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A Real-Time Learning Control Approach for
Nonlinear Continuous-Time System Using
Recurrent Neural Networks

Tommy W. S. ChowMember, IEEE Xiao-Dong Li, and Yong Fang

Abstract—In this paper, a real-time iterative learning control  require many learning iterations to achieve the required accu-
(ILC) approach for a nonlinear continuous-time system using re- racy. Recently, two-dimensional (2-D) system theory was intro-
current neural networks (RNN’s) with time-varying weights is pre- duced to the ILC approach [4]-[8]. In the application of 2-D

sented. Two RNN'’s are utilized in the ILC system. One is used to tem th to the ILC techni . It
approximate the nonlinear system and another is used to mimic the system theory 10 the echnique, very promising results on

desired system response. The ILC rule is obtained by combining linear system control have been obtained [4]-[6]. In [7], Chow
the two RNN's to form a neural network control system. Also, a and Fang extended the discrete-time 2-D ILC control technique
kind of iterative RNN'’s training algorithm is developed based on  tg continuous-time 2-D ILC systems. More recently, in [8], Fang
the two-dimensional (2-D) system theory. An RNN using the pro- 44 chow proposed a modified linear discrete-time ILC rule as-

posed 2-D training algorithm is able to approximate any trajectory . ) - .
to a very high degree of accuracy. Simulation results show that the SUring the desired trajectory to be accurately tracked in only one

proposed ILC approach is very efficient. The newly developed 2-D learning iteration. In [9], Chow and Fang worked on the ILC
RNN's training algorithms provides a new dimension to the appli- of nonlinear discrete-time system using recurrent neural net-
cation of RNN's in a nonlinear continuous-time system. works (RNN’s) with time-varying weights. In their work, they
Index Terms—Approximation, —continuous-time iterative derived a novel 2-D RNN's training algorithm on which the
learning control, real-time training algorithm, recurrent neural  development of an efficient nonlinear ILC system was based.

networks, two-dimensional system. The developed RNN'’s based ILC approach for nonlinear dis-
crete-time system can achieve the required accuracy with fewer
I. INTRODUCTION learning iterations than common nonlinear ILC techniques. De-

) ) _ spite its encouraging performance, the developed RNN's based

I TERATIVE learning control (ILC) is an approach to im-)_c approach in [9] was only applicable to a discrete-time con-

prove the transient response of a system operating repgi system. It is the major objective of this paper in extending
tively over a fixed time interval. The objective is to determine gye RNN's-based ILC approach to nonlinear continuous-time
control input iteratively so that the tracking of a given referencsei,stem_
signal or the output trajectory over a fixed time interval is pos- |t js generally understood that the selection of the neural net-
sible. As aresult, the output accuracy is progressively increasgghrk (NN) training algorithm plays an important role for most
This makes the application of the ILC approach increasinglyN's applications. This notion is especially essential for the
important in many control applications, such as robot ma”il?nplementation of the RNN’s-based real-time ILC approach.
ulators. Until now, the most widely used ILC algorithm is therhe shortcomings of using conventional gradient-descent-type
proportional-plus-integral-plus-derivative (PID)-type approaghaining algorithms were thoroughly discussed in [9]. In the con-
because it essentially forms a PID-like system. Despite the ifsntional gradient-descent-type approach, the gradient is de-
mense popularity of the PID-type controller, all PID-type ILGermined under the assumption that the weights do not vary
techniques suffer from a tight restriction [5]. The understandifgin time. In fact, we must admit that weights are time varying
of the structure and parameters of an unknown system canggfing the training process. As a result, 2-D system theory was
be directly increased through the PID-type learning approagist introduced to RNN’s-based ILC approach [9]. The 2-D
as it is difficult to generalize the obtained results from a partigvstem theory provides a new dimension for the study of NN’s.
ular task to other similar tasks. Apart from the PID-type coreontributing by the two independent dynamic processes of the
troller, there are many other types of controller derived for thep system, the 2-D model provides an excellent mathematical
ILC approach. However, all these proposed learning algorithiggtform to describe the complicated system dynamics. In the

training process of continuous-time RNN'’s, there are two in-
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newly developed continuous-time RNN working together witl Outputs
the proposed 2-D training algorithm is capable of approximatir
any continuous-time trajectory to a very high degree of accura
within a few iterations.

