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a b s t r a c t

In this paper, an analytical method is proposed for proportional–integral/proportional–derivative/
proportional–integral–derivative (PI/PD/PID) controller tuning with specified gain and phase margins
(GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating
the GPMs resulting from given PI/PD/PID controllers. The proposedmethod indicates a general form of the
PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various
GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a
reference for control engineers to tune the PID controllers.

© 2011 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Proportional–integral–derivative (PID) control has been widely
applied in industry—more than 90% of the applied controllers
are PID controllers [1–4]. In the absence of the derivative
action, proportional–integral (PI) control is also broadly deployed,
since in many cases the derivative action cannot significantly
enhance the performance or may not be appropriate for the
noisy environment [1–4]. Another special form of PID control
without the integral action, proportional–derivative (PD) control
is also applied [1–4]. Unlike the previous two cases, however,
PD control cannot achieve zero steady-state error subject to load
disturbances, which limits its applications [1–4].

Due to the prevailing applications of PI/PD/PID control, research
on tuning PI/PD/PID controllers has been of much interest in
the past decades [1–6]. As a particular case, tuning PI/PD/PID
controllers for integral plus time delay (IPTD) processes has
attracted a lot of attention, dating back to 1940s and lasting even
today [1,7–18]. Lots of results have been accumulated. There are
more than fifty PI/PD/PID tuning rules for IPTD processes according
to a survey made by O’Dwyer [1]. The actual number is even much
higher [7–9,18,19]. Close observations reveal that many of these
rules are sharing a common form. Such observations motivate our
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exploration of a general solution for the PI/PD/PID controller tuning
on an IPTD process in this paper.

Tuning PI/PD/PID controllers based on gain and phase margin
(GPM) specifications has been extensively studied in the literature
[1,14,20–23]. However, general analytic solutions of the controller
parameters are not available, because of the nonlinearity and solv-
ability of such problems. The existing solutions are limited by as-
suming certain constraints on GPM or by approximations that are
valid only for certain regions of process parameters [1,14,20–22].
This paper is devoted to solving the PI/PD/PID parameters for an
IPTD process with a specified GPM. Different from the existing re-
sults, analytic solutions are obtained for the whole domain of the
process parameters. The derived PI/PD/PID tuning formulas unify a
large number of existing rules as PI/PD/PID controller tuning with
various GPM specifications. As reverse solutions, explicit expres-
sions of GPMs for given PI/PD/PID settings on an IPTD process are
also obtained. These GPM formulas estimate GPMswith high accu-
racy and are applied to estimate the GPM attained by each relevant
PI/PD/PID tuning rule collected in [1].

The rest of the paper is organized as follows. In Section 2, an-
alytic expressions of the PI/PD/PID parameters with a specified
GPM and the reverse solution of GPM for a given PI/PD/PID setting
are derived. During the derivations, numerical evaluations are em-
ployed to validate any approximations involved. In Section 3, the
derived PI/PD/PID formulas are applied to unify the existing rules
as PI/PD/PID controller tuning with different GPM specifications,
and the derivedGPM formulas are applied to estimate theGPMs at-
tained by the existing rules. Finally, Section 4 concludes the paper.
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Fig. 1. Control system loop.

2. Derivation of the PI/PD/PID tuning formulas and the GPM
formulas

The ideal unity-feedback control system is considered, as
shown in Fig. 1, where Gc(s) denotes a PI/PD/PID controller and
Gp(s) denotes an IPTD process. Specifically, the transfer functions
are
Gp(s) = Kpe−τ s/s, τ > 0, (1)
where Kp is the process gain and τ the time delay, and

Gc(s) =


Kc


1 +

1
sTi


, PI controller;

Kc(1 + Tds), PD controller;

Kc


1 +

1
sTi

+ Tds


, PID controller,

(2)

where Kc, Ti and Td are the proportional, integral and derivative
parameters, respectively. With this closed-loop system, explicit
PI/PD/PID parameters are solved for achieving a given GPM. While
the way of properly specifying a GPM depends on specific design
requirements and demands extra studies, it is assumed that a GPM
has been specified by the designer throughout the paper. Some
brief discussions on this are given in the next section.

