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Abstract--This paper introduces a new control strategy for 
battery energy storage systems used in wind generation. It is 
specifically targeted to large wind installations, specifically 
offshore wind applications. This control strategy maximizes the 
life of the battery and increases the efficiency of the energy 
storage system while still balancing the power fluctuations of a 
large wind turbine system. The depth of discharge and remaining 
battery life are the key parameters considered in this approach. 
The proposed control scheme is applied to the battery package 
such that each battery cell is controlled individually. Individual 
cell depth of discharge is controlled and cell life is calculated 
periodically so that all cells within the package reach the end of 
life at the same. Total storage capacity and individual battery cell 
size are calculated based on the characteristics of the wind 
turbine. To verify the presented method, a case is studied in 
PSCAD and corresponding results are provided. 
 

Index Terms-- Wind power, off-shore wind, Battery Energy 
Storage, Battery life, Variable Speed Wind Turbine, Control 
processor unit, depth of discharge. 

I.  NOMENCLATURE 
    ܴ௜௡௧௘௥௡௔௟ -Internal resistance of battery [ohm], ܥ௕௔௧௧   -	Capacity	of	battery	ሾjouleሿ, i(t)      - Charge/discharge current of ESS [A], ܧ௘௫      - Stored/released energy [joule], P	(t)    - Charge/discharge power [watt], 

t           - Charge/discharge time [sec], τ          - Duration from the beginning to the present time [sec], P୥ୣ୬     - Generated active electrical power of generator [MW], P୰ୣ୤     - Reference power (output electrical power) [MW], P(t)     - Difference between P୥ୣ୬ and P୰ୣ୤ [MW]. 

II.  INTRODUCTION 
HERE is a growing consensus between scientists, policy 
makers, and the general public: we need to diversify our 

energy portfolio away from fossil fuels. There are many 
reasons why energy diversity is desirable, but they fall into 
three main categories: finite nature of fossil fuel resources, 
security of energy supplies, and climate change. Wind and 
solar energy systems have the potential to provide a large 
percentage of the world’s power needs. In the United States, 
wind is the fastest growing renewable energy source averaging 
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an annual increase in consumption of about 71% [1]. This is 
one reason why wind energy has been the focus of so much 
recent research. In order to understand the impact of wind 
energy on the grid, the wind turbine system must be 
comprehensively studied [2]. Due to natural characteristics of 
the wind, wind speed tends to fluctuate, causing the generated 
electrical power to fluctuate as well. This fluctuating power 
output imposes an upper limit on the percentage of the total 
electrical power (penetration) that can come from wind. The 
grid needs to be reliable and stable. If wind penetration is 
below around 20%, then the generated power fluctuations can 
be mitigated by natural gas plants or other conventional plants. 
If wind penetration is to be higher, then the electrical power it 
dispatches the grid must be smooth and stable. Energy storage 
systems (ESS) can provide power when the electricity 
generated from wind is less than the expected output, and can 
consume power when the generated electricity is higher than 
expected. The net effect is a smooth stable power supply. Of 
all the ESS available, battery energy storage systems (BESS) 
have been the ESS of choice when it comes to wind power. 
Therefore this paper examines the application of BESS to 
wind turbine systems. BESS have also been deployed in a 
myriad of applications including electric vehicles and solar 
power systems. Many different kinds of ESS have been 
studied [1, 2, 3 and 4]. Of these, batteries show high promise 
due to their high energy capacity, the maturity of the 
technology, and their high capacity per dollar ratio [2]. Of the 
available ESS, BESS does not have the highest energy 
capacity. For example, super-capacitive energy storage 
schemes have a higher potential capacity than battery systems. 
However, the technology employed in supercapacitors is in the 
early stages of development. Other promising ESS 
technologies are currently too expensive to be deployed 
commercially. For these reasons, BESS is the superior ESS 
available. 

This paper is relevant because a large majority of wind ESS 
in use today utilize battery technology, and battery technology 
will likely be the dominate storage system for the foreseeable 
future. 