In this paper, our proposed RNN'’s-based ILC approach fi
a nonlinear continuous-time system utilizes two RNN'’s of th
same network architecture. One RNN is used to approxime
the nonlinear system, while another one is used to mimic tl
desired output. The learning rule of the ILC is implemented k
combining the two RNN'’s to form the NN control system. Ir
the ILC processing, the two RNN'’s are trained by the propos:t
2-D training algorithm. Because the development of the ILC g|
proach is based on the proposed 2-D RNN's training algorithrr @ + Represents some operator
we will first derive the 2-D continuous-time RNN'’s training al-_. . ,
gorithms with time-varying weights. The obtained results sho@q 1. Architecture graph of proposed RNN's.
that the performance of our proposed continuous-time ILC ap-
proach is very promising. A very low error level is achieved
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within a few learning iterations. o]

The organization of this paper is as follows. First, the 2-D (1) , i
representation of the training of a continuous-time RNN is de-  [Memory] > N;‘:j'c'l‘ff’ ()
scribed in Section II. In Section Ill, we derive two real-time it- iy |
erative training algorithms for different forms of RNN’s. The u(f) /| |atgorithm| _i
RNN’s-based ILC approach together with its simulation results = ;m_ﬁz B 0 *Oe" d(r)
are presented inSection IV. Finally, Section V concludes this v W oW, f
paper F'VI ,H{.,' 12772

. s T“ca.r:ing control law Il—

Il. 2-D REPRESENTATION OFRNN’S TRAINING
Fig. 2. General structure of the proposed learning control scheme with two

In this paper, we consider the continuous-time RNN’s. A gem®NN'’s (v*(¢) denotes the new control input).
eral expression of these types of RNN’s withheural units is

given by the following differential equation: system theory. For other forms gi{ Wy, =, Wa, u), such as
do the one described in 3), the derivation processes of 2-D RNN'’s
— =—azx+ f (W, 2, W, u) (1) training algorithms are largely similar and are not included in
dt this paper.

wherez = (z1, ©2, ---, x1) € RE is the neural state, and In this paper, we consider the training of an RNN with time-

w = (uy, uz, -, um) € R™ is the input vector, = n + varying weights consisting of two dynamical processes in terms

N, n is the number of output neurons, aidis the number Of its time variablet and its number of training iteratioris

of hidden neuronsi¥; € RI*L andW, € RL*™ are the Each variable of an RNN depends upon the two independent
connection weight matrices associated with the neural state glylamics. For examplé¥, (¢, k) andW(t, k) represent the
the input vector, respectively,is a time constant and is choserRNN weights, and:(t, k) represents the neural state vector in
asa > 0, andf: RY x R™ — R is a vector-valued nonlinear time ¢ and kth training iteration. Using the 2-D notations, the

function.The popular choices of the nonlinear functiprmare RNN model (1) can be rewritten as

givin as follows: - dw(t, k) B ‘
) f(Wl, x, WQ, U,) = Wla(a:) + Wou ot - O‘x(tv k)
2) J(Wr, @, W, u) = o(Wiz + Wau) + [ (W, k), a(t, k), Walt, k), w(t)) . (2)

3) f(Wl, z, Wo, U,) = a(Wla:) + Wou
where the neural activation functier{z) is usually chosenasa Equation (2) is a 2-D dynamical system, which clearly de-
continuous and differentiable nonlinear sigmoidal function sateribes the 2-D dynamical behavior of the real-time iterative
isfying the following conditions: 1y(x) — +1 asz — *oo; training of an RNN. The objective of the real-time training is to
2) o(x) is bounded with the upper bound 1 and the lower bourrdatch the states of output neurons to the desired values at each
—1; 3)o(x) = 0 at a unique point = 0; and 4)0 < ¢’(z)1 time ¢. For each time, the error between the output state of
ando’(z) — 0 aszx — too. RNN and the desired response, the current neural staté:),

