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Abstract—Multisource hybrid power generation systems are a
type of representative application of the renewables’ technology.
In this investigation, wind turbine generators, photovoltaic panels,
and storage batteries are used to build hybrid generation systems
that are optimal in terms of multiple criteria including cost, reli-
ability, and emissions. Multicriteria design facilitates the decision
maker to make more rational evaluations. In this study, an im-
proved particle swarm optimization algorithm is developed to de-
rive these nondominated solutions. Hybrid generation systems un-
der different design scenarios are designed based on the proposed
approach. First, a grid-linked hybrid system is designed without
incoroprating system uncertainties. Then, adequacy evaluation is
conducted based on probabilistic methods by accounting for equip-
ment failures, time-dependent sources of energy, and stochastic
generation/load variations. In particular, due to the unpredictabil-
ity of wind speed and solar insolation as well as the random load
variation, time-series models are adopted to reflect their stochastic
characteristics. An adequacy evaluation procedure including time-
dependent sources, is adopted. Sensitivity studies are also carried
out to examine the impacts of different system parameters on the
overall design performance.

Index Terms—Adequacy evaluation, hybrid power generation
system, multicriteria design, particle swarm optimization, proba-
bilistic method, renewable energy, time-series models.

I. INTRODUCTION

W ITH THE increasing concerns on air pollution and
global warming, the clean green renewable sources of

energy are expected to play more significant role in the global
energy future [9], [12], [24]. Most of them are environmen-
tally benign and do not contribute to the atmospheric pollution,
acid rain, and global climate warming. Furthermore, due to
public support and government incentives over recent decades,
they are growing rapidly, not only in technical performance,
but also in the breadth of applications. The public attention
has remained focused on these renewable technologies as en-
vironmentally sustainable and convenient alternatives. Among
them, wind power and solar power are the two most widely
used renewable sources of energy since they feature certain
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merits as compared with the conventional fossil-fuel-fired gen-
eration. For instance, wind turbine generators (WTGs) generate
no pollution and they do not consume depleting fossil fuels.
Photovoltaic (PV) systems produce no emissions, are durable,
and demand minimal maintenance to operate. Unfortunately,
these renewable sources of energy are essentially intermittent
and quite variable in their output. Also, they require high capital
costs. Thus, it is possible that power fluctuations will be incurred
since both power sources are highly dependent on the weather
conditions [8]. To mitigate or even cancel out the fluctuations,
energy storage technologies, such as storage batteries (SBs)
can be employed. SBs may absorb the surplus power and pro-
vide the deficit power in different operating situations [3], [4].
As a result, hybrid generation systems have attracted much at-
tention [6], [7], [10], [13], [14], [18]. However, besides the
fluctuations of time-dependent sources, there are various un-
certainties existing in operations of such hybrid systems, e.g.,
possible equipment failures and stochastic generation/load vari-
ations. Therefore, reliability evaluation for the intended system
using probabilistic methods is highly desired. In this investiga-
tion, adequacy evaluation theory is used in the design to ensure
the system reliability in the presence of generating unit mal-
functions. To reflect the stochastic characteristics of wind and
solar power, an autoregressive moving average (ARMA) time
series is used to model the wind speed and solar insolation at
different time instants. Furthermore, the ARIMA time series is
used to model the random variation of load demand. In this way,
various uncertainties including equipment failures and random
generation/load variations, are taken into account in the system
design, which is expected to enhance system reliability in the
face of different uncertainties.

In this paper, we employ a multicriteria approach to handle
hybrid system design problems by taking into account multiple
design objectives including economics, reliability, and pollutant
emissions. Multicriteria design helps the decision maker reflect
upon, articulate, and apply value judgments to determine reason-
able tradeoffs thus leading to recommendations of correspond-
ing alternatives [2], [21]. Thus, multicriteria design provides
a viable way to reach tradeoffs among these design objectives
with different preferences. Also, due to the high complexity and
high nonlinearity of the design problem, a metaheuristics called
particle swarm optimization (PSO) is adopted and improved
accordingly in order to derive a set of nondominated solutions
with sufficient diversity for decision-making support. PSO has
turned out to be an outstanding optimizer due to its ability to
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Fig. 1. Configuration of a typical hybrid generation system.

elegantly handle difficult optimization problems as well as its
exceptional convergence performance.

