(x) = 0
otherwise) the equation for βi simplifies to βi = µAi(x0).

2. Derive the output fuzzy sets B ′
i: µB′

i
(y) = βi ∧ µBi(y), y ∈ Y, 1 ≤ i ≤ K .

3. Aggregate the output fuzzy sets B ′
i: µB′(y) = max

1≤i≤K
µB′

i
(y), y ∈ Y .

Example 3.5 Let us take the input fuzzy set A ′ = [1, 0.6, 0.3, 0] from Example 3.4
and compute the corresponding output fuzzy set by the Mamdani inference method.
Step 1 yields the following degrees of fulfillment:

β1 = max
X

[µA′(x) ∧ µA1(x)] = max ([1, 0.6, 0.3, 0]∧ [1, 0.6, 0, 0]) = 1.0,

β2 = max
X

[µA′(x) ∧ µA2(x)] = max ([1, 0.6, 0.3, 0]∧ [0, 0.4, 1, 0.4]) = 0.4,

β3 = max
X

[µA′(x) ∧ µA3(x)] = max ([1, 0.6, 0.3, 0]∧ [0, 0, 0.1, 1]) = 0.1 .

In step 2, the individual consequent fuzzy sets are computed:

B′
1 = β1 ∧B1 = 1.0 ∧ [1, 1, 0.6, 0, 0] = [1, 1, 0.6, 0, 0],
B′
2 = β2 ∧B2 = 0.4 ∧ [0, 0, 0.3, 0.9, 1] = [0, 0, 0.3, 0.4, 0.4],
B′
3 = β3 ∧B3 = 0.1 ∧ [1, 1, 0.6, 0, 0] = [0.1, 0.1, 0.1, 0, 0] .

Finally, step 3 gives the overall output fuzzy set:

B′ = max
1≤i≤K

µB′
i
= [1, 1, 0.6, 0.4, 0.4],

34 FUZZY AND NEURAL CONTROL

B '2
�2

model:

If is then isx A y B3 3

If is then isx A y B1 1

data: x yis A' is B'

Step 2Step 1

B '1

B1 B3B2

B '3

y

1�1

�3

A2

x

{ Step 3

A1

If is then isx A y B2 2

B'

A3

y

A'

0

1

0

1

Figure 3.8. A schematic representation of the Mamdani inference algorithm.

which is identical to the result from Example 3.4. Verify the result for the second input
fuzzy set of Example 3.4 as an exercise.

✷

From a comparison of the number of operations in examples 3.4 and 3.5, it may seem
that the saving with the Mamdani inference method with regard to relational compo-
sition is not significant. This is, however, only true for a rough discretization (such as
the one used in Example 3.4) and for a small number of inputs (one in this case). Note
that the Mamdani inference method does not require any discretization and thus can
work with analytically defined membership functions. It also can make use of learning
algorithms, as discussed in Chapter 5.

3.2.4 Defuzzification

The result of fuzzy inference is the fuzzy set B ′. If a crisp (numerical) output value is
required, the output fuzzy set must be defuzzified. Defuzzification is a transformation
that replaces a fuzzy set by a single numerical value representative of that set. Fig-
ure 3.9 shows two most commonly used defuzzification methods: the center of gravity
(COG) and the mean of maxima (MOM).

FUZZY SYSTEMS 35

y' y

�

(a) Center of gravity.

y' y

�

(b) Mean of maxima.

Figure 3.9. The center-of-gravity and the mean-of-maxima defuzzification methods.

The COG method calculates numerically the y coordinate of the center of gravity
of the fuzzy set B ′:

y′ = cog(B′) =

F∑
j=1

µB′(yj) yj

F∑
j=1

µB′(yj)
(3.28)

where F is the number of elements yj in Y . Continuous domain Y thus must be
discretized to be able to compute the center of gravity.

The MOM method computes the mean value of the interval with the largest mem-
bership degree:

mom(B′) = cog{y | µB′(y) = max
y∈Y

µB′(y)} . (3.29)

The COG method is used with the Mamdani max-min inference, as it provides inter-
polation between the consequents, in proportion to the height of the individual conse-
quent sets. This is necessary, as the Mamdani inference method itself does not inter-
polate, and the use of the MOM method in this case results in a step-wise output. The
MOM method is used with the inference based on fuzzy implications, to select the
“most possible” output. The inference with implications interpolates, provided that
the consequent sets sufficiently overlap (Jager, 1995). The COG method cannot be
directly used in this case, because the uncertainty in the output results in an increase
of the membership degrees, as shown in Example 3.3. The COG method would give
an inappropriate result.

To avoid the numerical integration in the COG method, a modification of this ap-
proach called the fuzzy-mean defuzzification is often used. The consequent fuzzy sets
are first defuzzified, in order to obtain crisp values representative of the fuzzy sets, us-
ing for instance the mean-of-maxima method: b j = mom(Bj). A crisp output value

36 FUZZY AND NEURAL CONTROL

is then computed by taking a weighted mean of b j’s:

y′ =

M∑
j=1

ωj bj

M∑
j=1

ωj

(3.30)

where M is the number of fuzzy sets Bj and ωj is the maximum of the degrees of
fulfillment βi over all the rules with the consequent Bj . In terms of the aggregated
fuzzy set B′, ωj can be computed by ωj = µB′(bj). This method ensures linear
interpolation between the bj’s, provided that the antecedent membership functions are
piece-wise linear. This is not the case with the COG method, which introduces a
nonlinearity, depending on the shape of the consequent functions (Jager, et al., 1992).
Because the individual defuzzification is done off line, the shape and overlap of the
consequent fuzzy sets have no influence, and these sets can be directly replaced by
the defuzzified values (singletons), see also Section 3.3. In order to at least partially
account for the differences between the consequent fuzzy sets, the weighted fuzzy-
mean defuzzification can be applied:

y′ =

M∑
j=1

γj Sj bj

M∑
j=1

γj Sj

, (3.31)

where Sj is the area under the membership function ofB j . An advantage of the fuzzy-
mean methods (3.30) and (3.31) is that the parameters b j can be estimated by linear
estimation techniques as shown in Chapter 5.

Example 3.6 Consider the output fuzzy set B ′ = [0.2, 0.2, 0.3, 0.9, 1] from Exam-
ple 3.4, where the output domain is Y = [0, 25, 50, 75, 100]. The defuzzified output
obtained by applying formula (3.28) is:

y′ =
0.2 · 0 + 0.2 · 25 + 0.3 · 50 + 0.9 · 75 + 1 · 100

0.2 + 0.2 + 0.3 + 0.9 + 1
= 72.12 .

The heating power of the burner, computed by the fuzzy model, is thus 72.12 W.
✷

3.2.5 Fuzzy Implication versus Mamdani Inference

A natural question arises: Which inference method is better, or in which situations
should one method be preferred to the other? To find an answer, a detailed analysis of
the presented methods must be carried out, which is outside the scope of this presen-
tation. One of the distinguishing aspects, however, can be demonstrated by using an
example.

FUZZY SYSTEMS 37

Example 3.7 (Advantage of Fuzzy Implications) Consider a rule base of Figure 3.10.
Rules R1 and R2 represent a simple monotonic (approximately linear) relation be-
tween two variables.

then y isR1: If x is zero zero

then y isR3: If x is small not small

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

then y isR2: If x is large large

0.40 0.1 0.2 0.3 0.5
0

1

0.40 0.1 0.2 0.3 0.5
0

1

Figure 3.10. The considered rule base.

This may be, for example, a rule-based implementation of a proportional control
law. RuleR3, “If x is small then y is not small”, represents a kind of “exception” from
the simple relationship defined by interpolation of the previous two rules. In terms of
control, such a rule may deal with undesired phenomena, such as static friction. For
instance, when controlling an electrical motor with large Coulomb friction, it does not
make sense to apply low current if it is not sufficient to overcome the friction, since in
that case the motor only consumes energy. These three rules can be seen as a simple
example of combining general background knowledge with more specific information
in terms of exceptions.

Figure 3.11a shows the result for the Mamdani inference method with the COG
defuzzification. One can see that the Mamdani method does not work properly. The
reason is that the interpolation is provided by the defuzzification method and not by
the inference mechanism itself. The presence of the third rule significantly distorts the
original, almost linear characteristic, also in the region of x where R 1 has the greatest
membership degree. The purpose of avoiding small values of y is not achieved.

Figure 3.11b shows the result of logical inference based on the Łukasiewicz impli-
cation and MOM defuzzification. One can see that the third rule fulfills its purpose,
i.e., forces the fuzzy system to avoid the region of small outputs (around 0.25) for
small input values (around 0.25). The exact form of the input–output mapping de-
pends on the choice of the particular inference operators (implication, composition),
but the overall behavior remains unchanged.

✷

It should be noted, however, that the implication-based reasoning scheme imposes cer-
tain requirements on the overlap of the consequent membership functions, which may
be hard to fulfill in the case of multi-input rule bases (Jager, 1995). In addition, this

38 FUZZY AND NEURAL CONTROL

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

(a) Mamdani inference.

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

(b) Inference with Łukasiewicz implication.

Figure 3.11. Input-output mapping of the rule base of Figure 3.10 for two different infer-

ence methods. Markers ’o’ denote the defuzzified output of rules R1 and R2 only, markers

’+’ denote the defuzzified output of the entire rule base.

method must generally be implemented using fuzzy relations and the compositional
rule of inference, which increases the computational demands.

3.2.6 Rules with Several Inputs, Logical Connectives

So far, the linguistic model was presented in a general manner covering both the SISO
and MIMO cases. In the MIMO case, all fuzzy sets in the model are defined on vector
domains by multivariate membership functions. It is, however, usually, more con-
venient to write the antecedent and consequent propositions as logical combinations
of fuzzy propositions with univariate membership functions. Fuzzy logic operators
(connectives), such as the conjunction, disjunction and negation (complement), can be
used to combine the propositions.

The connectives and and or are implemented by t-norms and t-conorms, respec-
tively. There are an infinite number of t-norms and t-conorms, but in practice only a
small number of operators are used. Table 3.3 lists the three most common ones.

The choice of t-norms and t-conorms for the logical connectives depends on the
meaning and on the context of the propositions. The max and min operators proposed
by Zadeh ignore redundancy, i.e., the combination (conjunction or disjunction) of two
identical fuzzy propositions will represent the same proposition:

µA∩A(x) =µA(x) ∧ µA(x) = µA(x), (3.32)

µA∪A(x) =µA(x) ∨ µA(x) = µA(x) . (3.33)

This does not hold for other t-norms and t-conorms. However, when fuzzy proposi-
tions are not equal, but they are correlated or interactive, the use of other operators
than min and max can be justified.

If the propositions are related to different universes, a logical connective result in a
multivariable fuzzy set. Consider the following proposition:

FUZZY SYSTEMS 39

Table 3.3. Frequently used operators for the and and or connectives.

and or name

min(a, b) max(a, b) Zadeh
max(a + b − 1, 0) min(a + b, 1) Łukasiewicz
ab a + b − ab probability

P : x1 is A1 and x2 is A2

where A1 and A2 have membership functions µA1(x1) and µA2(x2). The proposition
p can then be represented by a fuzzy set P with the membership function:

µP (x1, x2) = T(µA1(x1), µA2(x2)), (3.35)

where T is a t-norm which models the and connective. A combination of propositions
is again a proposition.

Negation within a fuzzy proposition is related to the complement of a fuzzy set.
For a proposition

P : x is not A

the standard complement results in:

µP (x) = 1− µA(x)

Most common is the conjunctive form of the antecedent, which is given by:

Ri: If x1 is Ai1 and x2 is Ai2 and . . . and xp is Aip then y is Bi,

i = 1, 2, . . . ,K . (3.36)

Note that the above model is a special case of (3.1), as the fuzzy set A i in (3.1) is
obtained as the Cartesian product conjunction of fuzzy sets A ij : Ai = Ai1 × Ai2 ×
· · · ×Aip. Hence, for a crisp input, the degree of fulfillment (step 1 of Algorithm 3.1)
is given by:

βi = µAi1(x1) ∧ µAi2(x2) ∧ · · · ∧ µAip(xp), 1 ≤ i ≤ K . (3.38)

A set of rules in the conjunctive antecedent form divides the input domain into a lattice
of fuzzy hyperboxes, parallel with the axes. Each of the hyperboxes is an Cartesian
product-space intersection of the corresponding univariate fuzzy sets. This is shown in
Figure 3.12a. The number of rules in the conjunctive form, needed to cover the entire
domain, is given by:

K = Πp
i=1Ni,

where p is the dimension of the input space and N i is the number of linguistic terms
of the ith antecedent variable.

40 FUZZY AND NEURAL CONTROL

A
21

A
23

A
22

A11 A13A12 A11

A
21

A13

A1

A2

A3A
23

A12

A
22

x2 x2

x1 x1

x2

(a)

x1

(b) (c)

A4

Figure 3.12. Different partitions of the antecedent space. Gray areas denote the overlap-

ping regions of the fuzzy sets.

By combining conjunctions, disjunctions and negations, various partitions of the
antecedent space can be obtained, the boundaries are, however, restricted to the rect-
angular grid defined by the fuzzy sets of the individual variables, see Figure 3.12b.
As an example consider the rule antecedent covering the lower left corner of the an-
tecedent space in this figure:

If x1 is not A13 and x2 is A21 then . . .

The degree of fulfillment of this rule is computed using the complement and intersec-
tion operators:

β = [1− µA13(x1)] ∧ µA21(x2) . (3.39)

The antecedent form with multivariate membership functions (3.1) is the most gen-
eral one, as there is no restriction on the shape of the fuzzy regions. The boundaries
between these regions can be arbitrarily curved and oblique to the axes, as depicted
in Figure 3.12c. Also the number of fuzzy sets needed to cover the antecedent space
may be much smaller than in the previous cases. Hence, for complex multivariable
systems, this partition may provide the most effective representation. Note that the
fuzzy sets A1 to A4 in Figure 3.12c still can be projected ontoX1 andX2 to obtain an
approximate linguistic interpretation of the regions described.

3.2.7 Rule Chaining

So far, only a one-layer structure of a fuzzy model has been considered. In practice,
however, an output of one rule base may serve as an input to another rule base. This
results in a structure with several layers and chained rules. This situation occurs, for
instance, in hierarchical models or controller which include several rule bases. Hier-
archical organization of knowledge is often used as a natural approach to complexity
reduction. A large rule base with many input variables may be split into several in-
terconnected rule bases with fewer inputs. As an example, suppose a rule base with
three inputs, each with five linguistic terms. Using the conjunctive form (3.36), 125
rules have to be defined to cover all the input situations. Splitting the rule base in two
smaller rule bases, as depicted in Figure 3.13, results in a total of 50 rules.

FUZZY SYSTEMS 41

x2

x3

y
z

x1

rule base
A

rule base
B

Figure 3.13. Cascade connection of two rule bases.

Another example of rule chaining is the simulation of dynamic fuzzy systems,
where a cascade connection of rule bases results from the fact that a value predicted
by the model at time k is used as an input at time k + 1. As an example, consider a
nonlinear discrete-time model

x̂(k + 1) = f
(
x̂(k), u(k)

)
, (3.40)

where f is a mapping realized by the rule base, x̂(k) is a predicted state of the process
at time k (at the same time it is the state of the model), and u(k) is an input. At the
next time step we have:

x̂(k + 2) = f
(
x̂(k + 1), u(k + 1)

)
= f

(
f
(
x̂(k), u(k)

)
, u(k + 1)

)
, (3.41)

which gives a cascade chain of rules.
The hierarchical structure of the rule bases shown in Figure 3.13 requires that the in-

formation inferred in Rule base A is passed to Rule base B. This can be accomplished
by defuzzification at the output of the first rule base and subsequent fuzzification at the
input of the second rule base. A drawback of this approach is that membership func-
tions have to be defined for the intermediate variable and that a suitable defuzzification
method must be chosen. If the values of the intermediate variable cannot be verified by
using data, there is no direct way of checking whether the choice is appropriate or not.
Also, the fuzziness of the output of the first stage is removed by defuzzification and
subsequent fuzzification. This method is used mainly for the simulation of dynamic
systems, such as (3.41), when the intermediate variable serves at the same time as a
crisp output of the system.

Another possibility is to feed the fuzzy set at the output of the first rule base directly
(without defuzzification) to the second rule base. An advantage of this approach is
that it does not require any additional information from the user. However, in general,
the relational composition must be carried out, which requires discretization of the
domains and a more complicated implementation. In the case of the Mamdani max-
min inference method, the reasoning can be simplified, since the membership degrees
of the output fuzzy set directly become the membership degrees of the antecedent
propositions where the particular linguistic terms occur. Assume, for instance, that
inference in Rule base A results in the following aggregated degrees of fulfillment of
the consequent linguistic terms B1 to B5 :

ω = [0/B1, 0.7/B2, 0.1/B3, 0/B4, 0/B5].

42 FUZZY AND NEURAL CONTROL

The membership degree of the propositions “If y is B2” in rule base B is thus 0.7, the
membership degree of the propositions “If y is B3” is 0.1, and the propositions with
the remaining linguistic terms have the membership degree equal to zero.

3.3 Singleton Model

A special case of the linguistic fuzzy model is obtained when the consequent fuzzy
sets Bi are singleton sets. These sets can be represented as real numbers b i, yielding
the following rules:

Ri: If x is Ai then y = bi, i = 1, 2, . . . ,K . (3.42)

This model is called the singleton model. Contrary to the linguistic model, the number
of distinct singletons in the rule base is usually not limited, i.e., each rule may have its
own singleton consequent. For the singleton model, the COG defuzzification results
in the fuzzy-mean method:

y =

K∑
i=1

βi bi

K∑
i=1

βi

. (3.43)

Note that here all the K rules contribute to the defuzzification, as opposed to the
method given by eq. (3.30). This means that if two rules which have the same con-
sequent singleton are active, this singleton counts twice in the weighted mean (3.43).
When using (3.30), each consequent would count only once with a weight equal to the
larger of the two degrees of fulfillment. Note that the singleton model can also be seen
as a special case of the Takagi–Sugeno model, presented in Section 3.5.

An advantage of the singleton model over the linguistic model is that the conse-
quent parameters bi can easily be estimated from data, using least-squares techniques.
The singleton fuzzy model belongs to a general class of general function approxima-
tors, called the basis functions expansion, (Friedman, 1991) taking the form:

y =
K∑
i=1

φi(x)bi . (3.44)

Most structures used in nonlinear system identification, such as artificial neural net-
works, radial basis function networks, or splines, belong to this class of systems. In
the singleton model, the basis functions φi(x) are given by the (normalized) degrees
of fulfillment of the rule antecedents, and the constants b i are the consequents. Multi-
linear interpolation between the rule consequents is obtained if:

the antecedent membership functions are trapezoidal, pairwise overlapping and the
membership degrees sum up to one for each domain element,

the product operator is used to represent the logical and connective in the rule
antecedents.

A univariate example is shown in Figure 3.14a.

FUZZY SYSTEMS 43

A2 A3A1 A4

(a)

A2 A3

x

1
A1

b1

b2

b3

b4

A4

y

(b)

y = f (x)

x a2 a3

x

1

a1

b1

b2

b3

b4

a4

y y = kx + q

x

Figure 3.14. Singleton model with triangular or trapezoidal membership functions results

in a piecewise linear input-output mapping (a), of which a linear mapping is a special case

(b).

Clearly, a singleton model can also represent any given linear mapping of the form:

y = kTx+ q =
p∑

i=1

kixi + q . (3.45)

In this case, the antecedent membership functions must be triangular. The consequent
singletons can be computed by evaluating the desired mapping (3.45) for the cores a ij

of the antecedent fuzzy sets Aij (see Figure 3.14b):

bi =
p∑

j=1

kjaij + q . (3.46)

This property is useful, as the (singleton) fuzzy model can always be initialized such
that it mimics a given (perhaps inaccurate) linear model or controller and can later be
optimized.

3.4 Relational Model

Fuzzy relational models (Pedrycz, 1985; Pedrycz, 1993) encode associations between
linguistic terms defined in the system’s input and output domains by using fuzzy re-
lations. The individual elements of the relation represent the strength of association
between the fuzzy sets. Let us first consider the already known linguistic fuzzy model
which consists of the following rules:

Ri : If x1 is Ai,1 and . . . and xn is Ai,n then y is Bi, i = 1, 2, . . . ,K . (3.47)

Denote Aj the set of linguistic terms defined for an antecedent variable x j :

Aj = {Aj,l | l = 1, 2, . . . , Nj}, j = 1, 2, . . . , n,

44 FUZZY AND NEURAL CONTROL

where µAj,l
(xj):Xj → [0, 1]. Similarly, the set of linguistic terms defined for the

consequent variable y is denoted by:

B = {Bl | l = 1, 2, . . . ,M},

with µBl
(y):Y → [0, 1]. The key point in understanding the principle of fuzzy re-

lational models is to realize that the rule base (3.47) can be represented as a crisp
relation S between the antecedent term sets Aj and the consequent term sets B:

S:A1 ×A2 × · · · × An × B → {0, 1} . (3.48)

By denoting A = A1×A2×· · ·×An the Cartesian space of the antecedent linguistic
terms, (3.48) can be simplified to S:A × B → {0, 1}. Note that if rules are defined
for all possible combinations of the antecedent terms, K = card(A). Now S can be
represented as aK×M matrix, constrained to only one nonzero element in each row.

Example 3.8 (Relational Representation of a Rule Base) Consider a fuzzy model
with two inputs, x1, x2, and one output, y. Define two linguistic terms for each
input: A1 = {Low, High}, A2 = {Low, High}, and three terms for the output:
B = {Slow, Moderate, Fast}. For all possible combinations of the antecedent terms,
four rules are obtained (the consequents are selected arbitrarily):

If x1 is Low and x2 is Low then y is Slow
If x1 is Low and x2 is High then y is Moderate
If x1 is High and x2 is Low then y is Moderate
If x1 is High and x2 is High then y is Fast.

In this example, A = {(Low, Low), (Low,High), (High, Low), (High,High)}. The
above rule base can be represented by the following relational matrix S:

y
x1 x2 Slow Moderate Fast

Low Low 1 0 0
Low High 0 1 0
High Low 0 1 0
High High 0 0 1

✷

The fuzzy relational model is nothing else than an extension of the above crisp relation
S to a fuzzy relation R = [ri,j]:

R:A× B → [0, 1] . (3.49)

Each rule now contains all the possible consequent terms, each with its own weighting
factor, given by the respective element rij of the fuzzy relation (Figure 3.15). This
weighting allows the model to be fine-tuned more easily for instance to fit data.

FUZZY SYSTEMS 45

r44

µ

y

µ

r41

A1 A2 A3 A4 A5

B1 B2 B3 B4

xInput linguistic terms

. . .

Output linguistic terms

Fuzzy relation

r11 r54

Figure 3.15. Fuzzy relation as a mapping from input to output linguistic terms.

It should be stressed that the relationR in (3.49) is different from the relation (3.19)
encoding linguistic if–then rules. The latter relation is a multidimensional membership
function defined in the product space of the input and output domains, whose each
element represents the degree of association between the individual crisp elements
in the antecedent and consequent domains. In fuzzy relational models, however, the
relation represents associations between the individual linguistic terms.

Example 3.9 Relational model. Using the linguistic terms of Example 3.8, a fuzzy
relational model can be defined, for instance, by the following relation R:

y
x1 x2 Slow Moderate Fast

Low Low 0.9 0.2 0.0
Low High 0.0 1.0 0.0
High Low 0.0 0.8 0.2
High High 0.0 0.1 0.8

The elements ri,j describe the associations between the combinations of the antecedent
linguistic terms and the consequent linguistic terms. This implies that the consequents
are not exactly equal to the predefined linguistic terms, but are given by their weighted
combinations. Note that the sum of the weights does not have to equal one. In terms

46 FUZZY AND NEURAL CONTROL

of rules, this relation can be interpreted as:

If x1 is Low and x2 is Low then y is Slow (0.9), y is Mod. (0.2), y is Fast (0.0)
If x1 is Low and x2 is High then y is Slow (0.0), y is Mod. (1.0), y is Fast (0.0)
If x1 is High and x2 is Low then y is Slow (0.0), y is Mod. (0.8), y is Fast (0.2)
If x1 is High and x2 is High then y is Slow (0.0), y is Mod. (0.1), y is Fast (0.8).

The numbers in parentheses are the respective elements r i,j of R.
✷

The inference is based on the relational composition (2.45) of the fuzzy set repre-
senting the degrees of fulfillment βi and the relation R. It is given in the following
algorithm.

Algorithm 3.2 Inference in fuzzy relational model.

1. Compute the degree of fulfillment by:

βi = µAi1(x1) ∧ · · · ∧ µAip(xp), i = 1, 2, . . . ,K . (3.50)

2. Apply the relational composition ω = β ◦R, given by:

ωj = max
1≤i≤K

(
βi ∧ rij

)
, j = 1, 2, . . . ,M . (3.51)

3. Defuzzify the consequent fuzzy set by:

y =

M∑
l=1

ωl · bl
M∑
l=1

ωl

(3.52)

where bl are the centroids of the consequent fuzzy sets B l computed by applying
some defuzzification method such as the center-of-gravity (3.28) or the mean-of-
maxima (3.29) to the individual fuzzy sets B l.

Note that if R is crisp, the Mamdani inference with the fuzzy-mean defuzzification
(3.30) is obtained.

Example 3.10 (Inference) Suppose, that for the rule base of Example 3.8, the fol-
lowing membership degrees are obtained:

µLow(x1) = 0.9, µHigh(x1) = 0.2, µLow(x2) = 0.6, µHigh(x2) = 0.3,

FUZZY SYSTEMS 47

for some given inputs x1 and x2. To infer y, first apply eq. (3.50) to obtain β. Using
the product t-norm, the following values are obtained:

β1 = µLow(x1) · µLow(x2) = 0.54 β2 = µLow(x1) · µHigh(x2) = 0.27
β3 = µHigh(x1) · µLow(x2) = 0.12 β4 = µHigh(x1) · µHigh(x2) = 0.06

Hence, the degree of fulfillment is: β = [0.54, 0.27, 0.12, 0.06]. Now we apply
eq. (3.51) to obtain the output fuzzy set ω:

ω = β ◦R = [0.54, 0.27, 0.12, 0.06] ◦



0.9 0.2 0.0
0.0 1.0 0.0
0.0 0.8 0.2
0.0 0.1 0.8


 = [0.54, 0.27, 0.12] .

(3.55)
Finally, by using eq. (3.52), the defuzzified output y is computed:

y =
0.54 cog(Slow) + 0.27 cog(Moderate) + 0.12 cog(Fast)

0.54 + 0.27 + 0.12
. (3.56)

✷

The main advantage of the relational model is that the input–output mapping can
be fine-tuned without changing the consequent fuzzy sets (linguistic terms). In the
linguistic model, the outcomes of the individual rules are restricted to the grid given
by the centroids of the output fuzzy sets, which is not the case in the relational model,
see Figure 3.16.

For this additional degree of freedom, one pays by having more free parameters
(elements in the relation). If no constraints are imposed on these parameters, sev-
eral elements in a row of R can be nonzero, which may hamper the interpretation
of the model. Furthermore, the shape of the output fuzzy sets has no influence on
the resulting defuzzified value, since only centroids of these sets are considered in
defuzzification.

It is easy to verify that if the antecedent fuzzy sets form a partition and the bounded-
sum–product composition is used, a relational model can be computationally replaced
by an equivalent model with singleton consequents (Voisin, et al., 1995).

Example 3.11 (Relational and Singleton Model) Fuzzy relational model:

If x is A1 then y is B1 (0.8), y is B2 (0.1), y is B3 (0.0) .
If x is A2 then y is B1 (0.6), y is B2 (0.2), y is B3 (0.0) .
If x is A3 then y is B1 (0.5), y is B2 (0.7), y is B3 (0.0) .
If x is A4 then y is B1 (0.0), y is B2 (0.1), y is B3 (0.9),

can be replaced by the following singleton model:

If x is A1 then y = (0.8b1 + 0.1b2)/(0.8 + 0.1),

48 FUZZY AND NEURAL CONTROL

x

x

A1 A2 A3 A4 A5

Input linguistic terms

B
1

B
2

B
3

B
4

O
ut

pu
t l

in
gu

is
ti

c
te

rm
s

y

y = f (x)

Figure 3.16. A possible input–output mapping of a fuzzy relational model.

If x is A2 then y = (0.6b1 + 0.2b2)/(0.6 + 0.2),
If x is A3 then y = (0.5b1 + 0.7b2)/(0.5 + 0.7),
If x is A4 then y = (0.1b2 + 0.9b3)/(0.1 + 0.9),

where bj are defuzzified values of the fuzzy sets Bj , bj = cog(Bj).
✷

If also the consequent membership functions form a partition, a singleton model can
conversely be expressed as an equivalent relational model by computing the member-
ship degrees of the singletons in the consequent fuzzy sets B j . These membership
degrees then become the elements of the fuzzy relation:

R =



µB1(b1) µB2(b1) . . . µBM (b1)
µB1(b2) µB2(b2) . . . µBM (b2)

...
...

...
...

µB1(bK) µB2(bK) . . . µBM (bK)


 . (3.59)

Clearly, the linguistic model is a special case of the fuzzy relational model, with R
being a crisp relation constrained such that only one nonzero element is allowed in
each row of R (each rule has only one consequent).

3.5 Takagi–Sugeno Model

The Takagi–Sugeno (TS) fuzzy model (Takagi and Sugeno, 1985), on the other hand,
uses crisp functions in the consequents. Hence, it can be seen as a combination of

FUZZY SYSTEMS 49

linguistic and mathematical regression modeling in the sense that the antecedents de-
scribe fuzzy regions in the input space in which the consequent functions are valid.
The TS rules have the following form:

Ri: If x is Ai then yi = fi(x), i = 1, 2, . . . ,K . (3.60)

Contrary to the linguistic model, the input x is a crisp variable (linguistic inputs are in
principle possible, but would require the use of the extension principle (Zadeh, 1975)
to compute the fuzzy value of yi). The functions fi are typically of the same structure,
only the parameters in each rule are different. Generally, f i is a vector-valued function,
but for the ease of notation we will consider a scalar f i in the sequel. A simple and
practically useful parameterization is the affine (linear in parameters) form, yielding
the rules:

Ri: If x is Ai then yi = aTi x+ bi, i = 1, 2, . . . ,K, (3.61)

where ai is a parameter vector and bi is a scalar offset. This model is called an affine
TS model. Note that if ai = 0 for each i, the singleton model (3.42) is obtained.