In Section I1I, our work will be mainly based on the two typesnd the weightdV; (¢, k) andWs(¢, k) at thekth execution of
of continuous-time RNN'’s (1) with the¢(W;, =, W», u) de- the training algorithm are recorded. Subsequently, the network
scribed in 1) and 2). Fig. 1 shows a typical structure of theseeights are adjusted with the aim of reducing the error in the
types of RNN’s. Two different training algorithms for these twd: + 1th training iteration. Theoretically, we should be able to
types of RNN'’s are developed. The derivations of these trainingve the output of the RNN to the desired response at time
algorithms are all based on the 2-D continuous discrete-timméter a number of training iterations.
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Let 2 denote a set of output neurons, and l€t(¢), whichis thenn(0, &) = 0, and
independent of, denote the desired response of output netiron
attimet. A2-D L-by-1 error vectoe(¢, k) is defined as follows: dn(t, k)

=xz(t, k+1) — z(t, k)

at
G(t, k) = (el(tv k)v GQ(tv k)v T eL(tv k))/ (3) :-T(t, k + 1) - -T(O, k + 1) — -T(t, k') +-T(O, k')
P Ox(r, k+1) b ox(r, k)
where —/0 Td’/’—/o Td’/’

. dz(t) - .Ti(t, k‘), if i €2 ¢
ei(t, k)= {07 otherwise. =—a / z(r, k+1)dr + A fFWi(r, k+1),

t
0
N . k+1), W k+1 d
To simplify the expression, we suppose all neurons are output o(r, k+1), Walr, k+ 1), u(r)) dr

t t
neurons, namely; = L, then we have +a / o(r, k) dr _/ fOWy(r, k), (T, k),
0 0
e(t, k) = d(t) - a?(t, k) 4) WQ(Tv k)v U’(T)) dr
t
whered(t) = (di(t), da(t), -- -, da(t)). The extension to the =—an(t, k) +/0 [f Wi(r, k+1), 2(r, k+1),
general case is _stra_lghtfqrward. N _ Walr, k +1), u(r)) — f (Wi(r, k), z(r, k),
At every training iteration, the training process of updating
weights can be expressed as Wa(r, k), w(r))] dr. (10)
Wilt, k+1) = Wi(t, k) + AW (t, k) From (3) and (4), we obtain
Wolt, k+ 1) =Ws(t, k) + AWL(¢, k 5
2( ) =Wa(t, k) 2(t, k) ) e(h k1) — oft, B)
where AW1 (¢, k) and AW,(¢, k) are the training rules =a(t, k) —z(t, k+1)
adjusting the network weights at time from Wi (¢, k) to an(t, k)
Wi(t, k+ 1), and fromWa(t, k) to Wa(t, k + 1). - ot
For eachk, let the state variable of the 2-D dynamical system t
(2) begin with the same nonzero initial value, namely, = an(t, k) — /0 [f (Wi, b+ 1), z(r, k+ 1),
JJZ(O, ]%) _ .I’Z(O) _ dZ(O) 7& 0’ ic Q, k= 0’ 1’ 2’ . WQ(Ta k+ 1)v U’(T)) - f(Wl(Ta k)a .’L’(T, k)a
(6) Wo(r, k), u(7))] dr. (11)
Let the initial weights at each timebe randomized from a uni-
form distribution If we let
Wl(ta 0) = Wlo(t) Wg(t, 0) = W2O(t)7 te [07 OO) f(Wl(tv k+ 1)7 x(tv k+ 1)7 WQ(tv k+ 1)7 U’(t))
(7) - f(Wl(tv k)v 'T(tv k)v WQ(tv k)v u(t))
Equations (6) and (7) are the boundary conditions of the 2-D an(t, k) de(t, k)
system (2). Under the initial conditions (6) and (7), it is essen- =K 82 + Ko 8; (12)

tial to assure that the erre(¢, k) approaches zero when the
number of training iterations increases. We have the followirty combining (10) with (11), and using (12), we can obtain a
definition. 2-D continuous discrete Roessor’s model

