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A Real-Time Learning Control Approach for
Nonlinear Continuous-Time System Using
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Abstract—In this paper, a real-time iterative learning control
(ILC) approach for a nonlinear continuous-time system using re-
current neural networks (RNN’s) with time-varying weights is pre-
sented. Two RNN’s are utilized in the ILC system. One is used to
approximate the nonlinear system and another is used to mimic the
desired system response. The ILC rule is obtained by combining
the two RNN’s to form a neural network control system. Also, a
kind of iterative RNN’s training algorithm is developed based on
the two-dimensional (2-D) system theory. An RNN using the pro-
posed 2-D training algorithm is able to approximate any trajectory
to a very high degree of accuracy. Simulation results show that the
proposed ILC approach is very efficient. The newly developed 2-D
RNN’s training algorithms provides a new dimension to the appli-
cation of RNN’s in a nonlinear continuous-time system.

Index Terms—Approximation, continuous-time iterative
learning control, real-time training algorithm, recurrent neural
networks, two-dimensional system.

I. INTRODUCTION

I TERATIVE learning control (ILC) is an approach to im-
prove the transient response of a system operating repeti-

tively over a fixed time interval. The objective is to determine a
control input iteratively so that the tracking of a given reference
signal or the output trajectory over a fixed time interval is pos-
sible. As a result, the output accuracy is progressively increased.
This makes the application of the ILC approach increasingly
important in many control applications, such as robot manip-
ulators. Until now, the most widely used ILC algorithm is the
proportional-plus-integral-plus-derivative (PID)-type approach
because it essentially forms a PID-like system. Despite the im-
mense popularity of the PID-type controller, all PID-type ILC
techniques suffer from a tight restriction [5]. The understanding
of the structure and parameters of an unknown system cannot
be directly increased through the PID-type learning approach,
as it is difficult to generalize the obtained results from a partic-
ular task to other similar tasks. Apart from the PID-type con-
troller, there are many other types of controller derived for the
ILC approach. However, all these proposed learning algorithms
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require many learning iterations to achieve the required accu-
racy. Recently, two-dimensional (2-D) system theory was intro-
duced to the ILC approach [4]–[8]. In the application of 2-D
system theory to the ILC technique, very promising results on
linear system control have been obtained [4]–[6]. In [7], Chow
and Fang extended the discrete-time 2-D ILC control technique
to continuous-time 2-D ILC systems. More recently, in [8], Fang
and Chow proposed a modified linear discrete-time ILC rule as-
suring the desired trajectory to be accurately tracked in only one
learning iteration. In [9], Chow and Fang worked on the ILC
of nonlinear discrete-time system using recurrent neural net-
works (RNN’s) with time-varying weights. In their work, they
derived a novel 2-D RNN’s training algorithm on which the
development of an efficient nonlinear ILC system was based.
The developed RNN’s based ILC approach for nonlinear dis-
crete-time system can achieve the required accuracy with fewer
learning iterations than common nonlinear ILC techniques. De-
spite its encouraging performance, the developed RNN’s based
ILC approach in [9] was only applicable to a discrete-time con-
trol system. It is the major objective of this paper in extending
the RNN’s-based ILC approach to nonlinear continuous-time
system.

It is generally understood that the selection of the neural net-
work (NN) training algorithm plays an important role for most
NN’s applications. This notion is especially essential for the
implementation of the RNN’s-based real-time ILC approach.
The shortcomings of using conventional gradient-descent-type
training algorithms were thoroughly discussed in [9]. In the con-
ventional gradient-descent-type approach, the gradient is de-
termined under the assumption that the weights do not vary
with time. In fact, we must admit that weights are time varying
during the training process. As a result, 2-D system theory was
first introduced to RNN’s-based ILC approach [9]. The 2-D
system theory provides a new dimension for the study of NN’s.
Contributing by the two independent dynamic processes of the
2-D system, the 2-D model provides an excellent mathematical
platform to describe the complicated system dynamics. In the
training process of continuous-time RNN’s, there are two in-
dependent dynamics, namely, the continuous-time variable of
the RNN’s and the iterations variable which is discrete in the
training process of the RNN’s. In this sense, the 2-D contin-
uous discrete-time system theory, originally introduced by Kac-
zorek [1], [3] in 1994, is exploited for the development of the
real-time RNN’s-based continuous-time ILC approach. The 2-D
RNN’s training algorithms are always convergent and exhibit
an excellent convergence rate. In this paper, we show that the
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newly developed continuous-time RNN working together with
the proposed 2-D training algorithm is capable of approximating
any continuous-time trajectory to a very high degree of accuracy
within a few iterations.