3.5.1 Inference in the TS Model

The inference formula of the TS model is a straightforward extension of the singleton
model inference (3.43):

y =

K∑
i=1

βiyi

K∑
i=1

βi

=

K∑
i=1

βi(aTi x+ bi)

K∑
i=1

βi

. (3.62)

When the antecedent fuzzy sets define distinct but overlapping regions in the an-
tecedent space and the parameters ai and bi correspond to a local linearization of a
nonlinear function, the TS model can be regarded as a smoothed piece-wise approxi-
mation of that function, see Figure 3.17.

3.5.2 TS Model as a Quasi-Linear System

The affine TS model can be regarded as a quasi-linear system (i.e., a linear system with
input-dependent parameters). To see this, denote the normalized degree of fulfillment
by

γi(x) =
βi(x)

K∑
j=1

βj(x)
. (3.63)

Here we write βi(x) explicitly as a function x to stress that the TS model is a quasi-
linear model of the following form:

y =

(
K∑
i=1

γi(x)aTi

)
x+

K∑
i=1

γi(x)bi = aT (x)x + b(x) . (3.64)

50 FUZZY AND NEURAL CONTROL

y

x

y =
 a 1

x +
 b 1

y = a
2 x + b

2

y = a3x + b3

MediumSmall

x

Large
µ

Figure 3.17. Takagi–Sugeno fuzzy model as a smoothed piece-wise linear approximation

of a nonlinear function.

The ‘parameters’ a(x), b(x) are convex linear combinations of the consequent param-
eters ai and bi, i.e.:

a(x) =
K∑
i=1

γi(x)ai, b(x) =
K∑
i=1

γi(x)bi . (3.65)

In this sense, a TS model can be regarded as a mapping from the antecedent (input)
space to a convex region (polytope) in the space of the parameters of a quasi-linear
system, as schematically depicted in Figure 3.18.

Small

Sm
al

l

Medium

M
ed

iu
m

Big

B
ig

x1

a1x2

a2

Antecedent space

Parameter space

Polytope

Rules

Parameters of a consequent
function: y = a1x1 + a2x2

Figure 3.18. A TS model with affine consequents can be regarded as a mapping from the

antecedent space to the space of the consequent parameters.

This property facilitates the analysis of TS models in a framework similar to that
of linear systems. Methods have been developed to design controllers with desired

FUZZY SYSTEMS 51

closed loop characteristics (Filev, 1996) and to analyze their stability (Tanaka and
Sugeno, 1992; Zhao, 1995; Tanaka, et al., 1996).

3.6 Dynamic Fuzzy Systems

In system modeling and identification one often deals with the approximation of dy-
namic systems. Time-invariant dynamic systems are in general modeled as static func-
tions, by using the concept of the system’s state. Given the state of a system and given
its input, we can determine what the next state will be. In the discrete-time setting we
can write

x(k + 1) = f(x(k),u(k)), (3.66)

where x(k) and u(k) are the state and the input at time k, respectively, and f is a static
function, called the state-transition function. Fuzzy models of different types can be
used to approximate the state-transition function. As the state of a process is often not
measured, input-output modeling is often applied. The most common is the NARX
(Nonlinear AutoRegressive with eXogenous input) model:

y(k+1) = f(y(k), y(k−1), . . . , y(k−ny+1), u(k), u(k−1), . . . , u(k−nu+1)) . (3.67)

Here y(k), . . . , y(k − ny + 1) and u(k), . . . , u(k − nu + 1) denote the past model
outputs and inputs respectively and ny , nu are integers related to the order of the
dynamic system. For example, a singleton fuzzy model of a dynamic system may
consist of rules of the following form:

Ri: If y(k) is Ai1 and y(k − 1) is Ai2 and . . . y(k − n+ 1) is Ain

and u(k) is Bi1 and u(k − 1) is Bi2 and . . . u(k −m+ 1) is Bim

then y(k + 1) is ci . (3.68)

In this sense, we can say that the dynamic behavior is taken care of by external dy-
namic filters added to the fuzzy system, see Figure 3.19. In (3.68), the input dynamic
filter is a simple generator of the lagged inputs and outputs, and no output filter is
used.

Knowledge Base

Data Base

Input

Dynamic
filter

Numerical
data

Output

Numerical
data

Fuzzifier
Fuzzy

Set
Fuzzy

Set

Fuzzy Inference Engine

Dynamic
filter

Defuzzifier

Rule Base

Figure 3.19. A generic fuzzy system with fuzzification and defuzzification units and ex-

ternal dynamic filters.

52 FUZZY AND NEURAL CONTROL

A dynamic TS model is a sort of parameter-scheduling system. It has in its conse-
quents linear ARX models whose parameters are generally different in each rule:

Ri : If y(k) is Ai1 and y(k − 1) is Ai2 and . . . y(k − ny + 1) is Ainy

and u(k) is Bi1 and u(k − 1) is Bi2 and . . . u(k − nu + 1) is Binu

then y(k + 1) =
ny∑
j=1

aijy(k − j + 1) +
nu∑
j=1

biju(k − j + 1) + ci . (3.70)

Besides these frequently used input–output systems, fuzzy models can also represent
nonlinear systems in the state-space form:

x(k + 1) = g(x(k),u(k))
y(k) = h(x(k))

where state transition function g maps the current state x(k) and the input u(k) into a
new state x(k + 1). The output function h maps the state x(k) into the output y(k).
An example of a rule-based representation of a state-space model is the following
Takagi–Sugeno model:

If x(k) is Ai and u(k) is Bi then
{
x(k + 1) = Aix(k) +Biu(k) + ai
y(k) = Cix(k) + ci

(3.73)

for i = 1, . . . ,K . HereAi, Bi, Ci, ai and ci are matrices and vectors of appropriate
dimensions, associated with the ith rule.

The state-space representation is useful when the prior knowledge allows us to
model the system from first principles such as mass and energy balances. In literature,
this approach is called white-box state-space modeling (Ljung, 1987). If the state is
directly measured on the system, or can be reconstructed from other measured vari-
ables, both g and h can be approximated by using nonlinear regression techniques.
An advantage of the state-space modeling approach is that the structure of the model
is related to the structure of the real system, and, consequently, also the model pa-
rameters are often physically relevant. This is usually not the case in the input-output
models. In addition, the dimension of the regression problem in state-space modeling
is often smaller than with input–output models, since the state of the system can be
represented with a vector of a lower dimension than the regression (3.67).

Since fuzzy models are able to approximate any smooth function to any degree of
accuracy, (Wang, 1992) models of type (3.68), (3.70) and (3.73) can approximate any
observable and controllable modes of a large class of discrete-time nonlinear systems
(Leonaritis and Billings, 1985).

3.7 Summary and Concluding Remarks

This chapter has reviewed four different types of rule-based fuzzy models: linguistic
(Mamdani-type) models, fuzzy relational models, singleton and Takagi–Sugeno mod-
els. A major distinction can be made between the linguistic model, which has fuzzy
sets in both the rule antecedents and consequents of the rules, and the TS model, where

FUZZY SYSTEMS 53

the consequents are (crisp) functions of the input variables. Fuzzy relational models
can be regarded as an extension of linguistic models, which allow for different degrees
of association between the antecedent and the consequent linguistic terms.

3.8 Problems

1. Give a definition of a linguistic variable. What is the difference between linguistic
variables and linguistic terms?

2. The minimum t-norm can be used to represent if-then rules in a similar way as
fuzzy implications. It is however not an implication function. Explain why. Give
at least one example of a function that is a proper fuzzy implication.

3. Consider a rule If x is A then y is B with fuzzy setsA = {0.1/x1, 0.4/x2, 1/x3}
and B = {0/y1, 1/y2, 0.2/y3}. Compute the fuzzy relation R that represents
the truth value of this fuzzy rule. Use first the minimum t-norm and then the
Łukasiewicz implication. Discuss the difference in the results.

4. Explain the steps of the Mamdani (max-min) inference algorithm for a linguistic
fuzzy system with one (crisp) input and one (fuzzy) output. Apply these steps to
the following rule base:

1) If x is A1 then y is B1,

2) If x is A2 then y is B2,

with

A1 = {0.1/1, 0.6/2, 1/3}, A2 = {0.9/1, 0.4/2, 0/3},
B1 = {1/4, 1/5, 0.3/6}, B2 = {0.1/4, 0.9/5, 1/6},

State the inference in terms of equations. Compute the output fuzzy set B ′ for
x = 2.

5. Define the center-of-gravity and the mean-of-maxima defuzzification methods. Ap-
ply them to the fuzzy set B = {0.1/1, 0.2/2, 0.7/3, 1/4} and compare the
numerical results.

6. Consider the following Takagi–Sugeno rules:

1) If x is A1 and y is B1 then z1 = x+ y + 1
2) If x is A2 and y is B1 then z2 = 2x+ y + 1
3) If x is A1 and y is B2 then z3 = 2x+ 3y
4) If x is A2 and y is B2 then z4 = 2x+ 5

Give the formula to compute the output z and compute the value of z for x = 1,
y = 4 and the antecedent fuzzy sets

A1 = {0.1/1, 0.6/2, 1/3}, A2 = {0.9/1, 0.4/2, 0/3},
B1 = {1/4, 1/5, 0.3/6}, B2 = {0.1/4, 0.9/5, 1/6} .

54 FUZZY AND NEURAL CONTROL

7. Consider an unknown dynamic system y(k+1) = f
(
y(k), u(k)

)
. Give an example

of a singleton fuzzy model that can be used to approximate this system. What are
the free parameters in this model?

4 FUZZY CLUSTERING

Clustering techniques are mostly unsupervised methods that can be used to organize
data into groups based on similarities among the individual data items. Most clustering
algorithms do not rely on assumptions common to conventional statistical methods,
such as the underlying statistical distribution of data, and therefore they are useful in
situations where little prior knowledge exists. The potential of clustering algorithms
to reveal the underlying structures in data can be exploited in a wide variety of appli-
cations, including classification, image processing, pattern recognition, modeling and
identification.

This chapter presents an overview of fuzzy clustering algorithms based on the c-
means functional. Readers interested in a deeper and more detailed treatment of fuzzy
clustering may refer to the classical monographs by Duda and Hart (1973), Bezdek
(1981) and Jain and Dubes (1988). A more recent overview of different clustering
algorithms can be found in (Bezdek and Pal, 1992).

4.1 Basic Notions

The basic notions of data, clusters and cluster prototypes are established and a broad
overview of different clustering approaches is given.

4.1.1 The Data Set

Clustering techniques can be applied to data that are quantitative (numerical), quali-
tative (categorical), or a mixture of both. In this chapter, the clustering of quantita-

55

56 FUZZY AND NEURAL CONTROL

tive data is considered. The data are typically observations of some physical process.
Each observation consists of n measured variables, grouped into an n-dimensional
column vector zk = [z1k, . . . , znk]T , zk ∈ R

n. A set ofN observations is denoted by
Z = {zk | k = 1, 2, . . . , N}, and is represented as an n×N matrix:

Z =



z11 z12 · · · z1N
z21 z22 · · · z2N

...
...

...
...

zn1 zn2 · · · znN


 . (4.1)

In the pattern-recognition terminology, the columns of this matrix are called patterns
or objects, the rows are called the features or attributes, and Z is called the pattern or
data matrix. The meaning of the columns and rows of Z depends on the context. In
medical diagnosis, for instance, the columns ofZmay represent patients, and the rows
are then symptoms, or laboratory measurements for these patients. When clustering
is applied to the modeling and identification of dynamic systems, the columns of Z
may contain samples of time signals, and the rows are, for instance, physical variables
observed in the system (position, pressure, temperature, etc.). In order to represent the
system’s dynamics, past values of these variables are typically included in Z as well.

4.1.2 Clusters and Prototypes

Various definitions of a cluster can be formulated, depending on the objective of clus-
tering. Generally, one may accept the view that a cluster is a group of objects that are
more similar to one another than to members of other clusters (Bezdek, 1981; Jain and
Dubes, 1988). The term “similarity” should be understood as mathematical similarity,
measured in some well-defined sense. In metric spaces, similarity is often defined by
means of a distance norm. Distance can be measured among the data vectors them-
selves, or as a distance from a data vector to some prototypical object (prototype) of
the cluster. The prototypes are usually not known beforehand, and are sought by the
clustering algorithms simultaneously with the partitioning of the data. The prototypes
may be vectors of the same dimension as the data objects, but they can also be de-
fined as “higher-level” geometrical objects, such as linear or nonlinear subspaces or
functions.

Data can reveal clusters of different geometrical shapes, sizes and densities as
demonstrated in Figure 4.1. While clusters (a) are spherical, clusters (b) to (d) can be
characterized as linear and nonlinear subspaces of the data space. The performance of
most clustering algorithms is influenced not only by the geometrical shapes and den-
sities of the individual clusters, but also by the spatial relations and distances among
the clusters. Clusters can be well-separated, continuously connected to each other, or
overlapping each other.

4.1.3 Overview of Clustering Methods

Many clustering algorithms have been introduced in the literature. Since clusters can
formally be seen as subsets of the data set, one possible classification of clustering
methods can be according to whether the subsets are fuzzy or crisp (hard).

FUZZY CLUSTERING 57

c)

a) b)

d)

Figure 4.1. Clusters of different shapes and dimensions in R
2. After (Jain and Dubes,

1988).

Hard clustering methods are based on classical set theory, and require that an object
either does or does not belong to a cluster. Hard clustering means partitioning the data
into a specified number of mutually exclusive subsets.

Fuzzy clustering methods, however, allow the objects to belong to several clusters
simultaneously, with different degrees of membership. In many situations, fuzzy clus-
tering is more natural than hard clustering. Objects on the boundaries between several
classes are not forced to fully belong to one of the classes, but rather are assigned
membership degrees between 0 and 1 indicating their partial membership. The dis-
crete nature of the hard partitioning also causes difficulties with algorithms based on
analytic functionals, since these functionals are not differentiable.

Another classification can be related to the algorithmic approach of the different
techniques (Bezdek, 1981).

Agglomerative hierarchical methods and splitting hierarchical methods form new
clusters by reallocating memberships of one point at a time, based on some suitable
measure of similarity.

With graph-theoretic methods, Z is regarded as a set of nodes. Edge weights be-
tween pairs of nodes are based on a measure of similarity between these nodes.

Clustering algorithms may use an objective function to measure the desirability of
partitions. Nonlinear optimization algorithms are used to search for local optima of
the objective function.

The remainder of this chapter focuses on fuzzy clustering with objective function.
These methods are relatively well understood, and mathematical results are available
concerning the convergence properties and cluster validity assessment.

4.2 Hard and Fuzzy Partitions

The concept of fuzzy partition is essential for cluster analysis, and consequently also
for the identification techniques that are based on fuzzy clustering. Fuzzy and possi-

58 FUZZY AND NEURAL CONTROL

bilistic partitions can be seen as a generalization of hard partition which is formulated
in terms of classical subsets.

4.2.1 Hard Partition

The objective of clustering is to partition the data setZ into c clusters (groups, classes).
For the time being, assume that c is known, based on prior knowledge, for instance.
Using classical sets, a hard partition of Z can be defined as a family of subsets
{Ai | 1 ≤ i ≤ c} ⊂ P(Z)1 with the following properties (Bezdek, 1981):

c⋃
i=1

Ai = Z, (4.2a)

Ai ∩Aj = ∅, 1 ≤ i �= j ≤ c, (4.2b)

∅ ⊂ Ai ⊂ Z, 1 ≤ i ≤ c . (4.2c)

Equation (4.2a) means that the union subsets A i contains all the data. The subsets
must be disjoint, as stated by (4.2b), and none of them is empty nor contains all the
data in Z (4.2c). In terms of membership (characteristic) functions, a partition can be
conveniently represented by the partition matrix U = [µ ik]c×N . The ith row of this
matrix contains values of the membership function µ i of the ith subset Ai of Z. It
follows from (4.2) that the elements ofU must satisfy the following conditions:

µik ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.3a)
c∑

i=1

µik = 1, 1 ≤ k ≤ N, (4.3b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.3c)

The space of all possible hard partition matrices for Z, called the hard partitioning
space (Bezdek, 1981), is thus defined by

Mhc =

{
U ∈ R

c×N
∣∣∣µik ∈ {0, 1}, ∀i, k;

c∑
i=1

µik = 1, ∀k; 0 <
N∑
k=1

µik < N, ∀i
}
.

Example 4.1 Hard partition.Let us illustrate the concept of hard partition by a sim-
ple example. Consider a data set Z = {z1, z2, . . . , z10}, shown in Figure 4.2.

A visual inspection of this data may suggest two well-separated clusters (data points
z1 to z4 and z7 to z10 respectively), one point in between the two clusters (z5), and an
“outlier” z6. One particular partitionU ∈Mhc of the data into two subsets (out of the

1P(Z) is the power set of Z .

FUZZY CLUSTERING 59

z1

z3

z4 z5

z6

z7

z8

z10

z9

z2

Figure 4.2. A data set in R
2.

210 possible hard partitions) is

U =
[
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

]
.

The first row ofU defines point-wise the characteristic function for the first subset of
Z,A1, and the second row defines the characteristic function of the second subset ofZ,
A2. Each sample must be assigned exclusively to one subset (cluster) of the partition.
In this case, both the boundary point z5 and the outlier z6 have been assigned to A1.
It is clear that a hard partitioning may not give a realistic picture of the underlying
data. Boundary data points may represent patterns with a mixture of properties of data
in A1 and A2, and therefore cannot be fully assigned to either of these classes, or do
they constitute a separate class. This shortcoming can be alleviated by using fuzzy and
possibilistic partitions as shown in the following sections.

✷

4.2.2 Fuzzy Partition

Generalization of the hard partition to the fuzzy case follows directly by allowing µ ik

to attain real values in [0, 1]. Conditions for a fuzzy partition matrix, analogous to
(4.3) are given by (Ruspini, 1970):

µik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.4a)
c∑

i=1

µik = 1, 1 ≤ k ≤ N, (4.4b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.4c)

The ith row of the fuzzy partition matrix U contains values of the ith membership
function of the fuzzy subset Ai of Z. Equation (4.4b) constrains the sum of each
column to 1, and thus the total membership of each zk in Z equals one. The fuzzy

60 FUZZY AND NEURAL CONTROL

partitioning space for Z is the set

Mfc =

{
U ∈ R

c×N
∣∣∣µik ∈ [0, 1], ∀i, k;

c∑
i=1

µik = 1, ∀k; 0 <
N∑
k=1

µik < N, ∀i
}
.

Example 4.2 Fuzzy partition.Consider the data set from Example 4.1. One of the
infinitely many fuzzy partitions in Z is:

U =
[
1.0 1.0 1.0 0.8 0.5 0.5 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.5 0.5 0.8 1.0 1.0 1.0

]
.

The boundary point z5 has now a membership degree of 0.5 in both classes, which
correctly reflects its position in the middle between the two clusters. Note, however,
that the outlier z6 has the same pair of membership degrees, even though it is further
from the two clusters, and thus can be considered less typical of both A 1 and A2 than
z5. This is because condition (4.4b) requires that the sum of memberships of each
point equals one. It can be, of course, argued that three clusters are more appropriate
in this example than two. In general, however, it is difficult to detect outliers and
assign them to extra clusters. The use of possibilistic partition, presented in the next
section, overcomes this drawback of fuzzy partitions.

✷

4.2.3 Possibilistic Partition

A more general form of fuzzy partition, the possibilistic partition, 2 can be obtained
by relaxing the constraint (4.4b). This constraint, however, cannot be completely re-
moved, in order to ensure that each point is assigned to at least one of the fuzzy
subsets with a membership greater than zero. Equation (4.4b) can be replaced by a
less restrictive constraint ∀k, ∃i, µik > 0. The conditions for a possibilistic fuzzy
partition matrix are:

µik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.5a)

∃i, µik > 0, ∀k, (4.5b)

0 <
N∑
k=1

µik < N, 1 ≤ i ≤ c . (4.5c)

Analogously to the previous cases, the possibilistic partitioning space for Z is the set

Mpc =

{
U ∈ R

c×N
∣∣∣µik ∈ [0, 1], ∀i, k; ∀k, ∃i, µik > 0; 0 <

N∑
k=1

µik < N, ∀i
}
.

2The term “possibilistic” (partition, clustering, etc.) has been introduced in (Krishnapuram and Keller,
1993). In the literature, the terms “constrained fuzzy partition” and “unconstrained fuzzy partition” are also
used to denote partitions (4.4) and (4.5), respectively.

FUZZY CLUSTERING 61

Example 4.3 Possibilistic partition. An example of a possibilistic partition matrix
for our data set is:

U =
[
1.0 1.0 1.0 1.0 0.5 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.2 1.0 1.0 1.0 1.0

]
.

As the sum of elements in each column of U ∈ Mfc is no longer constrained, the
outlier has a membership of 0.2 in both clusters, which is lower than the membership
of the boundary point z5, reflecting the fact that this point is less typical for the two
clusters than z5.

✷

4.3 Fuzzy c-Means Clustering

Most analytical fuzzy clustering algorithms (and also all the algorithms presented in
this chapter) are based on optimization of the basic c-means objective function, or
some modification of it. Hence we start our discussion with presenting the fuzzy c-
means functional.

4.3.1 The Fuzzy c-Means Functional

A large family of fuzzy clustering algorithms is based on minimization of the fuzzy
c-means functional formulated as (Dunn, 1974; Bezdek, 1981):

J(Z;U,V) =
c∑

i=1

N∑
k=1

(µik)m‖zk − vi‖2A (4.6a)

where

U = [µik] ∈Mfc (4.6b)

is a fuzzy partition matrix of Z,

V = [v1,v2, . . . ,vc], vi ∈ R
n (4.6c)

is a vector of cluster prototypes (centers), which have to be determined,

D2ikA = ‖zk − vi‖2A = (zk − vi)TA(zk − vi) (4.6d)

is a squared inner-product distance norm, and

m ∈ [1,∞) (4.6e)

is a parameter which determines the fuzziness of the resulting clusters. The value of
the cost function (4.6a) can be seen as a measure of the total variance of z k from vi.

62 FUZZY AND NEURAL CONTROL

4.3.2 The Fuzzy c-Means Algorithm

The minimization of the c-means functional (4.6a) represents a nonlinear optimiza-
tion problem that can be solved by using a variety of methods, including iterative
minimization, simulated annealing or genetic algorithms. The most popular method
is a simple Picard iteration through the first-order conditions for stationary points of
(4.6a), known as the fuzzy c-means (FCM) algorithm.

The stationary points of the objective function (4.6a) can be found by adjoining the
constraint (4.4b) to J by means of Lagrange multipliers:

J̄(Z;U,V,λ) =
c∑

i=1

N∑
k=1

(µik)mD2ikA +
N∑
k=1

λk

[
c∑

i=1

µik − 1

]
, (4.7)

and by setting the gradients of J̄ with respect toU,V and λ to zero. It can be shown
that ifD2ikA > 0, ∀i, k andm > 1, then (U,V) ∈Mfc ×R

n×c may minimize (4.6a)
only if

µik =
1

c∑
j=1

(DikA/DjkA)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (4.8a)

and

vi =

N∑
k=1

(µik)mzk

N∑
k=1

(µik)m
; 1 ≤ i ≤ c . (4.8b)

This solution also satisfies the remaining constraints (4.4a) and (4.4c). Equations (4.8)
are first-order necessary conditions for stationary points of the functional (4.6a). The
FCM (Algorithm 4.1) iterates through (4.8a) and (4.8b). Sufficiency of (4.8) and the
convergence of the FCM algorithm is proven in (Bezdek, 1980). Note that (4.8b) gives
vi as the weighted mean of the data items that belong to a cluster, where the weights
are the membership degrees. That is why the algorithm is called “c-means”.

Some remarks should be made:

1. The purpose of the “if . . . otherwise” branch at Step 3 is to take care of a singularity
that occurs in FCM whenDisA = 0 for some zk and one or more cluster prototypes
vs, s ∈ S ⊂ {1, 2, . . . , c}. In this case, the membership degree in (4.8a) cannot be
computed. When this happens, 0 is assigned to each µ ik, i ∈ S̄ and the membership
is distributed arbitrarily among µsj subject to the constraint

∑
s∈S µsj = 1, ∀k.

2. The FCM algorithm converges to a local minimum of the c-means functional (4.6a).
Hence, different initializations may lead to different results.

3. While steps 1 and 2 are straightforward, step 3 is a bit more complicated, as a
singularity in FCM occurs when DikA = 0 for some zk and one or more vi.
When this happens (rare in practice), zero membership is assigned to the clusters

FUZZY CLUSTERING 63

Algorithm 4.1 Fuzzy c-means (FCM).

Given the data set Z, choose the number of clusters 1 < c < N , the weighting ex-
ponent m > 1, the termination tolerance ε > 0 and the norm-inducing matrix A.
Initialize the partition matrix randomly, such thatU (0) ∈Mfc.

Repeat for l = 1, 2, . . .

Step 1: Compute the cluster prototypes (means):

v(l)i =

N∑
k=1

(
µ
(l−1)
ik

)m
zk

N∑
k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 2: Compute the distances:

D2ikA = (zk − v(l)i)TA(zk − v(l)i), 1 ≤ i ≤ c, 1 ≤ k ≤ N .

Step 3: Update the partition matrix:
for 1 ≤ k ≤ N

ifDikA > 0 for all i = 1, 2, . . . , c

µ
(l)
ik =

1
c∑

j=1

(DikA/DjkA)2/(m−1)
,

otherwise

µ
(l)
ik = 0 if DikA > 0, and µ(l)ik ∈ [0, 1] with

c∑
i=1

µ
(l)
ik = 1 .

until ‖U(l) −U(l−1)‖ < ε.

for which DikA > 0 and the memberships are distributed arbitrarily among the
clusters for whichDikA = 0, such that the constraint in (4.4b) is satisfied.

4. The alternating optimization scheme used by FCM loops through the estimates
U(l−1) → V(l) → U(l) and terminates as soon as ‖U(l) − U(l−1)‖ < ε. Al-
ternatively, the algorithm can be initialized with V (0), loop through V(l−1) →
U(l) → V(l), and terminate on ‖V(l) −V(l−1)‖ < ε. The error norm in the ter-
mination criterion is usually chosen as maxik(|µ(l)ik − µ(l−1)ik |). Different results

64 FUZZY AND NEURAL CONTROL

may be obtained with the same values of ε, since the termination criterion used in
Algorithm 4.1 requires that more parameters become close to one another.

4.3.3 Parameters of the FCM Algorithm

Before using the FCM algorithm, the following parameters must be specified: the
number of clusters, c, the ‘fuzziness’ exponent, m, the termination tolerance, ε, and
the norm-inducing matrix, A. Moreover, the fuzzy partition matrix, U, must be ini-
tialized. The choices for these parameters are now described one by one.

Number of Clusters. The number of clusters c is the most important parameter,
in the sense that the remaining parameters have less influence on the resulting partition.
When clustering real data without any a priori information about the structures in the
data, one usually has to make assumptions about the number of underlying clusters.
The chosen clustering algorithm then searches for c clusters, regardless of whether
they are really present in the data or not. Two main approaches to determining the
appropriate number of clusters in data can be distinguished:

1. Validity measures. Validity measures are scalar indices that assess the goodness
of the obtained partition. Clustering algorithms generally aim at locating well-
separated and compact clusters. When the number of clusters is chosen equal to
the number of groups that actually exist in the data, it can be expected that the clus-
tering algorithm will identify them correctly. When this is not the case, misclassi-
fications appear, and the clusters are not likely to be well separated and compact.
Hence, most cluster validity measures are designed to quantify the separation and
the compactness of the clusters. However, as Bezdek (1981) points out, the concept
of cluster validity is open to interpretation and can be formulated in different ways.
Consequently, many validity measures have been introduced in the literature, see
(Bezdek, 1981; Gath and Geva, 1989; Pal and Bezdek, 1995) among others. For
the FCM algorithm, the Xie-Beni index (Xie and Beni, 1991)

χ(Z;U,V) =

c∑
i=1

N∑
k=1

µmik ‖ zk − vi ‖2

c ·min
i�=j

(
‖ vi − vj ‖2

) (4.9)

has been found to perform well in practice. This index can be interpreted as the
ratio of the total within-group variance and the separation of the cluster centers.
The best partition minimizes the value of χ(Z;U,V).

2. Iterative merging or insertion of clusters. The basic idea of cluster merging is
to start with a sufficiently large number of clusters, and successively reduce this
number by merging clusters that are similar (compatible) with respect to some well-
defined criteria (Krishnapuram and Freg, 1992; Kaymak and Babuška, 1995). One
can also adopt an opposite approach, i.e., start with a small number of clusters and
iteratively insert clusters in the regions where the data points have low degree of
membership in the existing clusters (Gath and Geva, 1989).

FUZZY CLUSTERING 65

Fuzziness Parameter. The weighting exponentm is a rather important param-
eter as well, because it significantly influences the fuzziness of the resulting partition.
As m approaches one from above, the partition becomes hard (µ ik ∈ {0, 1}) and vi
are ordinary means of the clusters. As m → ∞, the partition becomes completely
fuzzy (µik = 1/c) and the cluster means are all equal to the mean of Z. These limit
properties of (4.6) are independent of the optimization method used (Pal and Bezdek,
1995). Usually,m = 2 is initially chosen.

Termination Criterion. The FCM algorithm stops iterating when the norm of
the difference between U in two successive iterations is smaller than the termination
parameter ε. For the maximum norm max ik(|µ(l)ik − µ(l−1)ik |), the usual choice is ε =
0.001, even though ε = 0.01 works well in most cases, while drastically reducing the
computing times.

Norm-Inducing Matrix. The shape of the clusters is determined by the choice
of the matrix A in the distance measure (4.6d). A common choice is A = I, which
gives the standard Euclidean norm:

D2ik = (zk − vi)T (zk − vi). (4.10)

Another choice forA is a diagonal matrix that accounts for different variances in the
directions of the coordinate axes of Z:

A =




(1/σ1)2 0 · · · 0
0 (1/σ2)2 · · · 0
...