The paper is outlined thus: In parts A and B of section III, 
modeling of a wind turbine and battery storage system are 
described. Following this (part C), equivalent circuits and 
available battery technologies are described. The algorithm for 
calculating the remaining life of a battery is described in part 
D of section III. Following this, a depiction of battery-sizing 
methods is relayed. A detailed explanation of the new control 
scheme is provided in part E and the model used for 
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charge and discharge we can improve the overall efficiency of 
the ESS. To express the remaining battery life quantitatively, 
consider the following.  

L is the maximum exchanged energy between the battery 
and the DC-link during one battery life in the best conditions, Eୡୟ୮is the battery capacity in term of energy and N is number 
of life cycles (at specific DOD). 

The maximum life cycle is different when battery operates 
at different DODs. In this case study, we suppose that the 
battery energy capacity is 2KJ. If the battery exchanges 2 KJ 
energy at 10% DOD, the life cycle is 7000. On the other hand, 
if the battery exchanges 2 KJ at 100% DOD, the life cycle is 
500. The maximum amount of energy that the battery can 
exchange over its life (ܮ௙௜௡௔௟) is found by multiplying the 
capacity of the battery by the number cycles the battery can 
achieve over its entire life at a specific DOD (life cycles), as 
shown in (1). L୤୧୬ୟ୪ = Eୡୟ୮ ∗ N																																																																																				(1) 
where N is the life cycles and ܧ௖௔௣ is the capacity of the 
battery. 

The amount of exchanged energy is found by (2).  Eୣ୶ = ׬ P(t).		dtத଴ 																																																																																		(2)   
P(t) is the absolute value of the difference between the 

instantaneous power and the reference power, as in (3).  P(t) = หP୥ୣ୬(t) − P୰ୣ୤ห																																																																										(3)	 
The generated power can be calculated by the wind speed 

and other characteristics of the wind turbine. The difference 
between the reference power and the generated power is the 
power that must be discharged from or consumed by the 
battery.  

By saying that the battery operates at a specific DOD, we 
mean that the changes in the DOD are negligible, that is, if the 
battery release and stores an amount of energy that is only a 
small percentage of its total capacity, we can say that the DOD 
remains the same. For example, if we have a 2 KJ battery that 
exchanges 10 or 20 joules with the DC-link, then we consider 
the battery’s DOD to remain the same. When the total amount 
of energy that has been exchanged between the battery and the 
DC-link (both charged and discharged) becomes equivalent to 
the capacity of the battery, we say one cycle has been 
completed. 

For example, suppose the battery’s capacity is 2 KJ and 
maximum life cycle is 90,000. The battery would last longest 
if the operating DOD was small. So, if the battery operated at 
a 1% DOD over the course of its life, then the battery would 
reach the end of its life after it has exchanged 180 MJ. If the 
battery operated at a 10% DOD over the course of its life, then 
it would have a life cycle of 7,000 (from fig. 5) and would 
reach the end of its life after it exchanged 14 MJ. Comparing 
the amount of energy exchanged during the 1% DOD lifetime 
and the 10% DOD lifetime we see that 13 times more energy 
was exchanged during the 1% DOD cycles. Therefore we say 
that operation at 10% DOD is 13 times worse than operation at 
1% DOD.  We can call this ratio between the life cycles of 
operating at a higher DOD to the life cycles of operating at 1% 
DOD the downgrading factor, or ܭ஽ை஽. We can find ܭ஽ை஽ by 
dividing the life cycles at the ideal case by the life cycles of 

the present operating case as shown in (4). Kୈ୓ୈ = life	cycles	at	ideal	caselife	cycles	at	present	case																																																																(4)	
To consider the effects of using different DODs throughout 

the life of the battery, we apply Kୈ୓ୈ to (3). The following 
equations show the effects of operating at different DODs. We 
can find the total energy exchanged between the BESS and the 
DC-link by taking into account the operating DOD at each 
time step. That is, we multiply	ܲ(ݐ), by the downgrading 
factor (ܭ஽ை஽) of operating at that specific DOD for that 
specific time step. We then integrate this over all time steps, as 
shown in (5). Eୣ୶ = න P(t). Kୈ୓ୈ.		dtத