In this paper, our proposed RNN’s-based ILC approach for
a nonlinear continuous-time system utilizes two RNN’s of the
same network architecture. One RNN is used to approximate
the nonlinear system, while another one is used to mimic the
desired output. The learning rule of the ILC is implemented by
combining the two RNN’s to form the NN control system. In
the ILC processing, the two RNN’s are trained by the proposed
2-D training algorithm. Because the development of the ILC ap-
proach is based on the proposed 2-D RNN’s training algorithms,
we will first derive the 2-D continuous-time RNN’s training al-
gorithms with time-varying weights. The obtained results show
that the performance of our proposed continuous-time ILC ap-
proach is very promising. A very low error level is achieved
within a few learning iterations.

The organization of this paper is as follows. First, the 2-D
representation of the training of a continuous-time RNN is de-
scribed in Section II. In Section III, we derive two real-time it-
erative training algorithms for different forms of RNN’s. The
RNN’s-based ILC approach together with its simulation results
are presented inSection IV. Finally, Section V concludes this
paper.

II. 2-D REPRESENTATION OFRNN’S TRAINING

In this paper, we consider the continuous-time RNN’s. A gen-
eral expression of these types of RNN’s withneural units is
given by the following differential equation:

(1)

where is the neural state, and
is the input vector,

is the number of output neurons, and is the number
of hidden neurons, and are the
connection weight matrices associated with the neural state and
the input vector, respectively, is a time constant and is chosen
as , and is a vector-valued nonlinear
function.The popular choices of the nonlinear functionare
given as follows:

1)
2)
3)

where the neural activation function is usually chosen as a
continuous and differentiable nonlinear sigmoidal function sat-
isfying the following conditions: 1) as ;
2) is bounded with the upper bound 1 and the lower bound

1; 3) at a unique point ; and 4)
and as .

In Section III, our work will be mainly based on the two types
of continuous-time RNN’s (1) with the de-
scribed in 1) and 2). Fig. 1 shows a typical structure of these
types of RNN’s. Two different training algorithms for these two
types of RNN’s are developed. The derivations of these training
algorithms are all based on the 2-D continuous discrete-time

Fig. 1. Architecture graph of proposed RNN’s.

Fig. 2. General structure of the proposed learning control scheme with two
RNN’s (u (t) denotes the new control input).

system theory. For other forms of , such as
the one described in 3), the derivation processes of 2-D RNN’s
training algorithms are largely similar and are not included in
this paper.

In this paper, we consider the training of an RNN with time-
varying weights consisting of two dynamical processes in terms
of its time variable and its number of training iterations.
Each variable of an RNN depends upon the two independent
dynamics. For example, and represent the
RNN weights, and represents the neural state vector in
time and th training iteration. Using the 2-D notations, the
RNN model (1) can be rewritten as

(2)

Equation (2) is a 2-D dynamical system, which clearly de-
scribes the 2-D dynamical behavior of the real-time iterative
training of an RNN. The objective of the real-time training is to
match the states of output neurons to the desired values at each
time . For each time , the error between the output state of
RNN and the desired response, the current neural state ,
and the weights and at the th execution of
the training algorithm are recorded. Subsequently, the network
weights are adjusted with the aim of reducing the error in the

th training iteration. Theoretically, we should be able to
drive the output of the RNN to the desired response at time
after a number of training iterations.
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Let denote a set of output neurons, and let , which is
independent of , denote the desired response of output neuron
at time . A 2-D -by-1 error vector is defined as follows:

(3)

where

if
otherwise.

To simplify the expression, we suppose all neurons are output
neurons, namely, , then we have

(4)

where . The extension to the
general case is straightforward.

At every training iteration, the training process of updating
weights can be expressed as

(5)

where and are the training rules
adjusting the network weights at time from to

, and from to .
For each , let the state variable of the 2-D dynamical system

(2) begin with the same nonzero initial value, namely,

(6)
Let the initial weights at each timebe randomized from a uni-
form distribution

(7)
Equations (6) and (7) are the boundary conditions of the 2-D

system (2). Under the initial conditions (6) and (7), it is essen-
tial to assure that the error approaches zero when the
number of training iterations increases. We have the following
definition.

Definition 1: The training rule (5) is said to be convergent if

for as (8)

for any initial boundary conditions (6) and (7).