The remainder of the paper is organized as follows. Sec-
tion II formulates the hybrid system design problem including
its multiple objectives coupled with a set of design constraints.
Section III introduces the mechanism of PSO algorithms. The
proposed multiobjective PSO (MOPSO) algorithm is detailed
in Section IV. Simulation results and sensitivity studies for de-
signing grid-linked hybrid systems without and with system
uncertainties consideration are presented in Sections V and VI,
respectively. Finally, conclusions are drawn and future research
direction is suggested.

II. PROBLEM FORMULATION

As shown in Fig. 1, a typical hybrid generation system com-
prises different power sources including wind turbine genera-
tors, PV panels (PVs), and storage batteries (SBs). These power
sources have different impacts on cost, environment, and relia-
bility. In a hybrid generation system, they are integrated together
and complement one another in order to serve the load while sat-
isfying certain economic, environmental, and reliability criteria.
The hybrid system can be operated autonomously or connected
to the utility grid whose power is from the conventional fossil-
fuel-fired generators (FFGs). Due to space restrictions, here only
grid-linked system designs will be discussed. The multicriteria
design of a stand-alone hybrid generation system can be referred
to in [22].

The objective of this study is to achieve hybrid generation
systems that should be appropriately designed in terms of eco-
nomics, reliability, and environmental measures subject to phys-
ical and operational constraints/strategies. Two design scenar-
ios are investigated, i.e., grid-linked hybrid generation systems
without and with uncertainties consideration. Here, we start with
the discussion of a hybrid system design without considering
uncertainties. That is, neither generator failures nor stochastic
generation/load variations is considered in the design. Some of
the calculations formulated in this section are applicable to the
hybrid system design incorporating adequacy evaluation includ-
ing uncertainties discussed in Section VI.

A. Design Objectives

1) Objective 1 (Costs): Cost estimation has been incorpo-
rated into the hybrid generation system design [6], [7]. The

total cost COST ($/year) includes initial cost, operational and
maintenance (OM) cost for each type of power source, and the
salvage value of each equipment which should be deducted

COST =

∑
i=w,s,b(Ii − SPi

+ OMPi
)

Np
+ Cg (1)

where w, s, b indicate the wind power, solar power, and battery
storage, respectively; Ii , SPi

, OMPi
are the initial cost, present

worth of salvage value, and present worth of operation and
maintenance cost (OM) for equipment i, respectively; Np(year)
is the lifespan of the project; and Cg is the annual cost for
purchasing power from the utility grid. Here, we assume that
the lifetime of the project does not exceed those of both WTGs
and PV arrays.

a) For the WTGs

Iw = αw Aw (2)

where αw ($/m2) is the initial cost of WTGs; the present
worth of the total salvage value is

SPw
= Sw Aw

(
1 + β

1 + γ

)Np

(3)

where Sw ($/m2) is the salvage value of WTGs per square
meter, β and γ are the inflation rate and interest rate,
respectively; the present worth of the total OM in the
project lifetime is

OMPw
= αOMw

× Aw ×
Np∑
i=1

(
1 + ν

1 + γ

)i

(4)

where αOMw
($/m2/year) is the yearly OM cost per unit

area and ν is the escalation rate.
b) For the PV panels, the initial cost is

Is = αsAs (5)

where αs($/m2) is the initial cost; the present worth of
the total salvage value is

SPs
= SsAs

(
1 + β

1 + γ

)Np

(6)

where Ss($/m2) is the salvage value of PVs per square
meter of PV panels; the present worth of the total OM in
the project lifetime is

OMPs
= αOM s

× As ×
Np∑
i=1

(
1 + ν

1 + γ

)i

(7)

where αOM s
($/m2/year) is the yearly OM cost per unit

area and ν is the escalation rate.
c) For the storage batteries, since their lifespan is usually

shorter than that of the project, the total present worth of
capital investments can be calculated as follows:

Ib = αb × Pbc a p ×
Xb∑
i=1

(
1 + ν

1 + β

)(i−1)Nb

(8)

where Nb is the lifespan of SBs, Xb is the number of times
to purchase the batteries during the project lifespan Np ,
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the salvage value of SBs is ignored in this study, and the
present worth of the total OM cost in the project lifetime
is calculated as follows:

OMpb
= αOM b

× Pbc a p ×
Np∑
i=1

(
1 + ν

1 + γ

)i

(9)

where αOM b
($/kWh/year) is the yearly OM cost per

kilowatthour.
d) For the grid-linked system design, the annual cost for

purchasing power from the utility grid can be calculated
as follows:

Cg =
T∑

t=1

Pg,t × ϕ (10)

where Pg,t($/year) is the power purchased from the util-
ity at hour t; ϕ($/kWh) is the grid power price; and T
(8760 h) is the operational duration under consideration.