Definition 1: The training rule (5) is said to be convergent if

an(t, k)
- (tv k)
e(t, k) — 0,  fort €0, o0), ask — oo 8) ot _ (ol +K1 K n
<e ) ( ) (o)

t k+1) afl —K; I-K> e(t, k)
for any initial boundary conditions (6) and (7). N _K, —K, (0, k) (1)
K, Ko (0, k)

I1l. 2-D TRAINING ALGORITHMS FORRNN'S

In this section, we first express the error equation and tMdere I is identity matrix with appropriate dimension, and
neural state equation of a continuous-time RNN in the form of#0. k) = 0, fork =0, 1, 2, 3, ---. From (3), (4), and (6), we
2-D continuous-discrete Roesser’s model [3]. Sufficient condiso knowe(0, k) =0, fork =0, 1, 2, 3, ---. Thus, we have
tion of the convergence of the Roesser’'s model state is derived.

Also, real-time_iterative training rules for two typical forms of an(t, k) ol + K, K, n(t, k)
RNN'’s (2) are included. ot = < ol - K\ I—K ) <e(t k))
For the RNN in (2), let e(t, k+1) ! 2 ’ 0

t where the boundary conditions arg0, k) = 0 for
n(t, k):/o [e(t, b +1) —a(t, k)] dt ©) 1 —0,1,2 3 ande(t, 0) = d(t) — x(t, 0) for t € [0, oc).
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Theorem 1: For a 2-D continuous discrete-time system
dx(t, k)
A AP t, k
ot = <ﬁ1 ) <x( )) (15)
y(t, k+1) 5 y(t, k)
wherez(t, k) € R™, A € Rm* ™ A, €

R™ y(t, k) €
R e As € R=2*™ and Ay € R™*™2, andxz(0, k) =
are the boundary conditions fér= 1, 2, 3, -- - andy(¢, 0) for
t > 0. If the matrix A4 is stable, then, for all > 0,

<x(t, k)
y

(t, k)
The proof can be referred to [7, Proof of Theorem 1].

Ay
Ay

>—>0 ask — cco.

It is now required to derive the training algorithms for tw

different forms off (W1 (¢t), z(t), Wa(t), u(t)).

1):
S (Wi(®), =(t), Wa(t), w(t))
= Wi(t)o(z(t)) + Walt)u(t).

In (12), substituting functiorf with (16), and using (5), we
have

(16)

Wi(t, kK)o (x(t, k+ 1)) + AW, k)o (z(t, k+ 1))
— Wit k)o(z(t, k) + AWa(¢, k)u(t)
an(t, k) de(t, k)
=K Ot + K o
Itis necessary to select matricks and K in order that (14)

17)

481

WL, k)z(t, k) — Walt, k)u(t)]
= F(t, k) [Wi(t, k) (2(t, b+ 1) — 2(t, k)
FAW(t, B)at, k+ 1) + AWa(t, k)u(®)]

an(t, k) de(t, k)

=K iy, (20)

where F'(t, k) = diag(o’(£1), 0'(&2), -+, 0'(§)), and§ =
(€1, &, -+, €))7 is between

Wit k+ Dx(t, k+ 1) + Wa(t, k+ Du(t)
and

Wy (t, k)z(t, k) + Walt, k)u(t).

0F t, k) is a nonsingular matrix because. ) is a sigmoid func-

tion W|th its derivative o’( . ), satisfiesd < ¢'(.) < 1. Simi-
larly, we selectk; = 0. We are then able to derive Training
Algorithm 2 from (20).
Training Algorithm 2:
(AW (¢, k)AWL(¢, k)
Oe(t,

_ —1
_<F (t W) K —p

—x(t, k+1))> <<
' <a:(t,k+1) '

u(t) >>_ <

k)

+ Wit k) (=(t, k)
T

)

)

x(t, k+1)
u(t)
z(t, k+1)

21
() (21)

satisfies Theorem 1. Subsequently, using (17), the training ruldn (21), despite the fact thak'(¢, k) has not been deter-
AW, and AW, can be determined. From (14) and Theorem mined, we can seledt(; = F(t, k) in order to make Training

it is noticed that the convergence @, %) is independent of
the matrix K. For simplicity, we seleck; = 0 andK, = 1.

