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SUMMARY

A multi-input–multi-output extension of the well-known two control degrees-of-freedom disturbance observer architecture
that decouples the problem into single-input–single-output disturbance observer loops is presented in this paper. Robust
design based on mapping D-stability and the frequency domain specifications of weighted sensitivity minimization and phase
margin bound to a chosen controller parameter space is presented as a part of the proposed design approach. The effect of
the choice of disturbance observer Q filter on performance is explained with a numerical example. This is followed by the
use of structured singular values in the robustness analysis of disturbance observer controlled systems subject to structured,
real parametric and mixed uncertainty in the plant. A design and simulation study based on a four wheel active car steering
control example is used to illustrate the methods presented in the paper. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The disturbance observer is a specific method of
designing a two degree-of-freedom control architecture
to achieve insensitivity to modeling error and distur-
bance rejection [1, 2]. It has been used successfully
in a variety of motion control applications including
high-speed direct drive positioning in [3] and friction
compensation in [4]. The augmentation of a plant with
the disturbance observer (see Figure 1) forces it to
behave like its nominal (or desired) model within the
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bandwidth of the disturbance observer. The feedback
controller for this augmented plant is then designed
simply based on the nominal (or desired) plant model.
The model regulation of the disturbance observer is
achieved by first comparing the actual input to the plant
with the input that should have been applied to obtain
the measured output based on the nominal knowledge
of the plant, and then by passing the difference through
a positive feedback loop.

Most of the disturbance observer applications avail-
able in the literature are for single-input–single-output
(SISO) plants. For application to multi-input–multi-
output (MIMO) plants, a decentralized control architec-
ture that reduces the MIMO problem to several SISO
loops is proposed here. Since the MIMO disturbance
observer was formulated for square systems, a four
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Figure 1. Plant with disturbance observer compensation (a)
and equivalent block diagram (b).

wheel car steering problem which has two inputs and
two outputs is chosen as the application example in this
paper.

Along with its desirable model regulation and distur-
bance rejection properties, the disturbance observer
also introduces stability and stability robustness prob-
lems due to its use of feedback. It is a standard practice
to use an unstructured description of model uncertainty
and low pass filter, the disturbance observer output, to
avoid stability robustness problems at high frequen-
cies corresponding to unmodeled dynamics. Many
problems (see for example [5, 6]) involve well-defined
real parametric uncertainty in our knowledge of the
plant. The conventional stability robustness analysis
based on unstructured uncertainty becomes conserva-
tive in such cases. Structured singular value (SSV)
analysis is therefore proposed and used in this paper
to investigate the effect of mixed parametric/complex
uncertainty on the stability and performance robustness
of MIMO disturbance observer compensated systems.
Robust design based on mapping D-stability, frequency
domain weighted sensitivity bound and phase margin
bound to a chosen controller parameter space, is
developed and presented in the paper.

The organization of the rest of the paper is as
follows. The disturbance observer is introduced and its
proposed MIMO form is presented in Section 2. The
proposed design procedures are presented in Sections 3

and 4. The results on real and mixed SSV-based
stability robustness analysis and mixed SSV-based
performance robustness analysis are given in Section 5.
A design example and a simulation study of four wheel
car steering control for active yaw stabilization are
used as an illustrative example in Sections 6 and 7,
respectively. The paper ends with conclusions.

2. MIMO DISTURBANCE OBSERVER

The MIMO disturbance observer is developed here for
plants where the desired dynamics is decoupled. There
is a wealth of practical applications where this is true,
the application example presented later in the paper
being one of them. There are also important pitfalls
of the approach presented here which are pointed out
up front. These pitfalls are that a centralized MIMO
decoupling disturbance observer is not presented, that
the proposed method is not applicable to non-square
MIMO systems and to systems where decoupled loops
(i.e. a diagonal MIMO transfer function matrix) are not
desired.

Consider plant G with multiplicative model error
WmDm and external disturbance d. Its input–output
relation can be expressed as

y=Gu+d=(Gn(I+WmDm))u+d (1)

where Gn are the nominal (or desired) model of the
plant and I is the identity matrix of appropriate dimen-
sions. G and Gn are square transfer function matrices
with m inputs and m outputs and Gn is chosen to be
nonsingular. Gn is chosen as a diagonal matrix in a
decoupling type design as

Gn(s)=diag{Gn1(s),Gn2(s), . . . ,Gnm(s)} (2)

This paper treats mainly the MIMO disturbance
observer control where the desired dynamics of the
plant means a decoupled system which is the rationale
behind the choice of the form in Equation (2) for the
desired dynamics Gn. Consequently, the MIMO loops
of the disturbance observer architecture will become
weakly coupled SISO loops which are designed sepa-
rately as if they were separate SISO loops. The main
limitation of the approach will be due to actuator
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bandwidth and saturation limits as is true in any
control system. The aim in disturbance observer design
is to obtain

y=Gnun (3)

as the input–output relation in the presence of model
uncertainty and external disturbance. un in (3) is the
command input signal in Figure 1. In disturbance
observer design, the aim called model regulation and
specified in (3) is achieved by treating the external
disturbance and model uncertainty as an extended
disturbance e and solving for it as

y=Gnu+(GnWmDmu+d)=Gnu+e (4)

e= y−Gnu (5)

and using u and un according to

u=un−G−1
n e=un−G−1

n y+u (6)

to cancel the effect of the extended disturbance e in (4).
Note that the extended disturbance e=GnWmDmu+d
in Equations (4) and (5) includes the effects of both
plant modeling error including deviation from the
desired decoupled dynamics represented by Dm and
disturbances represented by d. G−1

n corresponding to
Gn in (2) is

G−1
n (s) = diag

{
1

Gn1(s)
,

1

Gn2(s)
, . . . ,

1

Gnm(s)