Although PI and PD controller tunings are special cases of
PID controller tuning, their tuning formulas and corresponding
GPM formulas are derived independently, adopting different
approximations for accuracy and simplicity.

2.1. PI tuning formula and GPM-PI formula

Suppose the GPM of the closed-loop system is specified as
(Am, φm), where Am denotes the gain margin and φm denotes the
phasemargin. Given a PI controller in (2), the PI parameters (Kc, Ti)
are to be solved. According to the definition of GPM, we have
arg[G(jωp)] = −π + arctan(ωpTi) − ωpτ = −π, (3)

1
Am

= |G(jωp)| =

KcKp


1 + ω2

pT
2
i

ω2
pTi

, (4)

1 = |G(jωg)| =

KcKp


1 + ω2

gT
2
i

ω2
gTi

, (5)

φm = arg[G(jωg)] + π = arctan(ωgTi) − ωgτ , (6)
whereωp andωg are the phase and the gain crossover frequencies,
respectively. Due to the nonlinearity of the equations, the four
variables ωg , ωp, Kc and Ti are normally analytically unsolvable,
preventing derivation of a general PI tuning formula [1]. By
introducing two intermediate variables, however, all these four
variables can be solved. Specifically, let α := ωgTi and β := ωpTi.
From (3)–(6), the following solution is obtained:

ωg =
1
τ

(arctanα − φm),

ωp =
arctanβ

τ
=

β

α
ωg ,

Kc =
αωg

Kp
√
1 + α2

,

Ti = α/ωg ,

(7)
where (α, β) is solved from
φm = arctanα −

α

β
arctanβ,

Am =
β2

α2


1 + α2

1 + β2
.

(8)

The solution (α, β) is a constant pair corresponding to a specified
GPM which can easily be solved using a numerical solver, e.g., the
solver ‘fsolve’ in Matlab. The solution is unique, if there is any,
since α > tanφm and β > 0 which ensure positive crossover
frequencies and PI parameters. The initial guess of (α, β) for the
numerical solver can be any pair of large enough positive numbers,
e.g., (2 tanφm, 2 tanφm), (5, 5) (as used in the later numeric tests),
etc.

Therefore (7) gives explicit expressions of the PI parameters
(Kc, Ti) in terms of the process parameters (Kp, τ ). For conve-
nience, (7) is called PI tuning formula. Note that the crossover fre-
quencies ωp and ωg are also explicitly given in (7).

As an inverse problem, we compute the GPM resulting from a
given PI controller for an IPTD process. Still based on (3)–(6), the
expression of GPM, namely GPM-PI formula, is obtained as follows:

ωg = α/Ti,
ωp = β/Ti,

Am =
β2

α2


1 + α2

1 + β2
,

φm = arctanα − ωgτ ,

(9)

where

α =

γ 2

2


1 +


1 +

4
γ 2


, with γ := KpKcTi, (10)

(the negative α is omitted) and β is solved from

arctanβ = θβ, with θ := τ/Ti. (11)

Solution (9) also gives expressions of the gain and phase crossover
frequencies. As indicated by the above equations, the phasemargin
φm is explicitly expressed; however, deriving the gain margin Am
requires first solving (11) for β . Although a numerical solution can
be used, for ease of application an approximate analytic solution is
proposed. According to Appendix A.1, such a solution is

β =
π

4θ


1 +


1 −

16λBθ

π2


, if 0 < θ ≤ θB,

β =
1
2θ


−5 +


120
θ

− 95, if θB < θ < 1,

(12)

where λB = 0.917 and θB = 0.582. The constraint 0 < θ <
1 is imposed to ensure a positive solution for β . With β given
in (12), both Am and ωp in (9) are then explicitly expressed. The
above solution of (α, β) meanwhile justifies the uniqueness of the
solution to (8).