2) Objective 2 (Reliability): Reliability is used to assess the
quality of load supply. Here, the energy index of reliability
(EIR) is used to measure the reliability of each candidate hybrid
system design. EIR can be calculated from expected energy not
served (EENS) as follows:

EIR = 1 − EENS
E

(11)

where E is the yearly energy demand. The EENS(kWh/year)
for the duration under consideration T (8760 h) can be calculated
as follows:

EENS =
T∑

t=1

(Pbm in − Pbs o c (t) − Psup(t)) × U(t) (12)

where U(t) is a step function that is zero when the supply
exceeds or equals to the demand, and equals one if there is
insufficient power in period t; Pd(t) is the load demand during
hour t, Psup(t) = Ptotal(t) − Pd(t) is the surplus power in hour
t, Ptotal(t) is the total power from WTGs, PVs, and FFGs during
hour t

Ptotal(t) = Pw (t) + Ps(t) + Pg (t). (13)

Here, Pbs o c (t) is the battery charge level during hour t, and Pbm in

is the minimum permitted storage level, the term Pbs o c (t) −
Pbm in indicates the available power supply from batteries during
hour t; and provided that there is insufficient power in hour t

Pg (t) = κ × (Pd(t) − Pw (t) − Ps(t) − Pb(t)) (14)

where κ ∈ [0, 1] indicates the portion of purchased power with
respect to the hourly insufficient power; or else, Pg (t) = 0. Note
that no equipment failures and unexpected load deviations are
considered in calculating the EENS, which in this design is all
contributed by the fluctuations of renewable power generation.

3) Objective 3 (Pollutant Emissions): With the increasing
concerns on environment protection, there are stricter regula-
tions on pollutant emissions. The most important emissions
considered in the power generation industry due to their highly
damaging effects on the ecological environment are sulfur diox-
ide (SO2) and nitrogen oxides (NOx ). These emissions can be

modeled through functions that associate emissions with power
production for generating units. They are dependent on fuel
consumption and take the quadratic form

PE = α + β ×
T∑

t=1

Pg,t + γ ×
(

T∑
t=1

Pg,t

)2

(15)

where α, β, and γ are the coefficients approximating the gener-
ator emission characteristics.

B. Design Constraints

Due to the physical or operational limits of the target system,
there is a set of constraints that should be satisfied throughout
system operations for any feasible solution.

1) Constraint 1 (Power Balance Constraint): For any period
t, the total power supply from the hybrid generation system must
supply the total demand Pd with a certain reliability criterion.
This relation can be represented by

Pw (t) + Ps(t) + Pb(t) + Pg (t) ≥ (1 − R)Pd(t) (16)

Pw (t) + Ps(t) + Pb(t) + Pg (t) − Pdump(t) ≤ Pd(t) (17)

where Pw , Ps , Pb , Pg , Pdump(t), and Pd are the wind power,
solar power, charged/discharged battery power, power bought
from grid, dumped power, and total load demand, respectively;
R is the ratio of the maximum permissible unmet power with
respect to the total load demand at each time instant. The trans-
mission loss is not considered in this investigation.

The output PWTG (kW/m2) from WTGs for wind speed Vt

can be calculated as

PWTG =




0, Vt < Vci

a × V 3
t − b ∗ Pr , Vci ≤ Vt < Vr

Pr , Vr ≤ Vt ≤ Vco

0 Vt > Vco

(18)

where a = Pr/(V 3
r − Vci)3 , b = V 3

ci/(V 3
r − Vci)3 , Pr is the

rated power, Vci , Vr , and Vco are the cut-in, rated, and cut-out
wind speed, respectively. The real electric power from WTGs
can be calculated as follows:

Pw = PWTG × Aw × ηw (19)

where Aw is the total swept area of WTGs and ηw is their
efficiency.

The output power Ps(kW) from PV panels can be calculated
as follows:

Ps = H × As × ηs (20)

where H(kW/m2) is the horizontal irradiance, As is the PV
area, and ηs is the efficiency of the PV panels.