}

= diag
{

1

Gni (s)

}
(7)

and has noncausal transfer functions 1/Gni (s) : i=
1, . . . ,m unless Gni (s) : i=1, . . . ,m are biproper. Since
this is usually not the case, G−1

n is multiplied by a
diagonal matrix of unity gain low pass filters

Q(s) = diag{Q1(s),Q2(s), . . . ,Qm(s)}
= diag{Qi (s)} (8)

such that QG−1
n and hence Qi (s)/Gni (s) : i=1, . . . ,m

are all causal. Another use of the Qi (s) filters is to limit
the compensation to a pre-selected low-frequency range
(in an effort not to overcompensate at high frequencies

and to avoid stability robustness problems). The feed-
back signals in (6) are thus pre-multiplied by Q. In this
case, the implementation equation becomes

u=un−QG−1
n (y+n)+Qu (9)

where y+n with n representing the sensor noise is used
instead of y alone as this is the actual output signal
that is available for feedback. This MIMO disturbance
observer architecture is illustrated in the block diagram
of Figure 1. Note that the choices (7) and (8) for the
MIMO disturbance observer filters Q and G−1

n result in
m implementation equations. In this manner, the distur-
bance observer loops can be designed independently of
each other with the purpose of loop i (i=1,2, . . . ,m)

being to achieve ui =Gniuni . The plant G is coupled
and the effect of this coupling enters the individual
disturbance observer compensated loops as a distur-
bance to be rejected.

Note that the multiplicative model uncertainty Dm
is used in the development of the MIMO disturbance
observer and is a part of the extended disturbance e in
Equations (4)–(6). However, this MIMO model uncer-
tainty Dm will not be used explicitly in the computa-
tional approach for parameter space solution that will
be introduced later in the paper.

The equation relating the output y in Figure 1 to the
command input un, disturbance input d and the sensor
noise input n is

y= [I+G(I−Q)−1QG−1
n ]−1{G(I−Q)−1un

+d−G(I−Q)−1QG−1
n n} (10)

The disturbance observer (9) has the two major
functions of disturbance rejection and model regula-
tion. Adequate sensor noise rejection is also desired.
Consider the disturbance rejection transfer function
matrix from disturbance input d to output y in (10)
which can be converted into

[I+G(I−Q)−1QG−1
n ]−1

=I−G(QG−1
n G+I−Q)−1QG−1

n (11)

using the matrix inversion lemma (see Reference [7],
for the matrix inversion lemma). Assuming Q(j�)=I
at low frequencies, the expression in (11) will become
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the zero matrix 0meaning that the disturbance rejection
goal is achieved for this choice of Q.

Consider the model regulation transfer function
matrix from command input un to output y in (10)
which is desired to be Gn according to aim (3) at
low frequencies. Use of the matrix inversion lemma
followed by some manipulations transforms this
transfer function matrix into

[I+G(I−Q)−1QG−1
n ]−1G(I−Q)−1

={(I−Q)G−1+QG−1
n }−1 (12)

which becomes Gn when Q(j�)=I is selected at low
frequencies where model regulation is desired. Thus,
the model regulation goal is achieved for Q(j�)=I.
This ensures that the decoupled desired dynamics inGn
are achieved in the presence of the extended error e and
is robust to plant modeling error Dm and disturbances
d which exist within e.

Consider the sensor noise rejection transfer function
matrix

−[I+G(I−Q)−1QG−1
n ]−1G(I−Q)−1QG−1

n (13)

from sensor noise input n to output y. It should ideally
be the zero matrix 0 at high frequencies. This distur-
bance rejection goal is achieved if Q(j�)=0 at high
frequencies where sensor noise occurs. Thus, ideal
disturbance observer operation requires Q(j�)=I at
low frequencies (model regulation and disturbance
rejection) and Q(j�)=0 at high frequencies (sensor
noise rejection). The choice of Q as a diagonal matrix
of unity d.c. gain low pass filters as given in (8) satisfies
these requirements at both low and high frequencies.
In addition, note that Q(j�)=I at both low and high
frequencies should be avoided as this produces the
additional two problems of assuming the exact knowl-
edge of an uncertain plant and potential implementation
issues related to inverting a known plant model.

With the addition of the feedback controller C to the
disturbance observer compensated system in Figure 1,
the block diagram in Figure 2 is obtained. The equation
relating the reference input r, the disturbance d and the
sensor noise n to the output y becomes

y= {I+G(I−Q)−1(C+QG−1
n )}−1{G(I−Q)−1Cr

−G(I−Q)−1(C+QG−1
n )n+d} (14)

Figure 2. Plant under disturbance observer compensation
and its feedback control.

Use of Q(j�)=I at low frequencies results in
ideal disturbance rejection; and reference command
following corresponding to the disturbance observer
augmented system in Figure 2 (within the dashed rect-
angle) being replaced by Gn at these frequencies. Use
of Q(j�)=0 at high frequencies results in sensor noise
rejection corresponding to the disturbance observer
augmented system being replaced by the uncompen-
sated plant G at these frequencies. This is the desired
result which means that the disturbance observer
compensated MIMO plant G can be replaced by the
desired or nominal plant Gn within the bandwidth of
the disturbance observer for the purpose of designing
the feedback compensator C in Figure 2.

Note that the disturbance observer will not be able to
decouple the loops at frequencies above its bandwidth.
The Qi filter bandwidths should therefore include
frequencies of significant coupling between the loops.