To evaluate the accuracy of (12) as the solution of (11), numeric
tests are carried out. Without loss of generality, let Kp = 1. For
different (τ , Am, φm), the PI parameters are first calculated by the
PI tuning formula.With these PI parameters, the realized GPMs are
then estimated by theGPM-PI formula, usingβ ’s estimated by (12).
The estimated GPMs are compared with the originally specified
GPMs correspondingly, so that the accuracy of the approximations
is tested. In the computation, the parameters are chosen randomly
as τ ∈ (0, 1] (which loses no generality since the PI tuning
formula and GPM-PI formula both apply regardless of the process
parameters), Am ∈ (1, 12] and φm ∈ (10°, 70°]. The numerical
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Fig. 2. GPMs estimated by GPM-PI formula versus true GPMs specified randomly a priori (50 tests), where the dots denote the estimated points and the circles denote the
true points.
results are shown in Fig. 2, where the relative estimation error
(R.e.e.) is defined as R.e.e. := (the estimated value — the true
value)/the true value. Since α and φm are exactly derived by the
GPM-PI formula, their estimation errors are omitted in the figure,
as it remains the same for later discussions on PD and PID controls.
The results indicate that the estimation errors of Am’s are normally
within 2% and thus validate (9) adopting the approximate solution
of β by (12).

2.2. PD tuning formula and GPM-PD formula

Given a specified GPM (Am, φm), an IPTD process in (1) and a PD
controller in (2), the PD parameters (Kc, Td) are to be solved. The
definition of GPM leads to

arg[G(jωp)] = −π/2 + arctanωpTd − ωpτ = −π, (13)

1
Am

= |G(jωp)| = KcKp


1 + ω2

pT
2
d /ωp, (14)

1 = |G(jωg)| = KcKp


1 + ω2

gT
2
d /ωg , (15)

φm = arg[G(jωg)] + π = π/2 + arctanωgTd − ωgτ , (16)

where the variables are defined the same as those in Section 2.1.
By introducing two new variables α′

:= ωgTd and β ′
:= ωpTd in a

similar way to that for the PI case, the parameters are solved from
(13)–(16) such that

ωg =
1
τ


arctanα′

+
π

2
− φm


,

ωp =
1
τ


arctanβ ′

+
π

2


=

β ′

α′
ωg ,

Kc =
ωg

Kp
√
1 + α′2

,

Td = α′/ωg ,

(17)

where the constant pair (α′, β ′) is solved from the equations
φm = arctanα′

+
π

2
−

α′

β ′


arctanβ ′

+
π

2


,

Am =
β ′

α′


1 + α′2

1 + β ′2
.

(18)
The solution (α′, β ′) is unique since α′ > 0 and β ′ > 0 which
make sure positive crossover frequencies and PD parameters. The
initial guess of (α′, β ′) for the numerical solver can be any pair of
large enough positive numbers, e.g., (5, 5), (10, 10), etc. Therefore,
(17) gives the PD tuning formula.

Inversely, given an IPTD process in (1) and a PD controller in
(2), the resultant GPMand crossover frequencies of the closed-loop
system are derived from (13)–(16) as

ωg = α′/Td,
ωp = β ′/Td,

Am =
β ′

α′


1 + α′2

1 + β ′2
,

φm = arctanα′
− ωgτ + π/2,

(19)

where

α′
=


γ ′2/(1 − γ ′2), with γ ′

:= KpKcTd, (20)

and β ′ is solved from

arctanβ ′
= θ ′β ′

− π/2, with θ ′
:= τ/Td. (21)

Since deriving the gain margin requires solving β ′ from (21), an
approximate analytic solution is proposed for it. Divide the domain
of β ′ into two: 0 < β ′

≤ 1 (β ′ being small) and β ′ > 1 (β ′ being
large). In the former domain, use the approximation

arctanβ ′
≈ λβ ′, with λ := π/4, (22)

and in the latter domain use the approximation

arctanβ ′
=

π

2
− arctan

λ

β ′
≈

π

2
−

λ

β ′
. (23)

Solve (22) and (23), respectively, and express the applicable
domains in terms of θ ′, an approximate solution of (21) is derived
as

β ′
=

π

2θ ′


1 +


1 −

4θ ′λ

π2


, if 0 < θ ′

≤ θ ′

B,

β ′
=

π

2(θ ′ − λ)
, if θ ′ > θ ′

B, where θ ′

B := π/2 + λ.

(24)

Therefore, (19) gives the GPM-PD formula, where the intermediate
variables α′ and β ′ are expressed in (20) and (24), respectively.