2) Constraint 2 (Bounds of Design Variables): The swept
area of WGTs should be within a certain range

Awm in ≤ Aw ≤ Awm a x (21)

Similarly, the area of PV arrays should also be within a certain
range

Asm in ≤ As ≤ Asm a x . (22)
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The state of charge (SOC) of storage batteries Pbs o c should
not exceed the capacity of storage batteries Pbc a p and should
be larger than the minimum permissible storage level Pbm in , the
total SB capacity should not exceed the allowed storage capacity
Pbc a p max , and the hourly charge or discharge power Pb should
not exceed the hourly inverter capacity Pbm a x . As a result

Pbm in ≤ Pbs o c ≤ Pbc a p (23)

0 ≤ Pbc a p ≤ Pbc a p max (24)

Pb ≤ Pbm a x .
(25)

The amount of power bought from utility grid should be within
a certain range

Pgm in ≤
T∑

t=1

Pg,t ≤ Pgm a x (26)

where Pgm in and Pgm a x are the minimum and maximum power
allowed to be bought from the utility grid, respectively.

The coefficient κ indicates the portion of purchased power
from utility grid with respect to the insufficient power

0 ≤ κ ≤ 1. (27)

C. Problem Statement

In summary, for this grid-linked system design,
the objective of optimum design for renewable hy-
brid generation system is to simultaneously minimize
COST(Aw , Sw , Pbc a p , κ) and E(Aw , Sw , Pbc a p , κ), as well as
maximize EIR(Aw , Sw , Pbc a p , κ), subject to the constraints
(16)–(27). The design parameters that should be derived include
WTG-swept area Aw (m2), PV area As(m2), total battery
capacity Pbc a p (kWh), and the ratio of power purchased from
grid κ.

D. Operation Strategies

The power outputs from WTGs and PVs have the highest
priorities to feed the load. Only if the total power from wind
and solar systems is insufficient to satisfy the load demand, the
storage batteries can discharge a certain amount of energy to
supply the load. If there is still not enough power to supply
the load, a certain amount of power will be purchased from
the utility grid. That is, the grid power has the lowest priority
to feed the load. Furthermore, if there is any excess power
from WTGs and PVs, the batteries will be charged to store a
certain permissible amount of energy for future use. If there is
surplus power from WTGs and PVs even after feeding the load
and charging the SBs, the dump load will consume the spilled
power.

III. MECHANISM OF PSO

PSO is a population-based stochastic optimization procedure
inspired by certain social behaviors in bird groups and fish
schools [15]. Assume x and v denote a particle position and
its speed in the search space. Therefore, the ith particle can
be represented as xi = [xi1 , xi2 , . . . , xid

, . . . , xiM
] in the M -

dimensional space. Each particle continuously records the best

solution it has achieved thus far during its flight. This fitness
value of the solution is called pbest. The best previous position
of the ith particle is memorized and represented as pbesti =
[pbesti1

,pbesti2
, . . . ,pbestid

, . . . ,pbestiM
]. The global best

gbest is also tracked by the optimizer, which is the best value
achieved so far by any particle in the swarm. The best particle of
all the particles in the swarm is denoted by gbestd . The velocity
for particle i is represented as vi = (vi1 , vi2 , . . . , vid

, . . . , viM
).

The velocity and position of each particle can be continuously
adjusted based on the current velocity and the distance from
pbestid

to gbestd

v
(t+1)
id

= χ × (w × v
(t)
id

+ c1 × rand() × (pbestid
− x

(t)
id

)

+ c2 × Rand() × (gbestd − x
(t)
id

)) (28)

x
(t+1)
id

= x
(t)
id

+ v
(t+1)
id

, i = 1, 2, . . . , N, d = 1, 2, . . . ,M

(29)

where N is the number of particles in a swarm, M is the num-
ber of members in a particle, t is the counter of generations,
χ ∈ [0, 1] is the constriction factor that controls the velocity
magnitude, w is the inertia weight factor, c1 and c2 are acceler-
ation constants, rand() and Rand() are uniform random values
in a range [0, 1], v

(t)
i is the velocity of particle i in generation t,

and x
(t)
i is the current position of particle i in generation t.

IV. PROPOSED APPROACH

In this study, a constrained mixed-integer multiobjective PSO
(CMIMOPSO) is developed to derive a set of nondominated
solutions by appropriately combining different sources of en-
ergy subject to certain constraints. Different from the previous
study [23], new schemes for diversity preservation of solutions
are used in the proposed method.