III. 2-D TRAINING ALGORITHMS FORRNN’S

In this section, we first express the error equation and the
neural state equation of a continuous-time RNN in the form of a
2-D continuous-discrete Roesser’s model [3]. Sufficient condi-
tion of the convergence of the Roesser’s model state is derived.
Also, real-time iterative training rules for two typical forms of
RNN’s (2) are included.

For the RNN in (2), let

(9)

then , and

(10)

From (3) and (4), we obtain

(11)

If we let

(12)

by combining (10) with (11), and using (12), we can obtain a
2-D continuous discrete Roessor’s model

(13)

where is identity matrix with appropriate dimension, and
, for . From (3), (4), and (6), we

also know , for . Thus, we have

(14)
where the boundary conditions are for

and for .
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Theorem 1: For a 2-D continuous discrete-time system

(15)

where , , ,
, and , and

are the boundary conditions for and for
. If the matrix is stable, then, for all ,

as

The proof can be referred to [7, Proof of Theorem 1].
It is now required to derive the training algorithms for two

different forms of .

1):

(16)

In (12), substituting function with (16), and using (5), we
have

(17)

It is necessary to select matrices and in order that (14)
satisfies Theorem 1. Subsequently, using (17), the training rule

and can be determined. From (14) and Theorem 1,
it is noticed that the convergence of is independent of
the matrix . For simplicity, we select and .
Subsequently, from (17), we are able to obtain the following
real-time training algorithm.

Training Algorithm 1:

(18)

2:

(19)

In (12), substituting function with (19), and using (5), we
have

(20)

where , , , and
is between

and

is a nonsingular matrix because is a sigmoid func-
tion with its derivative, , satisfies . Simi-
larly, we select . We are then able to derive Training
Algorithm 2 from (20).

Training Algorithm 2:

(21)

In (21), despite the fact that has not been deter-
mined, we can select in order to make Training
Algorithm 2 computable. Because ,

, and , the eigenvalues
of matrix are all less than 1 and nonnegative.
From (14) and Theorem 1, we know that the convergence of
Training Algorithm 2 is assured in general cases by putting

.
Also, it is noted that the derived Training Algorithms 1 and

2 are always convergent and are independent of the initial state
and the initial weight matrices for any .

Until now, we have derived the 2-D real-time training al-
gorithms for the RNN’s with the two most popular forms of

. The 2-D RNN’s training algo-
rithms for other forms of can be
derived in a similar fashion and, thus, will not be included in
this paper.

Now, we can describe clearly our iterative training process:
for an RNN represented by (2) and (16) or (2) and (19) with
a initial state , randomized initial weight matrices

and , and a given input , the desired
output state at a required tolerance can be
obtained by updating the weight matrices and by
using the appropriate training algorithm. The above process
repeats in the next time point, which can be up to infinity
when operating in a real-time mode. Also, the convergence
analysis of the real-time training algorithms indicate that the
proposed training algorithms enable the RNN to track the
desired trajectory to an arbitrary degree of accuracy. The



482 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 2, APRIL 2000

proposed algorithms are then applied to a nonlinear dynamical
system to demonstrate its performance.

Example 1: Consider the problem of approximating a non-
linear dynamical system represented by

(22)

where is the system input and is the system output. In
this example, the following nonlinear system is selected:

with the initial value and . The input
is generated by a random function with a magnitude ranged

between 0–10. An RNN in the form of

is used for approximating the nonlinear system, where
, , . The

initial weights of the RNN are randomized between1 and
1 at each time point, and the sigmoid nonlinear function is

. We let . Using the real-time Training
Algorithm 1 represented in (18), the weights of the RNN are ad-
justed in a real-time form. Figs. 3 and 4 show how the output
neuron states and , approximating and at
the interval after only the first iteration. Figs. 5 and 6
show the total squared errors of approximating and ,
respectively, at the interval from the first iteration
to the sixth iteration. The total squared errors of approximating

and are and , respectively,
after the first iteration, while they are only and

, respectively, after the sixth iteration. The result in-
dicates that, at each time point, a very high level of approxima-
tion accuracy is obtained within only few iterations. Generally,
in handling the approximation of a nonlinear continuous-time
system with the proposed 2-D training algorithms, the approxi-
mation accuracy can be raised by simply increasing the number
of iterations at each time point.