W. Hu et al. / ISA Transactions 50 (2011) 268–276 271
Fig. 3. GPMs estimated by GPM-PD formula versus true GPMs specified randomly a priori (50 tests), where the dots denote the estimated points and the circles denote the
true points.
Meanwhile the solution of (α′, β ′) justifies the uniqueness of the
solution to (18) for a given GPM.

To evaluate the accuracy of (24) as a solution of (21),
numeric computations are carried out to test it. The IPTD process
parameters and the GPMs are specified in a similar way to those
for the PI case (refer to Section 2.1). Analogously, the results are
obtained and shown in Fig. 3, which demonstrate the accuracy of
the GPM-PD formula adopting β ′ estimated by (24).

2.3. PID tuning formula and GPM-PID formula

Given a specified GPM (Am, φm), an IPTD process in (1) and a PID
controller in (2), the PID parameters (Kc, Ti, Td) can be solved. The
definition of GPM leads to

−π = arg[G(jωp)]

= −π + arctan
ωpTi

1 − ω2
pTiTd

+ H(1 − ω2
pTiTd)π − ωpτ , (25)

1
Am

= |G(jωp)| =

KcKp


(1 − ω2

pTiTd)2 + ω2
pT

2
i

ω2
pTi

, (26)

1 = |G(jωg)| =

KcKp


(1 − ω2

gTiTd)2 + ω2
gT

2
i

ω2
gTi

, (27)

φm = arg[G(jωg)] + π

= arctan
ωgTi

1 − ω2
gTiTd

+ H(1 − ω2
gTiTd)π − ωgτ , (28)

where the function H(•) is defined as

H(t) :=


0, if t ≥ 0,
1, if t < 0. (29)

Since there are five unknowns (ωg , ωp, Kc, Ti, Td), but only
four equations, one additional condition is required for a unique
solution. In the literature, normally it assumes that Td = kTi and
k ∈ (0, 0.5] [1,2]. By defining α and β the same as those in
Section 2.1, the parameters are solved from (25)–(28) such that


ωg =
1
τ


arctan

α

1 − kα2
+ H(1 − kα2)π − φm


,

ωp =
1
τ


arctan

β

1 − kβ2
+ H(1 − kβ2)π


=

β

α
ωg ,

Kc =
αωg

Kp


(1 − kα2)2 + α2

,

Ti = α/ωg ,
Td = kTi

(30)

where (α, β) is solved from the following equations

φm = arctan
α

1 − kα2
+ H(1 − kα2)π

−
α

β


arctan

β

1 − kβ2
+ H(1 − kβ2)π


,

Am =
β2

α2


(1 − kα2)2 + α2

(1 − kβ2)2 + β2
.

(31)

The solution (α, β) is unique for ensuring positive crossover
frequencies and PIDparameters subject to a given k. This is justified
by an explicit solution of (α, β) in terms of the PID parameters as
presented later. The initial guess of (α, β) for a numerical solver
to solve (31) can be any pair of large enough positive numbers,
e.g., (5, 5), (10, 10), etc.

Eq. (30) is the PID tuning formula. Note that when solving
(31), depending on the value of k, four different cases need to be
considered: (1) 1 − kα2 > 0, 1 − kβ2 > 0; (2) 1 − kα2 > 0,
1 − kβ2 < 0; (3) 1 − kα2 < 0, 1 − kβ2 > 0; and (4) 1 − kα2 < 0,
1 − kβ2 < 0. If none of these cases gives a solution, we may take
(31) as having no solution for (α, β) and the GPM should be re-
specified to other values; or an alternative solution can be obtained
such that the attained GPM is in certain sense (e.g., the least square
sense) closest to the specified one.

Inversely, given an IPTD process in (1) and a PID controller in
(2), the resultant GPMand crossover frequencies of the closed-loop
system are derived from (25)–(28) as

ωg = α/Ti,
ωp = β/Ti,

Am =
β2

α2


(1 − kα2)2 + α2

(1 − kβ2)2 + β2
,

φm = arctan
α

1 − kα2
+ H(1 − kα2)π − ωgτ ,

(32)
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Fig. 4. GPMs estimated by GPM-PID formula versus true GPMs specified randomly a priori (50 tests), where the dots denote the estimated points and the circles denote the
true points.
where α and β are the respective solutions of the two equations:

(γ 2k2 − 1)α4
+ γ 2(1 − 2k)α2

+ γ 2
= 0, and (33)

arctan
β

1 − kβ2
+ H(1 − kβ2)π = θβ, (34)

where γ and θ are defined in (10) and (11). Eqs. (33)–(34) can be
solved numerically. Alternatively, their approximate solutions can
be obtained as below.