A. Global Best Selection

In MOPSO, best plays an important role in directing the whole
swarm in moving toward the Pareto front. Very often, the rapid
swarm converging within the intermediate vicinity of gbest may
lead to diversity loss and premature convergence. To resolve
this, the fuzzy global best (f-gbest) scheme [17] is adopted in
this study that is based on the concept of possibility measure
to model the lack of information about the true optimality of
gbest. In this scheme, gbest refers to the possibility of a particle
at a certain location, rather than a sharp location as defined in
traditional PSO algorithms. In this way, the particle velocity can
be calculated as follows:

pk
c,d = N(gk

g,d , δ) (30)

δ = f(k) (31)

vk+1
i,d = w × vk

i,d + c1 × rk
1 × (pk

i,d − xk
i,d)

+ c2 × rk
2 × (pk

c,d − xk
i,d) (32)

where pk
c,d is the dth dimension of f-gbest in cycle k. The f-

gbest is represented by a normal distribution N(pk
g,d , δ), where
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δ indicates the degree of uncertainty regarding the optimality of
the gbest position. To reflect the reduction of this uncertainty
as the search proceeds, δ can be defined as a nonincreasing
function of the number of iterations. For instance, here f(k) is
defined as a simple function

f(k) =
{

δmax , cycles < ξ × max cycles
δmin , otherwise

(33)

where ξ is a user-specified parameter that affects the change of
δ. We can see that the f-gbest function is designed to enable the
particles to explore a region beyond that defined by the search
trajectory of the original PSO. f-gbest encourages global explo-
ration at the early search stage when δ is large, and facilitates
local fine-tuning at the late stage when δ decreases. Thus, this
scheme tends to reduce the possibility of premature convergence
as well as enhance the population diversity.

B. Local Search

In this investigation, the combination of a local search termed
synchronous particle local search (SPLS) [17] into MOPSO can
be regarded as an effective measure for preserving distribution
diversity and uniformity as well as speeding up the search pro-
cess. SPLS carries out guided local fine-tuning so as to promote
the distribution of nondominated solutions, whose computa-
tional procedure is laid out in the following [17]:

1) Choose SLS individuals randomly from the population.
2) Choose NLS nondominated individuals with the best niche

count from the archive and store them in the selection pool.
3) Allocate an arbitrary nondominated individual from the

selection pool to each of the SLS individuals as gbest.
4) Allocate an arbitrary search space dimension for each of

the SLS individuals.
5) Assimilation operation: With the exception of the assigned

dimension, update the position of SLS individuals in the
search space with the selected gbest position.

6) Update the position of all SLS assimilated individuals us-
ing (30)–(32) along the preassigned dimension only.

C. Representation of Candidate Solutions

The design variables including WTG-swept area, PV area,
amount of power purchased from the grid, and total SB capacity
are encoded as the position value in each dimension of a particle.
Several member positions indicate the coordinate of the particle
in a multidimensional search space. Each particle is considered
as a potential solution to the optimal design problem, since
each of them represents a specific configuration of the hybrid
generation system. Excluding Pbc a p , all the remaining positions
are real-coded. The ith particle (i.e., candidate design) Di can
be represented as follows:

Di = [Pw,i , Ps,i , Pbc a p ,i , κi ], i = 1, 2, . . . , N (34)

where κ is ratio of power bought from the grid with respect to
the deficit power, and the total SB capacity Pbc a p is encoded
using three binary bits.

D. Data Flow of the Optimization Procedure

The computational procedure of the proposed method is as
follows:

Step 1: Specify the lower and upper bounds of WTG-swept
area, area of PV panels, number of batteries, and other
predetermined parameters.

Step 2: Randomly generate a population of particles. The
speed and position of each particle are initialized.

Step 3: Evaluate each particle Di in the population based on
the concept of Pareto dominance.

Step 4: Store the nondominated solutions found so far in the
archive.

Step 5: Initialize the memory of each particle where a single
personal-best pbest is stored. The memory is con-
tained in another archive.

Step 6: Increase the iteration number by one.
Step 7: Choose the personal-best position pbest for each par-

ticle based on the memory record; Choose the global
best gbest according to the aforementioned f-gbest
selection mechanism. Meanwhile, local search based
on SPLS is carried out. The niching and fitness shar-
ing mechanism is also applied throughout this process
for enhancing the diversity of solutions.

Step 8: Update the member velocity v of each individual Di .
For the real-encoded design variables

v
(t+1)
id

= χ ×
(
w × v

(t)
i + c1 × rand()

×
(
pbestid

− P
(t)
Gid

)
+ c2 × Rand()

×
(
gbestd − P

(t)
Gid

))
, i = 1, . . . , N ; d = 1, 2.

