
International Journal of Control and Automation 

Vol. 4 No. 2, June, 2011 

 

 

95 

Review of Tuning Methods of DMC and Performance Evaluation 

with PID Algorithms on a FOPDT Model 
 

 

R D Kokate
1
 and L M Waghmare

2 

1 
Research scholar, Shri. Guru Gobind Singhji,  

2 
Shri. Guru Gobind Singhji 

Institute of Engineering and Technology, Department of Instrumentation 

Engineering.Nanded, Maharashtra (India). 

rd_kokate@yahoo.co.in, lmwaghmare@lyahoo.com 
 

 

Abstract 
 

In this paper we have revived and proposed tuning strategy for SISO Dynamic matrix 

control (DMC). The tuning strategy achieves set point tracking with minimal overshoot and 

modest manipulated input move sizes and is applicable to a broad class of open loop stable 

processes. The simulation of a simple FOPDT model is carried out using advanced control 

algorithms, specifically these advanced algorithms are the DMC, IMC-based PID controller, 

and their performance is compared with PID Controller which is tuned using Z-N tuning 

method.  
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1.  Introduction 
 

We know that the most popular control algorithm used in industry is the PID controller 

which has been implemented successfully in various technical fields. However, since the 

evolution of computers during the 1980s a number of modern and advanced control 

algorithms have been also developed and applied in a wide range of industrial and chemical 

applications. Some of them are the Internal Model based PID controller, the Model Predictive 

controller, the common characteristic of the above algorithms is the presence of the controller 

structure. The purpose of this paper is to apply these advanced algorithms to a linear first 

order plus delay time (FOPDT) process model and compare their step response with the 

conventional PID and IMC based PID controller. 

Initially, we presented a brief discussion over the theoretical designing aspects of each 

applied algorithm. The main section of the paper is devoted to the simulation results in terms 

of type 1 servomechanism performance of a simple FOPDT process, using the above control 

algorithms in various practical scenarios. The primary benefit of a FOPDT model 

approximation is that it permits derivation of a compact analytical expression for computing λ 

(Move suppression coefficient) and adding the Q in DMC, although a FOPDT model 

approximation does not capture all the features of some higher-order processes, it often 

reasonably describes the process gain, overall time constant, and effective dead time of such 

processes. In the past, tuning strategies based on a FOPDT model such as Cohen-Coon, IAE, 

and ITAE have proved useful for PID implementations. The tuning strategy reviewed here is 

significant because it offers an analogous approach for DMC. 
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The different sections in this paper are organized as (2) Introduction of MPC (3) Review 

of the DMC and Formulation of DMC (4) IMC-PID controller (5) Example and simulation 

experiment (6) conclusion (7) References. 
 

 2.  Model Predictive Control 
  

Model predictive control (MPC) has established itself over the past decade as an 

industrially important form of advanced control. Since the seminal publication of Model 

Predictive Heuristic Control (later Model Algorithmic Control) [37] and Dynamic Matrix 

Control [9-10], MPC has gained widespread acceptance in academia and in industry. Several 

excellent technical reviews of MPC recount the significant contributions in the past decade 

and detail the role of MPC from an academic perspective [15], [28], [37], [29] (and from an 

industrial perspective, [3], [4], [33] [35]. 

MPC refers to a family of controllers that employs a distinctly identifiable model of the 

process to predict its future behavior over an extended prediction horizon. A performance 

objective to be minimized is defined over the prediction horizon, usually as a sum of 

quadratic set point tracking error and control effort terms. This cost function is minimized by 

evaluating a profile of manipulated input moves to be implemented at successive sampling 

instants over the control horizon. Closed loop optimal feedback is achieved by implementing 

only the first manipulated input move and repeating the complete sequence of steps at the 

subsequent sample time. This is “moving horizon” concept of MPC, where the controller 

looks a finite time into the future, is illustrated in Fig 1. 

