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Abstract 
 
This article proposes an innovative strategy to the problem of non-linear estimation of states for electrical 
machine systems. This method allows the estimation of variables that are difficult to access or that are sim-
ply impossible to measure. Thus, as compared with a full-order sliding mode observer, in order to reduce the 
execution time of the estimation, a reduced-order discrete-time Extended sliding mode observer is proposed 
for on-line estimation of rotor flux, speed and rotor resistance in an induction motor using a robust feedback 
linearization control. Simulations results on Matlab-Simulink environment for a 1.8 kW induction motor are 
presented to prove the effectiveness and high robustness of the proposed nonlinear control and observer 
against modeling uncertainty and measurement noise. 
 
Keywords: Robust Nonlinear Control, Induction Motor, Reduced-Order Extended Sliding Mode Observers, 
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1. Introduction 
 
The induction motors (IM) become very popular for mo-
tion control applications due to its reasonable cost, sim-
ple and reliable construction. However, the control of IM 
is proved very difficult since the dynamic systems are 
non linear, the electric rotor variables are not usually 
measurable or the transducers are expensive (such as 
torque, seed, flux transducers) and the physical parame-
ters are often imprecisely known or variable. For in-
stance, the rotor resistance drifts with the temperature of 
the rotor current frequency. 

This naturally structure of non-linear and multivariable 
state of IM models induces the use of the non-linear control 
methods and in particular the robust feedback linearization 
strategy [1-3] to permit a decoupling, assure a good dy-
namic performance and stability of the IM. 

However, a variation of the rotor resistance can induce 
a state-space “coupling” which can induce a degradation 
of the system. In order to achieve better dynamic per-
formance, an on-line estimation of rotor fluxes, speed 
and rotor resistance is necessary. An approach proposed 

in [4,5] to estimate with success the state variables in an 
IM is the use of the full-order Sliding Mode Observer 
(SMO). This latter, built from the dynamic model of the 
IM by adding corrector gains with switching terms, is 
used to provide not only the unmeasurable state variable 
estimation (rotor fluxes and speed) but also the estima-
tion of the measurable parameters (stator currents). How-
ever the determination of the measurable parameters es-
timation imposes some estimation algorithms very long 
and usually sophisticated with an increase of the compu-
tational volume. Therefore, in order to reduce the accu-
racy and the computation rate of the estimation algo-
rithms, the measured parameters estimation is not neces-
sary. 

Thus a Reduced-Order Discrete-Time Extended Slid-
ing Mode Observer (RDESMO) for the IM is presented 
in this paper to solve only and specially the problem of 
the unmeasurable parameters estimation (rotor fluxes, 
speed and rotor time constant). 

So after a brief review of the IM model, a robust in-
put-output linearization and decoupling control of induc-
tion motor is presented in Section 2. A reduced-order 
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discrete-time Extended Sliding Mode Observer (ESMO) 
is developed in Section 3. Section 4 describes the simu-
lation results carried out on a 1.8 kW IM drive system. 
Finally, conclusions are summarized in Section 5. 
 
2. Induction Motor Model and Robust 

Feedback Control 
 
By assuming that the saturation of the magnetic parts and 
the hysteresis phenomenon are neglected, the classical 
dynamic model of the IM in a (d, q) synchronous refer-
ence frame can be described by [6]:  
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(1.b) 
The load mechanical equation is: 
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(1.c) 
The application of (1.a) to (1.c) returns a system of 

fifth-order non-linear differential equation, with as state 
variables the stator currents (Ids, Iqs), the rotor fluxes (dr, 
qr) and the rotor pulsation (r): 
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Moreover, by choosing a rotating reference frame (d, q) 
so that the direction of axe d is always coincident with 
the direction of the rotor flux representative vector (field 
orientation), it is well known that this rotor field orienta-
tion in a rotating synchronous reference frame realizes: 

dr = r = Constant and qr = 0        (3) 

Thus the dynamic model of the IM, completed with 
the output equation, can be rewritten as: 

( ) .x f x g u  ; y =[h1(x) h2(x)]t = [r r ]
t with 

x = [Ids Iqs r r ]
t, u = [Vds Vqs]
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From the expressions (2) and (3), one can write: 
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(5) 
This relation (5) shows that the dynamic model of the 

IM can be represented as a non-linear function of the 
rotor time constant. A variation of this parameter can 
induce, for the IM, a lack of field orientation, perform-
ance and stability. Thus, to preserve the reliability, ro-
bustness performance and stability of the system under 
parameters variation (in particular the rotor time constant 
variations) and disturbances, we can uses a robust feed-
back linearization strategy to regulate the motor states. 