Subsequently, from (17), we are able to obtain the followingf matrix I —

real-time training algorithm.
Training Algorithm 1:

(AW (t, k)AW(t, k))

= <@ + Wit k) (o (z(t. k) — o (z(t, k + 1))))
ozt k+1)\" fo(t E+1))\\

' << u(t) ) < u(?) ))

. T
. <" (””(Z(’;;L 1”) (18)
2:

f(Wl t)v J}(t), WQ(t)v U’(t))
= o (Wi(t)z(t) + Wa(t)u(t)) . 19)

In (12), substituting functiorf with (19), and using (5), we
have

o(Wi(t, E+Dx(t, kE+ 1) + Wa(t, b+ L)u(t))
— o (Wi(t, k)z(t, k) + Wa(t, k)u(t))
=F(t, k) [Wi(t, k+ Da(t, b+ 1) + Walt, k+ Du(?)

Algorithm 2 computable. BecausE(t, k) = diag(c'(&1),
o'(&), -+, 0'(ér)) and 0 < o'(.) < 1, the eigenvalues
F(t, k) are all less than 1 and nonnegative.
From (14) and Theorem 1, we know that the convergence of
Training Algorithm 2 is assured in general cases by putting
Ky = F(t, k).

Also, it is noted that the derived Training Algorithms 1 and
2 are always convergent and are independent of the initial state
and the initial weight matrices for anye [0, o).

Until now, we have derived the 2-D real-time training al-
gorithms for the RNN’s with the two most popular forms of
FW1(t), z(t), Wa(t), u(t)). The 2-D RNN's training algo-
rithms for other forms off (W1 (t), x(t), Wa(¢), u(t)) can be
derived in a similar fashion and, thus, will not be included in
this paper.

Now, we can describe clearly our iterative training process:
for an RNN represented by (2) and (16) or (2) and (19) with
a initial statez(0) = xo, randomized initial weight matrices
Wi(t, 0) and Wa(¢, 0), and a given inputi(t), the desired
output stated(t) at a required tolerancpe(t)|| < e can be
obtained by updating the weight matric@s (¢) andWs(¢) by
using the appropriate training algorithm. The above process
repeats in the next time poirt which can be up to infinity
when operating in a real-time mode. Also, the convergence
analysis of the real-time training algorithms indicate that the
proposed training algorithms enable the RNN to track the
desired trajectory to an arbitrary degree of accuracy. The
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proposed algorithms are then applied to a nonlinear dynami q g5
system to demonstrate its performance.
Example 1: Consider the problem of approximating a non ©0-8

linear dynamical system represented by 0.75
0.7
d p(t
12O _ g o), u(e) @) oss
. . . 0.6
whereu(t) is the system input angl?) is the system output. In
this example, the following nonlinear system is selected: 0.55
0.5
dpy(t
pcllt( ) _ — 0.45
0.4
dpa(t) 4
— 7 = t t t 0.35 1 i 1 s
g~ PrDcospat) +uld) 0 02 04 06 0.8 1

timet
with the initial valuep;(0) = 0.5 andp2(0) = 1. The input

u(t) is generated by a random function with a magnitude rang?g. 3. Example 1: The curve of approximatipg(¢) using output neuron

between 0-10. An RNN in the form of statese, (¢) at the intervak € [0, 1] after only the first iteration. The dashed
line represents (¢) and the solid line represenis(t).

dx(t
Z(t )= —ant) + Wat)o(a(t) + Walt)ult)
6 T T T
is used for approximating the nonlinear system, wheg¢ = 55l |