Dynamic matrix control is arguably the most popular MPC algorithm currently used in 

the chemical process industry. [34]) reported about 600 successful applications of DMC. It is 

not surprising why DMC, one of the earliest formulations of MPC, represents the industry’s 

standard today. A large part of DMC’s appeal is drawn from an intuitive use of a finite step 

response (or convolution) model of the process, a quadratic performance objective over a 

finite prediction horizon, and optimal manipulated input moves computed as the solution to a 

least squares problem. Because of its popularity, this work focuses on an overall tuning 

strategy for DMC. 

Another form of MPC that has rapidly gained acceptance in the control community is 

Generalized Predictive Control (GPC) [6], [7]. It differs from DMC in that it employs a 

controlled autoregressive and integrated moving average (CARIMA) model of the process 

which allows a rigorous mathematical treatment of the predictive control paradigm. The GPC 

performance objective is very similar to that of DMC but is minimized via recursion on the 

Diophantine identity [6],[7], [18]. Nevertheless, GPC reduces to the DMC algorithm when the 

weighting polynomial that modifies the predicted output trajectory is assumed to be unity 

[26]. Therefore, without any loss of generality, the tuning strategy proposed in this paper is 

directly applicable to GPC.  

Engineers at Shell Oil developed their own independent MPC technology in the early 

1970s, with an initial application in 1973. In [10] presented details of an unconstrained 

multivariable control algorithm which they named dynamic matrix control (DMC) in the [9], 

[10]. In a companion paper,[31] described an application of DMC technology to an FCCU 

reactor/regenerator in which the algorithm was modified to handle nonlinearities and 

constraints. Neither paper discussed their process identification technology.  

Key features of the DMC control algorithm include the following: 

1. Linear step response model for the plant; 

2. Quadratic performance objective over a finite prediction horizon; 
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3. Future plant output behavior specified by trying to follow the set point as closely 

as possible; 

4. Optimal inputs computed as the solution to a least squares problem. 

The linear step response model used by the DMC algorithm relates changes in a process 

output to a weighted sum of past input changes, referred to as input moves. For the SISO case 

the step response model looks like: The move weights are the step response coefficients. 

Mathematically the step response can be defined as the integral of the impulse response; 

given one model form the other can be easily obtained. Multiple outputs were handled by 

superposition. By using the step response model one can write predicted future output 

changes as a linear combination of future input moves. The matrix that ties the two together is 

the so-called Dynamic Matrix. Using this representation allows the optimal move vector to be 

computed analytically as the solution to a least-squares problem. In practice the required 

matrix inverse can be computed off-line to save computation. Only the first row of the final 

controller gain matrix needs to be stored because only the first move needs to be computed. 

The objective of a review of  DMC controller is to drive the output as close to the set 

point as possible in a least squares sense with a penalty term on the MV moves. This results 

in smaller computed input moves and a less aggressive output response. As with the IDCOM 

reference trajectory, this technique provides a degree of robustness to model error. Move 

suppression factors also provide an important numerical benefit in that they can be used to 

directly improve the conditioning of the numerical solution. In paper [10] shows results from 

a furnace temperature control application to demonstrate improved control quality using the 

DMC algorithm In their paper [31] described an application of DMC technology to FCCU 

reactor/regenerator control. Four such applications were already completed. In paper [31] 

described additional modifications to the DMC algorithm to prevent violation of absolute 

input constraints. When a predicted future input came sufficiently close to an absolute 

constraint, an extra equation was added to the process model that would drive the input back 

into the feasible region. These were referred to as time variant constraints. Because the 

decision to add the equation had to be made on-line, the matrix inverse solution had to be 

recomputed at each control execution. In [31] developed a matrix tearing solution in which 

the original matrix inverse could be computed off-line, requiring only the matrix inverse 

corresponding to active time variant constraints to be computed on-line.  

 

 
 

Fig.1 Basic Control Strategy of Predictive Control. 
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Its main purpose is the calculation of a controlled output sequence y(k) that tracks 

optimally a reference trajectory
 𝑦 (k) during M present and future control moves (M ≤ p). 

Though M control moves are calculated at each sampled step, only the first Δû(k)=(u
0
(k)-u(k)) 

is implemented. At the next sampling interval, new values of the measured output are 

obtained. Then the control horizon is shifted forward by one step and the above computations 

are repeated over the prediction horizon. 
 

