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Abstract—This paper presents the modelling and simulation 
for optimal control design of nonlinear inverted pendulum-cart 
dynamic system using Proportional-Integral-Derivative (PID) 
controller and Linear Quadratic Regulator (LQR). LQR, an 
optimal control technique, and PID control method, both of 
which are generally used for control of the linear dynamical 
systems have been used in this paper to control the nonlinear 
dynamical system. The nonlinear system states are fed to LQR 
which is designed using linear state-space model. Inverted 
pendulum, a highly nonlinear unstable system is used as a 
benchmark for implementing the control methods. Here the 
control objective is to control the system such that the cart 
reaches at a desired position and the inverted pendulum 
stabilizes in upright position. The MATLAB-SIMULINK 
models have been developed for simulation of control schemes. 
The simulation results justify the comparative advantages of 
LQR control methods. 

Keywords—Inverted pendulum; nonlinear system; PID 
control; optimal control; LQR 

I.  INTRODUCTION 
The Inverted Pendulum is an inherently open loop & 

closed loop unstable system with highly nonlinear dynamics. 
This is a system which belongs to the class of under-actuated 
mechanical systems having fewer control inputs than degrees 
of freedom. This renders the control task more challenging 
making the inverted pendulum system a classical benchmark 
for the design, testing, evaluating and comparing of different 
classical & contemporary control techniques.  

The inverted pendulum is among the most difficult 
systems being an inherently unstable system, is a very 
common control problem, and so being one of the most 
important classical problems, the control of inverted 
pendulum has been a research interest in the field of control 
engineering. Due to its importance this is a choice of 
dynamic system to analyze its dynamic model and propose a 
control law. The aim of this case study is to stabilize the 
Inverted Pendulum (IP) such that the position of the cart on 
the track is controlled quickly and accurately so that the 
pendulum is always erected in its inverted position during 
such movements. Realistically, this simple mechanical 
system is representative of a class of altitude control 
problems whose goal is to maintain the desired vertically 
oriented position at all times [1-4]. 

In general, the control problem consists of obtaining 
dynamic models of systems, and using these models to 
determine control laws or strategies to achieve the desired 

system response and performance. The simplicity of control 
algorithm as well as to guarantee the stability and robustness 
in the closed-loop system is challenging task in real 
situations. Most of the dynamical systems such as power 
systems, missile systems, robotic systems, inverted 
pendulum, industrial processes, chaotic circuits etc. are 
highly nonlinear in nature. The control of such systems is a 
challenging task. 

The Proportional-Integral-Derivative (PID) control gives 
the simplest and yet the most efficient solution to various 
real-world control problems. Both the transient and steady-
state responses are taken care of with its three-term (i.e. P, I, 
and D) functionality. Since its invention the popularity of 
PID control has grown tremendously. The advances in digital 
technology have made the control system automatic. The 
automatic control system offers a wide spectrum of choices 
for control schemes, even though, more than 90% of 
industrial controllers are still implemented based around the 
PID algorithms, particularly at the lowest levels, as no other 
controllers match with the simplicity, clear functionality, 
applicability, and ease of use offered by the PID controller. 

The performance of the dynamical systems being 
controlled is desired to be optimal. There are many 
optimization & optimal control techniques which are present 
in the literatures for linear & nonlinear dynamical systems 
[5-7]. The recent development in the area of artificial 
intelligence (AI), such as artificial neural network (ANN), 
fuzzy logic theory (FL), and evolutionary computational 
techniques such as genetic algorithm (GA), and particle 
swarm optimization (PSO) etc., commonly all these are 
known as intelligent computational techniques which have 
given novel solutions to the various control system problems. 
The intelligent optimal control has emerged as viable recent 
approach by the application of these intelligent 
computational techniques [8-18].  

There are many literatures present which have taken 
inverted pendulum-cart dynamical system for implementing 
the various control schemes [16-21]. Linear quadratic 
regulator (LQR), an optimal control method, and PID control 
which are generally used for control of the linear dynamical 
systems have been used in this paper to control the nonlinear 
inverted pendulum-cart dynamical system. In recent trends 
even the various advance control approaches are developing 
and being tried for many dynamical systems control, the 
proposed control method is simple, effective, and robust. 

This paper is organized in 5 sections. Section I presents 
the relevance & the general introduction of the paper. 
Section II describes the mathematical model of the inverted 
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pendulum-cart system. In section III the control methods of 
PID control and optimal control using LQR have been 
discussed briefly. Section IV presents MATLAB-
SIMULINK modeling, and simulation results. In section V 
conclusion is presented. At the end a brief list of   references 
is given. 