...
. . .

...
0 0 · · · (1/σn)2


 . (4.11)

This matrix induces a diagonal norm on R
n. Finally, A can be defined as the inverse

of the covariance matrix of Z: A = R−1, with

R =
1
N

N∑
k=1

(zk − z̄)(zk − z̄)T . (4.12)

Here z̄ denotes the mean of the data. In this case, A induces the Mahalanobis norm
on R

n.
The norm influences the clustering criterion by changing the measure of dissimilar-

ity. The Euclidean norm induces hyperspherical clusters (surfaces of constant mem-
bership are hyperspheres). Both the diagonal and the Mahalanobis norm generate
hyperellipsoidal clusters. With the diagonal norm, the axes of the hyperellipsoids are
parallel to the coordinate axes, while with the Mahalanobis norm the orientation of the
hyperellipsoid is arbitrary, as shown in Figure 4.3.

A common limitation of clustering algorithms based on a fixed distance norm is
that such a norm forces the objective function to prefer clusters of a certain shape even
if they are not present in the data. This is demonstrated by the following example.

66 FUZZY AND NEURAL CONTROL

+

Diagonal normEuclidean norm

+ +

Mahalonobis norm

Figure 4.3. Different distance norms used in fuzzy clustering.

Example 4.4 Fuzzy c-means clustering. Consider a synthetic data set in R
2, which

contains two well-separated clusters of different shapes, as depicted in Figure 4.4. The
samples in both clusters are drawn from the normal distribution. The standard devia-
tion for the upper cluster is 0.2 for both axes, whereas in the lower cluster it is 0.2 for
the horizontal axis and 0.05 for the vertical axis. The FCM algorithm was applied to
this data set. The norm-inducing matrix was set toA = I for both clusters, the weight-
ing exponent to m = 2, and the termination criterion to ε = 0.01. The algorithm was
initialized with a random partition matrix and converged after 4 iterations. From the
membership level curves in Figure 4.4, one can see that the FCM algorithm imposes a
circular shape on both clusters, even though the lower cluster is rather elongated.

−1 −0.5 0 0.5 1

 1

 0.5

 0

−0.5

 −1

Figure 4.4. The fuzzy c-means algorithm imposes a spherical shape on the clusters, re-

gardless of the actual data distribution. The dots represent the data points, ‘+’ are the

cluster means. Also shown are level curves of the clusters. Dark shading corresponds to

membership degrees around 0.5.

Note that it is of no help to use another A, since the two clusters have different
shapes. Generally, different matrices Ai are required, but there is no guideline as

FUZZY CLUSTERING 67

to how to choose them a priori. In Section 4.4, we will see that these matrices can
be adapted by using estimates of the data covariance. A partition obtained with the
Gustafson–Kessel algorithm, which uses such an adaptive distance norm, is presented
in Example 4.5.

✷

Initial Partition Matrix. The partition matrix is usually initialized at random,
such that U ∈ Mfc. A simple approach to obtain such U is to initialize the cluster
centers vi at random and compute the corresponding U by (4.8a) (i.e., by using the
third step of the FCM algorithm).

4.3.4 Extensions of the Fuzzy c-Means Algorithm

There are several well-known extensions of the basic c-means algorithm:

Algorithms using an adaptive distance measure, such as the Gustafson–Kessel algo-
rithm (Gustafson and Kessel, 1979) and the fuzzy maximum likelihood estimation
algorithm (Gath and Geva, 1989).

Algorithms based on hyperplanar or functional prototypes, or prototypes defined by
functions. They include the fuzzy c-varieties (Bezdek, 1981), fuzzy c-elliptotypes
(Bezdek, et al., 1981), and fuzzy regression models (Hathaway and Bezdek, 1993).

Algorithms that search for possibilistic partitions in the data, i.e., partitions where
the constraint (4.4b) is relaxed.

In the following sections we will focus on the Gustafson–Kessel algorithm.

4.4 Gustafson–Kessel Algorithm

Gustafson and Kessel (Gustafson and Kessel, 1979) extended the standard fuzzy c-
means algorithm by employing an adaptive distance norm, in order to detect clusters
of different geometrical shapes in one data set. Each cluster has its own norm-inducing
matrixAi, which yields the following inner-product norm:

D2ikAi
= (zk − vi)TAi(zk − vi) . (4.13)

The matrices Ai are used as optimization variables in the c-means functional, thus
allowing each cluster to adapt the distance norm to the local topological structure of
the data. The objective functional of the GK algorithm is defined by:

J(Z;U,V, {Ai}) =
c∑

i=1

N∑
k=1

(µik)mD2ikAi
(4.14)

This objective function cannot be directly minimized with respect to A i, since it is
linear in Ai. To obtain a feasible solution,Ai must be constrained in some way. The
usual way of accomplishing this is to constrain the determinant ofA i:

|Ai| = ρi, ρi > 0, ∀i . (4.15)

68 FUZZY AND NEURAL CONTROL

Allowing the matrix Ai to vary with its determinant fixed corresponds to optimiz-
ing the cluster’s shape while its volume remains constant. By using the Lagrange-
multiplier method, the following expression forA i is obtained (Gustafson and Kessel,
1979):

Ai = [ρi det(Fi)]1/nF−1
i , (4.16)

where Fi is the fuzzy covariance matrix of the ith cluster given by

Fi =

N∑
k=1

(µik)m(zk − vi)(zk − vi)T

N∑
k=1

(µik)m
. (4.17)

Note that the substitution of equations (4.16) and (4.17) into (4.13) gives a generalized
squared Mahalanobis distance norm, where the covariance is weighted by the mem-
bership degrees in U. The GK algorithm is given in Algorithm 4.2 and its MATLAB

implementation can be found in the Appendix. The GK algorithm is computationally
more involved than FCM, since the inverse and the determinant of the cluster covari-
ance matrix must be calculated in each iteration.

FUZZY CLUSTERING 69

Algorithm 4.2 Gustafson–Kessel (GK) algorithm.

Given the data set Z, choose the number of clusters 1 < c < N , the weighting expo-
nentm > 1 and the termination tolerance ε > 0 and the cluster volumes ρ i. Initialize
the partition matrix randomly, such thatU(0) ∈Mfc.

Repeat for l = 1, 2, . . .

Step 1: Compute cluster prototypes (means):

v(l)i =

∑N
k=1

(
µ
(l−1)
ik

)m
zk∑N

k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 2: Compute the cluster covariance matrices:

Fi =

∑N
k=1

(
µ
(l−1)
ik

)m
(zk − v(l)i)(zk − v(l)i)T∑N

k=1

(
µ
(l−1)
ik

)m , 1 ≤ i ≤ c .

Step 3: Compute the distances:

D2ikAi
= (zk − v(l)i)T

[
ρi det(Fi)1/nF−1

i

]
(zk − v(l)i),

1 ≤ i ≤ c, 1 ≤ k ≤ N .

Step 4: Update the partition matrix:
for 1 ≤ k ≤ N

if DikAi > 0 for all i = 1, 2, . . . , c

µ
(l)
ik =

1∑c
j=1(DikAi/DjkAi)2/(m−1) ,

otherwise

µ
(l)
ik = 0 if DikAi > 0, and µ(l)ik ∈ [0, 1] with

c∑
i=1

µ
(l)
ik = 1 .

until ‖U(l) −U(l−1)‖ < ε.

4.4.1 Parameters of the Gustafson–Kessel Algorithm

The same parameters must be specified as for the FCM algorithm (except for the norm-
inducing matrix A, which is adapted automatically): the number of clusters c, the
‘fuzziness’ exponent m, the termination tolerance ε. Additional parameters are the

70 FUZZY AND NEURAL CONTROL

cluster volumes ρi. Without any prior knowledge, ρi is simply fixed at 1 for each
cluster. A drawback of the this setting is that due to the constraint (4.15), the GK
algorithm only can find clusters of approximately equal volumes.

4.4.2 Interpretation of the Cluster Covariance Matrices

The eigenstructure of the cluster covariance matrix F i provides information about the
shape and orientation of the cluster. The ratio of the lengths of the cluster’s hyper-
ellipsoid axes is given by the ratio of the square roots of the eigenvalues of F i. The
directions of the axes are given by the eigenvectors of F i, as shown in Figure 4.5.
The GK algorithm can be used to detect clusters along linear subspaces of the data
space. These clusters are represented by flat hyperellipsoids, which can be regarded
as hyperplanes. The eigenvector corresponding to the smallest eigenvalue determines
the normal to the hyperplane, and can be used to compute optimal local linear models
from the covariance matrix.

v

√λ1

√λ2

φ2

φ1

Figure 4.5. Equation (z− v)TF−1(x− v) = 1 defines a hyperellipsoid. The length of

the jth axis of this hyperellipsoid is given by
√
λj and its direction is spanned by φj , where

λj and φj are the jth eigenvalue and the corresponding eigenvector of F, respectively.

Example 4.5 Gustafson–Kessel algorithm. The GK algorithm was applied to the
data set from Example 4.4, using the same initial settings as the FCM algorithm. Fig-
ure 4.4 shows that the GK algorithm can adapt the distance norm to the underlying
distribution of the data. One nearly circular cluster and one elongated ellipsoidal clus-
ter are obtained. The shape of the clusters can be determined from the eigenstructure
of the resulting covariance matrices Fi. The eigenvalues of the clusters are given in
Table 4.1.

One can see that the ratios given in the last column reflect quite accurately the ratio
of the standard deviations in each data group (1 and 4 respectively). For the lower
cluster, the unitary eigenvector corresponding to λ 2, φ2 = [0.0134, 0.9999]T , can be
seen as a normal to a line representing the second cluster’s direction, and it is, indeed,
nearly parallel to the vertical axis.

✷

FUZZY CLUSTERING 71

Table 4.1. Eigenvalues of the cluster covariance matrices for clusters in Figure 4.6.

cluster λ1 λ2

√
λ1/

√
λ2

upper 0.0352 0.0310 1.0666
lower 0.0482 0.0028 4.1490

−1 −0.5 0 0.5 1

 1

 0.5

 0

−0.5

 −1

Figure 4.6. The Gustafson–Kessel algorithm can detect clusters of different shape and

orientation. The points represent the data, ‘+’ are the cluster means. Also shown are level

curves of the clusters. Dark shading corresponds to membership degrees around 0.5.

4.5 Summary and Concluding Remarks

Fuzzy clustering is a powerful unsupervised method for the analysis of data and con-
struction of models. In this chapter, an overview of the most frequently used fuzzy
clustering algorithms has been given. It has been shown that the basic c-means iter-
ative scheme can be used in combination with adaptive distance measures to reveal
clusters of various shapes. The choice of the important user-defined parameters, such
as the number of clusters and the fuzziness parameter, has been discussed.

4.6 Problems

1. State the definitions and discuss the differences of fuzzy and non-fuzzy (hard) par-
titions. Give an example of a fuzzy and non-fuzzy partition matrix. What are the
advantages of fuzzy clustering over hard clustering?

72 FUZZY AND NEURAL CONTROL

2. State mathematically at least two different distance norms used in fuzzy clustering.
Explain the differences between them.

3. Name two fuzzy clustering algorithms and explain how they differ from each other.

4. State the fuzzy c-mean functional and explain all symbols.

5. Outline the steps required in the initialization and execution of the fuzzy c-means
algorithm. What is the role and the effect of the user-defined parameters in this
algorithm?

5 CONSTRUCTION TECHNIQUES FOR

FUZZY SYSTEMS

Two common sources of information for building fuzzy systems are prior knowledge
and data (measurements). Prior knowledge tends to be of a rather approximate nature
(qualitative knowledge, heuristics), which usually originates from “experts”, i.e., pro-
cess designers, operators, etc. In this sense, fuzzy models can be regarded as simple
fuzzy expert systems (Zimmermann, 1987).

For many processes, data are available as records of the process operation or special
identification experiments can be designed to obtain the relevant data. Building fuzzy
models from data involves methods based on fuzzy logic and approximate reasoning,
but also ideas originating from the field of neural networks, data analysis and conven-
tional systems identification. The acquisition or tuning of fuzzy models by means of
data is usually termed fuzzy systems identification.

Two main approaches to the integration of knowledge and data in a fuzzy model
can be distinguished:

1. The expert knowledge expressed in a verbal form is translated into a collection of
if–then rules. In this way, a certain model structure is created. Parameters in this
structure (membership functions, consequent singletons or parameters of the TS
consequents) can be fine-tuned using input-output data. The particular tuning algo-
rithms exploit the fact that at the computational level, a fuzzy model can be seen as a
layered structure (network), similar to artificial neural networks, to which standard
learning algorithms can be applied. This approach is usually termed neuro-fuzzy
modeling.

73

74 FUZZY AND NEURAL CONTROL

2. No prior knowledge about the system under study is initially used to formulate
the rules, and a fuzzy model is constructed from data. It is expected that the
extracted rules and membership functions can provide an a posteriori interpreta-
tion of the system’s behavior. An expert can confront this information with his
own knowledge, can modify the rules, or supply new ones, and can design addi-
tional experiments in order to obtain more informative data. This approach can
be termed rule extraction. Fuzzy clustering is one of the techniques that are often
applied.(Yoshinari, et al., 1993; Nakamori and Ryoke, 1994; Babuška and Ver-
bruggen, 1997)

These techniques, of course, can be combined, depending on the particular applica-
tion. In the sequel, we describe the main steps and choices in the knowledge-based
construction of fuzzy models, and the main techniques to extract or fine-tune fuzzy
models by means of data.

5.1 Structure and Parameters

With regard to the design of fuzzy (and also other) models, two basic items are dis-
tinguished: the structure and the parameters of the model. The structure determines
the flexibility of the model in the approximation of (unknown) mappings. The param-
eters are then tuned (estimated) to fit the data at hand. A model with a rich structure
is able to approximate more complicated functions, but, at the same time, has worse
generalization properties. Good generalization means that a model fitted to one data
set will also perform well on another data set from the same process. In fuzzy models,
structure selection involves the following choices:

Input and output variables. With complex systems, it is not always clear which
variables should be used as inputs to the model. In the case of dynamic systems, one
also must estimate the order of the system. For the input-output NARX (nonlinear
autoregressive with exogenous input) model (3.67) this means to define the number
of input and output lags ny and nu, respectively. Prior knowledge, insight in the
process behavior and the purpose of modeling are the typical sources of information
for this choice. Sometimes, automatic data-driven selection can be used to compare
different choices in terms of some performance criteria.

Structure of the rules. This choice involves the model type (linguistic, singleton,
relational, Takagi-Sugeno) and the antecedent form (refer to Section 3.2.6). Impor-
tant aspects are the purpose of modeling and the type of available knowledge.

Number and type of membership functions for each variable. This choice deter-
mines the level of detail (granularity) of the model. Again, the purpose of model-
ing and the detail of available knowledge, will influence this choice. Automated,
data-driven methods can be used to add or remove membership functions from the
model.

Type of the inference mechanism, connective operators, defuzzification method.
These choices are restricted by the type of fuzzy model (Mamdani, TS). Within
these restrictions, however, some freedom remains, e.g., as to the choice of the

CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 75

conjunction operators, etc. To facilitate data-driven optimization of fuzzy models
(learning), differentiable operators (product, sum) are often preferred to the stan-
dard min and max operators.

After the structure is fixed, the performance of a fuzzy model can be fine-tuned by
adjusting its parameters. Tunable parameters of linguistic models are the parameters of
antecedent and consequent membership functions (determine their shape and position)
and the rules (determine the mapping between the antecedent and consequent fuzzy
regions). In fuzzy relational models, this mapping is encoded in the fuzzy relation.
Takagi-Sugeno models have parameters in antecedent membership functions and in
the consequent functions (a and b for the affine TS model).

5.2 Knowledge-Based Design

To design a (linguistic) fuzzy model based on available expert knowledge, the follow-
ing steps can be followed:

1. Select the input and output variables, the structure of the rules, and the inference
and defuzzification methods.

2. Decide on the number of linguistic terms for each variable and define the corre-
sponding membership functions.

3. Formulate the available knowledge in terms of fuzzy if-then rules.

4. Validate the model (typically by using data). If the model does not meet the ex-
pected performance, iterate on the above design steps.

This procedure is very similar to the heuristic design of fuzzy controllers (Section 6.3.4).
It should be noted that the success of the knowledge-based design heavily depends
on the problem at hand, and the extent and quality of the available knowledge. For
some problems, it may lead fast to useful models, while for others it may be a very
time-consuming and inefficient procedure (especially manual fine-tuning of the model
parameters). Therefore, it is useful to combine the knowledge based design with a
data-driven tuning of the model parameters. The following sections review several
methods for the adjustment of fuzzy model parameters by means of data.

5.3 Data-Driven Acquisition and Tuning of Fuzzy Models

The strong potential of fuzzy models lies in their ability to combine heuristic knowl-
edge expressed in the form of rules with information obtained from measured data.
Various estimation and optimization techniques for the parameters of fuzzy models
are presented in the sequel.

Assume that a set of N input-output data pairs {(xi, yi) | i = 1, 2, . . . , N} is
available for the construction of a fuzzy system. Recall that x i ∈ R

p are input vectors
and yi are output scalars. Denote X ∈ R

N×p a matrix having the vectors xTk in its
rows, and y ∈ R

N a vector containing the outputs yk:

X = [x1, . . . ,xN]T , y = [y1, . . . , yN]T . (5.1)

76 FUZZY AND NEURAL CONTROL

In the following sections, the estimation of consequent and antecedent parameters is
addressed.

5.3.1 Least-Squares Estimation of Consequents

The defuzzification formulas of the singleton and TS models are linear in the conse-
quent parameters, ai, bi (see equations (3.43) and (3.62), respectively). Hence, these
parameters can be estimated from the available data by least-squares techniques. De-
note Γi ∈ R

N×N the diagonal matrix having the normalized membership degree
γi(xk) as its kth diagonal element. By appending a unitary column to X, the ex-
tended matrix Xe = [X,1] is created. Further, denote X′ the matrix in R

N×K(p+1)

composed of the products of matrices Γi andXe

X′ = [Γ1Xe, Γ2Xe, . . . , ΓKXe] . (5.2)

The consequent parameters ai and bi are lumped into a single parameter vector θ ∈
R
K(p+1):

θ =
[
aT1 , b1,a

T
2 , b2, . . . ,a

T
K , bK

]T
. (5.3)

Given the dataX, y, eq. (3.62) now can be written in a matrix form, y = X ′θ + ε. It
is well known that this set of equations can be solved for the parameter θ by:

θ =
[
(X′)TX′]−1 (X′)Ty . (5.4)

This is an optimal least-squares solution which gives the minimal prediction error,
and as such is suitable for prediction models. At the same time, however, it may
bias the estimates of the consequent parameters as parameters of local models. If
an accurate estimate of local model parameters is desired, a weighted least-squares
approach applied per rule may be used:

[aTi , bi]
T =

[
XT

e ΓiXe

]−1
XT

e Γiy . (5.5)

In this case, the consequent parameters of individual rules are estimated independently
of each other, and therefore are not “biased” by the interactions of the rules. By
omitting ai for all 1 ≤ i ≤ K , and by setting Xe = 1, equations (5.4) and (5.5)
directly apply to the singleton model (3.42).

5.3.2 Template-Based Modeling

With this approach, the domains of the antecedent variables are simply partitioned
into a specified number of equally spaced and shaped membership functions. The rule
base is then established to cover all the combinations of the antecedent terms. The
consequent parameters are estimated by the least-squares method.

Example 5.1 Consider a nonlinear dynamic system described by a first-order differ-
ence equation:

y(k + 1) = y(k) + u(k)e−3|y(k)| . (5.6)

CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 77

We use a stepwise input signal to generate with this equation a set of 300 input–output
data pairs (see Figure 5.2a). Suppose that it is known that the system is of first order
and that the nonlinearity of the system is only caused by y, the following TS rule
structure can be chosen:

If y(k) is Ai then y(k + 1) = aiy(k) + biu(k) . (5.7)

Assuming that no further prior knowledge is available, seven equally spaced triangular
membership functions, A1 to A7, are defined in the domain of y(k), as shown in
Figure 5.1a.

-1.5 -1 -0.5 0 0.5 1 1.5
0

1
A2 A3A1 A4 A5 A6

y(k)

µ

A7

(a) Membership functions.

a1

b1

b2 b3

b4

b5 b6 b7

a2 a3 a4 a5 a6

-1.5 -1 -0.5 0 0.5 1 1.5
0

1

y(k)

Pa
ra

m
et

er
s

 a
i
an

d
b i

a7

(b) Estimated consequent parameters.

Figure 5.1. (a) Equidistant triangular membership functions designed for the output y(k);
(b) comparison of the true system nonlinearity (solid line) and its approximation in terms of

the estimated consequent parameters (dashed line).

The consequent parameters can be estimated by the least-squares method. Fig-
ure 5.1b shows a plot of the parameters a i, bi against the cores of the antecedent
fuzzy sets Ai. Also plotted is the linear interpolation between the parameters (dashed
line) and the true system nonlinearity (solid line). The interpolation between a i and
bi is linear, since the membership functions are piece-wise linear (triangular). One
can observe that the dependence of the consequent parameters on the antecedent vari-
able approximates quite accurately the system’s nonlinearity, which gives the model a
certain transparency. Their values, aT = [1.00, 1.00, 1.00, 0.97, 1.01, 1.00, 1.00] and
bT = [0.01, 0.05, 0.20, 0.81, 0.20, 0.05, 0.01]T , indicate the strong input nonlinearity
and the linear dynamics of (5.6). Validation of the model in simulation using a differ-
ent data set is given in Figure 5.2b.

✷

The transparent local structure of the TS model facilitates the combination of lo-
cal models obtained by parameter estimation and linearization of known mechanis-
tic (white-box) models. If measurements are available only in certain regions of the
process’ operating domain, parameters for the remaining regions can be obtained by
linearizing a (locally valid) mechanistic model of the process. Suppose that this model
is given by y = f(x). Linearization around the center c i of the ith rule’s antecedent

78 FUZZY AND NEURAL CONTROL

0 50 100 150 200 250 300

−1

0

1

y(
k)

0 50 100 150 200 250 300
−1

0

1

u(
k)

(a) Identification data.

0 50 100 150 200 250 300

−1

0

1

y(
k)

0 50 100 150 200 250 300
−1

0

1

u(
k)

(b) Validation.

Figure 5.2. Identification data set (a), and performance of the model on a validation data

set (b). Solid line: process, dashed-dotted line: model.

membership function yields the following parameters of the affine TS model (3.61):

ai =
df

dx

∣∣∣∣
x=ci

, bi = f(ci) . (5.8)

A drawback of the template-based approach is that the number of rules in the model
may grow very fast. If no knowledge is available as to which variables cause the non-
linearity of the system, all the antecedent variables are usually partitioned uniformly.
However, the complexity of the system’s behavior is typically not uniform. Some
operating regions can be well approximated by a single model, while other regions re-
quire rather fine partitioning. In order to obtain an efficient representation with as few
rules as possible, the membership functions must be placed such that they capture the
non-uniform behavior of the system. This often requires that system measurements are
also used to form the membership functions, as discussed in the following sections.

5.3.3 Neuro-Fuzzy Modeling

We have seen that parameters that are linearly related to the output can be (optimally)
estimated by least-squares methods. In order to optimize also the parameters which
are related to the output in a nonlinear way, training algorithms known from the area
of neural networks and nonlinear optimization can be employed. These techniques
exploit the fact that, at the computational level, a fuzzy model can be seen as a lay-
ered structure (network), similar to artificial neural networks. Hence, this approach is
usually referred to as neuro-fuzzy modeling. (Jang and Sun, 1993; Brown and Harris,
1994; Jang, 1993)

Figure 5.3 gives an example of a singleton fuzzy model with two rules represented
as a network. The rules are:

If x1 is A11 and x2 is A21 then y = b1.
If x1 is A12 and x2 is A22 then y = b2.

CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 79

The nodes in the first layer compute the membership degree of the inputs in the an-
tecedent fuzzy sets. The product nodes Π in the second layer represent the antecedent
conjunction operator. The normalization node N and the summation node Σ realize
the fuzzy-mean operator (3.62).

b1

A12

A22

A11

Π

Π

N

Σ

x1

A21

y

b2x2

N

Figure 5.3. An example of a singleton fuzzy model with two rules represented as a (neuro-

fuzzy) network.

By using smooth antecedent membership functions, such as the Gaussian functions:

µAij (xj ; cij , σij) = exp
(
−(xj − cij

2σij
)2
)
, (5.10)

the cij and σij parameters can be adjusted by gradient-descent learning algorithms,
such as back-propagation (see Section 7.6.3).

5.3.4 Construction Through Fuzzy Clustering

Identification methods based on fuzzy clustering originate from data analysis and pat-
tern recognition, where the concept of graded membership is used to represent the
degree to which a given object, represented as a vector of features, is similar to some
prototypical object. The degree of similarity can be calculated using a suitable dis-
tance measure. Based on the similarity, feature vectors can be clustered such that the
vectors within a cluster are as similar (close) as possible, and vectors from different
clusters are as dissimilar as possible (see Chapter 4).

Figure 5.4 gives an example of a data set in R
2 clustered into two groups with

prototypes v1 and v2, using the Euclidean distance measure. Fuzzy if-then rules can
be extracted by projecting the clusters onto the axes.

The prototypes can also be defined as linear subspaces, (Bezdek, 1981) or the clus-
ters can be ellipsoids with adaptively determined elliptical shape (Gustafson–Kessel
algorithm, see Section 4.4). From such clusters, the antecedent membership func-
tions and the consequent parameters of the Takagi–Sugeno model can be extracted
(Figure 5.5):

If x is A1 then y = a1x+ b1,

80 FUZZY AND NEURAL CONTROL

y

y
x

v1

v2

x

�

�

projection

data

A1

If is
then is

If is
then is

x A
y B

x A
y B

1

1

2

2

B
1

B
2

A2

Figure 5.4. Rule-based interpretation of fuzzy clusters.

If x is A2 then y = a2x+ b2 .

Each obtained cluster is represented by one rule in the Takagi–Sugeno model. The
membership functions for fuzzy sets A1 and A2 are generated by point-wise projec-
tion of the partition matrix onto the antecedent variables. These point-wise defined
fuzzy sets are then approximated by a suitable parametric function. The consequent
parameters for each rule are obtained as least-squares estimates (5.4) or (5.5).

x

x

A2

�
A1

data

cluster
centers

curves of
equidistance

local linear
model

v1

v2

y

Projected clusters

Figure 5.5. Hyperellipsoidal fuzzy clusters.

CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 81

Example 5.2 Consider a nonlinear function y = f(x) defined piece-wise by:

y = 0.25x, for x ≤ 3
y = (x− 3)2 + 0.75, for 3 < x ≤ 6
y = 0.25x+ 8.25, for x > 6

(5.12)

Figure 5.6a shows a plot of this function evaluated in 50 samples uniformly distributed
over x ∈ [0, 10]. Zero-mean, uniformly distributed noise with amplitude 0.1 was
added to y.

0 2 4 6 8 10
0

2

4

6

8

10

12

x

y

y = 0.25x

y = (x−3)^2 + 0.75

y = 0.25x + 8.25

(a) A nonlinear function (5.12).

0 2 4 6 8 10
0

5

10

15

x

y

y1 = 0.29x − 0.03 y2 = 2.27x − 7.21

y3 = 4.78x − 19.18

y4 = 0.26x + 8.15

0 2 4 6 8 10
0

0.5

1

x

m
em

be
rs

hi
p

gr
ad

e

C1 C2 C3 C4

(b) Cluster prototypes and the corresponding fuzzy
sets.

Figure 5.6. Approximation of a static nonlinear function using a Takagi–Sugeno (TS)

fuzzy model.

The data set {(xi, yi) | i = 1, 2, . . . , 50} was clustered into four hyperellipsoidal
clusters. The upper plot of Figure 5.6b shows the local linear models obtained through
clustering, the bottom plot shows the corresponding fuzzy partition. In terms of the
TS rules, the fuzzy model is expressed as:

X1: If x is C1 then y = 0.29x− 0.03
X2: If x is C2 then y = 2.27x− 7.21
X3: If x is C3 then y = 4.78x− 19.18
X4: If x is C4 then y = 0.26x+ 8.15

Note that the consequents of X1 and X4 almost exactly correspond to the first and
third equation (5.12). Consequents of X2 and X3 are approximate tangents to the
parabola defined by the second equation of (5.12) in the respective cluster centers.

✷

The principle of identification in the product space extends to input–output dy-
namic systems in a straightforward way. In this case, the product space is formed
by the regressors (lagged input and output data) and the regressand (the output to

82 FUZZY AND NEURAL CONTROL

be predicted). As an example, assume a second-order NARX model y(k + 1) =
f (y(k), y(k − 1), u(k), u(k − 1)). With the set of available measurements, S =
{(u(j), y(j)) | j = 1, 2, . . . , Nd}, the regressor matrix and the regressand vector are:

X =




y(2) y(1) u(2) u(1)

y(3) y(2) u(3) u(2)

...
...

...
...

y(Nd−1) y(Nd−2) u(Nd−1) y(Nd−2)


 , y =




y(3)

y(4)

...

y(Nd)


 .

In this example,N = Nd−2. The unknown nonlinear function y = f(x) represents a
nonlinear (hyper)surface in the product space: (X×Y) ⊂ R

p+1. This surface is called
the regression surface. The available data represents a sample from the regression
surface. By clustering the data, local linear models can be found that approximate the
regression surface.

Example 5.3 For low-order systems, the regression surface can be visualized. As
an example, consider a series connection of a static dead-zone/saturation nonlinearity
with a first-order linear dynamic system:

y(k + 1) = 0.6y(k) + w(k), (5.13a)

where w = f(u) is given by:

w =




0, −0.3 ≤ u ≤ 0.3,
u, 0.3 ≤ |u| ≤ 0.8,
0.8 sign(u), 0.8 ≤ |u|.