The MIMO decoupled disturbance observer frame-
work is a straightforward extension of the SISO formu-
lation that enables the designer to reduce the MIMO
design problem to several SISO design problems, with
loop interactions being treated as disturbances. It is still
quite useful and a natural choice for applications where
one desires a decoupling of the loops that are consid-
ered, the car steering example used in this paper being
one such case. This approach works well in practice, as
the most significant feature of the disturbance observer
architecture is its ability to reject disturbances within
the bandwidth of the Q filter. The main assumption in
this approach is that a decoupled dynamic behavior is
wanted and that there are no loop interactions at higher
frequencies outside the bandwidth of the Q filter which
can at most be up to the actuator bandwidth for that
loop. Another limitation of the proposed architecture
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is that only square MIMO systems can be handled. It
is also assumed that the plant is stable to begin with.
Otherwise a stabilizing controller has to be designed
and used first.

3. DESIGN BY MAPPING FREQUENCY DOMAIN
BOUNDS TO PARAMETER SPACE

The MIMO disturbance observer was introduced in the
previous section. Design of the disturbance observer
filter parameters by mapping selected frequency
domain design bounds into disturbance observer filter
parameter space is presented in this section. The SISO
design approach is presented first. The MIMO design
is handled by exploiting the decoupling nature of the
MIMO disturbance observer introduced in Section 2
and applying loop-at-a-time SISO design.

The method that is presented here is based on the
mapping of frequency domain constraints on closed-
loop transfer functions like sensitivity, complementary
sensitivity and mixed sensitivity into the parameter
space of two selected controller parameters using a
fixed structure controller. Several researchers have
independently worked in this area of mapping various
frequency domain criteria into parameter space. Some
of the earlier work in this area can be found in Refer-
ences [8–16]. To the best of the authors’ knowledge,
the first use of one frequency at a time mapping of
frequency domain constraints into controller parameter
space has been carried out in [8]. In this approach, a
frequency value is selected and ranges of values of
two selected controller parameters in the structurally
fixed controller that satisfy these criteria are solved
for algebraically. Repetition of this procedure for a
sufficient number of frequency points with subsequent
display of the superposed solution region satisfying
the constraint at all of the chosen frequencies results
in a graphical characterization of the solution. This
technique has been investigated for plants with real
parameter uncertainty in [8]. A more systematic
approach, utilizing, in principle the same technique,
has been used in Reference [9] for mapping frequency
domain constraints to PID controller parameter space.
Application to the robust performance problem and use
of a more general three term controller along with the

PID controller structure are reported in [12, 13] where
a CAD system for automated computation has also
been presented. Similar results have also been reported
in [10, 15] for a slightly more general, second-order
controller structure. Limit cycle avoidance in parameter
space has been developed in [11]. Nominal perfor-
mance and robust stability-type frequency domain
specifications were mapped into parameter space in
[12]. The symbolic computation-based method in [12]
was applied to a wide range of examples. An LMI
formulation is used in [16] to obtain a solution to this
problem for a fixed PID control structure, albeit not
being able to handle plant dead time directly (Pade
approximations are used). Out of these references, the
formulation given below is similar to the one in [10].

The method presented here is one approach for
robust control of MIMO systems and is based on the
disturbance observer architecture. Note that several
other methods for robust controller design that also
impose structure on the plant model uncertainty
or controller parameters exist. SSV-synthesis, for
example, treats structured uncertainty and inevitably
imposes structure on the design [17]. There is consid-
erable research on linear parameter varying (LPV)
systems analysis and LPV controller design with useful
practical applications [18]. The edge-type results due
to Barmish and the quantitative feedback theory work
of Horowitz also impose some parameter-type structure
on the final design [19, 20]. It is up to the designer
to choose the method he prefers from the available
literature.

3.1. SISO design

The parameter space design is based on satisfying the
mixed sensitivity requirement

‖|WSS|+|WT T |‖∞<1 or |WSS|+|WT T |<1

for ∀� (15)

where S :=1/(1+L) and T := L/(1+L) are the sensi-
tivity and complementary sensitivity transfer functions
with L being the loop gain and WS and WT being the
corresponding weights. Under the limit condition of
the strict inequality in (17) becoming an equality, this
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Figure 3. Illustration of the limit of the mixed sensitivity
requirement for a specific frequency.

requirement can be represented as,

∣∣∣∣ WS

1+L

∣∣∣∣+
∣∣∣∣WT L

1+L

∣∣∣∣=1 or |WS|+|WT L|=|1+L|

for ∀� (16)

at each frequency. To obtain the region that satisfies
(17) for all frequencies in the parameter space, (18)
must be solved frequency at a time. The intersection
of the regions for every calculated frequency results
in the overall region being searched for. The graphical
illustration of condition (18) is shown in Figure 3.

Applying the cosine rule to the shaded triangle in
Figure 3, a graphical solution for |L| results in,

|L|= −cos(�L)+|WS||WT |±√
Disc

1−|WT |2 (17)

where

Disc= 1+cos2 �L −2|WS||WT |cos�L
+|WS|2+|WT |2 (18)

when L(j�), WS(j�) and WT (j�) are used in Equa-
tions (17) and (18), the solutions for L at the chosen
frequency � are obtained. The solution procedure is to
sweep angle �L from 0–2� rad (see [21], and the refer-
ences therein for details for a standard feedback loop)
and to solve for |L| at each value of �L for which a
solution exists. Then, all possible values of L=|L|ej�L

at the chosen frequency � are obtained. Each value of
L satisfies

L=KG=(KR+ jKI )G (19)

where K is the controller in an equivalent standard
feedback architecture representation of the disturbance
observer. The reader is referred to [21, 22] and the
references therein for details of the general method of
mapping frequency domain bounds to parameter space
for a standard feedback control architecture. For the
case of an SISO system with disturbance observer, the
loop gain can be determined from Figure 1 as