(.’L’l(t) .’L’Q(t))T € RQ, Wl(t) € R2X2, Wg(t) € R?*L The
initial weights of the RNN are randomized betweed and 5L .
1 at each time point, and the sigmoid nonlinear function is
o(.) = tanh(.). Weleta: = 0.01. Using the real-time Training
Algorithm 1 represented in (18), the weights of the RNN area 4| _
justed in a real-time form. Figs. 3 and 4 show how the outp
neuron states; (t) andz»(t), approximating (¢) andpz(t) at
the intervalt € [0, 1] after only the firstiteration. Figs. 5and 6 3} .
show the total squared errors of approximatingt) andp(t),
respectively, at the interval € [0, 1] from the first iteration
to the sixth iteration. The total squared errors of approximatir 5| _
p1(t) andp,(t) arel.27 x 10~° and3.12 x 10~*, respectively,
after the first iteration, while they are onf06 x 10~33 and  1-5f 1

»
(3]
T
L

5.7x 10732, respectively, after the sixth iteration. The resultin 4 . " . .
dicates that, at each time point, a very high level of approxim 0 0.2 04 06 0.8 1
tion accuracy is obtained within only few iterations. Generall: time t

in handling the approximation of a nonlinear continuous-time
system with the proposed 2-D training algorithms, the approxig. 4. Example 1: The curve of approximatipg(#) using output neuron
mation accuracy can be raised by simply increasing the numl?@fe%(t) at the intervak € [0, 1] after only the first iteration. The dashed
. . . . ine represents (t) and the solid line represents(t).
of iterations at each time point.
In this example, no hidden neuron is used in the network ar-
chitecture. Simulations with different numbers of hidden neu- 1V. ILC APPROACHUSING RNN’S WITH 2-D TRAINING
rons was also performed, but the obtained results indicate that ALGORITHMS
the inclusion of hidden neurons does not have a noticeable effect
on the system performance. In terms of the simplest network ar\WWe have demonstrated that an RNN with time-varying
chitecture for practical applications, the number of neurons neeights is capable of approximating a nonlinear contin-
quired can be considered as the same as that of the dimensions-time system to any degree of accuracy using the proposed
of the trajectory. 2-D iterative training algorithm. In fact, the application of
In addition, our simulations have also shown that the convé®NN'’s in control, identification, and filtering is e mainly based
gence of the proposed training algorithm of RNN is not sensitivan this approximating capability. In this section, we apply
to the selection of parameter The condition ofx > 0istoen- RNN’s combined with the proposed 2-D training algorithms to
sure the existence of a solution to (1). nonlinear ILC systems.
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10° ‘ . . . wherez(t) € R". In the proposed ILC scheme, we use two
RNN’s of the same network architecture to approximate the
10° nonlinear system outpuf(¢), and the desired outpul(z). In
N (23), given an initial input«(t), we are able to use one RNN
% 10 to approximate the nonlinear system (23). Using the real-time
2 Training Algorithm 1, the relationship between the input and
é 167 the output in (23) at each time pointan be approximately rep-
‘E’ resented as
o 107 d(t)
g — . = —ay(t) + Wi(t)o (u(t)) + Wa(t)u(t)  (24)
E - dt
% where 77(¢) represents the approximation gft). Similarly,
107 based on the same inpuft), the approximation of the desired
outputd(¢) is achieved by using another RNN. Suppose the re-
108 . . , . lationship betweem(t) andd(¢) is approximately represented
1 2 3 4 5 8 as
No.of iteration
dd(t) - . 5 .
Fig.5. Example 1: The total square errors of approximatif(@) using output PR —ad(t)+ W] (t)o (d(t)) + W3 (t)u(t) (25)

neuron states, (¢) atthe intervat € [0, 1] at different number of iteration with
the proposed 2-D Training Algorithm 1. _ . .
where d(t) represents the approximation dft). When the

number of training iteration is sufficient, the equations

10 .