In this example, no hidden neuron is used in the network ar-
chitecture. Simulations with different numbers of hidden neu-
rons was also performed, but the obtained results indicate that
the inclusion of hidden neurons does not have a noticeable effect
on the system performance. In terms of the simplest network ar-
chitecture for practical applications, the number of neurons re-
quired can be considered as the same as that of the dimension
of the trajectory.

In addition, our simulations have also shown that the conver-
gence of the proposed training algorithm of RNN is not sensitive
to the selection of parameter. The condition of is to en-
sure the existence of a solution to (1).

Fig. 3. Example 1: The curve of approximatingp (t) using output neuron
statesx (t) at the intervalt 2 [0; 1] after only the first iteration. The dashed
line representsx (t) and the solid line representsp (t).

Fig. 4. Example 1: The curve of approximatingp (t) using output neuron
statesx (t) at the intervalt 2 [0; 1] after only the first iteration. The dashed
line representsx (t) and the solid line representsp (t).

IV. ILC A PPROACHUSING RNN’S WITH 2-D TRAINING

ALGORITHMS

We have demonstrated that an RNN with time-varying
weights is capable of approximating a nonlinear contin-
uous-time system to any degree of accuracy using the proposed
2-D iterative training algorithm. In fact, the application of
RNN’s in control, identification, and filtering is e mainly based
on this approximating capability. In this section, we apply
RNN’s combined with the proposed 2-D training algorithms to
nonlinear ILC systems.
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Fig. 5. Example 1: The total square errors of approximatingp (t) using output
neuron statesx (t) at the intervalt 2 [0; 1] at different number of iteration with
the proposed 2-D Training Algorithm 1.

Fig. 6. Example 1: The total square errors of approximatingp (t) using output
neuron statesx (t) at the intervalt 2 [0; 1] at different number of iteration with
the proposed 2-D Training Algorithm 1.

For a general class of nonlinear continuous-time system de-
scribed as follows:

(23)

where and are the output vector and the
input vector, respectively, and the desired output ,

, which is assumed to be differentiable. The initial
condition is . The objective of ILC is to determine
a control input sequence such that the system output tracks the
desired output, i.e., , where is
a required tolerance. Suppose the RNN’s are in the following
form:

where . In the proposed ILC scheme, we use two
RNN’s of the same network architecture to approximate the
nonlinear system output , and the desired output . In
(23), given an initial input , we are able to use one RNN
to approximate the nonlinear system (23). Using the real-time
Training Algorithm 1, the relationship between the input and
the output in (23) at each time pointcan be approximately rep-
resented as

(24)

where represents the approximation of . Similarly,
based on the same input , the approximation of the desired
output is achieved by using another RNN. Suppose the re-
lationship between and is approximately represented
as

(25)

where represents the approximation of . When the
number of training iteration is sufficient, the equations

and (26)

holds approximately. At any time point, once the previous
input enables the equation , we need to determine an
input such that the variation of output , or ,
equals to the variation of the desired output , or .
Comparing (24) with (25), and combining (26), if the matrix

has the generalized inverse , we can derive the fol-
lowing ILC rule.

ILC Rule 1:

(27)
This ILC rule enables the output to track the desired

output at the subsequent time point. Because the time step
of both the 2-D training algorithm and ILC Rule 1 are in a con-
tinuous mode, which have an initial condition of ,
ILC Rule 1 can be executed over the whole fixed time interval.
The general structure of the proposed learning control scheme
with two RNN’s is illustrated in Fig. 2.

Remark: If , then let ,
we can obtain a nonlinear dynamical system

(23 )

Now, the objective of ILC is to determine a control input se-
quence such that

This is similar to the considered problem.
Based on ILC Rule 1, the following algorithm is proposed.
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Fig. 7. Example 2: The outputs of the ILC of a nonlinear system using ILC
Rule 1. The dashed line represents the control outputs after the fourth iteration
and the solid line represents the desired output.

Fig. 8. Example 2: The controller outputu(t) using ILC Rule 1 after the fourth
iteration.

ILC Algorithm
0) The approximation tolerance of
RNN’s; the learning control tolerance
; the desired output , ;

the initial weights and
, ; and the initial condition

are given.
1) Let .
2) Initialize input and evaluate
corresponding output .
3) For the input , the corresponding
output , and desired output up-
date the weights , and

by the 2-D training algorithm
(18).

Fig. 9. Example 2: The total square errors at the intervalt 2 [0; 3] at different
numbers of iterations with the proposed ILC Rule 1.