L= GQ

Gn(1−Q)
(20)

Then, the disturbance observer parameters can be
solved for frequency at a time and mapped into the
parameter space for robust design of SISO systems
with disturbance observer. For a specific structure
defined as,

Gn = Kn(v)

�ns+1

Q = 1

�Qs+1

(21)

where Kn(v) is the desired static gain of the distur-
bance observer-controlled system, the solution can be
obtained by solving for �Q and �n from

KR+ jKI = L

G
= Q

Gn(1−Q)
(22)

which results in the following symbolic solution:

�Q = − 1

KnKI�

�n = − KR

KI�

(23)

For more complicated, predefined structures of Q
and Gn , the solution for �Q and �n exists and can be
found by either searching for a symbolic solution of
(22) or by solving it numerically. The end result is a
region in a chosen controller parameter plane where
the mixed sensitivity limit condition (18) is satisfied for
the chosen frequency. Repetition of this procedure for a

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:873–891
DOI: 10.1002/rnc



ROBUST MIMO DISTURBANCE OBSERVER ANALYSIS 879

sweep of sufficiently many frequencies and superposi-
tion of the results by graphical intersection in the chosen
parameter plane results in the overall solution region
where the mixed sensitivity frequency domain bound is
satisfied. The �Q–�n controller parameter plane is used
for the choice (21) of disturbance observer filters.

3.2. MIMO design

A design based on mapping frequency domain bounds
to parameter space can be carried out in a similar
manner to the SISO case such that the MIMO system
with the MIMO disturbance observer proposed in
Section 2 is handled loop-at-a-time. In this case, the
loop gain is,

L=GK=G[I−Q]−1QG−1
n (24)

Hence K is defined as,

K=[I−Q]−1QG−1
n

Using (7) and (8)

K= [I−diag(Qi )]−1diag(Qi )diag
(

1

Gni

)

= diag
(

Qi

Gni (1−Qi )

)
for i=1, . . . ,m (25)

Thus, the i th element in the diagonal of K is

Ki =KRi + jKIi = Qi

Gni (1−Qi )
(26)

Assuming the basic structure,

Gni = Kni (v)

�ni s+1
(27)

Qi = 1

�Qi s+1
(28)

Similar to what was presented in the SISO case as
Equations (23), the solution region for each frequency
is given by

�Qi = − 1

Kni KI i�

�ni = − KRi

KI i�

(29)

3.3. Using higher-order Q filters

The simplest possible disturbance observer Qi filter is
given by Equation (28). It is sometimes beneficial and
sometimes necessary to use higher-order Qi filters. For
example, Q filters of the form

Qmn(s)=
∑n

i=0 ami (�Qs)i

(�Qs+1)m
(30)

have been recommended for improved robustness in
[23]. The coefficients ami in (30) can be found in that
reference. The three Q filters given by,

Q1(s) := Q10(s)= 1

�Qs+1
(31)

Q2(s) := Q21(s)= 2�Qs+1

(�Qs+1)2
(32)

Q3(s) := Q32(s)= 3(�Qs)2+3�Qs+1

(�Qs+1)3
(33)

are used in the numerical example given in this paper
to demonstrate the effect of higher-order Q filters on
performance. It is possible that symbolic solutions may
not exist or may be very lengthy for �Q and �n when
higher filters of the form (30) are used. It is possible
to solve the resulting equations numerically in such a
case. Higher-order Q filters may be used in both the
SISO and MIMO cases to enhance the robustness of
the system.

4. ENHANCING SISO NOMINAL
PERFORMANCE AND STABILITY

As the decoupling type of MIMO disturbance observer
introduced in Section 2 can be designed loop-at-a-time
using SISO design tools, SISO parameter space design
enhancements for obtaining constant D-stability and
desired phase margin regions in disturbance observer
filter parameter space are presented in this section.
Recall that multi-objective solutions are easily obtained
by forming graphical intersections of several single-
objective solutions in parameter space. The mixed
sensitivity frequency domain bound objective of the
previous section and the relative stability and phase
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margin bounds of this section can be combined to
obtain a final overall solution region.

It is possible to further enhance the system stability
and performance using the parameter space approach
to robust control. Assuming perfect decoupling for the
system, the SISO design methods given below can be
applied to each loop for achieving better stability and
performance of the MIMO system. The simple structure
of a first-order filter for Q is assumed in this section, but
it is possible to derive all the equations for higher-order
filters as well.

4.1. Hurwitz stability

The system transfer function with the disturbance
observer as given in Figure 1 can be written as,

y

un
= GnG

Gn(1−Q)+GQ
(34)

Assume that the plant is given by

G(s) = N (s)

D(s)
N (j�)=NR(�)+ jNI (�)

D(j�) = DR(�)+ jDI (�)

(35)

The closed-loop characteristic polynomial for the
disturbance observer augmented system can then be
obtained using (21) and (35) as follows:

�pcl(s) = Kn(v)�QsD(s)+N (s)(�ns+1)

= al+1(�Q,�n,v)sl+1+al(�Q,�n,v)sl

+·· ·+a1(�Q,�n,v)s+a0(�Q,�n,v) (36)

where l is the degree of the plant G(s). Note that the
transfer functions Gn and Q may be different than the
ones assumed in (36). The general method outlined here
will not change. The Hurwitz stability boundary crossed
by a pair of complex conjugate roots is characterized
by the following equations:

Re[�pcl(j�)] = 0

Im[�pcl(j�)] = 0 ∀�∈(0,∞] (37)

and there may be a real root boundary such that a single
root crosses the boundary at �=0 characterized by

�pcl(0)=0 (38)

or

a0(�Q,�n,v)=0 (39)

or there may exist an infinite root boundary which is
characterized by a degree drop in the characteristic
polynomial such that the coefficient of the largest power
of the variable ‘s’ happens to be zero. This degree
drop in the closed-loop system polynomial is charac-
terized as

an(�Q,�n,v)=0 (40)

Plotting the singular solutions of (39) and (40) in the
parameter plane of �Q–�n together with the plot of
(37) parameterized over � and for a specific v value
will yield the Hurwitz stability boundary and thus the
Hurwitz stable region in the �Q–�n parameter space.