଴ 																																																																									(5) 
We must also take into account the internal losses of the 

battery. This is a simple matter of multiplying the internal 
resistance of the battery by the square of the current passing 
through the battery, as in (6). Note that the internal resistance 
will increase as the temperature of the battery increases 	P୪୭ୱୱ = ܴ௜௡௧௘௥௡௔௟ ∗ 	 I(t)ଶ																																																																									(6) 

Due to these losses, the battery must release more of its 
stored energy than is required by the DC-link. The extra 
energy is wasted as heat. If the battery gets hotter, the amount 
of energy wasted gets higher was well, lowering the efficiency 
of the battery cell and shortening the life of the battery. 

When the battery exchanges 180 MJ with the DC-link, the 
battery reaches the end of its serviceable life and the ratio of 
the exchanged energy divided by final L shows the consumed 
life of the battery, as in (7). ൫L୮ୟୱ୲൯ ∗ 100	% = ׬ (P(t). Kୈ୓ୈ.		த଴ 	+ 	R ∗ 	 I(t)ଶ)dtL୤୧୬ୟ୪ 																																(7) 

We also must be able to calculate the life of the battery. 
The maximum life of the battery is achieved when the battery 
works at the lowest DOD and also without loss. In this case, 
the total exchanged energy will be 180 MJ, and the average 
rate of life consumption  is calculated by dividing the 
exchanged energy (considering effect of DOD) and power 
losses by the total time that has passed (߬),  as shown in (8).  Rୟ୴ୣ = ׬ (P(t). Kୈ୓ୈ.		த଴ 	+ 	R ∗ 	 I(t)ଶ)dtτ 																																																	(8) 

The remaining battery life (RBL) can be calculated by 
subtracting the amount of energy that has already been 
exchanged between the battery and DC-link and the power 
losses from the total amount of energy that the battery can 
consume, then dividing this by the average rate of life 
consumption, as in (9).This equation assumes that the rate 
energy consumption will continue at the current rate. If the 
rate of consumption is changed, then the remaining battery life 
needs to be re-calculated. RBL = ൫L୤୧୬ୟ୪ − ׬ (P(t). Kୈ୓ୈ.		த଴ 	+ 	R ∗ 	 I(t)ଶ)	. dt൯Rୟ୴ୣ 																															(9) 
E.  Detailed Explanation of BESS  

In the proposed new design we considered the following 
criteria: 

• Past Life of each branch 
• DOD 
• Resting mode (self-discharge & Temperature) 



 5

• Cycling current 
• All battery branches have to die at the same time 
• Discharge/charge rate 

If all of the above criteria are considered, a long-lasting 
BESS will result. As mentioned above in section C, we have 
some battery branches connected in parallel, where each 
branch is a number of battery cells connected in series. The 
BESS’s control unit operates the switches of each battery 
branch so as to maximize the life time of the battery cells. 

Past Life of each branch: in the proposed control design, 
the past life of each battery branch is an input for the control 
algorithm. The algorithm considers the life of each battery 
branch when deciding which branches to connect to the DC-
link to meet a certain power demand. Branches with higher 
remaining lives will be connected before branches with lower 
remaining lives. The life of the batteries is calculated using the 
introduced model in section D (if the battery is fresh, the past 
life equals zero). 

DOD: Operating the battery between 10% DOD and 20% 
DOD yields the longest life for the battery while still 
providing enough power to the DC-link and maintaining 
enough capacity to store energy. 

Resting mode (self-discharge & Temperature): The 
manufacture of each battery provides a table of suggested 
temperature ranges for battery operation. If the battery 
operates at temperatures outside this range, it does not work 
efficiently and the battery gets damaged. In our design, we 
control the operation of all branches such that after a certain 
amount of work they go to the resting mode. The resting mode 
allows the batteries to cool down. In other words, during 
charge/discharge when the current passes through the battery, 
the internal resistance produces some heat causing the battery 
to become warm. If the battery becomes too warm, the 
efficiency will be lowered. 