4) If or ,
return to step 3),
5) Using (27) to calculate the new
input .
6) For the updated input , evaluate

.
7) If , return to step 3),
8) Let .
9) If , return to step 2), else
stop.

Example 2: Consider a nonlinear control system described
by the following differential equation

(28)

where the desired output is described by the equation

The initial value is . Two RNN’s with only one output
neuron and one external input connection are used to approxi-
mate the nonlinear system (28) and the desired output. In
the approximations, 2-D Training Algorithm 1 is uniformly ex-
ecuted for four iterations at each time point. The sigmoid non-
linear function is chosen as , and the con-
stant equals to 0.01. At any time point , the
initial input and the initial weights
and are randomized between 0 and 1. Using the above
ILC algorithm, the control input at each time point is adap-
tively determined. Fig. 7 shows the tracking performance of
the ILC system output, and Fig. 8 shows the controller output

when ILC Rule 1 is iteratively executed for 4 times at each
time . Also, Fig. 9 shows the total squared error of
learning control at the interval when ILC Rule 1 is
iteratively executed from the second to the seventh times.
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Fig. 10. Example 3: The outputs of the ILC of a nonlinear system using ILC
Rule 2. (The dotted, dashed–dotted, and dashed lines represent the control
outputs at the third, fourth, and fifth iteration, respectively, and the solid line
represents the desired output.)

Fig. 11. Example 3: The controller outputu(t) using ILC Rule 2 after the fifth
iteration.

In addition, if we use the following form of RNN’s:

with 2-D Training Algorithm 2 in the proposed ILC scheme,
another ILC rule can be similarly derived as follows.

ILC Rule 2:

(29)

Similarly, the ILC algorithm can be derived.
Example 3: Assume the nonlinear ILC system can be de-

scribed as follows:

(30)

Fig. 12. Example 3: The total square errors at the interval1 2 [0; 1] at
different numbers of iterations with the proposed ILC Rule 2.

and the desired output can be

The initial value is . Two RNN’s with only one
output neuron and one external input connection are used to
approximate the nonlinear system (30) and the desired output

, respectively. In the approximation process, the 2-D
Training Algorithm 2 is uniformly executed for six iterations
at each time point. The sigmoid nonlinear function is chosen
as , and the constant equals to 0.01. At
any time point , the initial input and the initial
weights and are randomized
between 0 and 1. Using ILC Rule 2, Fig. 10 shows the ILC
performance when ILC Rule 2 is executed for three, four,
and five times at each time , and Fig. 11 shows the
controller output when ILC Rule 1 is iteratively executed
for five times at each time . Also, Fig. 12 shows the
total squared error of learning control at the interval
when ILC Rule 2 is iteratively executed from the first times to
the eighth times.

Remark: It can be observed from Figs. 8 and 11 that the
controller output sometimes oscillates, which is mainly at-
tributed to the time-variant weights of the RNN’s.

Both Examples 2 and 3 show that the proposed ILC Rules
1 and 2 are able to reduce the control error to a very low level
within only a few execution cycles. The number of iterations
required for the training of the RNN is also a very few. Hidden
neurons of RNN’s are not required. Compared with the other
nonlinear learning control strategies, which usually require
many learning iterations to achieve the required accuracy, the
convergence rate of the proposed ILC rules is excellent.

V. CONCLUSION

In this paper, we have successfully extended the discrete-time
RNN’s-based real-time ILC approach to continuous-time sys-
tems. In the proposed continuous-time ILC approach, two
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RNN’s of identical architecture with time-varying weights are
utilized in the ILC system. One is used to approximate the
nonlinear system and the other is used to mimic the desired
system output. The ILC approach is obtained by combining the
two RNN’s to form an NN control system. The development
of the ILC approach is highly dependent upon RNN’s with
time-varying weights and its associated 2-D training algorithm.

Conventionally, the weights of RNN’s are treated as time
invariant. In this paper, we first studied the continuous-time
RNN’s with time-varying weights. Two real-time training
algorithms based on 2-D system theory were then described.
The obtained results indicate that the proposed 2-D training
algorithms require very few iterations, and the convergence
is always assured. The RNN’s-based 2-D training algorithm
together with our proposed ILC approach forms a very efficient
continuous-time nonlinear control methodology which can
obtain very high control accuracy with only a few iterations.
The obtained results show that the proposed 2-D RNN’s
training algorithm together with the ILC approach form a very
promising control methodology for nonlinear continuous-time
systems. Also, the algorithm is very computation efficient,
which makes real-time implementation possible.
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