1 Introduction

Typically the concept of H_∞ controller design is fairly easy to grasp. However, as controller synthesis is done numerically, a major problem for people new to the subject is \textit{how to write the Matlab code}. I will here try to give a short overview of some useful Matlab functions. Hopefully this will help you when trying to design your first H_∞-controller.

There are \textit{many} H_∞ related functions available in Matlab and its toolboxes. The important toolboxes are, in addition to the Control System Toolbox, the mu-Analysis and Synthesis Toolbox (mu-tools), the Robust Control Toolbox (RCT) and the LMI Control Toolbox. LMI and mu-tools are both included in RCT v.3.0.1 which comes with Matlab 7, in earlier versions they are separate.

I have also prepared an m-file where I have tried to use as many of the functions discussed here as possible. The m-file is included in the appendix and can also be downloaded from the robust control webpage.

A mixed S/KS synthesis problem will be used to illustrate the use of a handful of useful functions. Let’s take a look at the this problem first.

2 Shaping closed loop transfer functions

The mixed S/KS problem can be illustrated with the block diagram shown in Figure 1. The closed loop transfer function $T = F_1(P,K)$ from w to z can be found by visual inspection as

$$
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} =
\begin{bmatrix}
 W_s S \\
 W_s KS
\end{bmatrix} \begin{bmatrix} r \end{bmatrix}.
$$

The generalized plant $P(s)$ (see Figure 2) is

$$
\begin{bmatrix}
 z_1 \\
 z_2 \\
 e
\end{bmatrix} =
\begin{bmatrix}
 W_s & -W_s G \\
 0 & I & -G
\end{bmatrix}
\begin{bmatrix}
 r \\
 u
\end{bmatrix}.
$$

If we have the state space realizations $G = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, $W_s = \begin{bmatrix} A_s & B_s \\ C_s & D_s \end{bmatrix}$, $W_{ks} = \begin{bmatrix} A_{ks} & B_{ks} \\ C_{ks} & D_{ks} \end{bmatrix}$,
it can be shown that a possible state space realization for $P(s)$ is given by

$$
P(s) = \begin{bmatrix}
A_s & 0 & -B_s C & B_s & -B_s D \\
0 & A_s & 0 & 0 & B_{ks} \\
0 & 0 & A & 0 & B \\
C_s & 0 & -D_s C & D_s & -D_s D \\
0 & C_{ks} & 0 & 0 & D_{ks} \\
0 & 0 & -C & I & -D
\end{bmatrix}.
$$

(I leave this as an exercise for you.)

The weights W_s and W_{ks} are your tuning parameters, and it typically requires some iterations to obtain weights which will yield a good controller. That being said, a good starting point is to choose

$$
W_s = \frac{s/M + \omega_0}{s + \omega_0 A}; \quad W_{ks} = \text{const.}
$$

where $A < 1$ is the maximum allowed steady state offset, w_0 is the desired bandwidth and M is the sensitivity peak (typically $A = 0.01$ and $M = 2$). For the controller synthesis, the inverse of W_s is an upper bound on the desired sensitivity loop shape, and W_{ks}^{-1} will effectively limit the controller output u.

In some cases, you would also like to shape the complementary sensitivity function $T = GK(I + GK)^{-1}$ (done by adding an extra output $z_3 = W_t y$ in Figure 1). A starting point is to choose

$$
W_t = \frac{s + \omega_0/M}{As + \omega_0},
$$

which is symmetric to W_s around the line $\omega = \omega_0$. The two weighting functions are shown in Figure for the parameter values $A = 0.01(= -40dB)$, $M = 2(= 6dB)$ and $\omega_0 = 1$ rad/sec.