Another factor which has a great effect on the efficiency of 
the battery is self-discharge. When the battery is always 
connected to the system (even when it is not 
charging/discharging), the battery undergoes self-discharge. 
Over short time periods, the effects of self-discharge are 
negligible, but in long term the effects can be large (when 
battery is not connected to the system, the self-discharge of 
battery is considerably less). 

Cycling current: Cycling current is the current that flows 
from one battery branch into another battery branch that is 
connected in parallel. Cycling current occurs due to voltage 
difference between battery branches. As shown in fig 3, the 
cell voltage is dependent upon DOD. Our control system 
maintains equivalent DODs across all battery branches so that 
there is a minimal voltage difference between different 
branches. This keeps cycling current to a minimum. 

All battery branches have to die at the same time: All 
batteries of the same classification do not last for the same 
amount of time. Even if the batteries are produced at the same 
factory with the same materials and processes, small 
imperfections cause some batteries to die before others. 
Taking this into consideration, we monitor and control the 
work each battery branch performs. If one battery branch has 

done less work than another branch, it will be more likely to 
be connected to the DC-link. It is necessary to ensure that all 
branches die at the same time because if one branch were to 
die before the others, the whole system could lose its 
maximum power. For example, if 4 battery branches are 
connected in parallel with each branch rated at 1MW (4MW 
total) and one branch died before the others, the combination 
could only achieve a maximum power of 3 MW and could 
supply 4 MW if it was required.. 

 Discharge/charge rate: If the rated power of each branch 
of battery is 1 MW, and if the DC-link needs 1 MW, just one 
battery branch’s switch is “On” and the other batteries are not 
connected to the DC link. Similarly, if the needed power is n 
MW, then n switches are “On” and the remaining switches are 
“Off”. The number of batteries connected to the DC-link is 
dependent on the difference between generated power and 
reference power, as shown in Fig. 6 and Fig. 7.  
 

 
Fig. 6. Electrical generated power and reference power in 60 minutes 

 

 
Fig. 7. Number of connected batteries in 1 minute 

 
The difference between generated power and reference 

power is the amount of power that the BESS must provide. In 
one case study, over the course of one week the difference 
between the generated and reference powers never exceeded 
4MW. The generated power varied from 0 to 7 MW while the 
reference power was 3.5 MW.  

 The control unit utilizes information about the batteries, 
such as remaining life and DOD of each branch, as well as 
information from the system, such as reference power, in order 
to determine which batteries to connect to the DC-DC 
converter. The most important factors are depth of discharge, 
rate of discharge, temperature and past life of the batteries. 
DOD and past life of battery are the primary factors for the 
control block to consider when determining which branches to 
connect. The other terms are also considered in order to have 
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accurate control of the system.  
The control algorithm sorts the batteries in terms of DOD 

and remaining life. The battery will best perform if its DOD is 
around 15%. At this depth of discharge it will operate within 
the ratings specified by the manufacturer and have 
considerably long life cycles. Thus, batteries that have a DOD 
close to 15% will receive priority when determining which 
branches to connect to the DC-DC converter. 

F.  Simulation and Results 
Case study 1:  
In this case study, 3 fresh batteries with the same consumed 

life and the same initial DOD are connected in parallel. The 
above described control considerations are applied to the wind 
system and the following results are provided. The SOC of 
battery A is shown in Fig. 8 (Other SOCs are almost the 
same). 

 

 
 Fig. 8. SOC of battery A in 60 minutes 

 
The remaining battery lives (initial and final lives) are 

shown in table 1. 
TABLE 1 

VALUE OF BATTERY LIVES (INITIAL AND FINAL) 
Battery Initial life (percent) Final life (percent) 

A 80 79.638 
B 80 79.645 
C 80 79.623 

 
Using (8) we can find the rate of life consumption. The rate 

of life consumption is very high after 35 minutes. This 
increase in rate of life consumption is due to the large DOD of 
the battery. At such a DOD, the life of the battery is decreased 
significantly.  
Case study 2: 

In this case study, we set differing initial conditions for the 
battery branches to see if they can work properly or not. Such 
a situation might arise if one of the batteries gets damaged, has 
a lower quality, etc. The initial conditions of three battery 
branches are shown in table 2. 