II. MATHEMATICAL MODELLING 

A. Inverted Pendulum System Equations 
The free body diagram of an inverted pendulum mounted 

on a motor driven cart is shown in Fig. 1 [1-4, 16-21]. The 
system equations of this nonlinear dynamic system can be 
derived as follows [1,3,4,16,20]. It is assumed here that the 
pendulum rod is mass-less, and the hinge is frictionless. The 
cart mass and the ball point mass at the upper end of the 
inverted pendulum are denoted as M and m, respectively. 
There is an externally x-directed force on the cart, ( )u t , and 
a gravity force acts on the point mass at all times. The 
coordinate system considered is shown in Fig. 1, where    

( )x t represents the cart position and ( )tθ is the tilt angle 
referenced to the vertically upward direction. 

A force balance in the x-direction gives that the mass 
times acceleration of the cart plus the mass times the x-
directed acceleration of the point mass must equal the 
external force on the system.  

This can be written as 

 
2 2

2 2 G
d d

M x m x u
dt dt

+ =           (1) 

where the time-dependent center of gravity (COG) of the 
point mass is given by the coordinates, ( , )G Gx y . For the 
point mass assumed here, the location of the center of gravity 
of the pendulum mass is simply 

sinGx x l θ= +      and       cosGy l θ=          (2) 
where l  is the pendulum rod length. 
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Figure 1.  Motor Driven Inverted Pendulum-Cart System. 

Substitution of eqn. (2) into (1) gives 
2 2

2 2 ( sin )d d
M x m x l u

dt dt
θ+ + =            (3) 

which gives 
2( ) sin cosM m x ml ml uθθ θθ+ − + =          (4) 

In a similar way, a torque balance on the system is 
performed, where torque is the product of the perpendicular 
component of the force and the distance to the pivot point 
(lever arm length, l ). In this case, the torque on the mass due 
to the acceleration force is balanced by the torque on the 
mass due to the gravity force. The resultant torque balance 
can be written as 

( cos ) ( sin ) ( sin )x yF l F l mg lθ θ θ− =                (5) 
where the force components, xF  and yF , are determined as 

2
2

2 sin cosx G
d

F m x m x l l
dt

θθ θθ= = − +         (6) 

2
2

2 cos siny G
d

F m y m l l
dt

θθ θθ= = − +         (7) 

Substituting eqns. (6) & (7) into eqn. (5) we have 
2 2 2

2

cos sin cos cos sin cos

sin sin

mx ml ml ml

ml mg

θ θ θθ θθ θ θθ
θθ θ
− + +

+ =
  

or 
cos sinmx ml mgθ θ θ+ =                            (8) 

Equations (4) and (8) are the defining equations for this 
system. These two equations definitely represent a nonlinear 
system which is relatively complicated from a mathematical 
viewpoint. However, since the goal of this particular system 
is to keep the inverted pendulum in upright position around 

0θ = , the linearization might be considered about this 
upright equilibrium point. This has been presented in 
subsection C to compare the linear and nonlinear dynamics 
of the system. Following subsection B presents the standard 
state space form of these two nonlinear equations. 

B. Nonlinear System Equations of Inverted Pendulum 
For numerical simulation of the nonlinear model for the 

inverted pendulum-cart dynamic system, it is required to 
represent the nonlinear equations (4) and (8) into standard 
state space form, 

( , , )d
u t

dt
=x xf            (9) 

To put eqns. (4) and (8) into this form, firstly these equations 
are manipulated algebraically to have only a single second 
derivative term in each equation. From eqn. (8), we have 

 sin cosml mg mxθ θ θ= −  
and putting this into eqn. (4) gives 

2 2( ) sin cos sin cosM m x ml mg mx uθθ θ θ θ+ − + − =   
or 

2 2( cos ) sin cos sinM m m x u ml mgθ θθ θ θ+ − = + −      (10) 
Similarly, from eqn. (8) we have 
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sin
cos

g l
x

θ θ
θ
−=  

and putting this into eqn. (4) gives 
2( )( sin ) sin cos

cos
M m g l

ml ml u
θ θ θθ θθ

θ
+ − − + =    

or 
2

2

( )( sin ) cos sin
cos cos

M m g l ml

ml u

θ θ θ θθ
θθ θ

+ − −

+ =
   

and 

  
2

2

( cos ( ) ) cos

( ) sin cos sin

ml M m l u

M m g ml

θ θ θ
θ θ θθ

− + =

− + +
                   (11) 