(5.13b)

The input-output description of the system using the NARX model (3.67) can be seen
as a surface in the space (U × Y × Y) ⊂ R

3, as shown in Figure 5.7a. As another
example, consider a state-space system (Chen and Billings, 1989):

x(k + 1) = x(k) + u(k),
y(k) = exp(−x(k)) . (5.14)

For this system, an input–output regression model y(k + 1) = y(k) exp(−u(k)) can
be derived. The corresponding regression surface is shown in Figure 5.7b. Note that
if the measurements of the state of this system are available, the state and output map-
pings in (5.14) can be approximated separately, yielding one two-variate linear and
one univariate nonlinear problem, which can be solved more easily.

✷

CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 83

−1 −0.5 0 0.5 1
−1

0
1

−1.5

−1

−0.5

0

0.5

1

1.5

u(k)y(k)

y(
k+

1)

(a) System with a dead zone and saturation.

0 0.5 1 1.5 2
0

1
2
0

0.5

1

1.5

2

u(k)y(k)

y(
k+

1)

(b) System y(k + 1) = y(k) exp(−u(k)).

Figure 5.7. Regression surfaces of two nonlinear dynamic systems.

Example 5.4 (Identification of an Autoregressive System) Consider a time series gen-
erated by a nonlinear autoregressive system defined by (Ikoma and Hirota, 1993):

y(k + 1) = f(y(k)) + ε(k), f(y) =




2y − 2, 0.5 ≤ y
−2y, −0.5 < y < 0.5
2y + 2, y ≤ −0.5

(5.16)

Here, ε(k) is an independent random variable of N(0, σ 2) with σ = 0.3. From the
generated data x(k) k = 0, . . . , 200, with an initial condition x(0) = 0.1, the first
100 points are used for identification and the rest for model validation. By means of
fuzzy clustering, a TS affine model with three reference fuzzy sets will be obtained. It
is assumed that the only prior knowledge is that the data was generated by a nonlinear
autoregressive system:

y(k + 1) = f
(
y(k), y(k − 1), . . . , y(k − p+ 1)

)
= f

(
x(k)

)
, (5.17)

where p is the system’s order. Here x(k) = [y(k), y(k− 1), . . . , y(k− p+1)]T is the
regression vector and y(k + 1) is the response variable. The matrix Z is constructed
from the identification data:

Z =



y(p) y(p+ 1) · · · y(N − 1)

· · · · · · · · · · · ·

y(1) y(2) · · · y(N − p)

y(p+ 1) y(p+ 2) · · · y(N)


 . (5.18)

To identify the system we need to find the order p and to approximate the function
f by a TS affine model. The order of the system and the number of clusters can be
determined by means of a cluster validity measure which attains low values for “good”
partitions (Babuška, 1998). This validity measure was calculated for a range of model

84 FUZZY AND NEURAL CONTROL

orders p = 1, 2 . . . , 5 and number of clusters c = 2, 3 . . . , 7. The results are shown
in a matrix form in Figure 5.8b. The optimum (printed in boldface) was obtained for
p = 1 and c = 3 which corresponds to (5.16). In Figure 5.8a the validity measure is
plotted as a function of c for orders p = 1, 2. Note that this function may have several
local minima, of which the first is usually chosen in order to obtain a simple model
with few rules.

0

0.1

0.2

0.3

0.4

0.5

0.6

72 3 4 5 6

p = 1

p = 2

Number of clusters

optimal model order
and number of clusters

V
al

id
ity

 m
ea

su
re

(a)

0.53 0.33 0.50 4.64 1.27
0.03 0.08 0.07 0.21 2.45
0.16 0.19 5.62 0.36 1.60
0.08 0.04 0.06 0.18 0.27
0.48 0.04 0.43 0.22 0.51
0.52 0.18 2.07 0.12 0.13

model order
v

nu
m

be
r

of
 c

lu
st

er
s 1 2 3 4 5

2
3
4
5
6
7

(b)

Figure 5.8. The validity measure for different model orders and different number of clus-

ters.

Figure 5.9a shows the projection of the obtained clusters onto the variable y(k) for
the correct system order p = 1 and the number of clusters c = 3.

A1 A2 A3

M
e
m

b
e
rs

h
ip

d
e
g
re

e

About zeroNegative Positive

y(k)
-1 2-0.5 0 0.5 1-1.5 1.5

0

1

(a) Fuzzy partition projected onto y(k).

y(k+1)=a y(k)+b2 2

y(k+1)=a y(k)+b1 1

y(k+1)=a y(k)+b3 3

�2

y(k)
-1

y(
k+

1)

+
+

+

v1

v2

v3

2-0.5 0 0.5 1-1.5 1.5

2

0

-1

-2

1

�3

�1

(b) Local linear models extracted from the clusters.

Figure 5.9. Result of fuzzy clustering for p = 1 and c = 3. Part (a) shows the mem-

bership functions obtained by projecting the partition matrix onto y(k). Part (b) gives the
cluster prototypes vi, the orientation of the eigenvectors Φi and the direction of the affine

consequent models (lines).

CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 85

Figure 5.9b shows also the cluster prototypes:

V =

[
−0.772 −0.019 0.751

0.405 0.098 −0.410

]
.

From the cluster covariance matrices given below one can already see that the variance
in one direction is higher than in the other one, thus the hyperellipsoids are flat and
the model can be expected to represent a functional relationship between the variables
involved in clustering:

F1 =

[
0.057 0.099

0.099 0.249

]
, F2 =

[
0.063 −0.099

−0.099 0.224

]
, F3 =

[
0.065 0.107

0.107 0.261

]
.

This is confirmed by examining the eigenvalues of the covariance matrices:

λ1,1 = 0.015, λ1,2 = 0.291,
λ2,1 = 0.017, λ2,2 = 0.271,
λ3,1 = 0.018, λ3,2 = 0.308.

One can see that for each cluster one of the eigenvalues is an order of magnitude
smaller that the other one. By using least-squares estimation, we derive the parameters
ai and bi of the affine TS model shown below. Piecewise exponential membership
functions (2.14) are used to define the antecedent fuzzy sets. These functions were
fitted to the projected clusters A1 to A3 by numerically optimizing the parameters c l,
cr, wl andwr. The result is shown by dashed lines in Figure 5.9a. After labeling these
fuzzy sets NEGATIVE, ABOUT ZERO and POSITIVE, the obtained TS models can be
written as:

If y(k) is NEGATIVE then y(k + 1) = 2.371y(k) + 1.237
If y(k) is ABOUT ZERO then y(k + 1) = −2.109y(k) + 0.057
If y(k) is POSITIVE then y(k + 1) = 2.267y(k)− 2.112

The estimated consequent parameters correspond approximately to the definition of
the line segments in the deterministic part of (5.16). Also the partition of the an-
tecedent domain is in agreement with the definition of the system.

✷

5.4 Semi-Mechanistic Modeling

With physical insight in the system, nonlinear transformations of the measured signals
can be involved. When modeling, for instance, the relation between the room temper-
ature and the voltage applied to an electric heater, the power signal is computed by
squaring the voltage, since it is the heater power rather than the voltage that causes the
temperature to change (Lindskog and Ljung, 1994). This new variable is then used in
a linear black-box model instead of the voltage itself. The motivation for using non-
linear regressors in nonlinear models is not to waste effort (rules, parameters, etc.) on
estimating facts that are already known.

86 FUZZY AND NEURAL CONTROL

Another approach is based on a combination of white-box and black-box models.
In many systems, such as chemical and biochemical processes, the modeling task
can be divided into two subtasks: modeling of well-understood mechanisms based on
mass and energy balances (first-principle modeling), and approximation of partially
known relationships such as specific reaction rates. A number of hybrid modeling
approaches have been proposed that combine first principles with nonlinear black-box
models, e.g., neural networks (Psichogios and Ungar, 1992; Thompson and Kramer,
1994) or fuzzy models (Babuška, et al., 1996). A neural network or a fuzzy model is
typically used as a general nonlinear function approximator that “learns” the unknown
relationships from data and serves as a predictor of unmeasured process quantities that
are difficult to model from first principles.

As an example, consider the modeling of a fed-batch stirred bioreactor described
by the following equations derived from the mass balances (Psichogios and Ungar,
1992):

dX
dt

= η(·)X − F
V
X (5.20a)

dS
dt

= −k1η(·)X +
F

V
[Si − S] (5.20b)

dV
dt

= F (5.20c)

whereX is the biomass concentration, S is the substrate concentration, V is the reac-
tor’s volume, F is the inlet flow rate, k1 is the substrate to cell conversion coefficient,
and Si is the inlet feed concentration. These mass balances provide a partial model.
The kinetics of the process are represented by the specific growth rate η(·) which ac-
counts for the conversion of the substrate to biomass, and it is typically a complex
nonlinear function of the process variables. Many different models have been pro-
posed to describe this function, but choosing the right model for a given process may
not be straightforward. The hybrid approach is based on an approximation of η(·) by
a nonlinear (black-box) model from process measurements and incorporates the iden-
tified nonlinear relation in the white-box model. The data can be obtained from batch
experiments, for which F = 0, and equation (5.20a) reduces to the expression:

dX
dt

= η(·)X, (5.21)

where η(·) appears explicitly. This model is then used in the white-box model given by
equations (5.20) for both batch and fed-batch regimes. An example of an application of
the semi-mechanistic approach is the modeling of enzymatic Penicillin G conversion
(Babuška, et al., 1999), see Figure 5.10.

5.5 Summary and Concluding Remarks

Fuzzy modeling is a framework in which different modeling and identification meth-
ods are combined, providing, on the one hand, a transparent interface with the designer
or the operator and, on the other hand, a flexible tool for nonlinear system modeling

CONSTRUCTION TECHNIQUES FOR FUZZY SYSTEMS 87

Data from batch experiments

[PenG]
k

[PenG]
k+1

B
k+1

V
k+1

[E]
k+1

[PhAH]
k+1

[6-APA]
k+1

r
e, k

B
k

V
k

[E]
k

[PhAH]
k

[6-APA]
k

M
ac

ro
sc

o
p

ic
b

al
an

ce
s

Black-box
model

conversion rate
PhAH

PenG

enzyme

Semi-mechanistic model

Mechanistic model (balance equations)

Temperature

50.0 ml DOS

8.00 pH

RS232

A/D

pH

Base

APA

PenG + H 0
2

6-APA + PhAH

Bk+1 = Bk +�T
[E]

k
� Vk � re

MB

Vk+1 = Vk +�T
[E]k � Vk � re

MB

[PenG]k+1 =
Vk

Vk+1
([PenG]k ��T �RG � [E]k � re)

[6� APA]k+1 =
Vk

Vk+1
([6� APA]k +�T � RA � [E]k � re)

[PhAH]k+1 =
Vk

Vk+1
([PhAH]k +�T � RP � [E]k � re)

[E]
k+1

=
Vk

Vk+1
[E]k

Figure 5.10. Application of the semi-mechanistic modeling approach to a Penicillin G

conversion process.

and control. The rule-based character of fuzzy models allows for a model interpreta-
tion in a way that is similar to the one humans use to describe reality. Conventional
methods for statistical validation based on numerical data can be complemented by
the human expertise, that often involves heuristic knowledge and intuition.

5.6 Problems

1. Explain the steps one should follow when designing a knowledge-based fuzzy
model. One of the strengths of fuzzy systems is their ability to integrate prior
knowledge and data. Explain how this can be done.

2. Consider a singleton fuzzy model y = f(x) with the following two rules:

1) If x is Small then y = b1, 2) If x is Large then y = b2 .

and membership functions as given in Figure 5.11.

Furthermore, the following data set is given:

x1 = 1, y1 = 3
x2 = 5, y2 = 4.5

Compute the consequent parameters b1 and b2 such that the model gives the least
summed squared error on the above data. What is the value of this summed squared
error?

3. Consider the following fuzzy rules with singleton consequents:

1) If x is A1 and y is B1 then z = c1, 3) If x is A1 and y is B2 then z = c3,

88 FUZZY AND NEURAL CONTROL

Large

0.25

0.5

1

0.75

0

1

976543 x2

�

108

Small

Figure 5.11. Membership functions.

2) If x is A2 and y is B1 then z = c2, 4) If x is A2 and y is B2 then z = c4 .

Draw a scheme of the corresponding neuro-fuzzy network. What are the free (ad-
justable) parameters in this network? What methods can be used to optimize these
parameters by using input–output data?

4. Give a general equation for a NARX (nonlinear autoregressive with exogenous
input) model. Explain all symbols. Give an example of a some NARX model of
your choice.

5. Explain the term semi-mechanistic (hybrid) modeling. What do you understand
under the terms “structure selection” and “parameter estimation” in case of such a
model?

6 KNOWLEDGE-BASED FUZZY

CONTROL

The principles of knowledge-based fuzzy control are presented along with an overview
of the basic fuzzy control schemes. Emphasis is put on the heuristic design of fuzzy
controllers. Model-based design is addressed in Chapter 8.

Automatic control belongs to the application areas of fuzzy set theory that have
attracted most attention. In 1974, the first successful application of fuzzy logic to con-
trol was reported (Mamdani, 1974). Control of cement kilns was an early industrial
application (Holmblad and Østergaard, 1982). Since the first consumer product using
fuzzy logic was marketed in 1987, the use of fuzzy control has increased substantially.
A number of CAD environments for fuzzy control design have emerged together with
VLSI hardware for fast execution. Fuzzy control is being applied to various systems in
the process industry (Froese, 1993; Santhanam and Langari, 1994; Tani, et al., 1994),
consumer electronics (Hirota, 1993; Bonissone, 1994), automatic train operation (Ya-
sunobu and Miyamoto, 1985) and traffic systems in general (Hellendoorn, 1993), and
in many other fields (Hirota, 1993; Terano, et al., 1994).

In this chapter, first the motivation for fuzzy control is given. Then, different fuzzy
control concepts are explained: Mamdani, Takagi–Sugeno and supervisory fuzzy con-
trol. Finally, software and hardware tools for the design and implementation of fuzzy
controllers are briefly addressed.

89

90 FUZZY AND NEURAL CONTROL

6.1 Motivation for Fuzzy Control

Conventional control theory uses a mathematical model of a process to be controlled
and specifications of the desired closed-loop behaviour to design a controller. This
approach may fall short if the model of the process is difficult to obtain, (partly) un-
known, or highly nonlinear. The design of controllers for seemingly easy everyday
tasks such as driving a car or grasping a fragile object continues to be a challenge for
robotics, while these tasks are easily performed by human beings. Yet, humans do not
use mathematical models nor exact trajectories for controlling such processes.

Many processes controlled by human operators in industry cannot be automated
using conventional control techniques, since the performance of these controllers is
often inferior to that of the operators. One of the reasons is that linear controllers,
which are commonly used in conventional control, are not appropriate for nonlinear
plants. Another reason is that humans aggregate various kinds of information and
combine control strategies, that cannot be integrated into a single analytic control
law. The underlying principle of knowledge-based (expert) control is to capture and
implement experience and knowledge available from experts (e.g., process operators).
A specific type of knowledge-based control is the fuzzy rule-based control, where the
control actions corresponding to particular conditions of the system are described in
terms of fuzzy if-then rules. Fuzzy sets are used to define the meaning of qualitative
values of the controller inputs and outputs such small error, large control action.

The early work in fuzzy control was motivated by a desire to

mimic the control actions of an experienced human operator (knowledge-based
part)

obtain smooth interpolation between discrete outputs that would normally be ob-
tained (fuzzy logic part)

Since then the application range of fuzzy control has widened substantially. How-
ever, the two main motivations still persevere. The linguistic nature of fuzzy control
makes it possible to express process knowledge concerning how the process should be
controlled or how the process behaves. The interpolation aspect of fuzzy control has
led to the viewpoint where fuzzy systems are seen as smooth function approximation
schemes.

In most cases a fuzzy controller is used for direct feedback control. However, it can
also be used on the supervisory level as, e.g., a self-tuning device in a conventional
PID controller. Also, fuzzy control is no longer only used to directly express a priori
process knowledge. For example, a fuzzy controller can be derived from a fuzzy model
obtained through system identification. Therefore, only a very general definition of
fuzzy control can be given:

Definition 6.1 (Fuzzy Controller) A fuzzy controller is a controller that contains a
(nonlinear) mapping that has been defined by using fuzzy if-then rules.

6.2 Fuzzy Control as a Parameterization of Controller’s Nonlinearities

The key issues in the above definition are the nonlinear mapping and the fuzzy if-then
rules. Increased industrial demands on quality and performance over a wide range of

KNOWLEDGE-BASED FUZZY CONTROL 91

operating regions have led to an increased interest in nonlinear control methods during
recent years. The advent of ‘new’ techniques such as fuzzy control, neural networks,
wavelets, and hybrid systems has amplified the interest.

Nonlinear control is considered, e.g., when the process that should be controlled is
nonlinear and/or when the performance specifications are nonlinear. Basically all real
processes are nonlinear, either through nonlinear dynamics or through constraints on
states, inputs and other variables. Two basic approaches can be followed:

Design through nonlinear modeling. Nonlinear techniques can be used for process
modeling. The derived process model can serve as the basis for model-based con-
trol design. The model may be used off-line during the design or on-line, as a part
of the controller (see Chapter 8).

Model-free nonlinear control. Nonlinear techniques can also be used to design the
controller directly, without any process model. Nonlinear elements can be used
in the feedback or in the feedforward path. In practice the nonlinear elements are
often combined with linear filters.

A variety of methods can be used to define nonlinearities. They include analytical
equations, fuzzy systems, sigmoidal neural networks, splines, radial basis functions,
wavelets, locally linear models/controllers, discrete switching logic, lookup tables,
etc. These methods represent different ways of parameterizing nonlinearities, see Fig-
ure 6.1.

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

phi

x

th
et

a

Controller Process

PS Z

Z

NS

NLNS

PSPL

Radial Basis
Functions

SplinesWavelets

Z

Fuzzy SystemsSigmoidal
Neural Networks

Parameterizations

Figure 6.1. Different parameterizations of nonlinear controllers.

Many of these methods have been shown to be universal function approximators
for certain classes of functions. This means that they are capable of approximating a
large class of functions are thus equivalent with respect to which nonlinearities that
they can generate. Hence, it is of little value to argue whether one of the methods is
better than the others if one considers only the closed loop control behavior. From the

92 FUZZY AND NEURAL CONTROL

process’ point of view it is the nonlinearity that matters and not how the nonlinearity
is parameterized.

However, besides the approximation properties there are other important issues to
consider. One of them is the efficiency of the approximation method in terms of the
number of parameters needed to approximate a given function. Of great practical im-
portance is whether the methods are local or global. Local methods allow for local
adjustments. Examples of local methods are radial basis functions, splines, and fuzzy
systems. How well the methods support the generation of nonlinearities from in-
put/output data, i.e., identification/learning/training, is also of large interest. Another
important issue is the availability of analysis and synthesis methods; how transpar-
ent the methods are, i.e., how readable the methods are and how easy it is to express
prior process knowledge; the computational efficiency of the method; the availabil-
ity of computer tools; and finally, subjective preferences such as how comfortable
the designer/operator is with the method, and the level of training needed to use and
understand the method.

Fuzzy logic systems appear to be favorable with respect to most of these criteria.
They are universal approximators and, if certain design choices are made, the ap-
proximation is reasonably efficient. Depending on how the membership functions are
defined the method can be either global or local. It has similar estimation properties
as, e.g., sigmoidal neural networks. Fuzzy logic systems can be very transparent and
thereby they make it possible to express prior process knowledge well. A number of
computer tools are available for fuzzy control implementation.

Fuzzy control can thus be regarded from two viewpoints. The first one focuses
on the fuzzy if-then rules that are used to locally define the nonlinear mapping and
can be seen as the user interface part of fuzzy systems. The second view consists
of the nonlinear mapping that is generated from the rules and the inference process
(Figure 6.2).

Figure 6.2. The views of fuzzy systems. Fuzzy rules (left) are the user interface to the

fuzzy system. They define a nonlinear mapping (right) which is the eventual input–output

representation of the system.

The rules and the corresponding reasoning mechanism of a fuzzy controller can be
of the different types introduced in Chapter 3. Most often used are

Mamdani (linguistic) controller with either fuzzy or singleton consequents. This
type of controller is usually used as a direct closed-loop controller.

KNOWLEDGE-BASED FUZZY CONTROL 93

Takagi–Sugeno (TS) controller, typically used as a supervisory controller.

These two controllers are described in the following sections.

6.3 Mamdani Controller

Mamdani controller is usually used as a feedback controller. Since the rule base repre-
sents a static mapping between the antecedent and the consequent variables, external
dynamic filters must be used to obtain the desired dynamic behavior of the controller
(Figure 6.3).

u

Fuzzifier

e e

�e

e

�u u
Dynamic
Pre-filter

Dynamic
Post-filter

Static map

Defuzzifier

r

-

ye
Process

Fuzzy
Controller

Knowledge base

Inference

Figure 6.3. Fuzzy controller in a closed-loop configuration (top panel) consists of dynamic

filters and a static map (middle panel). The static map is formed by the knowledge base,

inference mechanism and fuzzification and defuzzification interfaces.

The control protocol is stored in the form of if–then rules in a rule base which is
a part of the knowledge base. While the rules are based on qualitative knowledge,
the membership functions defining the linguistic terms provide a smooth interface
to the numerical process variables and the set-points. The fuzzifier determines the
membership degrees of the controller input values in the antecedent fuzzy sets. The
inference mechanism combines this information with the knowledge stored in the rules
and determines what the output of the rule-based system should be. In general, this
output is again a fuzzy set. For control purposes, a crisp control signal is required. The
defuzzifier calculates the value of this crisp signal from the fuzzy controller outputs.

From Figure 6.3 one can see that the fuzzy mapping is just one part of the fuzzy
controller. Signal processing is required both before and after the fuzzy mapping.

6.3.1 Dynamic Pre-Filters

The pre-filter processes the controller’s inputs in order to obtain the inputs of the static
fuzzy system. It will typically perform some of the following operations on the input
signals:

94 FUZZY AND NEURAL CONTROL

Signal Scaling. It is often convenient to work with signals on some normalized
domain, e.g., [−1, 1]. This is accomplished by normalization gains which scale the
input into the normalized domain [−1, 1]. Values that fall outside the normalized
domain are mapped onto the appropriate endpoint.

Dynamic Filtering. In a fuzzy PID controller, for instance, linear filters are used
to obtain the derivative and the integral of the control error e. Nonlinear filters are
found in nonlinear observers, and in adaptive fuzzy control where they are used to
obtain the fuzzy system parameter estimates.

Feature Extraction. Through the extraction of different features numeric trans-
formations of the controller inputs are performed. These transformations may be
Fourier or wavelet transforms, coordinate transformations or other basic operations
performed on the fuzzy controller inputs.

6.3.2 Dynamic Post-Filters

The post-filter represents the signal processing performed on the fuzzy system’s output
to obtain the actual control signal. Operations that the post-filter may perform include:

Signal Scaling. A denormalization gain can be used which scales the output of
the fuzzy system to the physical domain of the actuator signal.

Dynamic Filtering. In some cases, the output of the fuzzy system is the incre-
ment of the control action. The actual control signal is then obtained by integrating the
control increments. Of course, other forms of smoothing devices and even nonlinear
filters may be considered.

This decomposition of a controller to a static map and dynamic filters can be
done for most classical control structures. To see this, consider a PID (Proportional-
Integral-Differential) described by the following equation:

u(t) = Pe(t) + I
∫ t

0

e(τ)dτ +D
de(t)
dt
, (6.1)

where u(t) is the control signal fed to the process to be controlled and e(t) = r(t) −
y(t) is the error signal: the difference between the desired and measured process out-
put. A computer implementation of a PID controller can be expressed as a difference
equation:

uPID[k] = uPID[k − 1] + kIe[k] + kP∆e[k] + kD∆2e[k] (6.2)

with:

∆e[k] = e[k]− e[k − 1]
∆2e[k] = ∆e[k]−∆e[k − 1]

The discrete-time gains kP , kI and kD are for a given sampling period derived from
the continuous time gains P , I andD. Equation (6.1) is linear function (geometrically

KNOWLEDGE-BASED FUZZY CONTROL 95

a hyperplane):

u =
3∑

i=1

aixi, (6.4)

where x1 = e(t), x2 =
∫ t

0
e(τ)dτ , x3 =

de(t)
dt and the ai parameters are the P, I and

D gains. The linear form (6.4) can be generalized to a nonlinear function:

u = f(x) (6.5)

In the case of a fuzzy logic controller, the nonlinear function f is represented by
a fuzzy mapping. Clearly, fuzzy controllers analogous to linear P, PI, PD or PID
controllers can be designed by using appropriate dynamic filters such as differentiators
and integrators.

6.3.3 Rule Base

Mamdani fuzzy systems are quite close in nature to manual control. The controller is
defined by specifying what the output should be for a number of different input signal
combinations. Each input signal combination is represented as a rule of the following
form:

Ri: If x1 is Ai1 . . . and xn is Ain then u is Bi, i = 1, 2, . . . ,K . (6.6)

Also other logical connectives and operators may be used, e.g., or and not. In Mam-
dani fuzzy systems the antecedent and consequent fuzzy sets are often chosen to be
triangular or Gaussian. It is also common that the input membership functions overlap
in such a way that the membership values of the rule antecedents always sum up to
one. In this case, and if the rule base is on conjunctive form, one can interpret each rule
as defining the output value for one point in the input space. The input space point is
the point obtained by taking the centers of the input fuzzy sets and the output value is
the center of the output fuzzy set. The fuzzy reasoning results in smooth interpolation
between the points in the input space, see Figure 6.4.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

errorerror rate

co
nt

ro
l

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

errorerror rate

co
nt

ro
l

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

errorerror rate

co
nt

ro
l

Figure 6.4. Left: The membership functions partition the input space. Middle: Each rule

defines the output value for one point or area in the input space. Right: The fuzzy logic

interpolates between the constant values.

With this interpretation a Mamdani system can be viewed as defining a piecewise
constant function with extensive interpolation. Depending on which inference meth-

96 FUZZY AND NEURAL CONTROL

ods that is used different interpolations are obtained. By proper choices it is even pos-
sible to obtain linear or multilinear interpolation. This is often achieved by replacing
the consequent fuzzy sets by singletons. In such a case, inference and defuzzification
are combined into one step, see Section 3.3, equation (3.43).

Example 6.1 (Fuzzy PD Controller) Consider a fuzzy counterpart of a linear PD
(proportional-derivative) controller. The rule base has two inputs – the error e, and
the error change (derivative) ė, and one output – the control action u. An example of
one possible rule base is:

ė
NB NS ZE PS PB

NB NB NB NS NS ZE
NS NB NS NS ZE PS

e ZE NS NS ZE PS PS
PS NS ZE PS PS PB
PB ZE PS PS PB PB

Five linguistic terms are used for each variable, (NB – Negative big, NS – Negative
small, ZE – Zero, PS – Positive small and PB – Positive big). Each entry of the
table defines one rule, e.g. R23: “If e is NS and ė is ZE then u is NS”. Figure 6.5
shows the resulting control surface obtained by plotting the inferred control action u
for discretized values of e and ė.

−2

−1

0

1

2

−2
−1

0
1

2

−1.5

−1

−0.5

0

0.5

1

1.5

Fuzzy PD control surface

Error Error change

C
o

n
tr

o
l o

u
tp

u
t

Figure 6.5. Fuzzy PD control surface.

In fuzzy PD control, a simple difference ∆e = e(k) − e(k − 1) is often used as a
(poor) approximation for the derivative.

✷

KNOWLEDGE-BASED FUZZY CONTROL 97

6.3.4 Design of a Fuzzy Controller

Determine Inputs and Outputs. In this step, one needs basic knowledge
about the character of the process dynamics (stable, unstable, stationary, time-varying,
etc.), the character of the nonlinearities, the control objectives and the constraints. The
plant dynamics together with the control objectives determine the dynamics of the
controller, e.g., a PI, PD or PID type fuzzy controller.

In order to compensate for the plant nonlinearities, time-varying behavior or other
undesired phenomena, other variables than error and its derivative or integral may be
used as the controller inputs. Typically, it can be the plant output(s), measured or
reconstructed states, measured disturbances or other external variables. It is, however,
important to realize that with an increasing number of inputs, the complexity of the
fuzzy controller (i.e., the number of linguistic terms and the total number of rules)
increases drastically.

For practical reasons, it is useful to recognize the influence of different variables
and to decompose a fuzzy controller with many inputs into several simpler controllers
with fewer inputs, working in parallel or in a hierarchical structure (see Section 3.2.7).

It is also important to realize that contrary to linear control, there is a difference
between the incremental and absolute form of a fuzzy controller. An absolute form
of a fuzzy PD controller, for instance, realizes a mapping u = f(e, ė), while its in-
cremental form is a mapping u̇ = f(ė, ë). With the incremental form, the possibly
nonlinear control strategy relates to the rate of change of the control action while with
the absolute form to the action itself. It has direct implications for the design of the
rule base and also to some general properties of the controller. For instance, the output
of a fuzzy controller in an absolute form is limited by definition, which is not true for
the incremental form.

Another issue to consider is whether the fuzzy controller will be the first automatic
controller in the particular application, or whether it will replace or complement an
existing controller. In the latter case, the choice of the fuzzy controller structure may
depend on the configuration of the current controller. Summarizing, we stress that this
step is the most important one, since an inappropriately chosen structure can jeopar-
dize the entire design, regardless of the rules or the membership functions.

Define Membership Functions and Scaling Factors. As shown in Fig-
ure 6.6, the linguistic terms, their membership functions and the domain scaling fac-
tors are a part of the fuzzy controller knowledge base.

First, the designer must decide, how many linguistic terms per input variable will
be used. The number of rules needed for defining a complete rule base increases
exponentially with the number of linguistic terms per input variable. In order to keep
the rule base maintainable, the number of terms per variable should be low. On the
other hand, with few terms, the flexibility in the rule base is restricted with respect to
the achievable nonlinearity in the control mapping.