3 Obtaining the subsystems

There are several ways to obtain the dynamical systems G, W_s and W_{ks} in Matlab. Methods you probably already have heard about are ss, tf and zpk in Control System Toolbox. Mu-tools offer a variety of similar possibilities like pck, nd2sys and zp2sys. Other methods are mksys and tree. You should be aware however, that mu-tools uses a different
representation than the Control System Toolbox, called a system matrix. Thus you cannot just pass a system generated with e.g. \(G_{\text{cst}} = \text{ss}(A,B,C,D)\) in Control System Toolbox to a function found in mu-tools (with RCT v.3.0.1 this is no longer so, most functions have been rewritten to accept both system representations). Which one to choose is a matter of convenience, you can transfer back and forth between the different representations quite easily. One possibility is to write \([A,B,C,D]=\text{ssdata}(G_{\text{cst}})\); \(G_{\mu}=\text{pck}(A,B,C,D)\). The opposite way would be \([A,B,C,D]=\text{unpck}(G_{\mu})\); \(G_{\text{cst}} = \text{ss}(A,B,C,D)\). Take a look at the documentation to see other options.

4 Obtaining the generalized plant \(P\)

Also in creating \(P\) you have many options. I list five:

1. Write down the transfer function matrix in (2) directly. I prefer to use mu-tools for this option. If you afterwards convert to state-space, you should use e.g. \text{minreal} to obtain a minimal realization. Useful commands: \text{sbs} (side-by-side), \text{abv} (above), \text{mmult} (multiply), \text{minv} (inverse).

2. Write down the state space matrices \(A,B,C,D\) in (3) and use \(P = \text{pck}(A,B,C,D)\).

3. Use \text{sysic} (system interconnect), an m-file in mu-tools where you specify your subsystems and the interconnection between them.

4. Use \text{sconnect}, a function in LMI-tools where subsystems, inputs and outputs are passed as parameters, and \text{sconnect} returns the connected system.

5. Use \text{iconnect} in RCT v3.0.1, functionally similar to \text{sysic}.

Figure 3: Inverse of weighting functions \(W_s\) and \(W_t\).
Of these methods I personally prefer `sysic` and `iconnect` because they are flexible and easy to use also for more complex systems where method 1 and 2 are no longer feasible. Generally it is a good idea to use a balanced realization to avoid numerical problems. A balanced realization can be obtained e.g. with `balreal` in Control System Toolbox.

5 Synthesizing controller

The H_∞ S/KS synthesis problem is to find a controller K which stabilizes G and minimizes the H_∞ cost function

$$\|F_l(P,K)\|_\infty = \left\| \begin{array}{c} W_s S \\ W_{ks} KS \end{array} \right\|_\infty.$$

I guess by now you are not surprised to hear that there are several methods available to synthesize H_∞ controllers. Typically you would use `hinfsyn`, `hinfric` or `hinflmi` which all have P in the System (mu-tools) representation as an input. In RCT v3.0.1, there is the function `mixsyn` with G, W_s, W_{ks} (and W_t, a weight for the complementary sensitivity function) as inputs, that is, you do not need the generalized plant P at all. The main difference between the methods is whether they use Riccati equations and gamma-iteration or linear matrix equalities to solve the optimization problem. The LMI approach does not require all of the technical assumptions needed when using Riccati equation based solvers.

There are a variety of other commands like `ncfsyn` and `loopsyn` (for H_∞ loop shaping of the open loop transfer function $L = GK$), `hinfmix` and `msfsyn` (multi-objective). Check out the manual.

6 Analysing the results

After the controller has been synthesized, it is time to analyse the results. This can be done using Control System Toolbox commands like `lsim`, `step` (step response), `bode` (bode plot), `sigma` (singular value plot) and `freqresp` (frequency response) on typical transfer matrices like S, KS, T, K and GK. Similar functions in mu-tools are `trsp` (time response), `frsp` (frequency response), `vsvd` (singular values) and `vplot`.

7 Conclusions

As you have seen, there are many options. To avoid going from one representation to another and back again, I prefer to use functions found in mu-tools and RCT as much as possible. If you know that there exists a function in the Control System Toolbox, chances are high you will find the same function in mu-tools, only with a slightly different name. If you know what you want to do but cannot remember the command, the functions by category part of the matlab manual is a good reference.

Hopefully this short introduction to Matlab and H_∞ will make it a little easier for you to synthesize your first H_∞ controller, good luck!