As a matter of fact, we can see that the system (4) has 
relative degree r1 = r2 = 2 and can be transformed into a 
linear and controllable system by chosen [7]: 
 a suitable change of coordinates given by: 
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z1 = h1(x); z2 = Lf h1(x); z3 = h2(x); 
z4 = Lf h2(x); 

 the feedback linearization control having the fol-
lowing form: 
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where v1 and v2 are the new inputs of the obtained de-
coupled systems 
 and two robust controllers C(s) to provide a good 

regulation and convergence of the rotor flux (r ) 
and speed (r). On the other hand, in order to im-
pose after a closed loop a second order dynamic 
behaviour defined by H(s), the controller C(s) can 
be chosen by [8]: 
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where the real t0 is an adjusting positive parameter. 
The block diagram structure for the control of (r, r) 

is as follows: 
 
 
 
 
 

 
Furthermore, as the control of an IM generally required 

the knowledge of the instantaneous flux of the rotor that is 
not measurable, a full-order SMO built from the model (2) 
by adding corrector gains with switching terms is widely 
used [7,9] with success for on-line estimation at one and 
the same time of rotor time constant, fluxes, currents or 
speed. The equivalent value of the switching function de-
pends on the current errors given by the difference between 
the estimated currents to their real or measured values. 
However, as the currents are already measurable, their es-
timated values are not therefore necessary. 

Thus in the next section, in order to reduce the execu-
tion time of the observation with respect to the rotor time 
constant variations, a RDESMO is proposed to provide 
only the unmeasurable parameters estimation (rotor fluxes, 
rotor time constant and speed). And the switching term 
of this reduced observer will be only function of the 
measurable parameters (voltage, currents…). 

3. Reduced-Order Discrete-Time Extended 
Sliding Mode Observer 

3.1 Reduced-Order Sliding Mode Observer 

Let us consider the dynamic model of the IM given by 

the system (2). Assume that among the state variable, the 
stator currents (Ids, Iqs) are measurable, therefore their 
on-line estimation is not necessary. Thus from the ex-
pression (2), in order to estimate only the rotor flux (dr, 
qr) and speed (r), a reduced dimensional state vector 
defined by Xr= [dr qr r]T =[x1 x2 x3], T can be intro-
duced. The corresponding reduced-order state space 
equation becomes: 
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(7) 
The fact that the state vector only consists of the rotor 

flux and speed offers an advantage namely the reduction of 
the computational volume and complexity. Thus the rotor 
flux and speed can be more easily and rapidly estimated. 
Denote 1x̂ , 2x̂ and 3x̂ the estimates of the fluxes dr, qr 
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where 1, 2 and 3 are the observer gains. The switch-
ing “Is” is defined as 

1 1

2 2

1

3

3

sign( )
 ;    . ;

sign( )

ˆ. .

ˆ. .

s r

r

r

s s
I S M Z

s s

x
M

x

  
  



   
     
   

 
   



     (9) 

where 
rZ

~  is a function depending on the parameters 
measurements (stator currents, voltages…). 

Setting ˆx x x  , the estimation error dynamics is given 
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verges to zero. 
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where r and n are positive adjusting parameters which 
play a critical role in the stability and the velocity of the 
observer convergence. 
 
3.2. Reduced-Order Extended Sliding Mode 

Observer 
 
In order to estimate the rotor time constant, a reduced 
dimensional extended state vector defined by Xre = [dr 
qr r r]T =[x1 x2 x3 x4] T has been introduced with r = 
Rr/Lr. The corresponding reduced-order extended state 
space equation becomes: 

 ( ) ( ), ( )re re rex t J x t t  where 

 

4 1 sl 2 4

sl 1 4 2 4

2
1 2 3

. . . .

. . . .

( ), ( )
. .( . . ) . .

.

m ds

m qs

re r m
qs ds r

r

x x ω x x L I

ω x x x x L I

J x t t L p f
p I x I x C x

L J J J





   
    
 
   
 
 
 

 

(12) 

where  presents the slow variation of r . The pro-
posed Reduced-order ESMO is: 
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where is, 1, 2 and 3 are respectively defined by (9) 
and (11). 

To determine observer gain 4, it can be supposed that 
the observation errors of the fluxes converge to zero. The 
estimation errors of the fluxes ˆ 0i i ix x x    (i = 1,2) are 
then given by: 

4 1 4 1 2 4 1

1 4 2 4 2 4 2

ˆ ˆ0 . . . . . .

ˆ ˆ0 . . . . . .
sl m ds s

sl m qs s

x x x x x L I x I

x x x x x L I x I

 
 

     

     

   
       (14) 

By replacing the expressions of 1 and 2 in (14), the es-
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The parameter m is adjusted with respect to rotor time 
constant estimation. 