The number of terms should be carefully chosen, considering different settings for
different variables according to their expected influence on the control strategy. A
good choice may be to start with a few terms (e.g. 2 or 3 for the inputs and 5 for the
outputs) and increase these numbers when needed. The linguistic terms have usually

98 FUZZY AND NEURAL CONTROL

Data base

Fuzzification module

Data base

Scaling
factors

Membership
functions

Scaling

Knowledge base

Fuzzifier

Defuzzification module

Scaling
factors

Defuzzifier

Membership
functions

Scaling
Inference

engine

Rule base

Figure 6.6. Different modules of the fuzzy controller and the corresponding parts in the

knowledge base.

some meaning, i.e. they express magnitudes of some physical variables, such as Small,
Medium, Large, etc. For interval domains symmetrical around zero, the magnitude is
combined with the sign, e.g. Positive small or Negative medium.

The membership functions may be a part of the expert’s knowledge, e.g., the expert
knows approximately what a “High temperature” means (in a particular application).
If such knowledge is not available, membership functions of the same shape, uni-
formly distributed over the domain can be used as an initial setting and can be tuned
later. For computational reasons, triangular and trapezoidal membership functions are
usually preferred to bell-shaped functions.

Generally, the input and output variables are defined on restricted intervals of the
real line. For simplification of the controller design, implementation and tuning, it is,
however, more convenient to work with normalized domains, such as intervals [−1, 1].
Scaling factors are then used to transform the values from the operating ranges to these
normalized domains. Scaling factors can be used for tuning the fuzzy controller gains
too, similarly as with a PID.

Design the Rule Base. The construction of the rule base is a crucial aspect of
the design, since the rule base encodes the control protocol of the fuzzy controller.
Several methods of designing the rule base can be distinguished. One is based entirely
on the expert’s intuitive knowledge and experience. Since in practice it may be difficult
to extract the control skills from the operators in a form suitable for constructing the
rule base, this method is often combined with the control theory principles and a good
understanding of the system’s dynamics. Another approach uses a fuzzy model of the
process from which the controller rule base is derived. Often, a “standard” rule base
is used as a template. Such a rule base mimics the working of a linear controller of an
appropriate type (for a PD controller has a typical form shown in Example 6.1. Notice
that the rule base is symmetrical around its diagonal and corresponds to a linear form
u = Pe+Dė. The gains P and D can be defined by a suitable choice of the scaling
factors.

Tune the Controller. The tuning of a fuzzy controller is often compared to the
tuning of a PID, stressing the large number of the fuzzy controller parameters, com-

KNOWLEDGE-BASED FUZZY CONTROL 99

pared to the 3 gains of a PID. Two remarks are appropriate here. First, a fuzzy con-
troller is a more general type of controller than a PID, capable of controlling nonlinear
plants for which linear controller cannot be used directly, or improving the control of
(almost) linear systems beyond the capabilities of linear controllers. For that, one has
to pay by defining and tuning more controller parameters. Secondly, in case of com-
plex plants, there is often a significant coupling among the effects of the three PID
gains, and thus the tuning of a PID may be a very complex task. In fuzzy control,
on the other hand, the rules and membership functions have local effects which is an
advantage for control of nonlinear systems. For instance, non-symmetric control laws
can be designed for systems exhibiting non-symmetric dynamic behaviour, such as
thermal systems.

The scope of influence of the individual parameters of a fuzzy controller differs.
The scaling factors, which determine the overall gain of the fuzzy controller and also
the relative gains of the individual controller inputs, have the most global effect. No-
tice, that changing a scaling factor also scales the possible nonlinearity defined in the
rule base, which may not be desirable. The effect of the membership functions is more
localized. A modification of a membership function, say Small, for a particular vari-
able, influences only those rules, that use this term is used. Most local is the effect of
the consequents of the individual rules. A change of a rule consequent influences only
that region where the rule’s antecedent holds.

As we already know, fuzzy inference systems are general function approximators,
i.e. they can approximate any smooth function to any degree of accuracy. This means
that a linear controller is a special case of a fuzzy controller, considered from the
input–output functional point of view. Therefore, a fuzzy controller can be initialized
by using an existing linear control law, which considerably simplifies the initial tun-
ing phase while simultaneously guaranteeing a “minimal” performance of the fuzzy
controller. The rule base or the membership functions can then be modified further in
order to improve the system’s performance or to eliminate influence of some (local)
undesired phenomena like friction, etc. The following example demonstrates this ap-
proach.

Example 6.2 (Fuzzy Friction Compensation) In this example we will develop a fuzzy
controller for a simulation of DC motor which includes a simplified model of static
friction. This example is implemented in MATLAB/Simulink (fricdemo.m). Fig-
ure 6.7 shows a block diagram of the DC motor.

First, a linear proportional controller is designed by using standard methods (root
locus, for instance). Then, a proportional fuzzy controller is developed that exactly
mimics a linear controller. The two controllers have identical responses and both
suffer from a steady state error due to the friction. Special rules are added to the rule
bases in order to reduce this error. The linear and fuzzy controllers are compared by
using the block diagram in Figure 6.8.

The fuzzy control rules that mimic the linear controller are:

If error is Zero
then control input is Zero;

If error is Positive Big

100 FUZZY AND NEURAL CONTROL

1

angle
J.s+b

1

Load

s

1
Friction

L.s+R

K(s)

Armature

K

1

voltage

Figure 6.7. DC motor with friction.

Mux

Mux

Motor

Motor

Fuzzy

Control u

Angle

P

Figure 6.8. Block diagram for the comparison of proportional linear and fuzzy controllers.

then control input is Positive Big;
If error is Negative Big

then control input is Negative Big;

The control result achieved with this controller is shown in Figure 6.9.
Two additional rules are included to prevent the controller from generating a small

control action whenever the control error is small. Such a control action obviously
does not have any influence on the motor, as it is not able to overcome the friction.

If error is Negative Small
then control input is NOT Negative Small;

If error is Positive Small
then control input is NOT Positive Small;

Membership functions for the linguistic terms “Negative Small” and “Positive Small”
have been derived from the result in Figure 6.9. Łukasiewicz implication is used in
order to properly handle the not operator (see Example 3.7 for details). The control
result achieved with this fuzzy controller is shown in Figure 6.10 Note that the steady-
state error has almost been eliminated.

KNOWLEDGE-BASED FUZZY CONTROL 101

0 5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

sh
af

t a
ng

le
 [

ra
d]

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

co
nt

ro
l i

np
ut

 [
V

]

Figure 6.9. Response of the linear controller to step changes in the desired angle.

0 5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

sh
af

t a
ng

le
 [

ra
d]

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

co
nt

ro
l i

np
ut

 [
V

]

Figure 6.10. Comparison of the linear controller (dashed-dotted line) and the fuzzy con-

troller (solid line).

Other than fuzzy solutions to the friction problem include PI control and sliding-
mode control. The integral action of the PI controller will introduce oscillations in
the loop and thus deteriorate the control performance. The reason is that the friction
nonlinearity introduces a discontinuity in the loop. The sliding-mode controller is ro-
bust with regard to nonlinearities in the process. It also reacts faster than the fuzzy

102 FUZZY AND NEURAL CONTROL

controller, but at the cost of violent control actions (Figure 6.11).

0 5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

sh
af

t a
ng

le
 [

ra
d]

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

co
nt

ro
l i

np
ut

 [
V

]

Figure 6.11. Comparison of the fuzzy controller (dashed-dotted line) and a sliding-mode

controller (solid line).

✷

6.4 Takagi–Sugeno Controller

Takagi–Sugeno (TS) fuzzy controllers are close to gain scheduling approaches. Sev-
eral linear controllers are defined, each valid in one particular region of the controller’s
input space. The total controller’s output is obtained by selecting one of the con-
trollers based on the value of the inputs (classical gain scheduling), or by interpolating
between several of the linear controllers (fuzzy gain scheduling, TS control), see Fig-
ure 6.12.

Inputs

fuzzy scheduling

Controller 1

Controller 2

Controller K
Outputs

Figure 6.12. The TS fuzzy controller can be seen as a collection of several local controllers

combined by a fuzzy scheduling mechanism.

KNOWLEDGE-BASED FUZZY CONTROL 103

When TS fuzzy systems are used it is common that the input fuzzy sets are trape-
zoidal. Each fuzzy set determines a region in the input space where, in the linear case,
the output is determined by a linear function of the inputs. Fuzzy logic is only used to
interpolate in the cases where the regions in the input space overlap. Such a TS fuzzy
system can be viewed as piecewise linear (affine) function with limited interpolation.
An example of a TS control rule base is

R1: If r is Low then u1 = PLowe+DLowė
R2: If r is High then u2 = PHighe+DHighė (6.7)

Note here that the antecedent variable is the reference r while the consequent variables
are the error e and its derivative ė. The controller is thus linear in e and ė, but the
parameters of the linear mapping depend on the reference:

u =
µLow(r)u1 + µHigh(r)u2
µLow(r) + µHigh(r)

=
µLow(r)

(
PLowe+DLowė

)
+ µHigh(r)

(
PHighe+DHighė

)
µLow(r) + µHigh(r)

(6.9)

If the local controllers differ only in their parameters, the TS controller is a rule-
based form of a gain-scheduling mechanism. On the other hand, heterogeneous control
(Kuipers and Aström, 1994) can employ different control laws in different operating
regions. In the latter case, e.g. time-optimal control for dynamic transitions can be
combined with PI(D) control in the vicinity of setpoints. Therefore, the TS controller
can be seen as a simple form of supervisory control.

6.5 Fuzzy Supervisory Control

A fuzzy inference system can also be applied at a higher, supervisory level of the
control hierarchy. A supervisory controller is a secondary controller which augments
the existing controller so that the control objectives can be met which would not be
possible without the supervision. A supervisory controller can, for instance, adjust
the parameters of a low-level controller according to the process information (Fig-
ure 6.13).

Fuzzy Supervisor

external signals

u
Process

y
Classical
controller

Figure 6.13. Fuzzy supervisory control.

104 FUZZY AND NEURAL CONTROL

In this way, static or dynamic behavior of the low-level control system can be mod-
ified in order to cope with process nonlinearities or changes in the operating or envi-
ronmental conditions. An advantage of a supervisory structure is that it can be added
to already existing control systems. Hence, the original controllers can always be used
as initial controllers for which the supervisory controller can be tuned for improv-
ing the performance. A supervisory structure can be used for implementing different
control strategies in a single controller. An example is choosing proportional control
with a high gain, when the system is very far from the desired reference signal and
switching to a PI-control in the neighborhood of the reference signal. Because the
parameters are changed during the dynamic response, supervisory controllers are in
general nonlinear.

Many processes in the industry are controlled by PID controllers. Despite their ad-
vantages, conventional PID controllers suffer from the fact that the controller must be
re-tuned when the operating conditions change. This disadvantage can be reduced by
using a fuzzy supervisor for adjusting the parameters of the low-level controller. A set
of rules can be obtained from experts to adjust the gains P and D of a PD controller,
for example based on the current set-point r. The rules may look like:

If process output is High
then reduce proportional gain Slightly and

increase derivative gain Moderately.

The TS controller can be interpreted as a simple version of supervisory control.
For instance, the TS rules (6.7) can be written in terms of Mamdani or singleton rules
that have the P and D parameters as outputs. These are then passed to a standard PD
controller at a lower level.

Example 6.3 A supervisory fuzzy controller has been applied to pressure control in
a laboratory fermenter, depicted in Figure 6.14.

Outlet valve

y

u1

u2

Inlet air flow

Mass-flow
controller

Water

Controlled
Pressure

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

5

Valve [%]

Pr
es

su
re

 [
Pa

]

Figure 6.14. Left: experimental setup; right: nonlinear steady-state characteristic.

The volume of the fermenter tank is 40 l, and normally it is filled with 25 l of water.
At the bottom of the tank, air is fed into the water at a constant flow-rate, kept constant

KNOWLEDGE-BASED FUZZY CONTROL 105

by a local mass-flow controller. The air pressure above the water level is controlled
by an outlet valve at the top of the tank. With a constant input flow-rate, the system
has a single input, the valve position, and a single output, the air pressure. Because
of the underlying physical mechanisms, and because of the nonlinear characteristic
of the control valve, the process has a nonlinear steady-state characteristic, shown in
Figure 6.14, as well as a nonlinear dynamic behavior.

P

u

I

r e
PI controller

+ y

-
Process

Fuzzy
supervisor

Figure 6.15. The supervisory fuzzy control scheme.

A single-input, two-output supervisor shown in Figure 6.15 was designed. The
input of the supervisor is the valve position u(k) and the outputs are the proportional
and the integral gain of a conventional PI controller. The supervisor updates the PI
gains at each sample of the low-level control loop (5 s).

The domain of the valve position (0–100%) was partitioned into four fuzzy sets
(‘Small’, ‘Medium’, ‘Big’ and ‘Very Big’), see the membership functions in Fig-
ure 6.16.

60 7570

0.5

65
0

1

u(k)

�
Small BigMedium Very Big

Figure 6.16. Membership functions for u(k).

The PI gains P and I associated with each of the fuzzy sets are given as follows:

Gains \u(k) Small Medium Big Very big

P 190 170 155 140
I 150 90 70 50

The P and I values were found through simulations in the respective regions of the
valve positions. The overall output of the supervisor is computed as a weighted mean
of the local gains.

The supervisory fuzzy controller, tested and tuned through simulations, was ap-
plied to the process directly (without further tuning), under the nominal conditions.

106 FUZZY AND NEURAL CONTROL

0 100 200 300 400 500 600 700
1

1.2

1.4

1.6

1.8
x 10

5

Time [s]

Pr
es

su
re

 [
Pa

]

0 100 200 300 400 500 600 700
20

40

60

80

Time [s]

V
al

ve
 p

os
iti

on
 [

%
]

Figure 6.17. Real-time control result of the supervisory fuzzy controller.

The real-time control results are shown in Figure 6.17.

✷

6.6 Operator Support

Despite all the advances in the automatic control theory, the degree of automation in
many industries (such as chemical, biochemical or food industry) is quite low. Though
basic automatic control loops are usually implemented, human operators must super-
vise and coordinate their function, set or tune the parameters and also control the
process manually during the start-up, shut-down or transition phases. These types
of control strategies cannot be represented in an analytical form but rather as if-then
rules. By implementing the operator’s expertise, the resulting fuzzy controller can be
used as a decision support for advising less experienced operators (taking advantage
of the transparent knowledge representation in the fuzzy controller). In this way, the
variance in the quality of different operators is reduced, which leads to the reduction
of energy and material costs, etc. The fuzzy system can simplify the operator’s task
by extracting relevant information from a large number of measurements and data.
A suitable user interface needs to be designed for communication with the operators.
The use of linguistic variables and a possible explanation facility in terms of these
variables can improve the man–machine interface.

KNOWLEDGE-BASED FUZZY CONTROL 107

6.7 Software and Hardware Tools

Since the development of fuzzy controllers relies on intensive interaction with the
designer, special software tools have been introduced by various software (SW) and
hardware (HW) suppliers such as Omron, Siemens, Aptronix, Inform, National Semi-
conductors, etc. Most of the programs run on a PC, under Windows, some of them are
available also for UNIX systems. See http://www.isis.ecs.soton.ac.uk/resources/nfinfo/
for an extensive list.

Fuzzy control is also gradually becoming a standard option in plant-wide control
systems, such as the systems from Honeywell. Most software tools consist of the
following blocks.

6.7.1 Project Editor

The heart of the user interface is a graphical project editor that allows the user to
build a fuzzy control system from basic blocks. Input and output variables can be de-
fined and connected to the fuzzy inference unit either directly or via pre-processing or
post-processing elements such as dynamic filters, integrators, differentiators, etc. The
functions of these blocks are defined by the user, using the C language or its modifica-
tion. Several fuzzy inference units can be combined to create more complicated (e.g.,
hierarchical or distributed) fuzzy control schemes.

6.7.2 Rule Base and Membership Functions

The rule base and the related fuzzy sets (membership functions) are defined using the
rule base and membership function editors. The rule base editor is a spreadsheet or
a table where the rules can be entered or modified. The membership functions editor
is a graphical environment for defining the shape and position of the membership
functions. Figure 6.18 gives an example of the various interface screens of FuzzyTech.

6.7.3 Analysis and Simulation Tools

After the rules and membership functions have been designed, the function of the
fuzzy controller can be tested using tools for static analysis and dynamic simulation.
Input values can be entered from the keyboard or read from a file in order to check
whether the controller generates expected outputs. The degree of fulfillment of each
rule, the adjusted output fuzzy sets, the results of rule aggregation and defuzzification
can be displayed on line or logged in a file. For a selected pair of inputs and a selected
output the control surface can be examined in two or three dimensions. Some packages
also provide function for automatic checking of completeness and redundancy of the
rules in the rule base. Dynamic behavior of the closed loop system can be analyzed
in simulation, either directly in the design environment or by generating a code for an
independent simulation program (e.g., Simulink).

108 FUZZY AND NEURAL CONTROL

Figure 6.18. Interface screens of FuzzyTech (Inform).

6.7.4 Code Generation and Communication Links

Once the fuzzy controller is tested using the software analysis tools, it can be used
for controlling the plant either directly from the environment (via computer ports or
analog inputs/outputs), or through generating a run-time code. Most of the programs
generate a standard C-code and also a machine code for a specific hardware, such
as microcontrollers or programmable logic controllers (PLCs). In this way, existing
hardware can be also used for fuzzy control. Besides that, specialized fuzzy hardware
is marketed, such as fuzzy control chips (both analog and digital, see Figure 6.19) or
fuzzy coprocessors for PLCs.

6.8 Summary and Concluding Remarks

A fuzzy logic controller can be seen as a small real-time expert system implementing a
part of human operator’s or process engineer’s expertise. From the control engineering
perspective, a fuzzy controller is a nonlinear controller. In many implementations
a PID-like controller is used, where the controller output is a function of the error
signal and its derivatives. The applications in the industry are also increasing. Major
producers of consumer goods use fuzzy logic controllers in their designs for consumer
electronics, dishwashers, washing machines, automatic car transmission systems etc.,
even though this fact is not always advertised.

Fuzzy control is a new technique that should be seen as an extension to existing
control methods and not their replacement. It provides an extra set of tools which the

KNOWLEDGE-BASED FUZZY CONTROL 109

Figure 6.19. Fuzzy inference chip (Siemens).

control engineer has to learn how to use where it makes sense. Nonlinear and partially
known systems that pose problems to conventional control techniques can be tackled
using fuzzy control. In this way, the control engineering is a step closer to achieving a
higher level of automation in places where it has not been possible before.

In the academic world a large amount of research is devoted to fuzzy control. The
focus is on analysis and synthesis methods. For certain classes of fuzzy systems, e.g.,
linear Takagi-Sugeno systems, many concepts results have been developed.

6.9 Problems

1. There are various ways to parameterize nonlinear models and controllers. Name
at least three different parameterizations and explain how do they differ from each
other?

2. Draw a control scheme with a fuzzy PD (proportional-derivative) controller, includ-
ing the process. Explain the internal structure of the fuzzy PD controller, including
the dynamic filter(s), rule base, etc.

3. Give an example of a rule base and the corresponding membership functions for a
fuzzy PI (proportional-integral) controller. What are the design parameters of this
controller and how can you determine them?

4. State in your own words a definition of a fuzzy controller. How do fuzzy controllers
differ from linear controllers, such as PID or state-feedback control? For what kinds
of processes have fuzzy controllers the potential of providing better performance
than linear controllers?

5. Give an example of several rules of a Takagi–Sugeno fuzzy controller. What are
the design parameters of this controller? c) Give an example of a process to which
you would apply this controller.

6. Is special fuzzy-logic hardware always needed to implement a fuzzy controller?
Explain your answer.

7 ARTIFICIAL NEURAL NETWORKS

7.1 Introduction

Both neural networks and fuzzy systems are motivated by imitating human reasoning
processes. In fuzzy systems, relationships are represented explicitly in the form of if–
then rules. In neural networks, the relations are not explicitly given, but are “coded” in
a network and its parameters. In contrast to knowledge-based techniques, no explicit
knowledge is needed for the application of neural nets.

Artificial neural nets (ANNs) can be regarded as a functional imitation of biological
neural networks and as such they share some advantages that biological organisms
have over standard computational systems. The main feature of an ANN is its ability
to learn complex functional relations by generalizing from a limited amount of training
data. Neural nets can thus be used as (black-box) models of nonlinear, multivariable
static and dynamic systems and can be trained by using input–output data observed on
the system.

The research in ANNs started with attempts to model the biophysiology of the
brain, creating models which would be capable of mimicking human thought pro-
cesses on a computational or even hardware level. Humans are able to do complex
tasks like perception, pattern recognition, or reasoning much more efficiently than
state-of-the-art computers. They are also able to learn from examples and human neu-
ral systems are to some extent fault tolerant. These properties make ANN suitable
candidates for various engineering applications such as pattern recognition, classifica-
tion, function approximation, system identification, etc.

111

112 FUZZY AND NEURAL CONTROL

The most common ANNs consist of several layers of simple processing elements
called neurons, interconnections among them and weights assigned to these intercon-
nections. The information relevant to the input–output mapping of the net is stored in
the weights.

7.2 Biological Neuron

A biological neuron consists of a body (or soma), an axon and a large number of
dendrites (Figure 7.1). The dendrites are inputs of the neuron, while the axon is its
output. The axon of a single neuron forms synaptic connections with many other
neurons. It is a long, thin tube which splits into branches terminating in little bulbs
touching the dendrites of other neurons. The small gap between such a bulb and a
dendrite of another cell is called a synapse.

dendrites

soma

axon

synapse

Figure 7.1. Schematic representation of a biological neuron.

Impulses propagate down the axon of a neuron and impinge upon the synapses,
sending signals of various strengths to the dendrites of other neurons. The strength
of these signals is determined by the efficiency of the synaptic transmission. A signal
acting upon a dendrite may be either inhibitory or excitatory. A biological neuron
fires, i.e., sends an impulse down its axon, if the excitation level exceeds its inhibition
by a critical amount, the threshold of the neuron.

Research into models of the human brain already started in the 19th century (James,
1890). It took until 1943 before McCulloch and Pitts (1943) formulated the first ideas
in a mathematical model called the McCulloch-Pitts neuron. In 1957, a first multi-
layer neural network model called the perceptron was proposed. However, significant
progress in neural network research was only possible after the introduction of the
backpropagation method (Rumelhart, et al., 1986), which can train multi-layered net-
works.

ARTIFICIAL NEURAL NETWORKS 113

7.3 Artificial Neuron

Mathematical models of biological neurons (called artificial neurons) mimic the func-
tionality of biological neurons at various levels of detail. Here, a simple model will be
considered, which is basically a static function with several inputs (representing the
dendrites) and one output (the axon). Each input is associated with a weight factor
(synaptic strength). The weighted inputs are added up and passed through a nonlin-
ear function, which is called the activation function. The value of this function is the
output of the neuron (Figure 7.2).

..
.

x1

xp

x2

w1

wp

w2 � �()z
z

v

Figure 7.2. Artificial neuron.

The weighted sum of the inputs is denoted by

z =
p∑

i=1

wixi = wTx . (7.1)

Sometimes, a threshold is used when computing the neuron’s activation:

z =
p∑

i=1

wixi + d = [wTd]
[
x
1

]
.

One can see that the threshold can be regarded as an extra weight from a constant
(unity) input. To keep the notation simple, (7.1) will be used in the sequel.

The activation function maps the neuron’s activation z into a certain interval, such
as [0, 1] or [−1, 1]. Often used activation functions are a threshold, sigmoidal and
tangent hyperbolic functions (Figure 7.3).

Threshold function (hard limiter)

σ(z) =
{

0 for z < 0
1 for z ≥ 0 .

Piece-wise linear (saturated) function

σ(z) =




0 for z < −α
1
2α (z + α) for − α ≤ z ≤ α
1 for z > α

.

Sigmoidal function

σ(z) =
1

1 + exp(−sz)

114 FUZZY AND NEURAL CONTROL

z

�()z

0

1

1

z

�()z

0

-1

1

z

�()z

0

-1

z

�()z

0

1

1

z

�()z

0

-1

z

�()z

0

1

Figure 7.3. Different types of activation functions.

Here, s is a constant determining the steepness of the sigmoidal curve. For s → 0
the sigmoid is very flat and for s → ∞ it approaches a threshold function. Fig-
ure 7.4 shows three curves for different values of s. Typically s = 1 is used (the
bold curve in Figure 7.4).

1

0

�()z

0.5

z

Figure 7.4. Sigmoidal activation function.

Tangent hyperbolic

σ(z) =
1− exp(−2z)
1 + exp(−2z)

7.4 Neural Network Architecture

Artificial neural networks consist of interconnected neurons. Neurons are usually ar-
ranged in several layers. This arrangement is referred to as the architecture of a neu-
ral net. Networks with several layers are called multi-layer networks, as opposed to
single-layer networks that only have one layer. Within and among the layers, neurons
can be interconnected in two basic ways:

Feedforward networks: neurons are arranged in several layers. Information flows
only in one direction, from the input layer to the output layer.

ARTIFICIAL NEURAL NETWORKS 115

Recurrent networks: neurons are arranged in one or more layers and feedback is
introduced either internally in the neurons, to other neurons in the same layer or to
neurons in preceding layers.

Figure 7.5 shows an example of a multi-layer feedforward ANN (perceptron) and a
single-layer recurrent network (Hopfield network).

Figure 7.5. Multi-layer feedforward ANN (left) and a single-layer recurrent (Hopfield)

network (right).

In the sequel, we will concentrate on feedforward multi-layer neural networks and
on a special single-layer architecture called the radial basis function network.

7.5 Learning

The learning process in biological neural networks is based on the change of the inter-
connection strength among neurons. Synaptic connections among neurons that simul-
taneously exhibit high activity are strengthened.

In artificial neural networks, various concepts are used. A mathematical approx-
imation of biological learning, called Hebbian learning is used, for instance, in the
Hopfield network. Multi-layer nets, however, typically use some kind of optimiza-
tion strategy whose aim is to minimize the difference between the desired and actual
behavior (output) of the net.

Two different learning methods can be recognized: supervised and unsupervised
learning:

Supervised learning: the network is supplied with both the input values and the cor-
rect output values, and the weight adjustments performed by the network are based
upon the error of the computed output. This method is presented in Section 7.6.3.

Unsupervised learning: the network is only provided with the input values, and
the weight adjustments are based only on the input values and the current network
output. Unsupervised learning methods are quite similar to clustering approaches,
see Chapter 4.

In the sequel, only supervised learning is considered.

7.6 Multi-Layer Neural Network

A multi-layer neural network (MNN) has one input layer, one output layer and an
number of hidden layers between them (see Figure 7.6).

116 FUZZY AND NEURAL CONTROL

hidden layers output layerinput layer

Figure 7.6. A typical multi-layer neural network consists of an input layer, one or more

hidden layers and an output layer.

A dynamic network can be realized by using a static feedforward network com-
bined with a feedback connection. The output of the network is fed back to its input
through delay operators z−1. Figure 7.7 shows an example of a neural-net repre-
sentation of a first-order system y(k + 1) = fnn(y(k), u(k)). In this way, a dynamic
identification problem is reformulated as a static function-approximation problem (see
Section 3.6 for a more general discussion).

unit delay

z
-1

y k()

u k()

y k+(1)

Figure 7.7. A neural-network model of a first-order dynamic system.

In a MNN, two computational phases are distinguished:

1. Feedforward computation. From the network inputs x i, i = 1, . . . , N , the outputs
of the first hidden layer are first computed. Then using these values as inputs to the
second hidden layer, the outputs of this layer are computed, etc. Finally, the output
of the network is obtained.

2. Weight adaptation. The output of the network is compared to the desired output.
The difference of these two values called the error, is then used to adjust the weights
first in the output layer, then in the layer before, etc., in order to decrease the error.
This backward computation is called error backpropagation.

ARTIFICIAL NEURAL NETWORKS 117

The error backpropagation algorithm was proposed independently by Werbos (1974)
and Rumelhart, et al. (1986). The derivation of the algorithm is briefly presented in
the following section.

7.6.1 Feedforward Computation

For simplicity, consider a MNN with one hidden layer (Figure 7.8). The input-layer
neurons do not perform any computations, they merely distribute the inputs x i to the
weights wh

ij of the hidden layer. The neurons in the hidden layer contain the tanh
activation function, while the output neurons are linear. The output-layer weights are
denoted by wo

ij .

x1

.

.

.

y1

xp

vm

yn

hidden layer output layerinput layer

wp

x2

v1

.

.

.

w
h

w11w
h

w11w
o

wmnw
o

m

Figure 7.8. A MNN with one hidden layer, tanh hidden neurons and linear output neurons.

The feedforward computation proceeds in three steps:

1. Compute the activations zj of the hidden-layer neurons:

zj =
p∑

i=1

wh
ijxi + b

h
j , j = 1, 2, . . . , h .

Here, wh
ij and bhj are the weight and the threshold, respectively.

2. Compute the outputs vj of the hidden-layer neurons:

vj = σ (zj) , j = 1, 2, . . . , h .

3. Compute the outputs yl of output-layer neurons (and thus of the entire network):

yl =
h∑

j=1

wo
jlvj + b

o
l

118 FUZZY AND NEURAL CONTROL

Here, wo
ij and boj are the weight and the threshold, respectively.

These three steps can be conveniently written in a compact matrix notation:

Z = XbWh

V = σ(Z)
Y = VbWo

withXb = [X 1] andVb = [V 1] and

X =



xT1
xT2
...
xTN


 , Y =



yT1
yT2

...
yTN




are the input data and the corresponding output of the net, respectively.

7.6.2 Approximation Properties

Multi-layer neural nets can approximate a large class of functions to a desired de-
gree of accuracy. Loosely speaking, this is because by the superposition of weighted
sigmoidal-type functions rather complex mappings can be obtained. As an example,
consider a simple MNN with one input, one output and one hidden layer with two tanh
neurons. The output of this network is given by

y = wo
1 tanh

(
wh
1x+ b

h
1

)
+ wo

2 tanh
(
wh
2x+ b

h
2

)
.

In Figure 7.9 the three feedforward computation steps are depicted.
Note that two neurons are already able to represent a relatively complex nonmono-

tonic function. This capability of multi-layer neural nets has formally been stated by
Cybenko (1989):

A feedforward neural net with at least one hidden layer with sigmoidal activation
functions can approximate any continuous nonlinear function R

p → R
n arbitrarily

well on a compact set, provided sufficient hidden neurons are available.