4.2. D-stability

The above Hurwitz stability parameter space region
computation procedure can be extended to relative
stability also called D-stability. For a system to be
D-stable, the roots of the characteristic polynomial
of the closed-loop system should lie in the D-stable
region in the complex plane as shown in Figure 4.
Note that the region in Figure 4 is one example of a
type of D-stable region. D-stability regions are more
general.

The boundary �1 in Figure 4 can be mapped into
the parameter space by substituting ‘s−�’ for ‘s’ in
(36) in order to shift the stability boundary to �1 in the
complex plane. Then solving for �Q and �n in (37) and

Figure 4. D-stable region in the complex plane.
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(39) in the same manner and plotting the result in the
�Q–�n parameter plane will result in the �1 boundary in
the parameter space. Note that no infinite root boundary
can exist since ‘s’ is never equal to infinity in the
D-shaped region of Figure 4. For mapping the boundary
�2 to the �Q–�n parameter plane, use ‘rej�’ for ‘s’ in
(36) and parameterize ‘r ’ in Equation (38) to obtain
the complex root boundary of �1 after solving for �Q
and �n . No singular solution exists since ‘r ’ is never
equal to zero or infinity. Finally, mapping the boundary
�3 to the �Q–�n parameter plane can be carried out by
substituting ‘s’ with ‘Rej�’ where ‘R’ is constant and
parameterizing over ‘�’ when solving (36). This results
in the boundary �3 in the parameter plane of �Q and �n
after solving for these variables. For the choices (28)
and (27) of Q and Gn , the real root boundaries of �1,�3
and the complex root boundaries of �1, �2, �3 can be
obtained symbolically in terms of �Q and �n .

4.3. Phase margin

The constant phase margin boundary can be plotted in
the disturbance observer filter parameter space also. The

constant phase margin boundary satisfies the following
equation:

L(j�)=ej(m�−�) (41)

where m� is the phase margin bound. The real and
imaginary parts of L(j�) can be expressed as

Re[L(j�)] = Re

[
GQ

Gn(1−Q)

]

= Re

[
NR+ jNI

DR+ jDI

�nj�+1

Kn�Q j�

]

= −cos(m�)

(42)

Im[L(j�)] = Im

[
GQ

Gn(1−Q)

]

= Im

[
NR+ jNI

DR+ jDI

�nj�+1

Kn�Q j�

]

= −sin(m�)

where the notation in (35) has been used for the plant
G and the choices of disturbance observer filters (21)
have been used. Equations (42) can also be expressed
as

DRNI −DI NR+(DI NI +DRNR)�n�

(D2
R+D2

I )Kn�Q�

=−cos(m�)

−DI NI +DRNR+(DI NR−DRNI )�n�

(D2
R+D2

I )Kn�Q�

=−sin(m�)

(43)

Then, solving for the parameters �Q and �n from (43)
yields,

�Q = − N 2
I +N 2

R

Kn�(DRNI cos(m�)−DI NR cos(m�)−DI NI sin(m�)−DRNR sin(m�))

�n = DI NI cos(m�)+DRNR cos(m�)+DRNI sin(m�)−DI NR sin(m�)

�(DRNI cos(m�)−DI NR cos(m�)−DI NI sin(m�)−DRNR sin(m�))

(44)

as the equations for the constant phase margin region.
Other choices of disturbance observer filters in Equa-
tions (42) can be handled in a similar manner. Note
that the symbolic solutions may be too long in size
for higher-order choices of these filters, necessitating a
numerical solution. Constant gain margin region param-
eterization is also possible as it is obtained in a similar
manner and is not presented here for the save of brevity.

5. REAL AND MIXED SSV ANALYSIS

While the disturbance observer design method
presented is based on unstructured uncertainty, it is
often the case that knowledge of parametric uncer-
tainty in the system exists along with high-frequency
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unmodeled dynamics. It is then a good idea to use the
design method in the paper and then to check for robust
performance against this real parametric uncertainty
and high-frequency unmodeled dynamics uncertainty
using SSV analysis.

SISO and MIMO disturbance observer design proce-
dures based on mapping the mixed sensitivity frequency
domain bound, the relative D-stability constraint and
the phase margin bound to disturbance observer filter
parameter space were presented in previous sections.
The mixed sensitivity frequency domain and phase
margin specifications will result in the achievement
of some level of stability and performance robustness
in the presence of unstructured uncertainty. However,
structured real parametric uncertainty in the plant is
of importance in some problems and has to be dealt
with explicitly, if this is the case. It is proposed to
use real and mixed SSV analysis to check the stability
and the performance robustness achieved by the multi-

objective parameter space disturbance observer design
method presented in this paper.