3. Review of DMC Algorithm. 
 

In this paper review of tuning strategy of single-input single-output (SISO) DMC 
algorithm [38], which is applicable to a wide range of open loop stable processes.  

The DMC control law is given by, 

𝑢 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑒                                                                                                           (1) 

Where A is the dynamic matrix, e is the vector of predicted errors over the next P 

sampling instants (prediction horizon), λ is the move suppression coefficient, and u is the 

manipulated input profile computed for the next M sampling instants, also called the control 

horizon. The A
T
A matrix, to be inverted in the evaluation of the DMC control law, is referred 

to in this work as the system matrix. Implementation of DMC with a control horizon greater 

than one manipulated input move necessitates the inclusion of a move suppression coefficient 

λ. This coefficient serves a dual purpose of conditioning the system matrix before inversion 

and suppressing otherwise aggressive control action occurs. It is often used as the primary 

adjustable parameter to fine tune DMC to desirable performance.  

DMC refers to a class of advanced control algorithms that compute a sequence of 

manipulated variables in order to optimize the future behavior of the controlled process. 

Initially, it has been developed to accomplish the specialized control needs in power plants 

and oil refineries. However because its ability to handle easily constraints and MIMO systems 

with transport lag, it can be used in various industrial fields. 

The first predictive control algorithm is referred to the publication of [39]. However, in 

[9] developed their own MPC algorithm named Dynamic Matrix Control, Since then, a great 

variety of algorithms based on the MPC principle has been also developed. Their main 

difference is focused on the use of various plant models which is an important element of the 

computation of the predictive algorithm (i.e. step model, impulse model, state-space models, 

etc). The main idea of the predictive control theory is derived from the exploitation of an 

internal model of the actual plant, which is used to predict the future behavior of the control 

system over a finite time period called prediction horizon p (Fig. 1).  

 

3.1 Formulation of DMC Algorithm 

 

The brief idea of DMC step response model is given in this section to find out the control 

signal given by (1).The different steps used in DMC algorithm are 

1. Find out step response model of DMC and obtained system dynamic matrix A 

which is calculated as, 

𝑦 𝑡 + 1 = 𝑦0 +  𝐴𝑖∆𝑢 𝑘 − 𝑖 + 1 + 𝐴𝑝
𝑝−1
𝑖=1 𝑢(𝑘 − 𝑝 + 1)        (2) 

Where, Ai = the i-th step response coefficient; p = an integer (the model horizon),  Y0 = 

initial value at k=0 

𝑦 𝑡 + 1 = 𝑦0 +  𝐴𝑖∆𝑢 𝑘 − 𝑖 + 1 + 𝐴𝑝
𝑝−1
𝑖=1 𝑢(𝑘 − 𝑝 + 1)                      (3) 
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The one-step-ahead prediction can be obtained from (3) by replacing   𝑦(𝑘 + 1) with the  

𝑦  𝑡 + 1  

𝑦  𝑡 + 1 = 𝑦0 +  𝐴𝑖∆𝑢 𝑘 − 𝑖 + 1 + 𝐴𝑝
𝑝−1
𝑖=1 𝑢(𝑘 − 𝑝 + 1)                      (4) 

The (4) can be expanded as 

𝑦  𝑡 + 1 = 𝐴𝑖∆𝑢(𝑘) +  𝐴𝑖∆𝑢 𝑘 − 𝑖 + 1 + 𝐴𝑝
𝑝−1
𝑖=1 𝑢(𝑘 − 𝑝 + 1)                (5) 

Similarly, the j
th
 step ahead prediction of above equation is given by, 

𝑦  𝑡 + 𝑗 =  𝐴𝑖∆𝑢 𝑘 + 𝑗 − 𝑖 
𝑗
𝑖=1 +  𝐴𝑖∆𝑢 𝑘 − 𝑗 − 𝑖 + 𝐴𝑝

𝑝−1
𝑖=𝑗+1 𝑢 𝑘 + 𝑗 − 𝑝        (6) 

Then defining the predicted free response from(4) 