Finally, from the expressions (11) and (15), it can be 
seen that there are three positive adjusting gains: r, n and 
m which play a critical role in the stability and the veloc-
ity of the observer convergence. These three adjusting 
parameters must be chosen so that the reduced observer 
satisfies robustness properties, global or local stability, 
good accuracy and considerable rapidity. 

In order to implement the reduced-order ESMO algo-
rithm in a DSP for real-time applications, the corre-
sponding reduced-dimension state space equation de-
fined in (12) must be discretized using Euler approxima-
tion (1st order). Thus the new discrete-time varying 
model represented by a function depending on the stator 
current is given by: 
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(16) 
where k means the kth sampling time, i.e. t = k.Te with 
Te the adequate sampling period chosen without failing 
the stability and the accuracy of the discrete-time model.  
The proposed RDESMO can be defined by the following 
equation: 
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   

 

The switching vector Is(k), deduced from the continu-
ous case given by (9), can be written as: 
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1

2

1

2

sign( ( ))
( )    with

sign( ( ))

( )
    . ( ). ( 1)

( )

s

e

s k
I k

s k

s k
S T M k Z k

s k

 
  
 
 

   
 


      (18) 

where 

l

l

ˆ ( ) ( )
( )

ˆ( ) ( )
r s

s r

k k
M k

k k

 
 
 

    
, 

ˆ( 1) ( 1)
( 1)

ˆ( 1) ( 1)
rd rd

rq rq

z k z k
z k

z k z k

   
      

  

 
Let us introduce the measure vector 
zr(k+1) = [zrd(k+1), zrq(k+1)]T written as follows: 

r r( 1) ( 1) ( ) . ( ). ( )rd d d e s qrz k k k T k k         and  

qr( 1) ( 1) ( ) . ( ). ( )rq qr e s drz k k k T k k         

From the electrical Equation (1.a) of the IM, an ap-
proximate (1st order) discrete-time relation of the fluxes 
is given by: 

 . .
( 1) ( ) . ( ) ( 1) ( ) . ( ). ( )

. . .
( 1) ( ) . ( ) ( 1) ( ) . ( ). ( )

e r s r
rd ds s ds ds ds e s qs

m m

e r s r
rq qs s qs qs qs e s ds

m m

T L L .L
z k V k R I k I k I k T k I k

L L

T L L L
z k V k R I k I k I k T k I k

L L







          

             

 and 

ˆ ( 1) ( 1) ( ) ( ). ( )

ˆ ( 1) ( 1) ( ) . ( ). ( )
rd dr dr e s qr

rq qr qr e s dr

z k k k T . k k

z k k k T k k

   
   

     
           

  
                             (19) 

The proposed gain matrix representation G(k), de-
duced from the continuous case given by (11) and (15), 

can be defined as follows (discrete-time approach): 

1

2
22
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( )

.( ) .
. .( ) . .

..
( )

ˆ ˆ.( . . ( ) ( )) .( . . ( ) ( ))

e r e sl

e sl e r

m qsr m ds
ee

rr

e m ds dr e m qs qr

r T k T k
k

T k r T k
k

L IG k L I
T pk T p

L JL J
k

T m L I k k T m L I k k

 


 




 

 
  

   
      
          

                 (20) 

Once the fluxes are estimated, it is easy to deduce the 
estimated torque defined by:  

 ˆ ˆ ˆ( ) . ( ). ( ) ( ). ( )m
em dr qs qr ds

r

L
C k p k k k k

L
       (21) 

 
4. Simulation Results 
 
In order to verify the feasibility of the proposed RDESMO, 
the simulation on SIMULINK from Mathwork has been 
carried out for a 1.8 kW induction motor controlled with 
a robust linearization via feedback algorithm (Figure 1). 
The nominal parameters of the induction motor are given 
in the Table 1. 

The RDESMO is implanted in a S_function using C 
language. In order to evaluate its performances and ef-
fectiveness, the comparisons between the observed state 
variables and the simulated ones have been realized for 
several operating conditions with the presence of about 
15% noise on the simulated currents (Ids, Iqs) or speed. 
Thus, using a sampling period Te = 1 ms, the simulations 
are realized at first in the nominal case with the nominal 
parameters of the induction motor (Table 1) and then, in 
the second case, with 50% variation of the nominal rotor 

time constant (r = 1.5 rn) in order to verify the rotor 
time constant tracking and flux estimation. 

Figure 2 and Figure 3 show the simulation results for a 
step input of the rotor speed and flux. One can see that in 
both nominal (Figures 2(a), 2(c)) or non-nominal (Figures 
3(a’), 3(c’)) cases, the estimated values of fluxes and torque 
converge very well to their simulated values. 