Real SSV is defined as (see Figure 5 with DF=0,
Dm=0)

	Dr (N)= 1

min

i∈�;i=1,2,...,n

{(max |
i |) :det(I−N ·diag(
1,
2, . . . ,
n))=0} (45)

and is one over the size of the smallest destabilizing
perturbation among the real parametric model uncer-
tainty [21, 24]. N in (45) (see Figure 5) is the general-
ized plant in the linear fractional transformation form
and �r =diag(
1,
2, . . . ,
n) is the diagonal matrix of
real parametric uncertainty with 
i ∈�; i =1,2, . . . ,n.
Real SSV can either be calculated by using results from
the parametric approach to robust control or lower and

upper bounds for it can be computed in the frequency
domain approach to robust control. The latter approach
is taken here as it is implemented in commercially avail-
able software [25]. In the SSV setting, the robustness
of stability for a feedback system with ‖�r‖∞�1 is
equivalent to satisfying

sup
�∈�

	Dr (N(j�))<1 (46)

High-frequency unmodeled dynamics that are present
in all physical systems is modeled by a full complex
uncertainty block and results in mixed SSV analysis
(see Dm and the weight Wm in Figure 5). The SSV-
analysis technique is easily extended to handle the
robustness of performance by treating the performance
criterion as a fictitious, extra uncertainty block (see DF
and the performance weightWS in Figure 5). This extra
uncertainty block is also complex and, along with high-
frequency unmodeled dynamics, results in mixed SSV
analysis where

	Dr,�m ,�F
(NF ) = 1

min

i∈�;i=1,2,...,n;�m∈Cmxm ,�F∈Cmxm

{A}

A = {(max(|
1|, |
2|, . . . , |
n|, |�m |, |�F |)) :det(I−NF ·B)=0}
B = diag(
1,
2, . . . ,
n,�m,�F )

(47)

is used for the computations.
Real SSV, in contrast to complex SSV, is plagued by

its discontinuous nature as a function of frequency. It is,
therefore, possible to miss the isolated real SSV peaks
in a frequency sweep during computations. Both the

treatment of the high-frequency unmodeled dynamics
and the robust performance formulation requires the
use of complex uncertainty blocks, resulting in what is
known as the mixed SSV problem that combines at least
one complex uncertainty block with the remaining real
parametric uncertainty blocks. Mixed SSV is contin-
uous with frequency, however, tall and narrow peaks
that exist for mixed SSV may still be missed in a
frequency sweep and one needs to be careful.
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Figure 5. System with disturbance observer and structured
uncertainty with: (a) no feedback controller and (b) feed-

back controller (WS =0 for robust stability).

Note that an SSV synthesis method could have been
used for controller design also instead of the parameter
space-based method presented in earlier sections. While
the authors find SSV analysis to be very powerful for
the analysis of structured uncertainty, the authors also
believe in the strength of parameter space methods
for design purposes, especially their interactive nature
and the graphical display of results and that a solution
region instead of a specific solution being the result
of the design process. The main reasons for using the
parameter space-based methods in the paper for design
instead of SSV synthesis are: (1) a fixed controller

structure and order can be used, (2) discontinuous,
nonrational weights can be used, (3) time delays in the
plant or poles on the imaginary axis pose no problems,
and (4) the authors have used controllers resulting
from similar parameter space design methods quite
successfully in their previous applications. Regarding
reason 1 given above, note that it may be possible to
use a fixed controller structure in SSV-synthesis but
the toolbox algorithm is known to be insensitive to
real parameter variations in the mixed case, and may
not even converge in the strictly real case. Hence,
the resulting significant design conservatism would
be a key disadvantage of an SSV-synthesis approach.
Regarding reason 2 given above, the weights can be
specified as magnitude bounds at chosen frequencies
with zero phase angle. Regarding reason 3, the ability
to handle plants with time delays is a major advantage
of the proposed method as the SSV-synthesis method
has difficulty in handling time delay.

6. APPLICATION TO EXAMPLE SYSTEM

A multi-objective parameter space approach for MIMO
and SISO disturbance observer design was presented in
Sections 2–4. A mixed SSV-based stability and perfor-
mance robustness analysis approach for the designed
SISO or MIMO disturbance observer was presented in
Section 5. All of these results are applied to an MIMO
example system, the four-wheel car steering application
in this section.

6.1. Car steering model

The disturbance observer has been used successfully
in robust steering controller design for vehicle yaw
stabilization tasks ([5, 6, 26, 27], for example). This
application of the disturbance observer is, thus, chosen
as the example system. The single track model gives
an accurate description of the lateral vehicle dynamics
and is customarily used in steering controller design.
The single track car model has been illustrated in
Figure 6. The variables and parameters used in the
single track model and their numerical values used
in the computations are: Ff (lateral force at front
wheel), Fr (lateral force at rear wheel), MzD (yaw
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Figure 6. Single track car model.

disturbance moment), r (yaw rate), afl (lateral accel-
eration at front wheel), � (chassis side slip angle at
vehicle center of gravity), v (magnitude of vehicle
velocity at center of gravity, 30m/s), lf (distance from
front axle to center of gravity, 1.25m), lr (distance
from rear axle to center of gravity, 1.32m), 
f (front
wheel steering angle), 
r (rear wheel steering angle),
m (vehicle mass, 1296 kg), J (moment of inertia wrt
vertical axis at center of gravity, 1750kgm2), cf (front
wheel cornering stiffness, 84 000N/rad), cr (rear wheel
cornering stiffness, 96 000N/rad), 	 (road-tire lateral
friction coefficient, 1). The numerical values presented
correspond to a mid-sized passenger car. In addition,
the new variables m̃=m/	 and J̃ = J/	 called the
virtual mass and virtual moment of inertia are defined
and customarily used in the model equations. The
linearized single track car model is given by[

�̇

ṙ

]
=

[
a11 a12

a21 a22

][
�

r

]
+

[
b11 b12

b21 b22

][

f


r

]
[
r

�

]
=

[
0 1

1 0

][
�

r

]
+

[
0 0

0 0

][

f


r

] (48)

where

a11 = −Cr +C f

m̃v
, a12=−1+Crlr −C f l f

m̃v2

a21 = Crlr −C f l f

J̃
, a22=−Crl2r +C f l2f

J̃v

b11 = C f

m̃v
, b12= Cr

m̃v
, b21= C f l f

J̃

b22 = −Crlr

J̃
, m̃=m/	, J̃ = J/	

The definitions of the other transfer functions in (48)
are available in [22] and will not be presented as they
will not be necessary in the following development. The
state-space model (48) is an MIMO plant with front
and rear wheel steering angles as its two inputs and
with yaw rate and side slip angle as its two outputs.