𝑦 0 =  𝑡 + 𝑗 = 𝐴𝑖∆𝑢(𝑘) +  𝐴𝑖∆𝑢 𝑘 − 𝑖 + 1 + 𝐴𝑝
𝑝−1
𝑖=𝑗+1 𝑢(𝑘 − 𝑗 − 𝑝)       (7) 

The required predicted relation is calculated from (6) as, 

𝑦  𝑡 + 𝑗 =  𝐴𝑖∆𝑢 𝑘 + 𝑗 − 𝑖 
𝑗
𝑖=1 + 𝑦 0 𝑡 + 𝑗            (8) 

The model predictions in (8) can be written as 

𝑦 𝑘 + 1 = 𝐴∆𝑢 𝑘 + 𝑦 0 𝑘 + 1 +  𝑦 𝑘 − 𝑦  𝑘   

y   K = A∆u k + 𝑦 0(K + 1)                                                              (9) 

The model predictions in (9) can be written as 

 
 
 
 
 
 
 
𝑦  𝑘 + 1 

𝑦  𝑘 + 1 
. .

𝑦  𝑘 + 𝑀 

𝑦  𝑘 + 𝑀 
.

𝑦 (𝑘 + 𝑃) 
 
 
 
 
 
 

=

 
 
 
 
 
 
 

𝑎1               0 … . .   0 
 𝑎2                  𝑎1   0 …

………………
𝑎𝑀      𝑎𝑀−1 … ..   𝑎1

𝑎𝑀+1     𝑎𝑀 … ..   𝑎2

………………… . .
  𝑎𝑝      𝑎𝑝−1 … ..   𝑎𝑝−𝑀−1 

 
 
 
 
 
 

 
 
 
 
 
 
 

∆𝑢𝑘

∆𝑢𝑘+1

. .
∆𝑢𝑘+𝑀−3

∆𝑢𝑘+𝑀−2.
∆𝑢𝑘+𝑀−1 

 
 
 
 
 
 

                                   (10) 

 

Where, 𝐴 is the 𝑃 𝑥 𝑀 dynamic matrix, the bias Correction of model predictions can be 

corrected by utilizing the latest measurement, 𝑦(𝑘). the corrected prediction is defined to be 

𝑌 𝑡 + 𝑗 = [𝑦 𝑘 − 𝑦   𝑘 ] . 
 

2.  Define the reference trajectory which is used to make a gradual transition to the 

desired set point; the reference trajectory yr can be specified in several different 

ways.  Let the reference trajectory over the prediction horizon, P   given as. 

𝑦𝑟 𝑘 + 1 = 𝑐𝑜𝑙[𝑦𝑟 𝑘 + 1 , 𝑦𝑟 𝑘 + 1 , … . . 𝑦𝑟 𝑘 + 𝑝 ]                        (12) 

Where, 𝑦𝑟  is an mxP vector.  
 

3. Find the control signal by minimizing the predicted deviations between the 

reference trajectory and actual trajectory given by, 

∆𝑢 𝑘 = 𝑐𝑜𝑙[∆𝑢 𝑘 , ∆𝑢 𝑘 + 1 , …… . . ∆𝑢 𝑘 + 𝑀 − 1 ]   (13) 
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4. Defining the predicted error using 

𝑒  𝐾 + 1 = 𝑦𝑟 𝑘 + 1 − 𝑦(𝑘 + 1)                                             (14) 

Where, 𝑦(𝑘 + 1) is the corrected prediction, similarly the predicted unforced error. 

𝑒 0(𝐾 + 1), is defined as 

𝑒 0(𝐾 + 1) = 𝑦𝑟(𝑘 + 1 − 𝑦 0 𝑘 + 1 )                                          (15) 

The objective of the control calculations is to calculate the control policy for the next M 

time intervals and the  objective of DMC controllers is to drive the output as close to the set 

points as possible in a least squares sense with the possibility of the inclusion of a penalty 

term of the input moves. Therefore the manipulated variable is selected to minimize a 

quadratic objective that can consider the minimization of future alone. 