(35)

Step 9: Update the member position of each particle Di based
on (29). For real-coded variables

D
(t+1)
id

= D
(t)
id

+ v
(t+1)
id

. (36)

For the binary-encoded design variable, update the
member position based on the updating rule for dis-
crete variables [16].

Following this, add the turbulence factor into the
current position. For all the positions

D
(t+1)
id

= D
(t+1)
id

+ RT D
(t+1)
id

(37)

where RT is the turbulence factor that is used to en-
hance the solution diversity by refraining the search
from undesired premature convergence.

Step 10: Update the archive that stores nondominated solu-
tions according to the Pareto-optimality-based selec-
tion criteria [23].

Step 11: If the current individual is dominated by the pbest
in the memory, then keep the pbest in the memory;
Otherwise, replace the pbest in the memory with the
current individual.

Step 12: If the maximum number of iterations is reached, then
go to Step 13; otherwise, go to Step 6.
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TABLE I
DATA USED IN THE SIMULATION PROGRAM

Step 13: Print out a set of Pareto-optimal solutions from the
archive as the final possible system configuration.

V. CASE STUDY: SYSTEM DESIGN WITHOUT

INCORPORATING UNCERTAINTIES

In this section, the tradeoff solutions are derived for a grid-
linked hybrid system without incorporating system uncertain-
ties, and some sensitivity studies are carried out.

A. System Parameters

The data used in the simulation program are listed in
Table I [7]. The hourly wind speed patterns, the hourly insola-
tion conditions, and the hourly load profile are shown in Fig. 2.
These time-series data will be used by the ARMA model [5]
to derive forecasted wind speed and solar insolation, which are
then used to calculate the available wind power, solar power,
and the insufficient or surplus power at each time instant.

B. PSO Parameters

In the simulations, both the population and archive sizes are
set to 100, and the maximum number of iterations is set to 500.
The acceleration constants c1 and c2 are both chosen as 1. Both
turbulence factor and niche radius are set to 0.02. The iner-
tia weight factor w decreases when the number of generations
increases

w = wmax − wmax − wmin

itermax
× iter (38)

Fig. 2. Hourly mean wind speed, insolation, and load profiles.

Fig. 3. Pareto fronts for bi- and triobjective optimization scenarios.

TABLE II
TWO ILLUSTRATIVE NONDOMINATED SOLUTIONS FOR

TRIOBJECTIVE OPTIMIZATION

where itermax is the maximum number of iterations and iter is
the current number of iterations. This mechanism helps achieve
the balance between exploration and exploitation in the search
process. The simulation program is coded using C++ and exe-
cuted in a 2.20-GHz Pentium-4 processor.

C. Simulation Results

The Pareto-optimal fronts evolved using the proposed ap-
proach for bi- and triobjective optimization problems are shown
in Fig. 3, and two illustrative nondominated solutions are listed
in Table II.
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Fig. 4. Pareto fronts obtained from different mean wind speeds.

Fig. 5. Pareto fronts obtained from different economic rates.

D. Sensitivity to System Parameters

Here, the sensitivity analysis is carried out to examine the
effects of changing the values of certain system parameters
on the final derived nondominated solutions. For instance, the
mean wind speeds are changed by different multiplication fac-
tors (MFs), and different economic rates are also examined. The
results are illustrated in Figs. 4 and 5, respectively. From Fig. 4,
we can appreciate the importance of site locations for a wind
power plant. The simulation results shown in Fig. 5 fit with the
cost estimation equations described in Section II.

VI. ADEQUACY-CONSTRAINED DESIGN INCORPORATING

SYSTEM UNCERTAINTIES

In the previous section, a grid-linked hybrid system is de-
signed without including uncertain factors. The design of an
adequacy-constrained hybrid system using probabilistic meth-
ods is discussed in this section. Besides different problem

formulations, the focal points of these two design scenarios
are also different in some sense. In the previous design, the gen-
eration system with WTGs, PVs, and SBs is treated as the base
system. Only if there is insufficient power, a certain amount
of power can be purchased from the utility grid. Conversely,
in this design, the base system is the traditional utility grid
and the renewable generation system is incorporated into it.
The main intention here is to investigate the impact of different
penetration levels of renewable energy on the overall system
performance.