Two uncertain parameters are identified as m̃ and
v. They appear polynomially in the coefficients of
the transfer functions obtained from the model (48).
The MIMO disturbance observer design method in
Section 3.2 is used with the four disturbance observer
filters Gn1, Gn2, Q1, Q2 of the form (27) and (28).
The loop-at-a-time design was carried out as presented
in the earlier sections. The sensitivity function weight
is chosen as

W−1
S (s)=

⎡
⎢⎢⎣
hS1

s+�S1lS1
s+�S1hS1

0

0 hS2
s+�SlS2
s+�S2hS2

⎤
⎥⎥⎦ (49)

with lS1=0.5 (i.e. less than 50% steady state error)
being the low-frequency sensitivity bound, hS1=2
being the high-frequency sensitivity bound and �S1=
25rad/s being the approximate bandwidth of model
regulation for the first loop. lS2=0.5, hS2=4 and
�S2=3rad/s were used for the second loop.

The complementary sensitivity function weight is
chosen as

WT(s)=

⎡
⎢⎢⎣
hT 1

s+�T 1lT 1
s+�T 1hT 1

0

0 hT 2
s+�T 2lT 2
s+�T 2hT 2

⎤
⎥⎥⎦ (50)

where the low-frequency gain is lT 1=0.2 and the high-
frequency gain is hT 2=1.5 (corresponds to uncertainty
of up to 150% at high frequencies). The frequency
of transition to significant model uncertainty is �T 1=
120rad/s for the first loop. lT 2=0.2, hT 2=2 with
�T 2=50rad/s were used for the second loop.

The first loop is from the front wheel steering angle
to yaw rate and the second loop is from the rear wheel
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steering angle to vehicle sideslip angle. The cross-
coupling effects of front wheel steering angle on vehicle
sideslip angle and the rear wheel steering angle on
yaw rate are treated as disturbances to be rejected. The
decoupling-typeMIMO disturbance observer in Section
2 and the design procedure in Section 3.2 result in two
independent design procedures for the two loops of the
four-wheel car steering system. The parameter space
solution regions for these two loops are presented in
Figures 7 and 8. The algorithm presented is a very fast
numerical algorithm whose computation time depends
on the number of grid points taken in the sweep of �L
from 0 to 2� rad. Usually about 100 sweep points is
taken for each frequency under consideration. The use
of about 30 frequencies is sufficient to get a good char-
acterization of the overall solution region per objective
like D-stability, phase margin constraint, mixed sensi-
tivity, etc. An SISO design takes on the order of frac-
tions of a second on the computation platform that was
used, comprising of an Apple MacBook with 2GHz
Intel Core with dual processors and 2GB of RAM
memory. A very large number of computation points
(800 �L points and 100 frequency points, i.e. 80 000
repetitions of the basic computation) were used for the
solution regions displayed in Figures 7 and 8 for better
appearance of the results. This required a computa-
tional time of approximately 0.34 s. The MIMO design
extension approach used contains one SISO design
computation per MIMO loop considered. Computa-
tional scale thus increases linearly as n×tSISO where n
is the number of MIMO loops and tSISO is the compu-
tation time for each SISO loop in the MIMO system.
Hence, for n=2, the computational time is approxi-
mately 2×0.34s=0.68s.

The chosen disturbance observer filter parameter
pairs are marked by crosses in these figures. The
D-stable region and constant phase margin region
plots for the first loop are given in Figures 9 and 10,
respectively. The overall solution region for the first
loop is obtained by graphical intersection of the solu-
tion region satisfying at least 80◦ phase margin and
the regions in Figures 9 and 10 and is displayed in
Figure 11. Since the MIMO design used is based on
a decoupling approach forcing weakly coupled SISO
loops, the PM mentioned above is for these desired
SISO loops. The overall solution region for the second

Figure 7. Front wheel to yaw rate loop solution region.

Figure 8. Rear wheel to side slip angle loop solution region.

loop is displayed in Figure 12 for a D-stable region
with �=3.5, �=60◦ and R=30 and a phase margin
of at least 45◦. The points marked with a cross in
Figure 11 (�n =0.14s,�Q =0.04s) for the first loop
and Figure 12 (�n =0.20s,�Q =0.06s) for the second
loop are the disturbance observer filter parameters
chosen and used in mixed SSV computations and in
simulations.
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Figure 9. D-stable region for the first loop.

Figure 10. Constant phase margin plots for the first loop.

The effect of the use of higher-order Q filters as given
in (31)–(33) on the parameter space solution region for
mixed sensitivity is shown in Figure 13.

Higher-order Q filters increase the area of the �Q–�n
region for mixed sensitivity. Higher-order Q-filters are
applied to the first loop only and the second loop is
remained with the basic Q filter given by Equation (28).
The solution regions are presented only for the first
loop in the figure since the regions for the second loop
remain the same. The solution region moves toward
the right part of the controller parameter plane as the
order of the Q filter is increased. One can choose lower
�Q values and higher �n values by increasing the order
of the Q filter while maintaining robust performance.