For (33), noticing the common conditions that k ≤ 0.5 and
γ k < 1 as adopted by a large number of existing rules [1], its
unique solution (the negative solution is omitted) is obtained as

α =

 γ 2

2(1 − γ 2k2)


1 − 2k +


1 − 4k +

4
γ 2


. (35)

When k = 0, this solution reduces to (10), namely the solution for
the case of PI control.

For (34), according to Appendix A.2, an approximate solution is
obtained as

β =



1
2

1
k

−
3
θ2

+


1
k

+
3
θ2

2

−
12
kθ3

, if β < βB;

π

4(θ − λBk)


1 +


1 −

16λB(θ − λBk)
π2


,

if βB ≤ β < 1/
√
k;

π

4(θ − λ′

Bk)


1 +


1 −

16λ′

B(θ − λ′

Bk)
π2


,

if 1/
√
k < β ≤ β ′

B;

−a2/3 + U, if β > β ′

B,

(36)

where

λB := λ(1/xB), βB := (


1 + 4kx2B − 1)/(2kxB),

λ′

B := λ(1/x′

B), β ′

B := (


1 + 4kx′2

B + 1)/(2kx′

B),
(37)
with xB := 1.5, x′

B := 1.0 and λ(t) := (arctan t)/t; and
U :=

3

R +

√
D +

3

R −

√
D, if D ≥ 0;

U := 2 6

R2 − D cos(ϕ/3),

with ϕ := arctan(
√

−D/R) + H(R)π, if D < 0,

(38)

with

D := Q 3
+ R2, Q := (3a1 − a22)/9,

R := (9a2a1 − 27a0 − 2a32)/54,
a0 := π/(kθ), a1 := (λ′

B − θ)/(kθ), a2 := −π/θ.

(39)

To summarize, (32) gives the GPM-PID formula, with the
intermediate variables α and β being expressed by (35) and
(36), respectively. By the way, the solution of (α, β) justifies the
uniqueness of the solution to (31) for a given GPM.

Remark 1. (a) Since the boundary conditions in (36) are implicit,
the candidate solutions are calculated in turn until a valid one is
obtained. (b) Refer to the end of Appendix A.2 for a less accurate
yet simpler approximate solution of (34). �

Numerical computations are carried out to evaluate the accu-
racy of (36) as the solution of (34). The IPTD process parameters
and the GPMs are specified in a similar way to those for the PI case
(see Section 2.1). Numerical results are obtained for different val-
ues of k as shown in Figs. 4 and 5. Since the estimation errors are
normally within 5%, the results validate the calculation of Am in the
GPM-PID formula based on the β approximated by (36).

3. Application to unifying the existing tuning rules

Rules of tuning PI/PD/PID controllers for an IPTD process have
been accumulated in the past decades. These rules are based
on various requirements and specifications on performance and
robustness of the closed-loop system and were derived with
various methods [1]. However, most of them can be unified by
the tuning formulas presented above. From the PI, PD, PID tuning
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Fig. 5. Relative estimation errors of the results in Fig. 4.
formulas respectively in (7), (17), and (30), we see that the PID
parameters have a common form of

Kc =
k1
Kpτ

, Ti = k2τ , Td = k3τ , (40)

where the parameters k1, k2, k3 are specifically

PI controller: k1 =
α(arctanα − φm)

√
1 + α2

,

k2 =
α

arctanα − φm
, k3 = 0;

PD controller: k1 =
arctanα′

+ π/2 − φm
√
1 + α′2

, k2 = ∞,

k3 =
α′

arctanα′ + π/2 − φm
;

PID controller: k1 =
αϕα

(1 − kα2)2 + α2
, k2 =

α

ϕα

,

k3 = kk2.

(41)

Here ϕα := arctan α

1−kα2 + H(1 − kα2)π − φm, and α, α′ and α

for the PI, PD and PID controllers are determined from (8), (18) and
(31), respectively.