 

5.  Calculate vector ∆𝑢(𝑘) ,so as to minimize the predicted errors over the prediction 

horizon, P and the size of the control move over the control horizon M. from a 

quadratic performance index  

min 𝐽 = 𝑒   𝑘 + 1 𝑇𝑄𝑒 𝑘 + 1 + ∆𝑢 𝑘 𝑇𝑅𝑢 𝑘                     (16) 

 ∆𝑢(𝑘) 

Where Q is a positive-definite weighting matrix and R is a positive semi-definite matrix. 

Both Q and R are usually diagonal matrices with positive diagonal elements. The weighting 

matrices are used to weight the most important outputs and inputs. 

 

6. Finally the DMC control law that minimizes the objective function, can be 

calculated analytically as, 

∆𝑢 𝑘 =  𝐴𝑇𝑄𝐴 + 𝑅 −1𝐴𝑇𝑄𝑒 0(𝐾 + 1)                                      (17) 

Where, A is the dynamic matrix. This control law can be written in a more compact form 

∆𝑢 𝑘 = 𝐾𝑐𝑄𝑒 0(𝐾 + 1)                                           (18) 

Where controller gain matrix 𝐾𝑐 is defined to be 

𝐾𝑐 =  𝐴𝑇𝑄𝐴 + 𝑅 −1𝐴𝑇𝑄                                                         (19) 

Note that Kc can be evaluated off-line, rather than on-line, provided that the dynamic 

matrix A and weighting matrices, Q and R, are constant. The calculation of 𝐾𝑐 requires the 

inversion of   𝐴 matrix the DMC control law is given by 

∆𝑢 𝑘 = 𝐾𝑐𝑒 0(𝐾 + 1)                                                                     (20) 

Where,   ∆𝑢 𝑘 = 𝑐𝑜𝑙[∆𝑢 𝑘 , ∆𝑢 𝑘 + 1 , …… . . ∆𝑢 𝑘 + 𝑀 − 1 ] 
Note that the controller gain matrix, Kc, is an M x P matrix. In the receding horizon 

control approach, only the first step of the, M-step control policy, ∆𝒖(𝑘), is implemented. 

∆𝑢 𝑘 = 𝐾𝑐𝑙𝑄𝑒 0 𝐾 + 1 .         (21) 

The Dynamic Matrix with the move Suppression factor q  added 
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𝑄 =

 
 
 
 
 

𝑞     0    0 … . .0
0    𝑞     0 … .0

0      0      𝑞  … . .  1

…

0   0    0 …… … 𝑞  
 
 
 
 

             𝐴 =  
𝐴
𝑄
                                           𝐴 =

 
 
 
 
 
 
 
 

 𝑎1     0    0
𝑎1  𝑎2     0
𝑎3  𝑎2    𝑎1

𝑎3  𝑎3    𝑎2

𝑎3  𝑎3    𝑎2  

𝑞     0         0

0       𝑞      0

0     0          𝑞 
 
 
 
 
 
 
 

 

 

DMC Control law remains the same as before except the A now contains Q  
 

3.2.1. SISO DMC Tuning.  
 

Tuning of unconstrained and constrained DMC for SISO and multivariable systems has 

been addressed by an array of researchers. In the past, systematic trial-and-error tuning 

procedures have been proposed [9], [37], [21] presented a detailed sensitivity analysis of 

adjustable parameters and their effects on DMC performance. The method of principal 

component selection was presented by [22], [24], as a method to compute an appropriate 

prediction horizon and a move suppression coefficient [2]. To simplify DMC tuning, [23] also 

proposed the “M ” controller configuration of DMC,other tuning strategies for DMC have 

concentrated on specific aspects such as tuning for stability[14],[25],[5],[34], and robustness 

is tested in [32],[19], and performance evaluated in [27] ,[16,17]. Although some of the above 

methods provide a complete design of DMC, they also require fairly sophisticated analysis 

tools and an advanced knowledge of control concepts for their implementation. Hence, there 

still exists a need for easy-to-use tuning strategies for DMC.Tuning of unconstrained SISO 

DMC is challenging because of the number of adjustable parameters that affect closed-loop 

performance. These include the following: a finite prediction horizon, P; a control horizon, 

M; a move suppression coefficient, ì; a model horizon, N; and a sample time, T. The first 

problem that needs to be addressed is the selection of an appropriate set of tuning parameters 

from among those available for DMC. Practical limitations often restrict the availability of 

sample time, T, as a tuning parameter [13], [1]. The model horizon is also not an appropriate 

tuning parameter since truncation of the model horizon, N, misrepresents the effect of past 

moves in the predicted output and leads to Unpredictable closed-loop performance [2]. 
 