" w(t) =y(t) and d(t) = d(t) (26)
T . holds approximately. At any time poirtt once the previous
g 107t input enables the equatiaiit) = d(¢), we need to determine an
2 s input«(t) such that the variation of outpytt), or (dy(t)/dt),
E107¢ equals to the variation of the desired outg(f), or (dd(t)/dt).
§ . Comparing (24) with (25), and combining (26), if the matrix
g 10 Wo(t) has the generalized inverBé/ (¢), we can derive the fol-
g . lowing ILC rule.
T 10 ILC Rule 1:

.30 * *
10 u(t) <= Wi (@) (W1 (1) — Wi(h) o(d(t)) + Wy (t)U(t)](- )
27
10'351 5 3 7 p p This ILC rule enables the output(¢) to track the desired
No.of iteration outputd(¢) at the subsequent time point. Because the time step

of both the 2-D training algorithm and ILC Rule 1 are in a con-
Fig.6. Example 1: The total square errors of approximatir(@) using output  tinuous mode, which have an initial conditiongf0) = d(0),
neuron states; (t) atthe intervat € [0, 1] atdifferentnumber of iterationwith || C Rule 1 can be executed over the whole fixed time interval.
the proposed 2-D Training Algorithm 1. The general structure of the proposed learning control scheme
) ) ) with two RNN's is illustrated in Fig. 2.
For a general class of nonlinear continuous-time system deRemark: If 4(0) # d(0), then lety, (¢) = y(t)—y(0)+d(0),

scribed as follows: we can obtain a nonlinear dynamical system
dy(t)
—= = F(y(t), u(t (23) dun (t
i~ ) 8O _ 1 (o), (e, @3)

wherey(t) € R” andu(t) € R™are the output vector and the

input vector, respective|y’ and the desired Oum_tb € R", Now, the ObjeCtive of ILC is to determine a control input se-
t € [0, T, which is assumed to be differentiable. The initiafluence such that

condition isy(0) = d(0). The objective of ILC is to determine

a control input sequence such that the system output tracks the sup |d(t) — 1 (t)]
desired output, i.esup,cpo, 7 |d(t) — y(¥)| < e, wheree is tc(0, 7]
a required tolerance. Suppose the RNN'’s are in the following = sup |d(t) —y(t) +y(0) — d(0)| <e.
form: ¢c(0,7]
dx(t) This is similar to the considered problem.

o = —ow(®) + Wit)o(x(t)) + Wa(t)u(t) Based on ILC Rule 1, the following algorithm is proposed.
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output

25
time t

Fig. 7. Example 2: The outputs of the ILC of a nonlinear system using ILEjg. 9.
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Example 2: The total square errors at the inten@l0, 3] at different

Rule 1. The dashed line represents the control outputs after the fourth iteratigiinbers of iterations with the proposed ILC Rule 1.

and the solid line represents the desired output.

30

output of controller

50 . - )

2.5 3
time t

Fig.8. Example 2: The controller outputt) using ILC Rule 1 after the fourth
iteration.

ILC Algorithm
0) The approximation tolerance i
RNN'’s; the learning control tolerance
e; the desired output dt), t € [0, TT;

the initial weights Wi (t), Wa(t), Wi (¢) and
W3(t), te[0,T]; and the initial condition
y(0) = d(0) are given.

1) Let ¢=0.

2) Initialize input u(t) and evaluate
corresponding output y(t).

3) For the input u(t), the corresponding
output  y(¢), and desired output d(t) up-

date the weights Wi(t), Wa(t), Wi(t), and
W3 (t) by the 2-D training algorithm
(18).

4 1 ly@®) =gl > e or [ld(t) — )] > e,

return to step 3),

5) Using (27) to calculate the new

input  u(¢).

6) For the updated input u(t), evaluate
y(t).

7) If |lyt) —d(t)|| > e, return to step 3),
8) Let t=1t+ At

9 If ¢ < T, return to step 2), else
stop.

Example 2: Consider a nonlinear control system described
by the following differential equation

dy(t)

o =u®+ y2(t) + 0.5u(t) (28)

where the desired output¢) is described by the equation
d(t) = 4sin(3t).