The common form of PI/PD/PID parameters in (40) indicates
that different rules employing different values of (k1, k2, k3) are
realizing different GPMs which consequently lead to various
closed-loop performances. This gives a unified interpretation
to the vast variety of PI/PD/PID tuning rules accumulated in
the literature [1]. From this viewpoint, PI/PD/PID control design
on an IPTD process is essentially choosing a proper GPM
or parameter set (k1, k2, k3). The GPM or parameter set can
be selected via performance optimization subject to design
constraints. Depending on the specific performance index and
design constraints, the solution may differ from case to case and
particular studies are required. A summary of various designs can
be found in [1]. In particular, the well-known SIMC rule [12] uses
a GPM of about (3.0, 46.9°) and the improved SIMC rule (with
enhanced disturbance rejection) [18] about (2.9, 42.5°) for an IPTD
process, when the recommended settings are adopted for both
methods.

Finally, we apply the GPM-PI/PD/PID formulas derived in the
last section to estimate the GPMs realized by relevant PI/PD/PID
tuning rules as collected in [1]. The GPM-PI/PD/PID formulas
indicate that any PI/PD/PID controllerswith the same (k1, k2, k3) in
(40) result in the same GPM, regardless of the process parameters.
This enables numeric computation of the exact GPM realized by
each rule in the form of (40). To compare, GPM attained by each
rule is computed by using both the GPM-PI/PD/PID formula and
the numeric approach. The results are documented in the link [24],
which takemore than four pages to present and hence are omitted
here. The results show that various GPMs are achieved by the
existing tuning rules. Note that the larger the gain margin or the
smaller the phase margin is, the more aggressive yet less robust
the closed-loop performance will be. The summary of such GPMs
thus provides a rich reference for control engineers to tune PID
controllers. Meanwhile the results verify that the GPM-PI/PD/PID
formulas are accurate for GPM estimations.

4. Conclusion

For an IPTD process, PI/PD/PID tuning formulas with specified
GPM were obtained and so were GPM-PI/PD/PID formulas for
estimating GPM resulting from a given PI/PD/PID controller. The
tuning formulas indicate a common formof the PIDparameters and
unify a large number of tuning rules as PI/PD/PID controller tuning
with various GPM specifications. The GPM formulas accurately
estimate the GPM realized by each relevant PI/PD/PID tuning rule
as collected in [1] and the results are summarized in the link [24].
The results show that a variety of GPMs are attained by the existing
rules. Since the rules were developed based on various criteria
and methods, the summary of their resulting GPMs provides a rich
reference for control engineers to tune PID controllers, helping to
select a rule or GPM for a specific design.
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Appendix. Approximate analytic solutions of β’s for (11) and
(34)

To solve (11) and (34) for approximate solutions, first consider
approximating the following equation.

x = tan y, y ∈ (−π/2, π/2). (42)

Divide the domain of y into two parts:

D1 := (− arctan xb, arctan xb), and
D2 := (−π/2, − arctan xb] ∪ [arctan xb, π/2), (43)

where xb ≥ 1 is a boundary value. Since (42) has odd solutions,
it is sufficient to consider solving it in the domain consisting of
D r

1 := [0, arctan xb) and D r
2 := [arctan xb, π/2).

In D r
1 , approximate (42) by the Taylor expansion of tan y to the

fifth order, giving

x = tan y ≈ y + y3/3 + 2y5/15, (44)

of which the relative approximation error is

e1(y) := (y + y3/3 + 2y5/15)/ tan y − 1. (45)

In D r
2 , first convert (42) into the arctangent form and then

approximate it by

y = arctan x = π/2 − arctan z ≈ π/2 − λbz, (46)

where z := x−1 and λb := λ(1/xb) and λ(•) is a function defined
as

λ(t) := (arctan t)/t, t ∈ (0, +∞). (47)

The corresponding relative approximation error is

e2(z) := tan(π/2 − λbz)/z−1
− 1 = z/ tan(λbz) − 1. (48)

Note that (i) to be consistent with e1(y), the tangents of both sides
of (46) are taken to calculate e2(z); and (ii) the Taylor expansion is
not used in D r

2 since it is hard to attain high accuracy; and (iii) in
D r

2 it has z ∈ (0, x−1
b ].