3.2.2. Unconstrained SISO DMC. 
 

 DMC does not always compete with, but sometimes complements, classical three-term 

PID (proportional, integral, derivative) controllers. That is, it is often implemented in 

advanced industrial control applications embedded in a hierarchy of control functions above a 

set of traditional PID loops [31],[33]. The unconstrained SISO DMC formulation considered 

in this work does not unleash the full power of MPC. This restricted form of DMC does not 

allow Multivariable control while satisfying multiple process and performance objectives. 

However, the analysis presented in [38] provides a foundation upon which more advanced 

tuning strategies may be developed. In any event, unconstrained SISO DMC does offer some 

useful capabilities. For example, past comparison studies between unconstrained DMC and 

traditional PI control [12] show that DMC provides superior performance when disturbance 

tuning differs significantly from servo tuning. DMC has also demonstrated superior 

performance in the case of plant model mismatch, except for process gain mismatch. 

Additionally, incorporation of process knowledge in the controller architecture provides 
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DMC with anticipatory capabilities and facilitates control of processes with nonminimum 

phase behavior and large dead times. The form of the performance objective provides a 

convenient way to balance set point tracking with control effort, leading to an intuitive 

tradeoff between performance and robustness. 
 

3.2.3. Implementation of the DMC Tuning Strategy 
 

The reviewed DMC tuning strategy is referred from [38], which includes the analytical 

expression for the move suppression coefficient, λ. This tuning strategy can be applied to 

unconstrained DMC in closed loop with a broad class of SISO processes that are open loop 

stable, including those with challenging control characteristics such as high process order, 

large dead time, and noniminimum phase behavior. 
 

1. Select the identification of a first order plus dead time (FOPDT) model 

approximation of the process. 

2. Select an appropriate sample time Ts  

3. Compute a model horizon, N, and a prediction horizon, P, from tp, θ and T from 

FOPDT model [38]. 

 It may be necessary to fine tune DMC for desired performance by altering P and λ from 

the starting values given by the tuning strategy. The recommended approach is to increase λ 

for smaller move sizes and slower output response. 
 

3.2.4 Selection of DMC Parameters and Sensitivity Study  
 

Based on the above discussion, main parameters for developing a systematic tuning 

strategy for DMC include the prediction horizon, P, the control horizon, M, and the move 

suppression coefficient, though this simplifies the task of sensitivity analysis, the appropriate 

choice of these parameters is strongly dependent on the sample time and the nature of the 

process. 

Over the past decade, detailed studies of DMC parameters have provided a wealth of 

information about their qualitative effects on closed-loop performance [21, [11], [23]. In this 

section, a brief sensitivity study investigates the extent to which various parameters affect 

DMC performance. This study is targeted toward selection of appropriate tuning parameters 

for developing a DMC tuning strategy. A base case process is employed to illustrate the effect 

of adjustable parameters on DMC response for a step change in set point (Figures 3-6). 

 Fig. 3-6, each comprise a matrix of closed-loop response results for different settings of 

T , M, p, λ ,results are presented for sample times such that the ratio T/t  is 0.1, M is selected 

to be either 2 or 8 manipulated input moves. The range of T and P explored corresponds to 

that recommended by the proposed tuning strategy. The impact of T on DMC closed-loop 

performance when P is held constant is shown in Fig.3 Similar comparisons between other 

pairs of response lead to the same conclusion. Another interesting observation can be made 

about the effect of T on the analytical expression for λ.  For example response for a fixed M, 

as P decreases the system matrix becomes less singular and the overall magnitude of its 

elements decreases. Hence, a smaller λ is sufficient to provide the same effect as a larger λ 

with a larger prediction horizon. 
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4. IMC-Based PID Controller 
 

The PID control algorithm [1] is the most common feedback controller in industrial 

processes. It has been successfully implemented for over 50 years, as it provides satisfactory 

robust performance despite the varied dynamic characteristics of a process plant [40]. 