Probabilistic methods are now being used more widely in
power system operations and planning due to a variety of un-
certainties involved. For instance, adequacy evaluation is an
important component to ensure proper operations of power sys-
tems in the presence of various uncertainties. Adequacy analysis
of hybrid generating systems including time-dependent sources
has been investigated in [11], [19], and [20]. Here, an effi-
cient reliability evaluation technique proposed in [11] is used
to calculate the reliability indices including expected unserved
energy (EUE), loss of load expectation (LOLE), and loss of
load frequency (LOLF), which are three fundamental indices
for adequacy assessment of generating systems. The main idea
of this method is to divide the generating system into a subsys-
tem including all the conventional units and a set of subsystems
each of which contains a possibly fluctuating unconventional
source.

A. Calculation of Adequacy Indices

The load is represented as a chronological sequence of NT

discrete values Pdt
for successive time steps t = 1, 2, . . . , NT .

Each time step has equal duration ∆T = T/NT , where T is
the entire period of observation. The general expressions for
calculating the three indices are as follows:

EUE = ∆T

NT∑
t=1

Ut (39)

where Ut is the unserved load during the time-step t and it can
be calculated by

Ut =
∑

Xt >X c c o t

(Xt − Xccot
)P (Xt) (40)

where Xt is the total capacity outage at time instant t, P (Xt)
is the probability that a system capacity outage occurs exactly
equal to Xt , and Xccot

is the critical capacity outage at time
instant t

Xccot
= Pgt

+ Pwt
+ Pst

− Pdt
. (41)

In the aforesaid definition, the term Pgt
+ Pwt

+ Pst
indicates

the effective total system capacity (that is, the summation of
FFG power Pg , wind power Pw , and solar power Ps) at time
instant t provided that all the units are available, and Pdt

is the
load in period t. When Xt > Xccot

, capacity deficiency occurs

LOLE =
∆T

T

NT∑
t=1

LOLPt (42)
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where LOLPt is the loss of load probability during hour t

LOLF =
∆T

T

NT∑
t=1

(Fd
t + Fc

t + Fu
t ) (43)

where Fd
t is the frequency component caused by the load vari-

ation and fluctuation in the intermittent sources; and Fc
t and

Fu
t are components of frequency due to interstate transitions in

conventional and unconventional subsystems.
Distinguished from the negative margin and clustering meth-

ods, in this method the mean capacity outage table is constructed
to simultaneously compute EUE, LOLE, and LOLF with re-
duced computational cost [11]. The computational procedure
for these three indices is as follows:

1) Build the capacity outage table, the cumulative outage
probability, and frequency tables for the conventional sub-
system, using the unit addition algorithm.

2) Build the capacity outage table, the cumulative outage
probability, and frequency tables for each unconven-
tional subsystem considering the availability of intermit-
tent sources, in a similar fashion.

3) Build the capacity outage table for the overall system
through combining capacity outage tables constructed in
the aforesaid two steps.

4) Build the mean capacity outage table for the conventional
subsystem based on the recurrence approach.

5) Calculate the hourly contributions to the indices.
6) Calculate EUE, LOLE, and LOLF by summation over the

whole period of observation.

B. Problem Formulation

In this design scenario, only WTGs and PVs are used. Thus,
the total cost COST($/year) can be changed as follows:

COST =

∑
i=w,s(Ii − SPi

+ OMPi
)

Np
. (44)

Here, the cost of generating FFG power is excluded from the
total cost calculation in order to examine the impact of wind and
solar power penetration level on the overall system design in a
more explicit fashion.

The real power balance constraint in this design scenario can
be represented by

Pwt
+ Pst

+ Pgt
≥ (1 − R)Pdt

(45)

Pwt
+ Pst

+ Pgt
− Pdumpt

≤ Pdt
(46)

Furthermore, due to the fluctuations of available wind and
solar power coupled with possible generator failures, the loss of
load may be caused. To ensure a certain degree of system reli-
ability, the indices of LOLE and LOLF should also be fulfilled
besides the maximization of EIR

LOLE ≤ LOLEmax (47)

where LOLEmax is the maximum LOLE allowed. In a similar
manner, LOLF should also be less than or equal to the maximum
value LOLFmax

LOLF ≤ LOLFmax . (48)

Fig. 6. Pareto front indicating a set of noninferior design solutions.

As can be seen in this study, one reliability index (EUE)
is used as the design objective and the other two (LOLE and
LOLF) are used as design constraints to ensure the generating
system adequacy, which can be computed simultaneously.