 TABLE 2 
VALUE OF BATTERY LIVES (INITIAL AND FINAL) 

Battery Initial 
SOC 

Initial life Final SOC Final 
life 

Consumed 
life unit 

A 80 70 52.5 69.3865 409 
B 70 75 53.230 74.454 460.5 
C 75 85 58 84.345 493 
 
As has been discussed, the control unit will ensure that 

individual battery branches to not operate outside their rated 
specifications. Note that the final SOC of all battery packages 
is almost the same which avoids current cycling. At any point 
in time there are either only one or two branches connected to 
the system, which also eliminates current cycling. As 
expected, the simulated control unit used the battery with the 
largest initial life the most. The remaining battery lives are not 
equal at the end of the simulation; however, because the 
control unit also ensured that the DOD never became too large 
and also allowed each branch to have sufficient rest time. In 
this simulation, the BESS worked in with one-branch-
connected for 11.45 minutes, with two-branches-connected for 
22 minutes and three-branches-connected for 26.5 minutes 
over the 60 minute test period. In terms of each battery 
operation time, battery A is connected to the system for 27.8 
minutes, battery B is connected to the system for 32.25 
minutes and battery C is connected to the system for 34.06 
minutes. The results are shown in table 3. 

TABLE 3 
OPERATION TIME OF DIFFERENT BESS MODEs AND BATTERIES 

Battery Operation time # Battery connected Operation time (min) 
A 27.8 One battery  11.45 minutes 
B 32.25 Two batteries 22 minutes 
C 34.06 Three batteries 26 minutes 

 
 Wind turbines’ parameters are given in table 4. 
 

TABLE 4 
VALUE OF PARAMETERS USED IN WIND TORBINE MODEL 

Air density Power 
coefficient 

Wind rated 
speed 

Blade 
diameter 

Wind turbine 
rated power 

1.229 0.42 11 m/s 57 mଷ 7 MW 

V.  DISCUSSION AND CONCLUSION 
The proposed control design address three goals: increasing 

the life of the battery, increasing the efficiency of the system, 
and utilizing an ESS that matches the characteristics and 
requirements of large wind turbines. The proposed parallel 
configuration BESS matches the high voltage requirements of 
a wind turbine’s DC-link. The proposed configuration coupled 
with the proposed control strategy has several advantages over 
other ESS: 

• The size and capacity of the BESS can be designed to 
the requirements of a specific application. 

• Batteries operating under the proposed control scheme 
operate at or just below their rated values, vastly 
improving efficiency. They experience low individual 
charge/discharge rates, which extends the life of the 
battery and lowers the operating temperature, 
improving efficiency. 

• The control scheme ensures that there are negligible 
cycling currents and that the batteries remain in resting 
mode long enough to preserve their operating lives. 

• The control scheme ensures that all batteries will reach 
the end of their serviceable life at the same time by 
taking into consideration the calculated remaining life 
of individual batteries as well as other factors, such as 
DOD, etc. It accomplishes this by connecting and 
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disconnecting battery branches depending on the above 
criteria. This decreases the required maintenance and 
ensures the usefulness of the battery pack over its 
predicted life. 

• Battery branches can be isolated and replaced 
individually so that the BESS need not be taken offline 
during maintenance, which improves reliability of the 
battery pack. 

• The state of charge and exchanged energy are 
continuously calculated due to the nature of the control 
scheme so that the amount of time the battery pack can 
continue supplying power can be reliably estimated. 

• The initial cost of this BESS is lower than other ESS. 
This is because the proposed BESS relies on proven 
technologies. Battery storage technologies are currently 
significantly less expensive than other ESS of 
comparable power. 

Compared to other ESS schemes, this system has a lower 
initial investment cost. Additionally, the advantages of the 
BESS translate into economic savings over the life of the wind 
turbine due to lowered operation and maintenance costs 
coupled with the extended lifetime of the BESS. 
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