From (45) and (48), it can be easily proved that e1(y) < 0,
de1(y)/dy ≤ 0, e2(z) > 0 and de2(z)/dz ≤ 0. Thus the maximum
absolute values of e1(y) and e2(y) are, respectively,

‖e1(y)‖∞ = −e1(arctan xb), and,
‖e2(z)‖∞ = lim

z→0
e2(z) = 1/λ − 1. (49)

Here ‖e1(y)‖∞ and ‖e2(z)‖∞ are both functions of xb, as shown
in Fig. 6, where the intersection point is numerically obtained as
xB := xb ≈ 1.848. At this point, the maximum absolute values of
the relative errors by the two different approximations equal each
other at 9.10%, and λB := λb = λ(1/xB) ≈ 0.917.

For y being an explicit function of x, e.g., y = 2x, by taking xB and
λB as the boundary parameters for the above two approximations,
an approximate solution of (42) can be obtained by solving either
(44) or (46) for x.

In addition, notice that in some cases where y is an explicit
function of x, (44) may prevent an analytic solution of x. As a
compromised solution, a lower-order Taylor expansion of tan y
Fig. 6. The maximal absolute values of the relative errors of the approximate
solutions, as functions of the boundary point xb .

may be adopted. Consider the third-order Taylor expansion case
where (44) and (45) are replaced respectively by

x = tan y ≈ y + y3/3, and (50)

e1(y) = (y + y3/3)/ tan y − 1. (51)

Keep (46) unchanged. By deducting similarly as above, the approx-
imation boundaries are obtained as xB ≈ 1.500 and λB ≈ 0.882,
at which themaximum absolute values of the relative errors by the
two different approximations equal each other at 13.38%.

A.1. An approximate solution of (11)

In particular, let x := β > 0 and y := θβ > 0 in (42). From
(44) and (46), an approximate solution of (42) can be obtained as
follows:

β =
1
2θ


−5 +


120
θ

− 95, 0 < β < βB,

β =
π

4θ


1 +


1 −

16λBθ

π2


, β ≥ βB,

(52)

where λB = 0.917 and βB = 1.848. Alternatively, by specifying
the conditions of θ , the solution (52) can be re-expressed as

β =
π

4θ


1 +


1 −

16λBθ

π2


, if 0 < θ ≤ θB,

β =
1
2θ


−5 +


120
θ

− 95, if θB < θ < 1,

(53)

where

θB := min


π2

16λB
,
1
βB


π

2
−

λB

βB


≈ 0.582. (54)

Note that for (52), as the boundaries of the applying regions of
θ do not coincide, for simplicity θB is taken as the one calculated
from the second equation of (52). The validity of the approximate
solution of (42) by (53) is demonstrated by the exemplary results
shown in Fig. 2.
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A.2. An approximate solution of (34)

To solve (34), two different cases are considered separately as
follows (The point β = 1/

√
k is undefined in the equations and is

therefore omitted.):

arctan
β

1 − kβ2
= θβ, if 1 − kβ2 > 0; (55)

arctan
β

1 − kβ2
= θβ − π, if 1 − kβ2 < 0. (56)

Let x := β/(1 − kβ2) and y := θβ in (42). From (46) and (50)
an approximate solution of (55) is derived as

β =

1
2

1
k

−
3
θ2

+


1
k

+
3
θ2

2

−
12
kθ3

,

if 0 < β < βB,

β =
π

4(θ − λBk)


1 +


1 −

16λB(θ − λBk)
π2


,

if βB ≤ β < 1/
√
k,

(57)

where

λB := λ(1/xB), βB := (


1 + 4kx2B − 1)/(2kxB), (58)

with xB := 1.5 and λ(•) being defined in (47).
To solve (56), the approximation skills used in (22)–(23)

are adopted. Specifically, by applying the skill used in (23), an
approximate solution of (56) is obtained as

β =
π

4(θ − λ′

Bk)


1 +


1 −

16λ′

B(θ − λ′

Bk)
π2


,

if 1/
√
k < β ≤ β ′

B, (59)

where

λ′

B := λ(1/x′

B), β ′

B := (


1 + 4kx′2

B − 1)/(2kx′

B), (60)

with x′

B := 1.0 and λ(•) being defined in (47). And for the case
where β > β ′

B, by applying the skill used in (22) the following
equation of β is obtained:

β3
+ a2β2

+ a1β + a0 = 0, (61)

where

a2 := −π/θ, a1 := (λ′

B − θ)/(kθ), a0 := π/(kθ). (62)

Eq. (61) is a standard cubic equation with real coefficients, and its
feasible solution (being real and positive) is obtained as

β = −a2/3 + S + T , (63)

where

S :=
3

R +

√
D, T :=

3

R −

√
D, (64)

with

D := Q 3
+ R2, Q := (3a1 − a22)/9,

R := (9a2a1 − 27a0 − 2a32)/54.
(65)

SinceD in (64)may be negative, leading to complex numbers in the
calculations which should be avoided in applications, the solution
(63) is expressed in an alternative way such that

β = −a2/3 + U, (66)
where
U :=

3

R +

√
D +

3

R −

√
D, if D ≥ 0;

U := 2 6

R2 − D cos(ϕ/3),

with ϕ := arctan(
√

−D/R) + H(R)π, if D < 0.

(67)

Here H(•) is the function defined in (29), and D and R keep the
same as those in (65).

With (57), (59) and (66), the approximate solution of (34) is thus
obtained as follows

β =



1
2

1
k

−
3
θ2

+


1
k

+
3
θ2

2

−
12
kθ3

, if β < βB;

π

4(θ − λBk)


1 +


1 −

16λB(θ − λBk)
π2


,

if βB ≤ β < 1/;
π

4(θ − λ′

Bk)


1 +


1 −

16λ′

B(θ − λ′

Bk)
π2


,

if 1/
√
k < β ≤ β ′

B;

−a2/3 + U, if β > β ′

B,

(68)

where the intermediate variables, λB and βB, λ′

B and β ′

B, a2 and U ,
are defined in (58), (60), and {(62), (65), (67)}, respectively. Since
it is hard to give the piecewise conditions of (68) in terms of θ as
that in (53), the candidate solutions are calculated in a top-down
sequence until a feasible β is obtained; if no feasible solution is
achieved, (34) will be taken as having no solution, or a numerical
solution to it has to be tried.

Additionally, another simpler yet less accurate approximate
solution for (34) can be derived. The main idea is as follows. For
the case of (55) and the case of (56) with 1/

√
k < β ≤ β ′

B
(Here β ′

B is of a different value from that in (68).), the approximate
solutions remain the same as those in (57) and (59), respectively;
and for the case of (56) with β > β ′

B, first (56) is approximated
by replacing ‘‘1 − kβ2’’ with −kβ2 (requiring that kβ ′2

B ≫ 1—here
kβ ′2

B = 10 is used, by selecting a proper boundary point x′

B). Then
by applying the same skill as that in (22), a less accurate yet simpler
approximate solution of (34) can be obtained. Specifically, it is as
follows:

β =



1
2

1
k

−
3
θ2

+


1
k

+
3
θ2

2

−
12
kθ3

, if β < βB;

π

4(θ − λBk)


1 +


1 −

16λB(θ − λBk)
π2


,

if βB ≤ β < 1/
√
k;

π

4(θ − λ′

Bk)


1 +


1 −

16λ′

B(θ − λ′

Bk)
π2


,

if 1/
√
k < β ≤ β ′

B;

π

2θ


1 +


1 −

4λ′′

Bθ

kπ2


, if β > β ′

B,

(69)

where λB := λ(1/xB), λ′

B := λ(1/x′

B), λ′′

B := λ(x′

B), βB :=

(


1 + 4kx2B − 1)/(2kxB) and β ′

B :=
√
10/k, with xB := 1.5,

x′

B := β ′

B/(kβ
′2
B −1) andλ(•) being defined in (47). As expected, the

estimated β may not be accurate when β > 1/
√
k, but it is found

to be able to achieve the final goal of estimating the gain margin
Am with satisfactory accuracy. The relative estimation errors are
mostly within 7%. Exemplary results are shown in Fig. 7.
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Fig. 7. Typical relative estimation errors of β and Am , with β being estimated by (69).
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