In this scenario, the objective of optimum design for hy-
brid generating system with time-dependent sources is to si-
multaneously minimize COST(Aw ,As) as well as maximize
EIR(Aw ,As), subject to the constraints (21)–(22) coupled with
(45)–(48). The design parameters that should be derived include
total WTG swept area Aw (m2) and total PV area As(m2).

C. Simulation Results

Three identical two-state FFGs are used together with mul-
tiple wind/solar generating units. Since solar power is much
less prone to equipment failures, failures of PV cells are not
considered in this investigation. In simulations, four identical
WTGs are considered during the hybrid system design, and the
capacity of each WTG is determined by the candidate solution
under consideration. The rated FFG power (PFFG ) is 20 kW,
and the reliability characteristics of each type of generating unit
are as follows: FFG failure rate (λFFG ) is 0.1 day−1 , FFG re-
pair rate (µFFG ) is 0.9 day−1 , WTG failure rate (λWTG ) is 0.1
day−1 , and WTG repair rate (µWTG ) is 0.4 day−1 . Furthermore,
LOLEmax and LOLFmax are set 1.5 h/week and 1 occ./week,
respectively.

The computational procedure used is basically the same as in
the previous design, but some minor changes are needed to fit it
into the current design scenario. For instance, the particle repre-
sentation and design constraints should be modified accordingly.
The Pareto-optimal front evolved in this design scenario using
the proposed approach is shown in Fig. 6. The decision maker
can choose a design solution from the derived set of noninferior
solutions based on the specific design requirement or preference.
Two illustrative nondominated solutions are listed in Table III.
We can appreciate that the improvement of one objective is at
the expense of deterioration of another objective. Thus, for any
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TABLE III
TWO ILLUSTRATIVE SYSTEM CONFIGURATIONS FOR

ADEQUACY-CONSTRAINED DESIGN

Fig. 7. Impacts of different wind speeds on derived Pareto fronts.

Fig. 8. Impacts of different insolations on derived Pareto fronts.

specific system design, a tradeoff between these two objectives
should be reasonably made.

To examine the impacts of different wind speeds and insola-
tions on the derived Pareto-optimal solutions, sensitivity studies
are carried out. Figs. 7 and 8 show the tradeoff surfaces ob-
tained in different scenarios in terms of wind speeds and solar
insolations, respectively. Note that during the simulations, when
different wind speeds are examined, the original insolation value
is used. Likewise, when different insolations are examined, the
original wind speed value is used. We can appreciate that at

TABLE IV
TWO ILLUSTRATIVE SYSTEM CONFIGURATIONS FOR ADEQUACY-CONSTRAINED

DESIGN WITH LOAD FORECASTING

Fig. 9 Paretofront indicating a set of noninferior design solutions.

Fig. 10. Impacts of different wind speeds on Pareto fronts derived.

the same reliability level, the generating systems with the high-
est speed and insolation result in the lowest costs as compared
to scenarios with lower wind speed and insolation. Thus, this
confirms the previous observation that it is crucial to properly
select power plant location when renewable sources of energy
are involved. Usually, plant sites with richer renewable sources
of energy can cause lower generation costs.

Next, the stochastic nature of load is considered, which is
modeled through a time-series method called ARIMA [1]. Two
illustrative nondominated solutions are listed in Table IV, and
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Fig. 9 shows the tradeoff surface in this design scenario. We
can appreciate that the stochastic characteristic of load demand
induces somewhat more costs for ensuring the same reliability
level. This is understandable since random variations of load
may compromise the system reliability. Also, Fig. 10 shows the
impacts of different wind speeds on the derived Pareto-optimal
solutions. It further verifies the previous observation on the plant
site selection.

VII. CONCLUDING REMARK

Distributed generation using sustainable clean green power
promises to considerably restructure the energy industry that is
evolving from fossil fuels toward renewables [9]. Meanwhile,
there are many open-ended problems in this field awaiting to be
resolved. In this paper, a hybrid power generation system includ-
ing wind power and solar power is designed on the basis of cost,
reliability, and emission criteria. A set of tradeoff solutions is
obtained using the multicriteria metaheuristic method that offers
many design alternatives to the decision maker. Moreover, in one
of the designs, system uncertainties, such as equipment failures
and stochastic generation/load variations, are considered by con-
ducting adequacy evaluation based on probabilistic methods. In
particular, the stochastic generation/load variations are modeled
through time-series methods. Numerical simulations are used to
illustrate the applicability and validity of the proposed MOPSO-
based optimization procedure, and some sensitivity studies are
also carried out. In future studies, other more complicated design
scenarios may be incorporated into system designs.
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