Finally, dividing by the lead coefficients of eqns. (10) and 
(11) gives 

2

2

(sin ) cos sin
cos

u ml mg
x

M m m
θ θ θ θ

θ
+ −=

+ −
      (12) 

 2

cos ( ) sin (cos sin )
cos ( )

u M m g ml
ml M m l

θ θ θ θ θθ
θ

− + +=
− +

        (13) 

Now these equations may be represented into state space 
form by considering the state variables as following: 

 1 2 1 3 4 3                   x x x x x x x xθ θ= = = = = =       (14) 
Then, the final state space equation for the inverted 
pendulum system may be written as 

1 1

2 2

3 3

4 4

x f
x fd d d
x fxdt dt dt
x fx

θ
θ

= = =x        (15) 

where,   1 2f x= ,  3 4f x= , and 
2

1 1 1 1 2
2 2

1

cos ( ) sin (cos sin )
cos ( )

u x M m g x ml x x x
f

ml x M m l
− + +

=
− +

 

2
1 2 1 1

4 2
1

(sin ) cos sin
cos

u ml x x mg x x
f

M m m x
+ −

=
+ −

 

This expression is now in the desired form as given in eqn. 
(9). If both the pendulum angle θ  and the cart position x are 
the variables of interest, then the output equation may be 
written as  

C=y x   or  
1 0 0 0

C
0 0 1 0x x

x

θ
θ θ

=y = x =       (16) 

Equations (15) and (16) give a complete state space 
representation of the nonlinear inverted pendulum-cart 
dynamic system. 

C. Linear System Equations of Inverted Pendulum 
The linear model for the system around the upright 

stationary point is derived by simply linearization of the 
nonlinear system given in eqn. (15). Since the usual A and   
B matrices are zero for this case; and so every term is put 

into the nonlinear vector function, ( , , )u txf , then the 
linearized form for the system becomes 

0 0 u 0 0( , ) ( , ) ud
u u

dt
δ δ δ= +xx J x x J x        (17) 

where, the reference state is defined with the pendulum 
stationary and upright with no input force. Under these 
conditions, 0 0=x , and 0u 0= . 
Since the nonlinear vector function is rather complicated, the 
components of the Jacobian matrices are determined 
systemically, term by term. The elements of the first second, 
third, and fourth columns of 0 0( , )uxJ x  are given 

by
0 0

1 ,u

if
x

∂
∂ x

, 
0 0

2 ,u

if
x

∂
∂ x

, 
0 0

3 ,u

if
x

∂
∂

x

, and 
0 0

4 ,u

if
x

∂
∂ x

respectively. 

Thus, combining all these separate terms gives 

0 0

0 1 0 0
( ) 0 0 0

( , )
0 0 0 1

0 0 0

M m g
Mlu

mg
M

+

=

−

xJ x        (18) 

For the derivative of the nonlinear terms with respect to u , 
we have 

0 0

0 0

1

2
0 0

3

4 ,

1
2

1

2
1 ,

( , )

0 0
cos 1

cos ( )
00
11

cos

u

u

u

f u
f u

u
f u
f u

x
ml x M m l Ml

MM m m x

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

−
− +

= =

+ −

x

x

J x

      (19) 

Finally, after all these manipulations eqn. (17) may be 
written explicitly as 

0 1 0 0 0
( ) 10 0 0

0 0 0 1 0
10 0 0

M m g
d Ml Ml u
dt

mg
M M

δ δ δ

+ −

=

−

x x +       (20)  

This is the open loop linearized model for the inverted 
pendulum with a cart force, ( )u tδ , (written in perturbation 
form). Thus, LTI system is in standard state space form. The 
eqn. (20) may be written in general as 

d
u

dt
δ δ δ= +x A x B         (21) 
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Equation (21) along with the output eqn. (16) represents the 
final linear model of the inverted pendulum-cart system. This 
is the simplified model which is used to study the system 
behaviour and LQR design. 

III. CONTROL METHODS 
To control the nonlinear inverted pendulum-cart 

dynamical system the following control methods are 
presented in this paper. 