The proper tuning of the PID controller aims a desired behavior and performance for the 

controlled system and refers to the proper definition of the parameters which characterize 

each term. Over the past, it has been proposed several tuning methods, but the most popular is 

suggested by due to its simplicity [41] tuning method. This tuning method is based on the 

computation of a process’s critical characteristics, i.e. critical gain  𝐾𝑐𝑟    and critical period pcr 

The internal model control (IMC) algorithm [40] is based on the fact that an accurate model 

of the process can lead to the design of a robust controller both in terms of stability and 

performance [42]. The basic IMC structure is shown in Fig. 2 and the controller 

representation for a step perturbation is described by (22). 

𝐺𝑓 𝑠 =
𝐺𝑓 𝑠 

𝐺𝐼 𝑠 
                            (22) 

Where 
IG ( s ) is the inverse minimum phase part of the process model and )(sG f  is a n

th
 

order low pass filter
ns )1(1 λ . The filter’s order is selected so that )(sGq  is semi-proper 

and λ is a tuning parameter that affects the speed of the closed loop system and its robustness 

[43],[44]. 

 
 

Fig. 2 IMC Control Structure 
 

However, there is equivalence between the classical feedback and the IMC control 

structure, allowing the transformation of an IMC controller to the form of the well-known 

PID algorithm.  

 

𝐺𝑐 𝑠 =
𝐺𝑞  𝑠 

1−𝐺𝑞  𝑠 𝐺𝑚  𝑠 
 (23) 

The resulted controller is called IMC-based PID controller and has the usual PID form 

(24).  

𝐺𝑐 𝑠 =
𝑞(𝑠)

(1−𝐺𝑝  𝑠 𝑞(𝑠)
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Then PID form is calculated to find the PID settings. With filter time constants  

𝐺𝑐 𝑠 = 𝑘𝑐  
𝜏𝑖   𝜏𝐷  𝑠2+1

𝜏𝑖𝑠
  

1

(𝜏𝑓𝑠+1)
                                  (24) 

With PID settings given by [45] . 

𝑘𝑐 =
𝜏𝑝 +

𝜏𝑑
2

𝑘𝑝 (𝜏𝑑+𝜆)
                                                      (25) 

𝜏𝑖 = 𝜏𝑝 +
𝜏𝑑

2
                                                                 (26) 

𝜏𝑑 =
𝜏𝑝  𝜏𝑑

2𝜏𝑝 +𝜏𝑑
                                                           (27) 

𝜏𝑓 =
𝜆𝜏𝑑

2(𝜆+𝜏𝑑)
                                                                          (28) 

Above steps are repeated for perfect model and model mismatch and tuning parameters 

of IMC controller are adjusted.IMC based PID tuning advantage is the estimation of a single 

parameter λ instead of two three parameters in PID,the different parameters estimated for PID 

and IMC based PID are shown in Table1. 
 

5. Example: FOPDT Process Model  
 

In order to assess the practical utility of the above described advanced control algorithms, 

a series of simulation experiment have been conducted on a simple FOPDT process. For 

comparison purposes, a conventional PID controller is also designed using the Ziegler-

Nichols method [8], [41].  

The FOPDT process model is described by (29) and initially is assumed absence of plant 

model mismatch, inputs constraints or measured disturbances. The model selection is based 

on the fact that a FOPDT model represents any typical SISO chemical process given by (29). 

𝐺𝑐 𝑠 =
𝑘𝑐

𝜏𝑠+1
𝑒𝜃𝑠                                                    (29) 

Consider the process model with following FOPDT Parameters with k=1;=0.3 and =1 

𝐺𝑐 𝑠 =
1

𝑠+1
𝑒−0.3𝑠     (30) 

 The critical characteristics for the estimation of PID parameters are 𝑘𝑐𝑟 = 5.64   and   

𝑝𝑢 = 1.083. The IMC-based PID parameters are estimated are shown in Table1. Selecting 

0.1   and 1n  . The calculation of DMC gain matrix includes the following parameters; 

input weight λ =0.1, output weight, control horizon M is  2, and prediction horizon (P) 10.  