This result is, however, not constructive, which means that is does not say how
many neurons are needed, how to determine the weights, etc. Many other function
approximators exist, such as polynomials, Fourier series, wavelets, etc. Neural nets,
however, are very efficient in terms of the achieved approximation accuracy for given
number of neurons. This has been shown by Barron (1993):

A feedforward neural net with one hidden layer with sigmoidal activation functions
can achieve an integrated squared error (for smooth functions) of the order

J = O
(
1
h

)

ARTIFICIAL NEURAL NETWORKS 119

z

x

v

y

21

1

2

0

x21

1

2

0

x21

1

2

0

Activation (weighted
summation)

Transformation
through tanh

w1
ov1 w2

ov2

w1
ov1 w2

ov2+

w1
hx b1

h+w2
h
x b2

h+

z1 z2

v2v1

tanh(z1)tanh(z)2

Summation of

Step 3

neuron outputs

Step 1

Step 2

Figure 7.9. Feedforward computation steps in a multilayer network with two neurons.

independently of the dimension of the input space p, where h denotes the number of
hidden neurons.

For basis function expansion models (polynomials, trigonometric expansion, sin-
gleton fuzzy model, etc.) with h terms, in which only the parameters of the linear
combination are adjusted, it holds that

J = O
(

1
h2/p

)

where p is the dimension of the input.

Example 7.1 (Approximation Accuracy) To illustrate the difference between the ap-
proximation capabilities of sigmoidal nets and basis function expansions (e.g., poly-

120 FUZZY AND NEURAL CONTROL

nomials), consider two input dimensions p:

i) p = 2 (function of two variables):

polynomial J = O
(
1

h2/2

)
= O

(
1
h

)
neural net J = O

(
1
h

)
Hence, for p = 2, there is no difference in the accuracy–complexity relationship be-
tween sigmoidal nets and basis function expansions.

ii) p = 10 (function of ten variables) and h = 21:

polynomial J = O(1
212/10) = 0.54

neural net J = O(121) = 0.048

The approximation accuracy of the sigmoidal net is thus in the order of magnitude
better. Let us see, how many terms are needed in a basis function expansion (e.g., the
order of a polynomial) in order to achieve the same accuracy as the sigmoidal net:

O(1
hn

) = O(1
hb
)

hn = h1/pb ⇒ hb =
√
hpn =

√
2110 ≈ 4 · 106

✷

Multi-layer neural networks are thus, at least in theory, able to approximate other
functions. The question is how to determine the appropriate structure (number of
hidden layers, number of neurons) and parameters of the network.

A network with one hidden layer is usually sufficient (theoretically always suffi-
cient). More layers can give a better fit, but the training takes longer time. Choosing
the right number of neurons in the hidden layer is essential for a good result. Too
few neurons give a poor fit, while too many neurons result in overtraining of the net
(poor generalization to unseen data). A compromise is usually sought by trial and
error methods.

7.6.3 Training, Error Backpropagation

Training is the adaptation of weights in a multi-layer network such that the error be-
tween the desired output and the network output is minimized. Assume that a set of
N data patterns is available:

X =



xT1
xT2
...
xTN


 , D =



dT1
dT2

...
dTN




ARTIFICIAL NEURAL NETWORKS 121

Here, x is the input to the net and d is the desired output. The training proceeds in
two steps:

1. Feedforward computation. From the network inputs x i, i = 1, . . . , N , the hidden
layer activations, outputs and the network outputs are computed:

Z = XbWh, Xb = [X 1]
V = σ(Z)
Y = VbWo, Vb = [V 1]

2. Weight adaptation. The output of the network is compared to the desired output.
The difference of these two values called the error:

E = D−Y

This error is used to adjust the weights in the net via the minimization of the fol-
lowing cost function:

J(w) =
1
2

N∑
k=1

l∑
j=1

e2kj = trace (EET)

w =
[
Wh Wo

]
The training of a MNN is thus formulated as a nonlinear optimization problem with
respect to the weights. Various methods can be applied:

Error backpropagation (first-order gradient).

Newton, Levenberg-Marquardt methods (second-order gradient).

Conjugate gradients.

Variable projection.

Genetic algorithms, many others . . .

First-order gradient methods use the following update rule for the weights:

w(n+ 1) = w(n)− α(n)∇J(w(n)), (7.5)

wherew(n) is the vector with weights at iteration n, α(n) is a (variable) learning rate
and ∇J(w) is the Jacobian of the network

∇J(w) =
[
∂J(w)
∂w1

,
∂J(w)
∂w2

, . . . ,
∂J(w)
∂wM

]T
.

122 FUZZY AND NEURAL CONTROL

The nonlinear optimization problem is thus solved by using the first term of its Tay-
lor series expansion (the gradient). Second-order gradient methods make use of the
second term (the curvature) as well:

J(w) ≈ J(w0) +∇J(w0)T (w −w0) +
1
2
(w −w0)TH(w0)(w −w0),

whereH(w0) is the Hessian in a given pointw0 in the weight space. After a few steps
of derivations, it can the update rule for the weights appears to be:

w(n+ 1) = w(n)−H−1(w(n))∇J(w(n)) (7.6)

The difference between (7.5) and (7.6) is basically the size of the gradient-descent
step. This is schematically depicted in Figure 7.10.

w(1)n+ w

-��J

J(w)

w()n

(a) first-order gradient

w

J(w)

w(1)n+

-� ���
J

w()n

(b) second-order gradient

Figure 7.10. First-order and second-order gradient-descent optimization.

Second order methods are usually more effective than first-order ones. Here, we
will, however, present the error backpropagation, (first-order gradient method) which
is easier to grasp and then the step toward understanding second-order methods is
small.

The main idea of backpropagation (BP) can be expressed as follows:

compute errors at the outputs,

adjust output weights,

propagate error backwards through the net and adjust hidden-layer weights.

We will derive the BP method for processing the data set pattern by pattern, which is
suitable for both on-line and off-line training. First, consider the output-layer weights
and then the hidden-layer ones.

Output-Layer Weights. Consider a neuron in the output layer as depicted in
Figure 7.11.

ARTIFICIAL NEURAL NETWORKS 123

Neuron

e
v�

y

-

d
Cost function

� J1/2 e
2

vh

v�

whw
o

w2w
o

w1w
o

Figure 7.11. Output-layer neuron.

The cost function is given by:

J =
1
2

∑
l

e2l , with el = dl − yl, and yl =
∑
j

wo
j vj (7.7)

The Jacobian is:
∂J

∂wo
jl

=
∂J

∂el
· ∂el
∂yl

· ∂yl
∂wo

jl

(7.8)

with the partial derivatives:

∂J

∂el
= el,

∂el
∂yl

= −1, ∂yl
∂wo

jl

= vj (7.9)

Hence, for the output layer, the Jacobian is:

∂J

∂wo
jl

= −vjel .

From (7.5), the update law for the output weights follows:

wo
jl(n+ 1) = wo

jl(n) + α(n)vjel . (7.11)

Hidden-Layer Weights. Consider a neuron in the hidden layer as depicted in
Figure 7.12.

The Jacobian is:
∂J

∂wh
ij

=
∂J

∂vj
· ∂vj
∂zj

· ∂zj
∂wh

ij

(7.12)

with the partial derivatives (after some computations):

∂J

∂vj
=
∑
l

−elwo
jl,

∂vj
∂zj

= σ′j(zj),
∂zj

∂wh
ij

= xi (7.13)

The derivation of the above expression is quite straightforward and we leave it as an
exercise for the reader. Substituting into (7.12) gives the Jacobian

∂J

∂wh
ij

= −xi · σ′j(zj) ·
∑
l

elw
o
jl

124 FUZZY AND NEURAL CONTROL

hidden layer

output layer

x�
e�v

��
z

xp

el

x�

e�

wpw
h

w2w
h

w1w
h

wlw
o

w2w
o

w1w
o

Figure 7.12. Hidden-layer neuron.

From (7.5), the update law for the hidden weights follows:

wh
ij(n+ 1) = wh

ij(n) + α(n)xi · σ′j(zj) ·
∑
l

elw
o
jl . (7.15)

From this equation, one can see that the error is propagated from the output layer to
the hidden layer, which gave rise to the name “backpropagation”. The algorithm is
summarized in Algorithm 7.1.

Algorithm 7.1 backpropagation

Initialize the weights (at random).

Step 1: Present the inputs and desired outputs.

Step 2: Calculate the actual outputs and errors.

Step 3: Compute gradients and update the weights:

wo
jl := w

o
jl + αvjel

wh
ij := w

h
ij + αxi · σ′j(zj) ·

∑
l

elw
o
jl

Repeat by going to Step 1.

In this approach, the data points are presented for learning one after another. This is
mainly suitable for on-line learning. However, it still can be applied if a whole batch
of data is available for off-line learning.

The presentation of the whole data set is called an epoch. Usually, several learning
epochs must be applied in order to achieve a good fit. From a computational point of
view, it is more effective to present the data set as the whole batch. The backpropa-
gation learning formulas are then applied to vectors of data instead of the individual
samples.

ARTIFICIAL NEURAL NETWORKS 125

7.7 Radial Basis Function Network

The radial basis function network (RBFN) is a two layer network. There are two main
differences from the multi-layer sigmoidal network:

The activation function in the hidden layer is a radial basis function rather than a
sigmoidal function. Radial basis functions are explained below.

Adjustable weights are only present in the output layer. The connections from the
input layer to the hidden layer are fixed (unit weights). Instead, the parameters of
the radial basis functions are tuned.

The output layer neurons are linear. The RBFN thus belongs to models of the basis
function expansion type, similar to the singleton model of Section 3.3. It realizes the
following function f → R

p → R :

y = f(x) =
n∑

i=1

wiφi(x, ci) (7.17)

Some common choices for the basis functions φ i(x, ci) = φi(‖x− ci‖) = φi(r) are:

φ(r) = exp(−r2/ρ2), a Gaussian function

φ(r) = r2 log(r), a thin-plate-spline function

φ(r) = r2, a quadratic function

φ(r) = (r2 + ρ2)
1
2 , a multiquadratic function

Figure 7.13 depicts the architecture of a RBFN.

.

.

.
.
.
.

w1

wn

�

xp

x1

.

.

.

yw2

Figure 7.13. Radial basis function network.

The free parameters of RBFNs are the output weights wi and the parameters of the
basis functions (centers ci and radii ρi).

126 FUZZY AND NEURAL CONTROL

The network’s output (7.17) is linear in the weightsw i, which thus can be estimated
by least-squares methods. For each data point xk, first the outputs of the neurons are
computed:

vki = φi(x, ci) .

As the output is linear in the weights wi, we can write the following matrix equation
for the whole data set:

d = Vw,

where V = [vki] is a matrix of the neurons’ outputs for each data point and d is a
vector of the desired RBFN outputs. The least-square estimate of the weightsw is:

w =
[
VTV

]−1
VTy

The training of the RBF parameters ci and ρi leads to a nonlinear optimization prob-
lem that can be solved, for instance, by the methods given in Section 7.6.3. Initial
center positions are often determined by clustering (see Chapter 4).

7.8 Summary and Concluding Remarks

Artificial neural nets, originally inspired by the functionality of biological neural net-
works can learn complex functional relations by generalizing from a limited amount
of training data. Neural nets can thus be used as (black-box) models of nonlinear,
multivariable static and dynamic systems and can be trained by using input–output
data observed on the system. Many different architectures have been proposed. In
systems modeling and control, most commonly used are the multi-layer feedforward
neural network and the radial basis function network. Effective training algorithms
have been developed for these networks.

7.9 Problems

1. What has been the original motivation behind artificial neural networks? Give at
least two examples of control engineering applications of artificial neural networks.

2. Draw a block diagram and give the formulas for an artificial neuron. Explain all
terms and symbols.

3. Give at least three examples of activation functions.

4. Explain the term “training” of a neural network.

5. What are the steps of the backpropagation algorithm? With what neural network
architecture is this algorithm used?

6. Explain the difference between first-order and second-order gradient optimization.

7. Derive the backpropagation rule for an output neuron with a sigmoidal activation
function.

8. What are the differences between a multi-layer feedforward neural network and the
radial basis function network?

ARTIFICIAL NEURAL NETWORKS 127

9. Consider a dynamic system y(k + 1) = f
(
y(k), y(k − 1), u(k), u(k − 1)

)
, where

the function f is unknown. Suppose, we wish to approximate f by a neural net-
work trained by using a sequence ofN input–output data samples measured on the
unknown system, {(u(k), y(k))|k = 0, 1, . . . , N}.

a) Choose a neural network architecture, draw a scheme of the network and define
its inputs and outputs.

b) What are the free parameters that must be trained (optimized) such that the
network fits the data well?

c) Define a cost function for the training (by a formula) and name examples of
two methods you could use to train the network’s parameters.

8 CONTROL BASED ON FUZZY AND

NEURAL MODELS

This chapter addresses the design of a nonlinear controller based on an available fuzzy
or neural model of the process to be controlled. Some presented techniques are gen-
erally applicable to both fuzzy and neural models (predictive control, feedback lin-
earization), others are based on specific features of fuzzy models (gain scheduling,
analytic inverse).

8.1 Inverse Control

The simplest approach to model-based design a controller for a nonlinear process is
inverse control. It can be applied to a class of systems that are open-loop stable (or
that are stabilizable by feedback) and whose inverse is stable as well, i.e., the system
does not exhibit nonminimum phase behavior.

For simplicity, the approach is here explained for SISO models without transport
delay from the input to the output. The available neural or fuzzy model can be written
as a general nonlinear model:

y(k + 1) = f
(
x(k), u(k)

)
. (8.1)

The inputs of the model are the current state x(k) = [y(k), . . . , y(k− ny + 1), u(k−
1), . . . , u(k − nu + 1)]T and the current input u(k). The model predicts the system’s
output at the next sample time, y(k + 1). The function f represents the nonlinear
mapping of the fuzzy or neural model.

The objective of inverse control is to compute for the current state x(k) the control
input u(k), such that the system’s output at the next sampling instant is equal to the

129

130 FUZZY AND NEURAL CONTROL

desired (reference) output r(k + 1). This can be achieved if the process model (8.1)
can be inverted according to:

u(k) = f−1(x(k), r(k + 1)) . (8.3)

Here, the reference r(k + 1) was substituted for y(k + 1). The inverse model can
be used as an open-loop feedforward controller, or as an open-loop controller with
feedback of the process’ output (called open-loop feedback controller). The difference
between the two schemes is the way in which the state x(k) is updated.

8.1.1 Open-Loop Feedforward Control

The state x(k) of the inverse model (8.3) is updated using the output of the model
(8.1), see Figure 8.1. As no feedback from the process output is used, stable control
is guaranteed for open-loop stable, minimum-phase systems. However, a model-plant
mismatch or a disturbance d will cause a steady-state error at the process output. This
error can be compensated by some kind of feedback, using, for instance, the IMC
scheme presented in Section 8.1.5.

Besides the model and the controller, the control scheme contains a reference-
shaping filter. This is usually a first-order or a second-order reference model, whose
task is to generate the desired dynamics and to avoid peaks in the control action for
step-like references.

Process
u

d

Inverse model

Model

yFilter
rw

y^

Figure 8.1. Open-loop feedforward inverse control.

8.1.2 Open-Loop Feedback Control

The input x(k) of the inverse model (8.3) is updated using the output of the process
itself, see Figure 8.2. The controller, in fact, operates in an open loop (does not use
the error between the reference and the process output), but the current output y(k) of
the process is used at each sample to update the internal state x(k) of the controller.
This can improve the prediction accuracy and eliminate offsets. At the same time,
however, the direct updating of the model state may not be desirable in the presence of
noise or a significant model–plant mismatch, in which cases it can cause oscillations
or instability. Also this control scheme contains the reference-shaping filter.

CONTROL BASED ON FUZZY AND NEURAL MODELS 131

d

u
Inverse model Process

yFilter
rw

Figure 8.2. Open-loop feedback inverse control.

8.1.3 Computing the Inverse

Generally, it is difficult to find the inverse function f −1 in an analytical from. It can,
however, always be found by numerical optimization (search). Define an objective
function:

J(u(k)) = (r(k + 1)− f(x(k), u(k)))2 . (8.5)

The minimization of J with respect to u(k) gives the control corresponding to the in-
verse function (8.3), if it exists, or the best approximation of it otherwise. A wide
variety of optimization techniques can be applied (such as Newton or Levenberg-
Marquardt). This approach directly extends to MIMO systems. Its main drawback,
however, is the computational complexity due to the numerical optimization that must
be carried out on-line.

Some special forms of (8.1) can be inverted analytically. Examples are an input-
affine Takagi–Sugeno (TS) model and a singleton model with triangular membership
functions fro u(k).

Affine TS Model. Consider the following input–output Takagi–Sugeno (TS)
fuzzy model:

Ri : If y(k) is Ai1 and . . . and y(k − ny + 1) is Ainy and

u(k − 1) is Bi2 and . . . and u(k − nu + 1) is Binu then

yi(k+1) =
ny∑
j=1

aijy(k−j+1) +
nu∑
j=1

biju(k−j+1) + ci, (8.6)

where i = 1, . . . ,K are the rules, Ail, Bil are fuzzy sets, and aij , bij , ci are crisp
consequent (then-part) parameters. Denote the antecedent variables, i.e., the lagged
outputs and inputs (excluding u(k)), by:

x(k) = [y(k), y(k − 1), . . . , y(k − ny + 1), u(k − 1), . . . , u(k − nu + 1)] . (8.8)

The output y(k + 1) of the model is computed by the weighted mean formula:

y(k + 1) =
∑K

i=1 βi(x(k))yi(k + 1)∑K
i=1 βi(x(k))

, (8.9)

132 FUZZY AND NEURAL CONTROL

where βi is the degree of fulfillment of the antecedent given by:

βi(x(k)) = µAi1(y(k)) ∧ . . . ∧ µAiny
(y(k − ny + 1)) ∧

µBi2(u(k − 1)) ∧ . . . ∧ µBinu
(u(k − nu + 1)) . (8.10)

As the antecedent of (8.6) does not include the input term u(k), the model output
y(k + 1) is affine in the input u(k). To see this, denote the normalized degree of
fulfillment

λi(x(k)) =
βi(x(k))∑K
j=1 βj(x(k))

, (8.12)

and substitute the consequent of (8.6) and the λ i of (8.12) into (8.9):

y(k + 1) =
K∑
i=1

λi(x(k))


 ny∑
j=1

aijy(k − j + 1) +
nu∑
j=2

biju(k − j + 1) + ci


+

+
K∑
i=1

λi(x(k))bi1u(k) (8.13)

This is a nonlinear input-affine system which can in general terms be written as:

y(k + 1) = g (x(k)) + h(x(k))u(k) . (8.15)

Given the goal that the model output at time step k + 1 should equal the reference
output, y(k + 1) = r(k + 1), the corresponding input, u(k), is computed by a simple
algebraic manipulation:

u(k) =
r(k + 1)− g (x(k))

h(x(k))
. (8.17)

In terms of eq. (8.13) we obtain the eventual inverse-model control law:

u(k) =
r(k + 1) −

PK
i=1 λi(x(k))

hPny

j=1 aijy(k − j + 1) +
Pnu

j=2 biju(k − j + 1) + ci

i

PK
i=1 λi(x(k))bi1

.

(8.18)

Singleton Model. Consider a SISO singleton fuzzy model. In this section, the
rule index is omitted, in order to simplify the notation. The considered fuzzy rule is
then given by the following expression:

If y(k) is A1 and y(k − 1) is A2 and . . . and y(k − ny + 1) is Any

and u(k) is B1 and . . . and u(k − nu + 1) is Bnu (8.19)

then y(k + 1) is c,

where A1, . . . , Any and B1, . . . , Bnu are fuzzy sets and c is a singleton, see (3.42).
Use the state vector x(k) introduced in (8.8), containing the nu − 1 past inputs, the

CONTROL BASED ON FUZZY AND NEURAL MODELS 133

ny − 1 past outputs and the current output, i.e., all the antecedent variables in (8.19).
The corresponding fuzzy sets are composed into one multidimensional state fuzzy set
X , by applying a t-norm operator on the Cartesian product space of the state variables:
X = A1 × · · · × Any × B2 × · · · × Bnu . To simplify the notation, substitute
B for B1. Rule (8.19) now can be written by:

If x(k) is X and u(k) is B then y(k + 1) is c . (8.21)

Note that the transformation of (8.19) into (8.21) is only a formal simplification of
the rule base which does not change the order of the model dynamics, since x(k) is
a vector and X is a multidimensional fuzzy set. Let M denote the number of fuzzy
sets Xi defined for the state x(k) and N the number of fuzzy sets B j defined for the
input u(k). Assume that the rule base consists of all possible combinations of sets
Xi and Bj , the total number of rules is then K = MN . The entire rule base can be
represented as a table:

u(k)
x(k) B1 B2 . . . BN

X1 c11 c12 . . . c1N
X2 c21 c22 . . . c2N

...
...

...
...

...
XM cM1 cM2 . . . cMN

(8.22)

By using the product t-norm operator, the degree of fulfillment of the rule antecedent
βij(k) is computed by:

βij(k) = µXi(x(k)) · µBj (u(k)) (8.23)

The output y(k + 1) of the model is computed as an average of the consequents c ij
weighted by the normalized degrees of fulfillment β ij :

y(k + 1) =

∑M
i=1

∑N
j=1 βij(k) · cij∑M

i=1

∑N
j=1 βij(k)

=

=

∑M
i=1

∑N
j=1 µXi(x(k)) · µBj (u(k)) · cij∑M

i=1

∑N
j=1 µXi(x(k)) · µBj (u(k))

. (8.25)

Example 8.1 Consider a fuzzy model of the form y(k+1) = f(y(k), y(k−1), u(k))
where two linguistic terms {low, high} are used for y(k) and y(k− 1) and three terms
{small,medium, large} for u(k). The complete rule base consists of 2 × 2 × 3 = 12
rules:

If y(k) is low and y(k − 1) is low and u(k) is small then y(k + 1) is c11
If y(k) is low and y(k − 1) is low and u(k) is medium then y(k + 1) is c12
. . .

If y(k) is high and y(k − 1) is high and u(k) is large then y(k + 1) is c43

134 FUZZY AND NEURAL CONTROL

In this example x(k) = [y(k), y(k − 1)], Xi ∈ {(low × low), (low × high), (high ×
low), (high×high)},M = 4 andN = 3. The rule base is represented by the following
table:

u(k)
x(k) small medium large

X1 (low × low) c11 c12 c13
X2 (low × high) c21 c22 c23
X3 (high × low) c31 c32 c33
X4 (high × high) c41 c42 c43

(8.28)

✷

The inversion method requires that the antecedent membership functions µBj (u(k))
are triangular and form a partition, i.e., fulfill:

N∑
j=1

µBj (u(k)) = 1 . (8.29)

The basic idea is the following. For each particular state x(k), the multivariate map-
ping (8.1) is reduced to a univariate mapping

y(k + 1) = fx(u(k)), (8.30)

where the subscript x denotes that fx is obtained for the particular state x. From this
mapping, which is piecewise linear, the inverse mapping u(k) = f −1

x (r(k + 1)) can
be easily found, provided the model is invertible. This invertibility is easy to check
for univariate functions. First, using (8.29), the output equation of the model (8.25)
simplifies to:

y(k + 1) =

∑M
i=1

∑N
j=1 µXi(x(k)) · µBj (u(k)) · cij∑M

i=1

∑N
j=1 µXi(x(k))µBj (u(k))

=
M∑
i=1

N∑
j=1

λi(x(k)) · µBj (u(k)) · cij

=
N∑
j=1

µBj (u(k))
M∑
i=1

λi(x(k)) · cij . (8.31)

where λi(x(k)) is the normalized degree of fulfillment of the state part of the an-
tecedent:

λi(x(k)) =
µXi(x(k))∑K
j=1 µXj (x(k))

. (8.33)

As the state x(k) is available, the latter summation in (8.31) can be evaluated, yielding:

y(k + 1) =
N∑
j=1

µBj (u(k))cj , (8.34)

CONTROL BASED ON FUZZY AND NEURAL MODELS 135

where

cj =
M∑
i=1

λi(x(k)) · cij . (8.36)

This is an equation of a singleton model with input u(k) and output y(k + 1):

If u(k) is Bj then y(k + 1) is cj(k), j = 1, . . . , N . (8.37)

Each of the above rules is inverted by exchanging the antecedent and the consequent,
which yields the following rules:

If r(k + 1) is cj(k) then u(k) is Bj j = 1, . . . , N . (8.38)

Here, the reference r(k+1) was substituted for y(k+1). Since cj(k) are singletons, it
is necessary to interpolate between the consequents cj(k) in order to obtain u(k). This
interpolation is accomplished by fuzzy sets Cj with triangular membership functions:

µC1(r) = max
(
0,min(1,

c2 − r
c2 − c1

)
)
, (8.39a)

µCj (r) = max
(
0,min(

r − cj−1
cj − cj−1

,
cj+1 − r
cj+1 − cj

)
)
, 1 < j < N, (8.39b)

µCN (r) = max
(
0,min(

r − cN−1
cN − cN−1

, 1)
)
. (8.39c)

The output of the inverse controller is thus given by:

u(k) =
N∑
j=1

µCj

(
r(k + 1)

)
bj , (8.40)

where bj are the cores of Bj . The inversion is thus given by equations (8.33), (8.39)
and (8.40). It can be verified that the series connection of the controller and the inverse
model, shown in Figure 8.3, gives an identity mapping (perfect control)

y(k + 1) = fx(u(k)) = fx
(
f−1x

(
r(k + 1)

))
= r(k + 1), (8.41)

when u(k) exists such that r(k + 1) = f
(
x(k), u(k)

)
. When no such u(k) exists, the

difference ∣∣∣r(k + 1)− fx
(
f−1x

(
r(k + 1)

))∣∣∣
is the least possible. The proof is left as an exercise.

Apart from the computation of the membership degrees, both the model and the
controller can be implemented using standard matrix operations and linear interpola-
tions, which makes the algorithm suitable for real-time implementation.

For a noninvertible rule base (see Figure 8.4), a set of possible control commands
can be found by splitting the rule base into two or more invertible parts. For each part,

136 FUZZY AND NEURAL CONTROL

u k()Inverted fuzzy
model

r k+(1) y k+(1)Fuzzy
model

x()k

Figure 8.3. Series connection of the fuzzy model and the controller based on the inverse

of this model.

y

u

ci1

ci3

ci4

B3 B4
B1 B2

ci2

Figure 8.4. Example of a noninvertible singleton model.

a control action is found by inversion. Among these control actions, only one has to
be selected, which requires some additional criteria, such as minimal control effort
(minimal u(k) or |u(k)− u(k − 1)|, for instance).

The invertibility of the fuzzy model can be checked in run-time, by checking the
monotonicity of the aggregated consequents c j with respect to the cores of the input
fuzzy sets bj , see eq. (8.36). This is useful, since nonlinear models can be noninvert-
ible only locally, resulting in a kind of exception in the inversion algorithm. Moreover,
for models adapted on line, this check is necessary.

Example 8.2 Consider the fuzzy model from Example 8.1, which is, for convenience,
repeated below:

u(k)
x(k) small medium large

X1(low × low) c11 c12 c13
X2(low × high) c21 c22 c23
X3(high × low) c31 c32 c33
X4(high × high) c41 c42 c43

CONTROL BASED ON FUZZY AND NEURAL MODELS 137

Given the state x(k) = [y(k), y(k − 1)], the degree of fulfillment of the first an-
tecedent proposition “x(k) is Xi”, is calculated as µXi(x(k)). For X2, for instance,
µX2(x(k)) = µlow(y(k)) ·µhigh(y(k−1)). Using (8.36), one obtains the cores cj(k):

cj(k) =
4∑

i=1

µXi(x(k))cij , j = 1, 2, 3 . (8.42)

An example of membership functions for fuzzy sets C j , obtained by eq. (8.39), is
shown in Figure 8.5:

µ C1

c1(k)

C2 C3

c2(k) c3(k)

Figure 8.5. Fuzzy partition created from c1(k), c2(k) and c3(k).

Assuming that b1 < b2 < b3, the model is (locally) invertible if c1 < c2 < c3 or if
c1 > c2 > c3. In such a case, the following rules are obtained:

1) If r(k + 1) is C1(k) then u(k) is B1
2) If r(k + 1) is C2(k) then u(k) is B2
3) If r(k + 1) is C3(k) then u(k) is B3

Otherwise, if the model is not invertible, e.g., c1 > c2 < c3, the above rule base must
be split into two rule bases. The first one contains rules 1 and 2, and the second one
rules 2 and 3.

✷

8.1.4 Inverting Models with Transport Delays

For models with input delays y(k + 1) = f
(
x(k), u(k − nd)

)
, the inversion cannot

be applied directly, as it would give a control action u(k), nd steps delayed. In order
to generate the appropriate value u(k), the model must be inverted n d − 1 samples
ahead, i.e., u(k) = f−1(r(k + nd + 1),x(k + nd)), where

x(k + nd) = [y(k + nd), . . . , y(k + 1), . . .
y(k − ny + nd + 1), u(k − 1), . . . , u(k − nu + 1)]T . (8.44)

The unknown values, y(k + 1), . . . , y(k + nd), are predicted recursively using the
model:

y(k + i) = f
(
x(k + i− 1), u(k − nd + i− 1)

)
,

x(k + i) = [y(k + i), . . . , y(k − ny + i+ 1), u(k − nd + i− 1), . . . (8.46)

u(k − nu − nd + i+ 1)]T

138 FUZZY AND NEURAL CONTROL

for i = 1, . . . , nd.

8.1.5 Internal Model Control

Disturbances acting on the process, measurement noise and model-plant mismatch
cause differences in the behavior of the process and of the model. In open-loop control,
this results in an error between the reference and the process output. The internal
model control scheme (Economou, et al., 1986) is one way of compensating for this
error.

Figure 8.6 depicts the IMC scheme, which consists of three parts: the controller
based on an inverse of the process model, the model itself, and a feedback filter. The
control system (dashed box) has two inputs, the reference and the measurement of the
process output, and one output, the control action.

u
Inverse model

e

-

Feedback
filter

Process

Model

y
d

dp

r

ym

-

Figure 8.6. Internal model control scheme.