A. PID Control 
To stabilize the inverted pendulum in upright position 

and to control the cart at desired position using PID control 
approach two PID controllers- angle PID controller, and cart 
PID controller have been designed for the two control loops 
of the system. The equations of PID control are given as 
following: 

 
( )

( ) ( )p pp ip dp

de t
u K e t K e t K

dt
θ

θ θ= + +         (9) 

 
( )

( ) ( ) x
c pc x ic x dc

de t
u K e t K e t K

dt
= + +       (10) 

where, ( )e tθ and ( )xe t are angle error and cart position error. 
Since the pendulum angle dynamics and cart position 
dynamics are coupled to each other so the change in any 
controller parameters affects both the pendulum angle and 
cart position which makes the tuning tedious. The tuning of 
controller parameters is done using trial & error method and 
observing the responses of SIMULINK model to be optimal.  

B. Optimal Control using LQR 
Optimal control refers to a class of methods that can be 

used to synthesize a control policy which results in best 
possible behavior with respect to the prescribed criterion (i.e. 
control policy which leads to maximization of performance). 
The main objective of optimal control is to determine control 
signals that will cause a process (plant) to satisfy some 
physical constraints and at the same time extremize 
(maximize or minimize) a chosen performance criterion 
(performance index (PI) or cost function). The optimal 
control problem is to find a control which causes the 
dynamical system to reach a target or follow a state variable 
(or trajectory) and at the same time extremize a PI which 
may take several forms [1,4-7]. 

Linear quadratic regulator (LQR) is one of the optimal 
control techniques, which takes into account the states of the 
dynamical system and control input to make the optimal 
control decisions. This is simple as well as robust [1,4-7]. 

After linearization of nonlinear system equations about 
the upright (unstable) equilibrium position having initial 
conditions as 0 [0, 0, 0, 0]TX = , the linear state-space 
equation is obtained as 

X AX Bu= +         (11)      
where,   [ , , , ]TX x xθ θ= .  

The state feedback control  u KX= −  leads to 
 ( )X A BK X= −         (12) 

where, K is derived from minimization of the cost function 

 ( )T TJ X QX u Ru dt= +        (13) 
where, Q and R are positive semi-definite and positive 
definite symmetric constant matrices respectively. 
The LQR gain vector K is given by 

1 TK R B P−=           (14) 
where, P is a positive definite symmetric constant matrix 
obtained from the solution of matrix algebraic reccatti 
equation (ARE) 

1 0T TA P PA PBR B P Q−+ − + =         (15) 
In the optimal control of nonlinear inverted pendulum 

dynamical system using PID controller & LQR approach, all 
the instantaneous states of the nonlinear system, pendulum 
angleθ , angular velocityθ , cart position x , and cart velocity   
x have been considered available for measurement which are 
directly fed to the LQR. The LQR is designed using the 
linear state-space model of the system. The optimal control 
value of LQR is added negatively with PID control value to 
have a resultant optimal control. The tuning of the PID 
controllers which are used here either as PID control method 
or PID+LQR control methods  is done by trial & error 
method and observing the responses achieved to be optimal. 

IV. SIMULATION & RESULTS 
The MATLAB-SIMULINK models for the simulation of 

modelling, analysis, and control of nonlinear inverted 
pendulum-cart dynamical system have been developed. The 
typical parameters of inverted pendulum-cart system setup 
are selected as [16,20]: mass of the cart (M): 2.4 kg, mass of 
the pendulum (m): 0.23 kg, length of the pendulum (l): 0.36 
m, length of the cart track (L): ± 0.5 m, friction coefficient of 
the cart & pole rotation is assumed negligible. 

After linearization the system matrices used to design 
LQR are computed as below: 

0 1 0 0
29.8615 0 0 0

0 0 0 1
0.9401 0 0 0

A =

−

,  

0
1.1574

0
0.4167

B
−

=  

1 0 0 0
0 0 1 0

C = ,       and   
0
0

D =         

With the choice of 

 

1 0 0 0
0 1 0 0
0 0 500 0
0 0 0 250

Q = ,     and    1R =   , 

we obtain LQR gain vector as following: 
[ ]137.7896 25.9783 22.3607 27.5768K = − − − −  

Here three control schemes have been implemented for 
optimal control of nonlinear inverted pendulum-cart 
dynamical system: 1. PID control method having two PIDs 
i.e. angle PID & cart PID, 2. Two PIDs (i.e. angle PID & cart 
PID) with LQR control method, 3. One PID (i.e. cart PID) 
with LQR control method. Both alternatives of PID+LQR 
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control method are similar in all respect of control 
techniques but they differ only in number of PID controllers 
used. The SIMULINK models for these control schemes are 
shown in Figs. 2, 4, and 6 respectively. The corresponding 
simulation results are shown in Figs. 3, 5, and 7 respectively. 
The reference angle has been set to 0 (rad), and reference 
cart position is set to 0.1 (m). The tuned PID controller 
parameters of these control schemes are given as in table I.  