The observed fluxes (Figure 2(a)) indicate the good 
orientation (dr is constant and qr converges to zero) 
which is due to a favorable rotor time constant estimation 
(Figures 2(b), 3(b’)). The estimated torque (Figure 2(c)) 
is in good agreement with the simulated value. 

Once the fluxes are estimated, we can deduce the al-
gorithm of the feedback linearization control (Figure 1). 
The waveforms show the good uncoupling between the 
rotor flux and the speed because a step variation in dr 
(Figure 2(a) and Figure 3(a’)) can not generate a speed 
r change (Figure 2(d) and Figure 3(d’)). Thus the field 
orientation and the synthesis of robust linearization and 
decoupling control are well verified. 
All those results show the satisfying tuning, the excellent 
performance of the robust decoupling control and 
RDESMO against rotor resistance variations and pertur-
bations or noises. 



O. ASSEU  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 ENG 

818 
 

ωsl

estimation

Rotor Flux 
Controller

Rotor speed 
Controller

Induction motor
Model In the 

(d,q)  
synchronous

reference frame

Reduced Order 
Discrete‐time

Extended Sliding
Mode Observer

(RDESMO)

‐

+

+

‐

drRef

ωrRef

ωs

Vds

Vqs

Ids

Iqs

σrObs

drObs

qsObs

Ids
Iqs

IdsIqs

dr

qs

Ids
Iqs

+

+

ωr

ωsl

Torque
estimation

noises

CemObs

ωs

ωs

Vqs

Vds

ωs

Linearization
Algorithm

IdsIqs
drObs

ωrObs

ωrObs
ωrObs

ωrObs

ωrObs

ωsl

estimation

Rotor Flux 
Controller

Rotor speed 
Controller

Induction motor
Model In the 

(d,q)  
synchronous

reference frame

Reduced Order 
Discrete‐time

Extended Sliding
Mode Observer

(RDESMO)

‐

+

+

‐

drRef

ωrRef

ωs

Vds

Vqs

Ids

Iqs

σrObs

drObs

qsObs

Ids
Iqs

IdsIqs

dr

qs

Ids
Iqs

+

+

ωr

ωsl

Torque
estimation

noises

CemObs

ωs

ωs

Vqs

Vds

ωs

Linearization
Algorithm

IdsIqs
drObs

ωrObs

ωrObs
ωrObs

ωrObs

ωrObs

 

Figure 1. Simulation scheme of the system. 
 

 

        Figure 2. (a, b, c, d): Nominal case (Rr = Rrn).           Figure 3. (a’, b’, c’, d’): Non nominal case (Rr = 1.5Rrn).  ‘’         
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Table 1. Nominal parameters of the induction motor. 

Pmn = 1.8 kW Un = 220/380 V In = 20.8/12 A p = 2 

Fn = 50 Hz n = 1420 rpm Jn = 0.15 kg.N/m2 
 

fn = 0.05 N.m.s
/rad 

Rsn = 5.7 Rrn = 1.475 Lsn = 0.1766 H Lrn = 0.1262 H 

Lfn = 0.0504 H Lmn = 0.1262 H   

 
5. Conclusions 
 
We have shown in this paper that a robust feedback lin-
earization strategy and RDESMO are used to permit a 
regulation and observation for the Induction motor states 
in order to assure a good dynamic performance and stabil-
ity of the global system. In order to reduce the observation 
execution time, this RDESMO, based on the full -order 
SMO principle, permit only and specially for the recon-
struction of the parameters non measurable in an IM (the 
fluxes, speed and the rotor time constant estimation). 

The interesting simulation results obtained on the in-
duction motor show the effectiveness, the convergence 
and the stability of this robust decoupling control and 
RDESMO against rotor resistance variations, measured 
noises and load. Thus, in order to validate the robustness 
of this non-linear control and RDESMO, Experimental 
results on a testing bench for a 1.8 kW induction motor 
will be present in the next research project. 
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Nomenclature 

Cem, Cl: Electromagnetic and load torques, N.m. 
f: friction coefficient, Nm.s/rad. 
Ids, Iqs, Imr: Stationary frame (d,q)-axis stator currents 
and rotor magnetizing current, A. 
J: inertia, kg.m2. 
Lr, Ls, Lm, Lf: rotor, stator, mutual and leakage induct-
ances, H. 
 

p: pole pair number. 
Rs, Rr: stator and rotor referred resistance, . 
Te, Tr, Ts: sampling period, rotor and stator time con-
stant (Tr = Lr/Rr = 1/σr; Ts = Ls/Rs), s. 
Vds, Vqs: Stationary frame d- and q-axis stator voltage, V. 
dr, qr: d-q components of rotor fluxes, Wb. 
ds, qs: d-q components of stator fluxes, Wb. 
s, r, sl : stator, rotor and slip pulsation (or speed), 
rad/s. 

 

 