The purpose of the process model working in parallel with the process is to sub-
tract the effect of the control action from the process output. If the predicted and the
measured process outputs are equal, the error e is zero and the controller works in
an open-loop configuration. If a disturbance d acts on the process output, the feed-
back signal e is equal to the influence of the disturbance and is not affected by the
effects of the control action. This signal is subtracted from the reference. With a per-
fect process model, the IMC scheme is hence able to cancel the effect of unmeasured
output-additive disturbances.

The feedback filter is introduced in order to filter out the measurement noise and
to stabilize the loop by reducing the loop gain for higher frequencies. With nonlinear
systems and models, the filter must be designed empirically.

8.2 Model-Based Predictive Control

Model-based predictive control (MBPC) is a general methodology for solving control
problems in the time domain. It is based on three main concepts:

1. A model is used to predict the process output at future discrete time instants, over
a prediction horizon.

CONTROL BASED ON FUZZY AND NEURAL MODELS 139

2. A sequence of future control actions is computed over a control horizon by mini-
mizing a given objective function.

3. Only the first control action in the sequence is applied, the horizons are moved
towards the future and optimization is repeated. This is called the receding horizon
principle.

Because of the optimization approach and the explicit use of the process model, MBPC
can realize multivariable optimal control, deal with nonlinear processes, and can effi-
ciently handle constraints.

8.2.1 Prediction and Control Horizons

The future process outputs are predicted over the prediction horizonH p using a model
of the process. The predicted output values, denoted ŷ(k + i) for i = 1, . . . , H p,
depend on the state of the process at the current time k and on the future control
signals u(k + i) for i = 0, . . . , Hc − 1, where Hc ≤ Hp is the control horizon. The
control signal is manipulated only within the control horizon and remains constant
afterwards, i.e., u(k + i) = u(k +Hc − 1) for i = Hc, . . . , Hp − 1, see Figure 8.7.

predicted process output ŷ

k + Hp

past

control horizon

prediction horizon

reference r

future

k + Hc

k

time

present
time

past process output y control input u

Figure 8.7. The basic principle of model-based predictive control.

8.2.2 Objective Function

The sequence of future control signals u(k + i) for i = 0, 1, . . . , Hc − 1 is usually
computed by optimizing the following quadratic cost function (Clarke, et al., 1987):

J =
Hp∑
i=1

‖(r(k + i)− ŷ(k + i))‖2Pi
+

Hc∑
i=1

‖(∆u(k + i− 1))‖2Qi
. (8.48)

140 FUZZY AND NEURAL CONTROL

The first term accounts for minimizing the variance of the process output from the
reference, while the second term represents a penalty on the control effort (related, for
instance, to energy). The latter term can also be expressed by using u itself. P i and
Qi are positive definite weighting matrices that specify the importance of two terms
in (8.48) relative to each other and to the prediction step. Additional terms can be
included in the cost function to account for other control criteria.

For systems with a dead time of nd samples, only outputs from time k + nd are
considered in the objective function, because outputs before this time cannot be in-
fluenced by the control signal u(k). Similar reasoning holds for nonminimum phase
systems.

“Hard” constraints, e.g., level and rate constraints of the control input, process out-
put, or other process variables can be specified as a part of the optimization problem:

umin ≤ u ≤ umax,
∆umin ≤ ∆u ≤ ∆umax,
ymin ≤ ŷ ≤ ymax,
∆ymin ≤ ∆ŷ ≤ ∆ymax.

(8.50)

The variables denoted by upper indices min and max are the lower and upper bounds
on the signals, respectively.

8.2.3 Receding Horizon Principle

Only the control signal u(k) is applied to the process. At the next sampling instant,
the process output y(k + 1) is available and the optimization and prediction can be
repeated with the updated values. This is called the receding horizon principle. The
control action u(k + 1) computed at time step k + 1 will be generally different from
the one calculated at time step k, since more up-to-date information about the process
is available. This concept is similar to the open-loop control strategy discussed in
Section 8.1. Also here, the model can be used independently of the process, in a pure
open-loop setting.

A neural or fuzzy model acting as a numerical predictor of the process’ output can
be directly integrated in the MBPC scheme shown in Figure 8.8. The IMC scheme is
usually employed to compensate for the disturbances and modeling errors, see Sec-
tion 8.1.5.

8.2.4 Optimization in MBPC

The optimization of (8.48) generally requires nonlinear (non-convex) optimization.
The following main approaches can be distinguished.

Iterative Optimization Algorithms. This approach includes methods such
as the Nelder-Mead method or sequential quadratic programming (SQP). For longer
control horizons (Hc), these algorithms usually converge to local minima. This result
in poor solutions of the optimization problem and consequently poor performance
of the predictive controller. A partial remedy is to find a good initial solution, for

CONTROL BASED ON FUZZY AND NEURAL MODELS 141

u

e

u

-

Optimizer Plant

Feedback
filter

Nonlinear model

Nonlinear model
(copy)

yr v

^

^

-

y

y

Figure 8.8. A nonlinear model in the MBPC scheme with an internal model and a feedback

to compensate for disturbances and modeling errors.

instance, by grid search (Fischer and Isermann, 1998). This is, however, only efficient
for small-size problems.

Linearization Techniques. A viable approach to NPC is to linearize the non-
linear model at each sampling instant and use the linearized model in a standard pre-
dictive control scheme (Mutha, et al., 1997; Roubos, et al., 1999). Depending on the
particular linearization method, several approaches can be used:

Single-Step Linearization. The nonlinear model is linearized at the current time
step k and the obtained linear model is used through the entire prediction horizon.
This method is straightforward and fast in its implementation. However, for highly
nonlinear processes in conjunction with long prediction horizons, the single-step
linearization may give poor results. This deficiency can be remedied by multi-step
linearization.

Multi-Step Linearization The nonlinear model is first linearized at the current time
step k. The obtained control input u(k) is then used to predict ŷ(k + 1) and the
nonlinear model is then again linearized around this future operating point. This
procedure is repeated until k + Hp. In this way, a more accurate approximation
of the nonlinear model is obtained, which is especially useful for longer horizons.
The cost one has to pay are increased computational costs.

For both the single-step and multi-step linearization, a correction step can be em-
ployed by using a disturbance vector (Peterson, et al., 1992). For the linearized
model, the optimal solution of (8.48) is found by the following quadratic program:

min
∆u

{
1
2
∆uTH∆u+ cT∆u

}
, (8.51)

where: {
H = 2(Ru

TPRu +Q)
c = 2[Ru

TPT (RxAx(k)− r+ d)]T .
(8.52)

142 FUZZY AND NEURAL CONTROL

MatricesRu,Rx andP are constructed from the matrices of the linearized system
and from the description of the constraints. The disturbance d can account for the
linearization error when it is computed as a difference between the output of the
nonlinear model and the linearized model.

Feedback Linearization Also feedback linearization techniques (exact or approxi-
mate) can be used within NPC. There are two main differences between feedback
linearization and the two operating-point linearization methods described above:

– The feedback-linearized process has time-invariant dynamics. This is not the
case with the process linearized at operating points. Thus, for the latter one,
the tuning of the predictive controller may be more difficult.

– Feedback linearization transforms input constraints in a nonlinear way. This
is a clear disadvantage, as the quadratic program (8.51) requires linear con-
straints. Some solutions to this problem have been suggested (Oliveira, et al.,
1995; Botto, et al., 1996).

Discrete Search Techniques Another approach which has been used to address
the optimization in NPC is based on discrete search techniques such as dynamic
programming (DP), branch-and-bound (B&B) methods (Lawler and Wood, 1966;
Sousa, et al., 1997), genetic algorithms (GAs) (Onnen, et al., 1997), etc. The ba-
sic idea is to discretize the space of the control inputs and to use a smart search
technique to find a (near) global optimum in this space. Figure 8.9 illustrates the
basic idea of these techniques for the control space discretized into N alternatives:
u(k + i− 1) ∈ {ωj | j = 1, 2, . . . , N}.

k+Hc

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

k+Hp
k k+1 k+2

y()k

B1

Bj

BN

y(2)k+y(1)k+ y()k+Hc. . . y()k+Hp. . .

J(0) J(1) J(2) J H()c J H()p
.

Figure 8.9. Tree-search optimization applied to predictive control.

It is clear that the number of possible solutions grows exponentially with H c and
with the number of control alternatives. To avoid the search of this huge space, var-
ious “tricks” are employed by the different methods. Dynamic programming relies
on storing the intermediate optimal solutions in memory. The B&B methods use
upper and lower bounds on the solution in order to cut branches that certainly do not

CONTROL BASED ON FUZZY AND NEURAL MODELS 143

lead to an optimal solution. Genetic algorithms search the space in a randomized
manner.

Example 8.3 (Control of an Air-Conditioning Unit) Nonlinear predictive control of
temperature in an air-conditioning system (Sousa, et al., 1997) is shown here as an
example. A nonlinear predictive controller has been developed for the control of tem-
perature in a fan coil, which is a part of an air-conditioning system. Hot or cold water
is supplied to the coil through a valve. In the unit, outside air is mixed with return air
from the room. The mixed air is blown by the fan through the coil where it is heated
up or cooled down (Figure 8.10a).

test cell
(room)

u

return damper

fan

coil

outside damper

Tm

Ts

return air
primary

air

(a)

0 50 100 150 200
20

30

40

50

60

70

Time [min]

Su
pp

ly
 te

m
pe

ra
tu

re
 [

de
g

C
]

(b)

Figure 8.10. The air-conditioning unit (a) and validation of the TS model (solid line –

measured output, dashed line – model output).

This process is highly nonlinear (mainly due to the valve characteristics) and is
difficult to model in a mechanistic way. Using nonlinear identification, however, a
reasonably accurate model can be obtained within a short time. In the study reported
in (Sousa, et al., 1997), a TS fuzzy model was constructed from process measurements
by means of fuzzy clustering. The obtained model predicts the supply temperature T s
by using rules of the form:

If T̂s(k) is Ai1 and Tm(k) is Ai2 and u(k) is A13 and u(k− 1) is A14
then T̂s(k + 1) = aTi [T̂s(k) Tm(k) u(k) u(k− 1)]T + bi

The identification data set contained 800 samples, collected at two different times of
day (morning and afternoon). A sampling period of 30s was used. The excitation
signal consisted of a multi-sinusoidal signal with five different frequencies and ampli-
tudes, and of pulses with random amplitude and width. A separate data set, which was

144 FUZZY AND NEURAL CONTROL

^

Ts

Tm

u

-

P

M

-

r

F1

eef

F2

Predictive
controller

Ts

Figure 8.11. Implementation of the fuzzy predictive control scheme for the fan-coil using

an IMC structure.

measured on another day, is used to validate the model. Figure 8.10b compares the
supply temperature measured and recursively predicted by the model.

A model-based predictive controller was designed which uses the B&B method.
The controller uses the IMC scheme of Figure 8.11 to compensate for modeling er-
rors and disturbances. The controller’s inputs are the setpoint, the predicted sup-
ply temperature T̂s, and the filtered mixed-air temperature Tm. The error signal,
e(k) = Ts(k) − T̂s(k), is passed through a first-order low-pass digital filter F1. A
similar filter F2 is used to filter Tm. Both filters were designed as Butterworth fil-
ters, the cut-off frequency was adjusted empirically, based on simulations, in order to
reliably filter out the measurement noise, and to provide fast responses.

Figure 8.12 shows some real-time results obtained forH c = 2 andHp = 4.
✷

8.3 Adaptive Control

Processes whose behavior changes in time cannot be sufficiently well controlled by
controllers with fixed parameters. Adaptive control is an approach where the con-
troller’s parameters are tuned on-line in order to maintain the required performance
despite (unforeseen) changes in the process. There are many different way to design
adaptive controllers. They can be divided into two main classes:

Indirect adaptive control. A process model is adapted on-line and the controller’s
parameters are derived from the parameters of the model.

Direct adaptive control. No model is used, the parameters of the controller are
directly adapted.

The two subsequent sections present one example for each of the above possibilities.

8.3.1 Indirect Adaptive Control

On-line adaptation can be applied to cope with the mismatch between the process and
the model. In many cases, a mismatch occurs as a consequence of (temporary) changes

CONTROL BASED ON FUZZY AND NEURAL MODELS 145

0 10 20 30 40 50 60 70 80 90 100
30

35

40

45

50

Time [min]

Su
pp

ly
 te

m
pe

ra
tu

re
 [

de
g

C
]

0 10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time [min]

V
al

ve
 p

os
iti

on

Figure 8.12. Real-time response of the air-conditioning system. Solid line – measured

output, dashed line – reference.

of process parameters. To deal with these phenomena, especially if their effects vary
in time, the model can be adapted in the control loop. Since the control actions are
derived by inverting the model on line, the controller is adjusted automatically. Fig-
ure 8.13 depicts the IMC scheme with on-line adaptation of the consequent parameters
in the fuzzy model.

u

Adaptation

Consequent parameters

Inverse fuzzy
model

e

-

Feedback
filter

Process

Fuzzy
model

yr

ym

-

Figure 8.13. Adaptive model-based control scheme.

Since the model output given by eq. (8.25) is linear in the consequent parameters,
standard recursive least-squares algorithms can be applied to estimate the consequent
parameters from data. It is assumed that the rules of the fuzzy model are given by
(8.19) and the consequent parameters are indexed sequentially by the rule number. The
column vector of the consequents is denoted by c(k) = [c1(k), c2(k), . . . , cK(k)]T ,
where K is the number of rules. The normalized degrees of fulfillment denoted by

146 FUZZY AND NEURAL CONTROL

γi(k) are computed by:

γi(k) =
βi(k)∑K
j=1 βj(k)

, i = 1, 2, . . . ,K . (8.54)

They are arranged in a column vector γ(k) = [γ1(k), γ2(k), . . . , γK(k)]T . The con-
sequent vector c(k) is updated recursively by:

c(k) = c(k − 1) +
P(k − 1)γ(k)

λ+ γT (k)P(k − 1)γ(k)
[
y(k)− γT (k)c(k − 1)

]
, (8.55)

where λ is a constant forgetting factor, which influences the tracking capabilities of the
adaptation algorithm. The smaller the λ, the faster the consequent parameters adapt,
but the algorithm is more sensitive to noise. Therefore, the choice of λ is problem
dependent. The covariance matrixP(k) is updated as follows:

P(k) =
1
λ

[
P(k − 1)− P(k − 1)γ(k)γT (k)P(k − 1)

λ+ γT (k)P(k − 1)β(k)

]
. (8.56)

The initial covariance is usually set to P(0) = α · I, where I is a K × K identity
matrix and α is a large positive constant.

8.3.2 Reinforcement Learning

Reinforcement learning (RL) is inspired by the principles of human and animal learn-
ing. When applied to control, RL does not require any explicit model of the process to
be controlled. Moreover, the evaluation of the controller’s performance, the reinforce-
ment, can be quite crude (e.g., a binary signal indicating success or failure) and can
refer to a whole sequence of control actions. This is in contrast with supervised learn-
ing methods that use an error signal which gives a more complete information about
the magnitude and sign of the error (difference between desired and actual output).

Example 8.4 Humans are able optimize their behavior in a particular environment
without knowing an accurate model of that environment. Many learning tasks consist
of repeated trials followed by a reward or punishment. Each trial can be a dynamic
sequence of actions while the performance evaluation (reinforcement) is only received
at the end.

Consider, for instance, that you are learning to play tennis. The control trials are
your attempts to correctly hit the ball. In supervised learning you would have a teacher
who would evaluate your performance from time to time and would tell you how to
change your strategy in order to improve yourself. The advise might be very detailed
in terms of how to change the grip, how to approach the balls, etc.

In reinforcement learning, on the other hand, the role of the teacher is only to tell
you whether a particular shot was OK (reward) or not (punishment). It is left to you
to determine the appropriate corrections in your strategy (you would not pay such a
teacher, of course).

CONTROL BASED ON FUZZY AND NEURAL MODELS 147

It is important to realize that each trial can be a dynamic sequence of actions (ap-
proach the ball, take a stand, hit the ball) while the actual reinforcement is only re-
ceived at the end. Therefore, a large number of trials may be needed to figure out
which particular actions were correct and which must be adapted.

✷

The goal of RL is to discover a control policy that maximizes the reinforcement
(reward) received. As there is no external teacher or supervisor who would evaluate
the control actions, RL uses an internal evaluator called the critic. The role of the
critic is to predict the outcome of a particular control action in a particular state of the
process.

The control policy is adapted by means of exploration, i.e., deliberate modifica-
tion of the control actions computed by the controller and by comparing the received
reinforcement to the one predicted by the critic. A block diagram of a classical RL
scheme (Barto, et al., 1983; Anderson, 1987) is depicted in Figure 8.14. It consists
of a performance evaluation unit, the critic, the control unit and a stochastic action
modifier, which are detailed in the subsequent sections.

u'u

r

external reinforcement

controller
control
goals

internal
reinforcement

Critic
Performance

evaluation unit

Process
x

Control unit Stochastic
action modifier

Figure 8.14. The reinforcement learning scheme.

The adaptation in the RL scheme is done in discrete time. The current time instant
is denoted by k. The system under control is assumed to be driven by the following
state transition equation

x(k + 1) = f(x(k), u(k)), (8.57)

where the function f is unknown. For simplicity single-input systems are considered.

Performance Evaluation Unit. This block provides the external reinforce-
ment r(k) which usually assumes on of the following two values:

r(k) =
{

0, control goal satisfied,
−1, control goal not satisfied (failure) .

(8.58)

Critic. The task of the critic is to predict the expected future reinforcement r the
process will receive being in the current state and following the current control policy.

148 FUZZY AND NEURAL CONTROL

This prediction is then used to obtain a more informative signal, called the internal
reinforcement, which is involved in the adaptation of the critic and the controller.

In dynamic learning tasks, the control actions cannot be judged individually be-
cause of the dynamics of the process. It is not known which particular control action
is responsible for the given state. This leads to the so-called credit assignment problem
(Barto, et al., 1983). The goal is to maximize the total reinforcement over time, which
can be expressed as a discounted sum of the (immediate) external reinforcements:

V (k) =
∞∑
i=k

γi−kr(i), (8.59)

where γ ∈ [0, 1) is an exponential discounting factor, r is the external reinforcement
signal, k denotes a discrete time instant, and V (k) is the discounted sum of future
reinforcements also called the value function.

The critic is trained to predict the future value function V (k + 1) for the current
process state x(k) and control u(k). Denote V̂ (k) the prediction of V (k). To derive
the adaptation law for the critic, equation (8.59) is rewritten as:

V (k) =
∞∑
i=k

γi−kr(i) = r(k) + γV (k + 1) . (8.60)

To train the critic, we need to compute its prediction error ∆(k) = V (k) − V̂ (k).
The true value function V (k) is unknown, but it can be approximated by replacing
V (k+1) in (8.60) by its prediction V̂ (k+1). This gives an estimate of the prediction
error:

∆(k) = V (k)− V̂ (k) = r(k) + γV̂ (k + 1)− V̂ (k) . (8.61)

As ∆(k) is computed using two consecutive values V̂ (k) and V̂ (k + 1), it is called
the temporal difference (Sutton, 1988). Note that both V̂ (k) and V̂ (k + 1) are known
at time k, since V̂ (k + 1) is a prediction obtained for the current process state. The
temporal difference error serves as the internal reinforcement signal, see Figure 8.14.
The temporal difference can be directly used to adapt the critic. Let the critic be
represented by a neural network or a fuzzy system

V̂ (k + 1) = h
(
x(k), u(k);θ(k)

)
(8.62)

where θ(k) is a vector of adjustable parameters. To update θ(k), a gradient-descent
learning rule is used:

θ(k + 1) = θ(k) + ah
∂h

∂θ
(k)∆(k), (8.63)

where ah > 0 is the critic’s learning rate.

Control Unit, Stochastic Action Modifier. When the critic is trained to
predict the future system’s performance (the value function), the control unit can be
adapted in order to establish an optimal mapping between the system states and the
control actions. The temporal difference is used to adapt the control unit as follows.

CONTROL BASED ON FUZZY AND NEURAL MODELS 149

Given a certain state, the control action u is calculated using the current controller.
This action is not applied to the process, but it is stochastically modified to obtain u ′

by adding a random value from N(0, σ) to u. After the modified action u ′ is sent to
the process, the temporal difference is calculated. If the actual performance is better
than the predicted one, the controller is adapted toward the modified control action u ′.

Let the controller be represented by a neural network or a fuzzy system

u(k) = g
(
x(k);ϕ(k)

)
(8.64)

where ϕ(k) is a vector of adjustable parameters. To update ϕ(k), the following learn-
ing rule is used:

ϕ(k + 1) = ϕ(k) + ag
∂g

∂ϕ
(k)[u′(k)− u(k)]∆(k), (8.65)

where ag > 0 is the controller’s learning rate.

Example 8.5 (Inverted Pendulum) In this example, reinforcement learning is used
to learn a controller for the inverted pendulum, which is a well-known benchmark
problem. The aim is to learn to balance the pendulum in its upright position by accel-
erating the cart left and right as depicted in Figure 8.15.

x

u (force)

�

Figure 8.15. The inverted pendulum.

The system has one input u, the acceleration of the cart, and two outputs, the po-
sition of the cart x and the pendulum angle α. When a mathematical or simulation
model of the system is available, it is not difficult to design a controller. Figure 8.16
shows a block diagram of a cascaded PD controller that has been tuned by a trial and
error procedure on a Simulink model of the system (invpend.mdl). Figure 8.17
shows a response of the PD controller to steps in the position reference.

For the RL experiment, the inner controller is made adaptive, while the PD position
controller remains in place. The goal is to learn to stabilize the pendulum, given a
completely void initial strategy (random actions).

The critic is represented by a singleton fuzzy model with two inputs, the current
angle α(k) and the current control signal u(k). Seven triangular membership func-
tions are used for each input. The membership functions are fixed and the consequent
parameters are adaptive. The initial value is −1 for each consequent parameter.

150 FUZZY AND NEURAL CONTROL

Reference Position
 controller Inverted

 pendulum
Angle

 controller

Figure 8.16. Cascade PD control of the inverted pendulum.

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

time [s]

ca
rt

 p
os

iti
on

 [
cm

]

0 5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

time [s]

an
gl

e
[r

ad
]

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

time [s]

co
nt

ro
l i

np
ut

 [
−]

Figure 8.17. Performance of the PD controller.

The controller is also represented by a singleton fuzzy model with two inputs, the
current angle α(k) and its derivative dα

dt (k). Five triangular membership functions are
used for each input. The membership functions are fixed and the consequent param-
eters are adaptive. The initial value is 0 for each consequent parameter. The initial
control strategy is thus completely determined by the stochastic action modifier (it is
thus random). This, of course, yields an unstable controller. After several control trials
(the pendulum is reset to its vertical position after each failure), the RL scheme learns
how to control the system (Figure 8.18).

Note that up to about 20 seconds, the controller is not able to stabilize the system.
After about 20 to 30 failures, the performance rapidly improves and eventually it ap-
proaches the performance of the well-tuned PD controller (Figure 8.19). To produce
this result, the final controller parameters were fixed and the noise was switched off.

Figure 8.20 shows the final surfaces of the critic and of the controller. Note that the
critic highly rewards states when α = 0 and u = 0. States where both α and u are

CONTROL BASED ON FUZZY AND NEURAL MODELS 151

0 10 20 30 40 50 60 70 80 90 100

−5

0

5

time [s]

ca
rt

 p
os

iti
on

 [
cm

]

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

time [s]

an
gl

e
[r

ad
]

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

time [s]

co
nt

ro
l i

np
ut

 [
−]

Figure 8.18. The learning progress of the RL controller.

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

time [s]

ca
rt

 p
os

iti
on

 [
cm

]

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

time [s]

an
gl

e
[r

ad
]

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

time [s]

co
nt

ro
l i

np
ut

 [
−]

Figure 8.19. The final performance the adapted RL controller (no exploration).

152 FUZZY AND NEURAL CONTROL

negative are penalized, as they lead to failures (control action in the wrong direction).
States where α is negative but u is positive (and vice versa) are evaluated in between
the above two extremes. These control actions should lead to an improvement (control
action in the right direction).

−2
−1

0
1

2

−10

−5

0

5

10
−3

−2

−1

0

1

2

αu

V

(a) Critic.

−2
−1

0
1

2

−10

−5

0

5

10
−20

−10

0

10

20

αdα/dt

u

(b) Controller.

Figure 8.20. The final surface of the critic (left) and of the controller (right).

✷

8.4 Summary and Concluding Remarks

Several methods to develop nonlinear controllers that are based on an available fuzzy
or neural model of the process under consideration have been presented. They include
inverse model control, predictive control and two adaptive control techniques. Internal
model control scheme can be used as a general method for rejecting output-additive
disturbances and minor modeling errors in inverse and predictive control.

8.5 Problems

1. Draw a general scheme of a feedforward control scheme where the controller is
based on an inverse model of the dynamic process. Describe the blocks and signals
in the scheme.

2. Consider a first-order affine Takagi–Sugeno model:

Ri If y(k) is Ai then y(k + 1) = aiy(k) + biu(k) + ci

Derive the formula for the controller based on the inverse of this model, i.e., u(k) =
f(r(k + 1), y(k)), where r is the reference to be followed.

3. Explain the concept of predictive control. Give a formula for a typical cost function
and explain all the symbols.

CONTROL BASED ON FUZZY AND NEURAL MODELS 153

4. What is the principle of indirect adaptive control? Draw a block diagram of a
typical indirect control scheme and explain the functions of all the blocks.

5. Explain the idea of internal model control (IMC).

6. State the equation for the value function used in reinforcement learning.

Appendix A

Ordinary Sets and Membership Functions

This appendix is a refresher on basic concepts of the theory of ordinary 1 (as opposed
to fuzzy) sets. The basic notation and terminology will be introduced.

Definition A.1 (Set) A set is a collection of objects with a certain property. The indi-
vidual objects are referred to as elements or members of the set.

Sets are denoted by upper-case letters and their elements by lower-case letters. The
expression “x is an element of set A” is written as x ∈ A. The letter X denotes the
universe of discourse (the universal set). This set contains all the possible elements in
a particular context, from which sets can be formed. An important universal set is the
Euclidean vector space R

n for some n ∈ N. This is the space of all n-tuples of real
numbers. There several ways to define a set:

By specifying the properties satisfied by the members of the set:

A = {x | P (x)},

where the vertical bar | means “such that” and P (x) is a proposition which is true
for all elements of A and false for remaining elements of the universal set X . As
an example consider a set I of natural numbers greater than or equal to 2 and lower
than 7: I = {x | x ∈ N, 2 ≤ x < 7}.

By listing all its elements (only for finite sets):

A = {x1, x2, . . . , xn} . (A.1)

The set I of natural numbers greater than or equal to 2 and less than 7 can be written
as: I = {2, 3, 4, 5, 6}.

1Ordinary (nonfuzzy) sets are also referred to as crisp sets. In various contexts, the term crisp is used as an
opposite to fuzzy.

155

156 FUZZY AND NEURAL CONTROL

By using a membership (characteristic, indicator) function, which equals one for
the members of A and zero otherwise. As this definition is very useful in con-
ventional set theory and essential in fuzzy set theory, we state it in the following
definition.

Definition A.2 (Membership Function of an Ordinary Set) The membership func-
tion of the set A in the universeX (denoted by µA(x)) is a mapping fromX to the set
{0,1}: µA(x):X → {0, 1}, such that:

µA(x) =
{

1, x ∈ A,
0, x �∈ A . (A.2)

The membership function is also called the characteristic function or the indicator
function.

We will see later that operations on sets, like the intersection or union, can be
conveniently defined by means of algebraic operations on the membership functions
of these sets. Also in function approximation and modeling, membership functions
are useful as shown in the following example.

Example A.6 (Local Regression) A common approach to the approximation of com-
plex nonlinear functions is to write them as a concatenation of simpler functions f i,
valid locally in disjunct2 sets Ai, i = 1, 2, . . . , n:

y =



f1(x), if x ∈ A1,
f2(x), if x ∈ A2,

...
...

fn(x), if x ∈ An .

(A.3)

By using membership functions, this model can be written in a more compact form:

y =
n∑

i=1

µAi(x)fi(x) . (A.4)

Figure A.1 gives an example of a nonlinear function approximated by a concatena-
tion of three local linear segments that valid local in subsets of X defined by their
membership functions.

y =
3∑

i=1

µAi(x)(aix+ bi) (A.5)

✷

2Disjunct sets have an empty intersection.

APPENDIX A: ORDINARY SETS AND MEMBERSHIP FUNCTIONS 157

x

y

x

�

A1

y =
a

x +
b

1

1

1

A2

y = a x + b
2

2

y = a x + b3 3

A3

Figure A.1. Example of a piece-wise linear function.

The number of elements of a finite setA is called the cardinality ofA and is denoted
by cardA. A family of all subsets of a given setA is called the power set ofA; denoted
by P(A).

The basic operations of sets are the complement, the union and the intersection.

Definition A.3 (Complement) The (absolute) complement Ā of A is the set of all
members of the universal set X which are not members of A:

Ā = {x | x ∈ X and x �∈ A} .

Definition A.4 (Union) The union of sets A and B is the set containing all elements
that belong either to A or to B or to both A and B:

A ∪B = {x | x ∈ A or x ∈ B} .

The union operation can also be defined for a family of sets {A i | i ∈ I}:⋃
i∈I
Ai = {x | x ∈ Ai for some i ∈ I} .

Definition A.5 (Intersection) The intersection of sets A and B is the set containing
all elements that belong to both A and B:

A ∩B = {x | x ∈ A and x ∈ B} .

The intersection can also be defined for a family of sets {Ai | i ∈ I}:⋂
i∈I
Ai = {x | x ∈ Ai for all i ∈ I} .

Table A.1 lists the result of the above set-theoretic operations in terms of membership
degrees.

158 FUZZY AND NEURAL CONTROL

Table A.1. Set-theoretic operations in classical set theory.

A B A ∩ B A ∪ B Ā

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Definition A.6 (Cartesian Product) The Cartesian product of sets A andB is the set
of all ordered pairs:

A×B = {〈a, b〉 | a ∈ A, b ∈ B} .