TABLE I.  PID CONTROLLER PARAMETERS 

Control 
Schemes 

Angle PID Control Cart PID Control 
Kpp Kip Kdp Kpc Kic Kdc 

PID -40 0 -8 -1 0 -3 
2 PID+LQR 1 1 1 1.5 -7.5 5 
1 PID+LQR --- --- --- 1.5 -7.5 5 

 
PID control response is shown in Fig. 3. It is observed 

here that the pendulum stabilizes in vertically upright 
position after two small overshoots. The cart position x  
reaches the desired position of 0.1 (m) quickly & smoothly. 
The control input u  is bounded in range [-0.1 0.1].  

The response of optimal control of inverted pendulum 
system using two PID controllers (angle PID & cart PID) 
with LQR control method is shown in Fig. 5, and using one 
PID controller (cart PID) with LQR control method is shown 
in Fig. 7 respectively. Here for both control methods of 
PID+LQR the responses of angleθ , angular velocityθ , cart 
position x , cart velocity x , and control u have been plotted. 
It is observed that in both control schemes the pendulum 
stabilizes in vertically upright position quickly & smoothly 
after two minor undershoots and a minor overshoot The 
angular velocity approaches 0 (rad/s) quickly. The cart 
position x reaches smoothly the desired position of 0.1 (m) 
quickly in approx. 6 seconds, and the cart velocity reaches to 
zero. The control input u is bounded in range [-0.1 0.1].  

Comparing the results it is observed that the responses of 
both alternatives of PID+LQR control method are better than 
PID control, which are smooth & fast also. It is also 
observed that the responses of 2PID+LQR control and cart 
PID+LQR control are similar. Since 2PID+LQR method has 
additional degree of freedom of control added by the angle 
PID controller, this will have overall better response under 
disturbance input. But the cart PID+LQR control has 
structural simplicity in its credit. The performance analysis 
of the control schemes gives that these control schemes are 
effective & robust. 
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Figure 2.  PID Control of Nonlinear Inverted Pendulum-Cart System. 
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Figure 3.  Responses of pendulum angleθ , cart position x , and control  
force u  of nonlinear inverted pendulum system with PID control. 
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Figure 4.  Angle PID, Cart PID  & LQR Control of Nonlinear Inverted 
Pendulum System. 

 

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10
x 10

-3

th
et

a 
an

d 
th

et
ad

ot

CONTROL WITH CART PID, ANGLE PID & LQR

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

x 
an

d 
xd

ot

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

u

time (sec)  
 

Figure 5.  Responses of pendulum angle θ , angular velocity θ , cart 
position x , cart velocity x ,and control force u  of nonlinear inverted 
pendulum system  with Angle PID , Cart PID & LQR Control. 
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OPTIMAL CONTROL OF NONLINEAR INVERTED PENDULUM SYSTEM US ING CART PID & LQR 
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Figure 6.  Cart PID & LQR Control of Nonlinear Inverted Pendulum 
System. 
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Figure 7.  Responses of pendulum angle θ , angular velocity θ , cart 
position x , cart velocity x ,and control force u  of nonlinear inverted 
pendulum system  with Cart PID & LQR Control. 

V. CONCLUSION 
PID control, and LQR, an optimal control technique to 

make the optimal control decisions, have been implemented 
to control the nonlinear inverted pendulum-cart system. To 
compare the results PID control has been implemented. In 
the optimal control of nonlinear inverted pendulum 
dynamical system using PID controller & LQR approach, all 
the instantaneous states of the nonlinear system, are 
considered available for measurement, which are directly fed 
to the LQR. The LQR is designed using the linear state-space 
model of the system. The optimal control value of LQR is 
added negatively with PID control value to have a resultant 
optimal control. The MATLAB-SIMULINK models have 
been developed for simulation of the control schemes. The 
simulation results justify the comparative advantages of 
optimal control using LQR method. The pendulum stabilizes 
in upright position justify that the control schemes are 
effective & robust.  The performance of PID+LQR control 
scheme is better than PID control scheme. The performance 
investigation of this control approach with tuning of PID 
controller parameters using GA, and PSO instead of trial & 
error method may be done as a future scope of this work. 
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