
��������� �	� 
�����	��
��� ���� � ��� 
������������ ��� ���� ������������

Prof. Dr.–Ing. Frank Allgöwer

H
∞

1 Introduction

Typically the concept of H
∞

controller design is fairly easy to grasp. However, as controller
synthesis is done numerically, a major problem for people new to the subject is how to

write the Matlab code. I will here try to give a short overview of some useful Matlab
functions. Hopefully this will help you when trying to design your first H

∞
-controller.

There are many H
∞

related functions available in Matlab and its toolboxes. The im-
portant toolboxes are, in addition to the Control System Toolbox, the mu-Analysis and
Synthesis Toolbox (mu-tools), the Robust Control Toolbox (RCT) and the LMI Control
Toolbox. LMI and mu-tools are both included in RCT v.3.0.1 which comes with Matlab
7, in earlier versions they are separate.

I have also prepared an m-file where I have tried to use as many of the functions discussed
here as possible. The m-file is included in the appendix and can also be downloaded from
the robust control webpage.

A mixed S/KS synthesis problem will be used to illustrate the use of a handful of useful
functions. Let’s take a look at the this problem first.

2 Shaping closed loop transfer functions

The mixed S/KS problem can be illustrated with the block diagram shown in Figure 1.
The closed loop transfer function T = Fl(P, K) from w to z can be found by visual
inspection as

[

z1

z2

]

=

[

WsS
WksKS

]

r. (1)

The generalized plant P (s) (see Figure 2) is





z1

z2

e



 =





Ws −WsG
0 Wks

I −G





[

r
u

]

. (2)

If we have the state space realizations

G
s
=

[

A B
C D

]

, Ws

s
=

[

As Bs

Cs Ds

]

, Wks

s
=

[

Aks Bks

Cks Dks

]

,

1

-control



h- - -

-

6

-

-

-

K G
−

r y
e u

Ws

Wks

z2

z1

Figure 1: Mixed S/KS problem.

- -

-

�

P

K

w z

vu

Figure 2: General control problem.

it can be shown that a possible state space realization for P (s) is given by

P
s
=

















As 0 −BsC Bs −BsD
0 Aks 0 0 Bks

0 0 A 0 B
Cs 0 −DsC Ds −DsD
0 Cks 0 0 Dks

0 0 −C I −D

















. (3)

(I leave this as an exercise for you.)

The weights Ws and Wks are your tuning parameters, and it typically requires some
iterations to obtain weights which will yield a good controller. That being said, a good
starting point is to choose

Ws =
s/M + ω0

s + ω0A
; Wks = const. (4)

where A < 1 is the maximim allowed steady state offset, w0 is the desired bandwidth and
M is the sensitivity peak (typically A = 0.01 and M = 2). For the controller synthesis,
the inverse of Ws is an upper bound on the desired sensitivity loop shape, and W−1

ks
will

effectively limit the controller output u.

In some cases, you would also like to shape the complementary sensitivity function T =
GK(I +GK)−1 (done by adding an extra output z3 = Wty in Figure 1). A starting point
is to choose

Wt =
s + ω0/M

As + ω0

, (5)

which is symmetric to Ws around the line ω = ω0. The two weighting functions are shown
in Figure for the parameter values A = 0.01(= −40dB), M = 2(= 6dB) and ω0 = 1
rad/sec.

3 Obtaining the subsystems

There are several ways to obtain the dynamical systems G, Ws and Wks in Matlab. Meth-
ods you probably already have heard about are ss, tf and zpk in Control System Toolbox.
Mu-tools offer a variety of similar possibilities like pck, nd2sys and zp2sys. Other meth-
ods are mksys and tree. You should be aware however, that mu-tools uses a different

2



Figure 3: Inverse of weighting functions Ws and Wt

.

representation than the Control System Toolbox, called a system matrix. Thus you cannot
just pass a system generated with e.g. Gcst = ss(A,B,C,D) in Control System Toolbox
to a function found in mu-tools (with RCT v.3.0.1 this is no longer so, most functions have
been rewritten to accept both system representations). Which one to choose is a matter of
convenience, you can transfer back and forth between the different representations quite
easily. One possibility is to write [A,B,C,D]=ssdata(Gcst); Gmu=pck(A,B,C,D). The
opposite way would be [A,B,C,D]=unpck(Gmu); Gcst = ss(A,B,C,D). Take a look at
the documentation to see other options.

4 Obtaining the generalized plant P

Also in creating P you have many options. I list five:

1. Write down the transfer function matrix in (2) directly. I prefer to use mu-tools for
this option. If you afterwards convert to state-space, you should use e.g. minreal

to obtain a minimal realization. Useful commands: sbs (side-by-side), abv (above),
mmult (multiply), minv (inverse).

2. Write down the state space matrices A,B,C,D in (3) and use P = pck(A,B,C,D).

3. Use sysic (system interconnect), an m-file in mu-tools where you specify your
subsystems and the interconnection between them.

4. Use sconnect, a function in LMI-tools where subsystems, inputs and outputs are
passed as parameters, and sconncet returns the connected system.

5. Use iconnect in RCT v3.0.1, functionally similar to sysic.

3



Of these methods I personally prefer sysic and iconnect because they are flexible and
easy to use also for more complex systems where method 1 and 2 are no longer feasible.

Generally it is a good idea to use a balanced realization to avoid numerical problems. A
balanced realization can be obtained e.g. with balreal in Control System Toolbox.

5 Synthesizing controller

The H
∞

S/KS synthesis problem is to find a controller K which stabilizes G and minimizes
the H

∞
cost function

‖Fl(P, K)‖
∞

=

∥

∥

∥

∥

WsS
WksKS

∥

∥

∥

∥

∞

.

I guess by now you are not surprised to hear that there are several methods available
to synthesize H

∞
controllers. Typically you would use hinfsyn, hinfric or hinflmi

which all have P in the System (mu-tools) representation as an input. In RCT v3.0.1,
there is the function mixsyn with G, Ws, Wks (and Wt, a weight for the complementary
sensitivity function) as inputs, that is, you do not need the generalized plant P at all.
The main difference between the methods is whether they use Riccati equations and
gamma-iteration or linear matrix equalities to solve the optimization problem. The LMI
approach does not require all of the technical assumptions needed when using Riccati
equation based solvers.

There are a variety of other commands like ncfsyn and loopsyn (for H
∞

loop shaping of
the open loop transfer function L = GK), hinfmix and msfsyn (multi-objective). Check
out the manual.

6 Analysing the results

After the controller has been synthesized, it is time to analyse the results. This can
be done using Control System Toolbox commands like lsim, step (step response), bode
(bode plot), sigma (singular value plot) and freqresp (frequency response) on typical
transfer matrices like S, KS, T , K and GK. Similar functions in mu-tools are trsp (time
response), frsp (frequency response), vsvd (singular values) and vplot.

7 Conclusions

As you have seen, there are many options. To avoid going from one representation to
another and back again, I prefer to use functions found in mu-tools and RCT as much as
possible. If you know that there exists a function in the Control System Toolbox, chances
are high you will find the same function in mu-tools, only with a sligthly different name.
If you know what you want to do but cannot remember the command, the functions by
category part of the matlab manual is a good reference.

Hopefully this short introduction to Matlab and H
∞

will make it a little easier for you to
synthesize your first H

∞
controller, good luck!

4