Note that ifA �= B andA �= ∅,B �= ∅, thenA×B �= B×A. The Cartesian product of
a family {A1, A2, . . . , An} is the set of all n-tuples 〈a1, a2, . . . , an〉 such that ai ∈ Ai

for every i = 1, 2, . . . , n. It is written as A1 ×A2 × · · · ×An. Thus,

A1 ×A2 × · · · ×An = {〈a1, a2, . . . , an〉 | ai ∈ Ai for every i = 1, 2, . . . , n} .

The Cartesian productsA×A, A×A×A, etc., are denoted by A2, A3, etc., respec-
tively. Subsets of Cartesian products are called relations.

Appendix B

MATLAB Code

The MATLAB code given in this appendix can be downloaded from the course WWW page
(http://lcewww.et.tudelft.nl/ ẽt4099) or requested from the author at the
following address:

Dr. Robert Babuška
Control Engineering Laboratory
Faculty of Information Technology and Systems
Delft University of Technology
Mekelweg 4, P.O. Box 5031, 2600 GA Delft
the Netherlands

tel: +31 15 2785117
fax: +31 15 2626738
e-mail: R.Babuska@ET.TUDelft.NL

B.1 Fuzzy Set Class

A set of functions are available which define a new class “fset” (fuzzy set) under
MATLAB and provide various methods for this class, including: display as a point-
wise list, plot of the membership function (plot), intersection due to Zadeh (min),
algebraic intersection (* or prod) and a number of other operations. For illustration,
a few of these functions are listed below.

B.1.1 Fuzzy Set Class Constructor

Fuzzy sets are represented as structures with two fields (vectors): the domain elements
(dom) and the corresponding membership degrees (mu):

159

160 FUZZY AND NEURAL CONTROL

function A = fset(dom,mu)
% constructor for a fuzzy set

if isa(mu,’fset’), A = mu; return; end;
A.mu = mu;
A.dom = dom;
A = class(A,’fset’);

B.1.2 Set-Theoretic Operations

Set-theoretic operations are implemented as operations on the membership degree vec-
tors, assuming, of course, that the domains are equal. Examples are the Zadeh’s inter-
section:

function c = and(a,b)
% Intersection of fuzzy sets (min)

c = a; c.mu = min(a.mu,b.mu);

or the algebraic (probabilistic) intersection:

function c = mtimes(a,b)
% Algebraic intersection of fuzzy sets

c = a; c.mu = a.mu .* b.mu;

The reader is encouraged to implement other operators and functions and to compare
the results on some sample fuzzy sets. Fuzzy sets can easily be defined using paramet-
ric membership functions (such as the trapezoidal one, mftrap) or any other analytic
function, see example1 and example2.

APPENDIX C: MATLAB CODE 161

B.2 Gustafson–Kessel Clustering Algorithm

Follows a simple MATLAB function which implements the Gustafson–Kessel algo-
rithm of Chapter 4. The FCM algorithm presented in the same chapter can be obtained
by simply modifying the distance function to the Euclidean norm.

function [U,V,F] = gk(Z,c,m,tol)
% Clustering with fuzzy covariance matrix (Gustafson-Kessel algorithm)
%
% [U,V,F] = GK(Z,c,m,tol)
%--
% Input: Z ... N by n data matrix
% c ... number of clusters
% m ... fuzziness exponent (m > 1)
% tol ... termination tolerance (tol > 0)
%--
% Output: U ... fuzzy partition matrix
% V ... cluster means (centers)
% F ... cluster covariance matrices

%----------------- prepare matrices ----------------------------------
[N,n] = size(Z); % data size
N1 = ones(N,1); n1 = ones(n,1); c1 = ones(1,c); % aux. variables
U = zeros(N,c); % partition matrix
d = U; % distance matrix
F = zeros(n,n,c); % covariance matrix
%----------------- initialize U --------------------------------------
minZ = c1’*min(Z); maxZ = c1’*max(Z); % data limits
V = minZ + (maxZ - minZ).*rand(c,n); % random centers
for j = 1 : c,

ZV = Z - N1*V(j,:);
d(:,j) = sum((ZV.ˆ2)’)’; % distances

end;
d = (d+1e-100).ˆ(-1/(m-1)); % inverse dist.
U0 = (d ./ (sum(d’)’*c1)); % part. matrix
%----------------- iterate --
while max(max(U0-U)) > tol % no convergence

U = U0; Um = U.ˆm; sumU = sum(Um); % aux. vars
V = (Um’*Z)./(n1*sumU)’; % clust. centers
for j = 1 : c, % for all clusters

ZV = Z - N1*V(j,:); % auxiliary var
f = n1*Um(:,j)’.*ZV’*ZV/sumU(j); % cov. matrix
d(:,j)=sum(ZV*(det(f)ˆ(1/n)*inv(f)).*ZV,2); % distances

end;
d = (d+1e-100).ˆ(-1/(m-1)); % inverse dist.
U0 = (d ./ (sum(d’)’*c1)); % part. matrix

end
%----------------- create final F and U -------------------------------
U = U0; Um = U.ˆm; sumU = n1*sum(Um);
for j = 1 : c,

ZV = Z - N1*V(j,:);
F(:,:,j) = n1*Um(:,j)’.*ZV’*ZV/sumU(1,j);

end;
%----------------- end of function ------------------------------------

Appendix C

Symbols and Abbreviations

Printing Conventions. Lower case characters in bold print denote column vec-
tors. For example, x and a are column vectors. A row vector is denoted by using the
transpose operator, for example xT and aT . Lower case characters in italic denote
elements of vectors and scalars. Upper case bold characters denote matrices, for in-
stance, X is a matrix. Upper case italic characters such as A denote crisp and fuzzy
sets. Upper case calligraphic characters denote families (sets) of sets.

No distinction is made between variables and their values, hence x may denote a
variable or its value, depending on the context. No distinction is made either between
a function and its value, e.g., µ may denote both a membership function and its value
(a membership degree). Superscripts are sometimes used to index variables rather
than to denote a power or a derivative. Where confusion could arise, the upper index
is enclosed in parentheses. For instance, in fuzzy clustering µ (l)ik denotes the ikth

element of a fuzzy partition matrix, computed at the lth iteration. (µ (l)ik)
m denotes the

mth power of this element. A hat denotes an estimate (such as ŷ).

Mathematical symbols

A, B, . . . fuzzy sets
A, B, . . . families (sets) of fuzzy sets
A,B,C,D system matrices
F cluster covariance matrix
F(X) set of all fuzzy sets on X
I identity matrix of appropriate dimensions
K number of rules in a rule base
Mfc fuzzy partitioning space
Mhc hard partitioning space
Mpc possibilistic partitioning space
N number of items (data samples, linguistic terms, etc.)
P(A) power set of A
O(·) the order of
R fuzzy relation
R set of real numbers

163

164 FUZZY AND NEURAL CONTROL

Ri ith rule in a rule base
U = [µik] fuzzy partition matrix
V matrix containing cluster prototypes (means)
X matrix containing input data (regressors)
X, Y domains (universes) of variables x and y
Z data (feature) matrix
a, b consequent parameters in a TS model
c number of clusters
d(·, ·) distance measure
m weighting exponent (determines fuzziness of the partition)
n dimension of the vector [xT , y]
p dimension of x
u(k), y(k) input and output of a dynamic system at time k
v cluster prototype (center)
x(k) state of a dynamic system
x regression vector
y output (regressand)
y vector containing output data (regressands)
z data vector
β degree of fulfillment of a rule
� eigenvector of F
γ normalized degree of fulfillment
λ eigenvalue of F
µ, µ(·) membership degree, membership function
µi,k membership of data vector zk into cluster i
τ time constant
0 matrix of appropriate dimensions with all entries equal to zero
1 matrix of appropriate dimensions with all entries equal to one

Operators:

∩ (fuzzy) set intersection (conjunction)
∪ (fuzzy) set union (disjunction)
∧ intersection, logical AND, minimum
∨ union, logical OR, maximum
XT transpose of matrix X
Ā complement (negation) of A
∂ partial derivative
◦ sup-t (max-min) composition
〈x,y〉 inner product of x and y
card(A) cardinality of (fuzzy) set A
cog(A) center of gravity defuzzification of fuzzy set A
core(A) core of fuzzy set A
det determinant of a matrix
diag diagonal matrix
ext(A) cylindrical extension of A
hgt(A) height of fuzzy set A
mom(A) mean of maxima defuzzification of fuzzy set A
norm(A) normalization of fuzzy set A
proj(A) point-wise projection of A

APPENDIX C: SYMBOLS AND ABBREVIATIONS 165

rank(X) rank of matrix X
supp(A) support of fuzzy set A

Abbreviations

ANN artificial neural network
B&B branch-and-bound technique
BP backpropagation
COG center of gravity
FCM fuzzy c-means
FLOP floating point operations
GK Gustafson–Kessel algorithm
MBPC model-based predictive control
MIMO multiple–input, multiple–output
MISO multiple–input, single–output
MNN multi-layer neural network
MOM mean of maxima
(N)ARX (nonlinear) autoregressive with exogenous input
P(ID) proportional (integral derivative controller)
RBF(N) radial basis function (network)
RL reinforcement learning
SISO single–input, single–output
SQP sequential quadratic programming

References

Anderson, C.W. (1987). Strategy learning with multilayer connectionist representa-
tions. Proceedings Fourth International Workshop on Machine Learning, Irvine,
USA, pp. 103–114.

Babuška, R. (1998). Fuzzy Modeling for Control. Boston, USA: Kluwer Academic
Publishers.

Babuška, R., H.J.L. van Can and H.B. Verbruggen (1996). Fuzzy modeling of enzy-
matic Penicillin–G conversion. Preprints 13th IFAC World Congress, Volume N,
San Francisco, USA, pp. 479–484.

Babuška, R. and H.B. Verbruggen (1997). Constructing fuzzy models by product space
clustering. H. Hellendoorn and D. Driankov (Eds.), Fuzzy Model Identification:
Selected Approaches, pp. 53–90. Berlin, Germany: Springer.

Babuška, R., H.B. Verbruggen and H.J.L. van Can (1999). Fuzzy modeling of enzy-
matic penicillin–G conversion. Engineering Applications of Artificial Intelligence 12(1),
79–92.

Barron, A.R. (1993). Universal approximation bounds for superposition of a sigmoidal
function. IEEE Trans. Information Theory 39, 930–945.

Barto, A., R. Sutton and C.W. Anderson (1983). Neuron like adaptive elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man
and Cybernetics 13(5), 834–846.

Bezdek, J.C. (1980). A convergence theorem for the fuzzy ISODATA clustering algo-
rithms. IEEE Trans. Pattern Anal. Machine Intell. PAMI-2(1), 1–8.

Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function. Plenum
Press, New York.

Bezdek, J.C., C. Coray, R. Gunderson and J. Watson (1981). Detection and charac-
terization of cluster substructure, I. Linear structure: Fuzzy c-lines. SIAM J. Appl.
Math. 40(2), 339–357.

Bezdek, J.C. and S.K. Pal (Eds.) (1992). Fuzzy Models for Pattern Recognition. New
York: IEEE Press.

Bonissone, Piero P. (1994). Fuzzy logic controllers: an industrial reality. Jacek M.
Zurada, Robert J. Marks II and Charles J. Robinson (Eds.), Computational Intelli-
gence: imitating life, pp. 316–327. Piscataway, NJ: IEEE Press.

167

168 FUZZY AND NEURAL CONTROL

Botto, M.A., T. van den Boom, A. Krijgsman and J. Sá da Costa (1996). Constrained
nonlinear predictive control based on input-output linearization using a neural net-
work. Preprints 13th IFAC World Congress, USA, S. Francisco.

Brown, M. and C. Harris (1994). Neurofuzzy Adaptive Modelling and Control. New
York: Prentice Hall.

Chen, S. and S.A. Billings (1989). Representation of nonlinear systems: The NAR-
MAX model. International Journal of Control 49, 1013–1032.

Clarke, D.W., C. Mohtadi and P.S. Tuffs (1987). Generalised predictive control. Part 1:
The basic algorithm. Part 2: Extensions and interpretations. Automatica 23(2), 137–
160.

Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems 2(4), 303–314.

Driankov, D., H. Hellendoorn and M. Reinfrank (1993). An Introduction to Fuzzy
Control. Springer, Berlin.

Dubois, D., H. Prade and R.R. Yager (Eds.) (1993). Readings in Fuzzy Sets for Intel-
ligent Systems. Morgan Kaufmann Publishers. ISBN 1-55860-257-7.

Duda, R.O. and P.E. Hart (1973). Pattern Classification and Scene Analysis. New
York: John Wiley & Sons.

Dunn, J.C. (1974). A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. J. Cybern. 3(3), 32–57.

Economou, C.G., M. Morari and B.O. Palsson (1986). Internal model control. 5. Ex-
tension to nonlinear systems. Ind. Eng. Chem. Process Des. Dev. 25, 403–411.

Filev, D.P. (1996). Model based fuzzy control. Proceedings Fourth European Congress
on Intelligent Techniques and Soft Computing EUFIT’96, Aachen, Germany.

Fischer, M. and R. Isermann (1998). Inverse fuzzy process models for robust hybrid
control. D. Driankov and R. Palm (Eds.), Advances in Fuzzy Control, pp. 103–127.
Heidelberg, Germany: Springer.

Friedman, J.H. (1991). Multivariate adaptive regression splines. The Annals of Statis-
tics 19(1), 1–141.

Froese, Thomas (1993). Applying of fuzzy control and neuronal networks to modern
process control systems. Proceedings of the EUFIT ’93, Volume II, Aachen, pp.
559–568.

Gath, I. and A.B. Geva (1989). Unsupervised optimal fuzzy clustering. IEEE Trans.
Pattern Analysis and Machine Intelligence 7, 773–781.

Gustafson, D.E. and W.C. Kessel (1979). Fuzzy clustering with a fuzzy covariance
matrix. Proc. IEEE CDC, San Diego, CA, USA, pp. 761–766.

Hathaway, R.J. and J.C. Bezdek (1993). Switching regression models and fuzzy clus-
tering. IEEE Transactions on Fuzzy Systems 1(3), 195–204.

Hellendoorn, H. (1993). Design and development of fuzzy systems at siemens r&d.
San Fransisco (Ca), U.S.A., pp. 1365–1370. IEEE.

Hirota, K. (Ed.) (1993). Industrial Applications of Fuzzy Technology. Tokyo: Springer.
Holmblad, L.P. and J.-J. Østergaard (1982). Control of a cement kiln by fuzzy logic.

M.M. Gupta and E. Sanchez (Eds.), Fuzzy Information and Decision Processes, pp.
389–399. North-Holland.

REFERENCES 169

Ikoma, N. and K. Hirota (1993). Nonlinear autoregressive model based on fuzzy rela-
tion. Information Sciences 71, 131–144.

Jager, R. (1995). Fuzzy Logic in Control. PhD dissertation, Delft University of Tech-
nology, Delft, The Netherlands.

Jager, R., H.B. Verbruggen and P.M. Bruijn (1992). The role of defuzzification meth-
ods in the application of fuzzy control. Proceedings IFAC Symposium on Intelligent
Components and Instruments for Control Applications 1992, Málaga, Spain, pp.
111–116.

Jain, A.K. and R.C. Dubes (1988). Algorithms for Clustering Data. Englewood Cliffs:
Prentice Hall.

James, W. (1890). Psychology (Briefer Course). New York: Holt.
Jang, J.-S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE

Transactions on Systems, Man & Cybernetics 23(3), 665–685.
Jang, J.-S.R. and C.-T. Sun (1993). Functional equivalence between radial basis func-

tion networks and fuzzy inference systems. IEEE Transactions on Neural Net-
works 4(1), 156–159.

Kaymak, U. and R. Babuška (1995). Compatible cluster merging for fuzzy modeling.
Proceedings FUZZ-IEEE/IFES’95, Yokohama, Japan, pp. 897–904.

Klir, G. J. and T. A. Folger (1988). Fuzzy Sets, Uncertainty and Information. New
Jersey: Prentice-Hall.

Klir, G.J. and B. Yuan (1995). Fuzzy sets and fuzzy logic; theory and applications.
Prentice Hall.

Krishnapuram, R. and C.-P. Freg (1992). Fitting an unknown number of lines and
planes to image data through compatible cluster merging. Pattern Recognition 25(4),
385–400.

Krishnapuram, R. and J.M. Keller (1993). A possibilistic approach to clustering. IEEE
Trans. Fuzzy Systems 1(2), 98–110.

Kuipers, B. and K. Aström (1994). The composition and validation of heterogeneous
control laws. Automatica 30(2), 233–249.

Lakoff, G. (1973). Hedges: a study in meaning criteria and the logic of fuzzy concepts.
Journal of Philosofical Logic 2, 458–508.

Lawler, E.L. and E.D. Wood (1966). Branch-and-bound methods: A survey. Journal
of Operations Research 14, 699–719.

Lee, C.C. (1990a). Fuzzy logic in control systems: fuzzy logic controller - part I. IEEE
Trans. Systems, Man and Cybernetics 20(2), 404–418.

Lee, C.C. (1990b). Fuzzy logic in control systems: fuzzy logic controller - part II.
IEEE Trans. Systems, Man and Cybernetics 20(2), 419–435.

Leonaritis, I.J. and S.A. Billings (1985). Input-output parametric models for non-linear
systems. International Journal of Control 41, 303–344.

Lindskog, P. and L. Ljung (1994). Tools for semiphysical modeling. Proceedings
SYSID’94, Volume 3, pp. 237–242.

Ljung, L. (1987). System Identification, Theory for the User. New Jersey: Prentice-
Hall.

Mamdani, E.H. (1974). Application of fuzzy algorithm for control of simple dynamic
plant. Proc. IEE 121, 1585–1588.

170 FUZZY AND NEURAL CONTROL

Mamdani, E.H. (1977). Application of fuzzy logic to approximate reasoning using
linguistic systems. Fuzzy Sets and Systems 26, 1182–1191.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics 5, 115 – 133.

Mutha, R.K., W.R. Cluett and A. Penlidis (1997). Nonlinear model-based predictive
control of control nonaffine systems. Automatica 33(5), 907–913.

Nakamori, Y. and M. Ryoke (1994). Identification of fuzzy prediction models through
hyperellipsoidal clustering. IEEE Trans. Systems, Man and Cybernetics 24(8), 1153–
73.

Novák, V. (1989). Fuzzy Sets and their Applications. Bristol: Adam Hilger.
Novák, V. (1996). A horizon shifting model of linguistic hedges for approximate rea-

soning. Proceedings Fifth IEEE International Conference on Fuzzy Systems, New
Orleans, USA, pp. 423–427.

Oliveira, S. de, V. Nevistić and M. Morari (1995). Control of nonlinear systems subject
to input constraints. Preprints of NOLCOS’95, Volume 1, Tahoe City, California,
pp. 15–20.

Onnen, C., R. Babuška, U. Kaymak, J.M. Sousa, H.B. Verbruggen and R. Isermann
(1997). Genetic algorithms for optimization in predictive control. Control Engi-
neering Practice 5(10), 1363–1372.

Pal, N.R. and J.C. Bezdek (1995). On cluster validity for the fuzzy c-means model.
IEEE Transactions on Fuzzy Systems 3(3), 370–379.

Pedrycz, W. (1984). An identification algorithm in fuzzy relational systems. Fuzzy Sets
and Systems 13, 153–167.

Pedrycz, W. (1985). Applications of fuzzy relational equations for methods of reason-
ing in presence of fuzzy data. Fuzzy Sets and Systems 16, 163–175.

Pedrycz, W. (1993). Fuzzy Control and Fuzzy Systems (second, extended,edition). John
Wiley and Sons, New York.

Pedrycz, W. (1995). Fuzzy Sets Engineering. Boca Raton, Fl.: CRC Press.
Peterson, T., E. Hernández Y. Arkun and F.J. Schork (1992). A nonlinear SMC al-

gorithm and its application to a semibatch polymerization reactor. Chemical Engi-
neering Science 47(4), 737–753.

Psichogios, D.C. and L.H. Ungar (1992). A hybrid neural network – first principles
approach to process modeling. AIChE J. 38, 1499–1511.

Roubos, J.A., S. Mollov, R. Babuška and H.B. Verbruggen (1999). Fuzzy model based
predictive control by using Takagi-Sugeno fuzzy models. International Journal of
Approximate Reasoning 22(1/2), 3–30.

Rumelhart, D.E., G.E. Hinton and R.J. Williams (1986). Learning internal represen-
tations by error propagation. D.E. Rumelhart and J.L. McClelland (Eds.), Parallel
Distributed Processing. Cambridge, MA: MIT Press.

Ruspini, E. (1970). Numerical methods for fuzzy clustering. Inf. Sci. 2, 319–350.
Santhanam, Srinivasan and Reza Langari (1994). Supervisory fuzzy adaptive control

of a binary distillation column. Proceedings of the Third IEEE International Con-
ference on Fuzzy Systems, Volume 2, Orlando, Fl., pp. 1063–1068.

Sousa, J.M., R. Babuška and H.B. Verbruggen (1997). Fuzzy predictive control applied
to an air-conditioning system. Control Engineering Practice 5(10), 1395–1406.

REFERENCES 171

Sugeno, M. (1977). Fuzzy measrues and fuzzy integrals: a survey. M.M. Gupta, G.N.
Sardis and B.R. Gaines (Eds.), Fuzzy Automata and Decision Processes, pp. 89–
102. Amsterdam, The Netherlands: North-Holland Publishers.

Sutton, R.S. (1988). Learning to predict by the method of temporal differences. Ma-
chine learning 3, 9–44.

Takagi, T. and M. Sugeno (1985). Fuzzy identification of systems and its application to
modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15(1),
116–132.

Tanaka, K., T. Ikeda and H.O. Wang (1996). Robust stabilization of a class of uncertain
nonlinear systems via fuzzy control: Quadratic stability, H∞ control theory and
linear matrix inequalities. IEEE Transactions on Fuzzy Systems 4(1), 1–13.

Tanaka, K. and M. Sugeno (1992). Stability analysis and design of fuzzy control sys-
tems. Fuzzy Sets and Systems 45(2), 135–156.

Tani, Tetsuji, Makato Utashiro, Motohide Umano and Kazuo Tanaka (1994). Appli-
cation of practical fuzzy–PID hybrid control system to petrochemical plant. Pro-
ceedings of Third IEEE International Conference on Fuzzy Systems, Volume 2, pp.
1211–1216.

Terano, T., K. Asai and M. Sugeno (1994). Applied Fuzzy Systems. Boston: Academic
Press, Inc.

Thompson, M.L. and M.A. Kramer (1994). Modeling chemical processes using prior
knowledge and neural networks. AIChE J. 40, 1328–1340.

Voisin, A., L. Rondeau, R. Ruelas, G. Dubois and M. Lamotte (1995). Conditions to
establish and equivalence between a fuzzy relational model and a linear model. Pro-
ceedings Third European Congress on Intelligent Techniques and Soft Computing
EUFIT’95, Aachen, Germany, pp. 523–528.

Wang, L.-X. (1992). Fuzzy systems are universal approximators. Proc. IEEE Int. Conf.
on Fuzzy Systems 1992, San Diego, USA, pp. 1163–1170.

Werbos, P.J. (1974). Beyond regression: new tools for prediction and analysis in the
behavior sciences. PhD Thesis, Harvard University, Committee on Applied Math-
ematics.

Xie, X. L. and G. A. Beni (1991). Validity measure for fuzzy clustering. IEEE Trans.
on Pattern Anal. and Machine Intell. 3(8), 841–846.

Yasunobu, S. and S. Miyamoto (1985). Automatic train operation system by predictive
fuzzy control. M. Sugeno (Ed.), Industrial Applications of Fuzzy Control, pp. 1–18.
North-Holland.

Yi, S.Y. and M.J. Chung (1993). Identification of fuzzy relational model and its appli-
cation to control. Fuzzy Sets and Systems 59, 25–33.

Yoshinari, Y., W. Pedrycz and K. Hirota (1993). Construction of fuzzy models through
clustering techniques. Fuzzy Sets and Systems 54, 157–165.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8, 338–353.
Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Transactions on Systems, Man and Cybernetics 1, 28–44.
Zadeh, L.A. (1975). Calculus of fuzzy restrictions. L.A. Zadeh, K.-S. Fu, K. Tanaka

and M. Shimura (Eds.), Fuzzy Sets and Their Applications to Cognitive and Deci-
sion Processes, pp. 1–39. New York, USA: Academic Press.

172 FUZZY AND NEURAL CONTROL

Zhao, J. (1995). Fuzzy logic in modeling and control. PhD dissertation, CESAME,
Louvain la Neuve, Belgium.

Zimmermann, H.-J. (1987). Fuzzy Sets, Decision Making and Expert Systems. Boston:
Kluwer Academic Publishers.

Zimmermann, H.-J. (1996). Fuzzy Set Theory and its Application (Third ed.). Boston:
Kluwer Academic Publishers.

Index

α-cut, 6

A
activation function, 113
adaptation, 144
adaptive control, 144

direct, 146
indirect, 144

aggregation, 30
air-conditioning control, 143
algorithm

backpropagation, 124
fuzzy c-means, 63
Gustafson–Kessel, 69
Mamdani inference, 33
relational inference, 46

antecedent, 23
space, 40

approximation accuracy, 118
artificial neural network, 111
artificial neuron, 113
ARX model, 52
autoregressive system, 82

B
backpropagation, 120
basis function expansion, 42
biological neuron, 112

C
c-means functional, 61
Cartesian product, 13–16, 158
chaining of rules, 40
characteristic function, 156
cluster, 56

covariance matrix, 70
fuzziness coefficient, 61
hyperellipsoidal, 65
prototype, 61
validity measures, 64

complement, 10, 157
λ-, 11

composition, 17, 18
compositional rule of inference, 26, 27
conjunctive form, 39
connectives, 38
consequent, 23, 48
contrast intensification, 16
control horizon, 139
control unit, 148
core, 6
coverage, 24
critic, 147
cylindrical extension, 14

D
data-driven modeling, 75
defuzzification, 34

center of gravity, 35
fuzzy-mean, 35, 42
mean of maxima, 35
weighted fuzzy mean, 36

degree of fulfillment, 33, 40
distance norm, 56, 61
dynamic

fuzzy system, 51, 77
neural network, 116

E
example

air-conditioning control, 143
autoregressive system, 82
friction compensation, 99
fuzzy PD controller, 96
inverted pendulum, 149
pressure control, 104

F
feedforward neural network, 114, 115
first-principle modeling, 86
friction compensation, 99

173

174 FUZZY AND NEURAL CONTROL

fuzziness exponent, 61
fuzzy

c-means algorithm, 61
clustering, 79
covariance matrix, 68
expert system, 73
graph, 30
identification, 73
implication, 26, 36
mean, 42
number, 9, 21
partition matrix, 61
proposition, 23
relation, 26, 27, 44
set, 4
system, 21

fuzzy control
chip, 108
design, 97
hardware, 108
knowledge-based, 89
Mamdani, 92
proportional derivative, 96
software, 107
supervisory, 93, 103
Takagi–Sugeno, 93, 102

fuzzy model
linguistic (Mamdani), 23
relational, 43
singleton, 42
Takagi–Sugeno, 23, 48

fuzzy relation, 16
fuzzy set, 4

cardinality, 7
convex, 7
normal, 5
representation, 8–10

G
generalization, 74
granularity, 25, 74
Gustafson–Kessel algorithm, 67

H
hedges, 16, 17
height, 5

I
implication

Kleene–Diene, 26
Larsen, 27
Łukasiewicz, 26, 29
Mamdani, 27

inference
linguistic model, 26
Mamdani, 31, 32, 36
singleton model, 42

Takagi–Sugeno, 49
information hiding, 25
inner-product norm, 65
internal model control, 138
intersection, 11, 157
inverse model control, 129, 130
inverted pendulum, 149

K
knowledge base, 97
knowledge-based

fuzzy control, 89
modeling, 75

L
learning

reinforcement, 146
supervised, 115
unsupervised, 115

least-squares method, 76
level set, 10
linguistic

hedge, 16
model, 23
term, 23, 24
variable, 23

logical connectives, 38

M
Mamdani

controller, 92
implication, 27
inference, 31–33
model, 23

max-min composition, 28
membership function, 155, 156

exponential, 8
Gaussian, 8
point-wise defined, 9
trapezoidal, 8
triangular, 8

membership grade, 4
model-based predictive control, 138
modus ponens, 27
multi-layer neural network, 115
multivariable systems, 38

N
NARX model, 51, 82
negation, 39
neural network

approximation accuracy, 118
dynamic, 116
feedforward, 114
multi-layer, 115
single-layer, 114, 115
training, 120

neuro-fuzzy

INDEX 175

modeling, 73, 78
network, 79

nonlinear control, 90
nonlinearity, parameterization, 91
norm

diagonal, 65
Euclidean, 65
inner-product, 61, 65

number of clusters, 64

O
objective function, 139
on-line adaptation, 144
optimization

alternating, 63
first-order methods, 121
second-order methods, 122

ordinary set, 155

P
partition

fuzzy, 25, 59
hard, 58
possibilistic, 60

performance evaluation unit, 147
Picard iteration, 62
piece-wise linear mapping, 42
polytope, 50
prediction horizon, 139
predictive control, 138
pressure control, 104
projection, 13

R
recursive least squares, 145
regression

local, 156
surface, 82

reinforcement learning, 146
relational

composition, 17, 18
inference, 46
model, 23, 43

rule
chaining, 40

S
semantic soundness, 24
semi-mechanistic modeling, 85
set

fuzzy, 3, 4
ordinary, 155

sigmoidal
activation function, 113
network, 119

similarity, 56
Simulink, 99, 149

single-layer network, 114, 115
singleton model, 42, 132
state-space modeling, 52
stochastic action modifier, 148
supervised learning, 115
supervisory control, 103
support, 6

T
t-conorm, 12
t-norm, 12
Takagi–Sugeno

controller, 93
inference, 49
model, 23, 48, 77

template-based modeling, 76
training, 120

U
union, 11, 157
unsupervised learning, 115

V
value function, 148

W
weight, 112

update rule, 121, 122