 

Table 1: IMC-Based PID and ZN Tuning Parameters of a FOPDT Process 
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Fig 8-9, shows next simulation scenario includes constraints on the input and output 

variables. 

−1 ≤ 𝑢 𝑡 ≤ 1, −1 < 𝑦 < 𝑦(𝑡) < 1                                                      (31) 

In the final simulation scenario a simple disturbance model described by (32) is also 

implemented, in order to study the capability of each controller in disturbance rejection with 

with k=0.8 , =0.1 and =1 

𝐺𝑐 𝑠 =
0.8

𝑠+1
𝑒−0.1𝑠                                                       (32) 

 

5.1. Simulation Results 
 

Fig 3-5 shows the effect of tuning parameters selected by trial and error procedure and 

fig.6-10 shows the tuning parameters selected from [38].Which is derived and gives better 

results than trial and error procedure. With no disturbances and input constraints, the output 

response for the advanced control algorithms yields satisfactory step behavior with good set 

point tracking and smooth steady state approach. However, the response of the conventional 

PID seems to be rather disappointing fig.7, as it yields a large overshoot. Mainly concerning 

DMC and PID algorithms, the initial sharp increase of their control action signal may not be 

acceptable during a practical realization of the controller in an actual industrial plant. Fig.8, 9 

shows the output response after the introduction of input constraints defined by (32). 

According to the results, both DMC and IMC-based PID controllers were unaffected by the 

input constraints as their constrained control action response has been within the constrained 

limits. Although the response of the conventional PID controller retained its large overshoot, 

the introduction of input constraints has optimized its smoothness. Finally DMC maintained 

its satisfactory performance, although the fact that its manipulated variable has been 

constrained the most Fig. 10,11 demonstrates the output responses of the process during the 

introduction of measured disturbances defined by (32). According to the results, DMC 

controller yields the most optimal response while IMC-PID controller sustains its 

performance. On the contrary IMC-based PID as well as the conventional PID yields a rather 

large overshoot. The performance measure are shown in table2. 

.  

Fig. 3 Importance of the Move Suppression Coefficient λ, =0, 0.1, 0.5 in Tuning 

of DMC with, M=2.P=10 T=0.1. 
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Fig. 4 Importance of the Control Horizon M=2, 4, 6, in Tuning of DMC for  

P=10 T=0.1, λ=0.1 
 
 

 
Fig. 5 Importance of the Prediction Horizon, P=10, 20, 70 in Tuning of DMC 

for M= 2, T=0.1, λ=0.1 
 

 

 
Fig. 6 Response of DMC from Derived Tuning Parameters Control, M=2.P=4, 

T=0.1, λ=0.07 
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Fig. 7 Unconstrained Responses with Three Controllers 
 

 

 

 
Fig. 8 constrained Responses with Three Controllers. 

 
 
 

 
Fig. 9 Constrained Control Action Responses with Three Controllers. 
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Fig. 10 Responses with Measured Disturbance at, t=2 sec for Three 

Controllers. 
 
 

 
 

Fig. 11 Control Action Response with Measured Disturbances at, t=2 sec. for 
Three Controllers. 

 

  5.2. Performance Analysis 
 

The performance of various controllers is shown in table 2.which shows that the DMC 

performs well then other controllers.  

 
Table 2 
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6. Conclusion 
 

It is observed from simulation experiment that DMC perform well then other controller 

and also shows the effect of tuning parameters. After implementation on the FOPDT process 

their step response was simulated using the Matlab/Simulink software and compared with the 

conventional PID controller which is tuned with Z-N method in various practical scenarios. 

Such scenarios include the implementation of input constraints or measured disturbances. 

From the simulations experiment result we conclude that advanced control DMC control 

algorithms perform satisfactory with good set point tracking and smooth steady state 

approach. They also sustain their robustness and performance during the introduction of input 

constraints and measured disturbance. Surprisingly, the step response of the conventional PID 

controller wasn’t as optimal as it has been expected as its overshoot exceeds any typical 

specification limits. 
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