Figure 11. Overall solution region for the first loop.

Figure 12. Overall solution region for the second loop.

When the D-stability criteria is also considered, moving
in this direction in the �Q–�n plane moves the roots of
the characteristic polynomial closer to the imaginary
axis. Such an action introduces a slower response for the
control system while maintaining robust performance.
This can be desired in practice when the actuator band-
width is low. But note that introducing higher-order Q
filters makes the system less robust for higher frequen-
cies. This tradeoff becomes essential when selecting the
order of the Q filter for design. A good approach is to
obtain the solution regions for a set of Q filters and then
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Figure 13. The solution region for the first loop when
using higher-order Q filters for the first-order filter
(top), second-order filter (middle), and the third-order

filter(bottom).

select an order for the filter considering other param-
eter space criteria like D-stability and phase margin.
Experimenting with different order Q filters is heuristic
in nature and the results displayed in Figure 13 are
problem dependent. It is a good idea for the designer

Figure 14. Result for the SSV analysis of the MIMO system.

to test a couple of Q filter choices to determine the one
giving best results for his specific problem. The authors
advise the use of the lowest-order Q filter that will get
the job done for ease of controller implementation. But
this is a choice that should be made by the designer.

An SSV analysis is carried out next. The actual plant
with mixed real parametric and complex uncertainty
and shown in Figure 6 is used. In the computations,
q1≡v and q2≡ m̃ are the real uncertain parameters.
�m̃ and �v are both chosen to reflect 30% uncer-
tainty in the nominal values of m̃ and v. There is
also a scalar complex uncertainty block used to repre-
sent high-frequency unmodeled dynamics. This is the
complex uncertainty block �m in Figure 5 where

Wm(s)=3
s+2�·100 ·0.1
s+2�·100 ·3 (51)

is used to represent 10 and 300% unmodeled dynamics
uncertainty at low and high frequencies, respectively.
The transition between low and high frequencies is
chosen as 25Hz in (51). The resulting SSV robustness
plots are shown in Figure 14. As the maximum SSV
value is smaller than unity, the robustness of stability
and of performance are preserved for the model uncer-
tainties considered. The use of higher-order Q filters
as given in (31)–(33) results in Figure 15 for the SSV
robustness results. These results show that higher-order
Q filters increase SSV robustness at low frequencies at
the cost of decreasing it at higher frequencies.
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Figure 15. SSV results of higher-order Q filters used in the
first loop for the second-order filter (top) and third-order

filter (bottom) satisfying the SSV conditions.

7. SIMULATION STUDY

The simulations were carried out by inputting step front
and rear wheel steering angles. The yaw rate output is
shown in Figure 16. There is a yaw rate response to both
front and rear wheel steering inputs in the uncontrolled
case. The use of the MIMO disturbance observer intro-
duced here results in a significantly decoupled response
as the yaw rate responds mainly to the front wheel
steering angle and only negligibly to the rear steering
angle in the controlled case. The yaw rate response to

front wheel step steering input behaves like the desired
first-order system.

The simulation results from the steering angles to
the vehicle side slip angle are shown in Figure 17.
Note that high-frequency yaw rate sensor and vehicle
side slip sensor noise were used in this simulation. The
simulation results show that the MIMO disturbance
observer had satisfactory noise rejection characteris-
tics. Apart from the noise, the vehicle side slip angle
responds mainly to rear wheel steering angle while it
responds only negligibly to front wheel steering angle
in the MIMO disturbance observer-controlled case, as
expected. Yaw moment disturbance rejection simula-
tions were also carried out and are shown in Figure 18.
Excellent disturbance rejection is achieved with the
MIMO disturbance observer as seen in Figure 18.
Neither the yaw rate nor the vehicle side slip angle is
affected much by yaw moment disturbances.

Two separate PID controllers were tuned for each
loop of the car steering example (from front wheel
steering to yaw rate and from rear wheel steering to
side slip angle) and the resulting simulation results
are also displayed in Figures 16–18 for benchmarking
purposes. The PID loops were tuned manually with the
result Kp=0.4, Ki =2s−1, Kd =0.03s for the first loop
and Kp =0.7, Ki =3.7s−1, Kd =0.06s for the second
loop. It is seen from Figures 16–18 that desired model
following is only achieved by careful tuning of PID
gains, that decoupling of the two loops exists but is
not as good as that of the MIMO disturbance observer.
The Bode plots from the two inputs 
f and 
r to the
two outputs r and � are shown in Figure 19. It is
clear from Figures 16–19 that the PID-controlled plant
has improved performance in relation to following the
desired step response and improved disturbance rejec-
tion and decoupling of the loops as compared with the
open-loop system. However, it is also seen that the
loops are affected significantly by the dynamics of
the other loop as decoupling is not as good as that of
the MIMO disturbance observer.

8. CONCLUSIONS

A decoupling-type MIMO disturbance observer archi-
tecture was formulated here for square systems.
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Figure 16. Step steering input simulation results for yaw rate output.

Figure 17. Step steering input simulation results for sideslip angle output with sensor noise.
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Figure 18. Step yaw moment input simulation results for yaw rate and sideslip angle outputs.

Figure 19. Model regulation and decoupling properties of MIMO disturbance observer and PID compensated system.
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A multi-objective parameter space disturbance observer
design procedure satisfying certain D-stability, mixed
sensitivity, and desired phase margin objectives
was presented. For handling disturbance observer-
compensated plants with significant amounts of real
parametric uncertainty, the SSV analysis was proposed
and used for analyzing stability and performance robust-
ness. The effectiveness of the proposed methods was
demonstrated by carrying out a design and simulation
study for the four-wheel active steering control problem.
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