The initial value isy(0) = 0. Two RNN’s with only one output
neuron and one external input connection are used to approxi-
mate the nonlinear system (28) and the desired ouiffut In

the approximations, 2-D Training Algorithm 1 is uniformly ex-
ecuted for four iterations at each time point. The sigmoid non-
linear function is chosen as(.) = tanh(.), and the con-
stanta equals to 0.01. At any time poirit € [0, 4.5], the
initial input «(¢) and the initial weight$V; (¢), Wx(¢), Wi (¢t)
andWj (¢) are randomized between 0 and 1. Using the above
ILC algorithm, the control input at each time point is adap-
tively determined. Fig. 7 shows the tracking performance of
the ILC system output, and Fig. 8 shows the controller output
u(t) when ILC Rule 1 is iteratively executed for 4 times at each
time¢ € [0, 4.5]. Also, Fig. 9 shows the total squared error of
learning control at the interval € [0, 3] when ILC Rule 1 is
iteratively executed from the second to the seventh times.
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Fig. 10. Example 3: The outputs of the ILC of a nonlinear system using ILC

Rule 2. (The dotted, dashed—dotted, and dashed lines represent the cofiml 12.

Example 3: The total square errors at the intetva¢ [0, 1] at

outputs at the third, fourth, and fifth iteration, respectively, and the solid lindifferent numbers of iterations with the proposed ILC Rule 2.

represents the desired output.)

2.2

2

1.8

output of controller
N » o

-

0.8 4
06 1 1 i 1. 1
0 0.2 0.4 0.6 0.8 1 1.2
time t
Fig. 11. Example 3: The controller outputt) using ILC Rule 2 after the fifth

iteration.

In addition, if we use the following form of RNN'’s:

dx(t)
dt

= —qx(t) + o (Wi(t)z(t) + Walt)u(t))

with 2-D Training Algorithm 2 in the proposed ILC scheme

another ILC rule can be similarly derived as follows.
ILC Rule 2:

u(t) = W3 () (Wi (#) — Wi(B)) d(t) + W5 (Hu)] . (29)

Similarly, the ILC algorithm can be derived.

Example 3: Assume the nonlinear ILC system can be de-

scribed as follows:

= y(tyu(t) +¢°

(30)

and the desired outputt) can be
d(t) = ' +sint.

The initial value isy(0) = 1. Two RNN’'s with only one
output neuron and one external input connection are used to
approximate the nonlinear system (30) and the desired output
d(t), respectively. In the approximation process, the 2-D
Training Algorithm 2 is uniformly executed for six iterations
at each time point. The sigmoid nonlinear function is chosen
aso(.) = tanh(.), and the constant equals to 0.01. At
any time pointt € [0, 1], the initial inputu(¢) and the initial
weights W1 (t), Wa(t), Wi (¢t) and W3 (¢t) are randomized
between 0 and 1. Using ILC Rule 2, Fig. 10 shows the ILC
performance when ILC Rule 2 is executed for three, four,
and five times at each time € [0, 1], and Fig. 11 shows the
controller output:(t) when ILC Rule 1 is iteratively executed
for five times at each time < [0, 1]. Also, Fig. 12 shows the
total squared error of learning control at the interva [0, 1]
when ILC Rule 2 is iteratively executed from the first times to
the eighth times.

Remark: It can be observed from Figs. 8 and 11 that the
controller output:(t) sometimes oscillates, which is mainly at-
tributed to the time-variant weights of the RNN's.

Both Examples 2 and 3 show that the proposed ILC Rules
1 and 2 are able to reduce the control error to a very low level
within only a few execution cycles. The number of iterations
required for the training of the RNN is also a very few. Hidden
neurons of RNN’s are not required. Compared with the other
nonlinear learning control strategies, which usually require
many learning iterations to achieve the required accuracy, the
convergence rate of the proposed ILC rules is excellent.

V. CONCLUSION

In this paper, we have successfully extended the discrete-time
RNN’s-based real-time ILC approach to continuous-time sys-
tems. In the proposed continuous-time ILC approach, two
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RNN'’s of identical architecture with time-varying weights are [7]
utilized in the ILC system. One is used to approximate the
nonlinear system and the other is used to mimic the desiredg,
system output. The ILC approach is obtained by combining the
two RNN'’s to form an NN control system. The development [°]
of the ILC approach is highly dependent upon RNN'’s with
time-varying weights and its associated 2-D training algorithm.

Conventionally, the weights of RNN’s are treated as time
invariant. In this paper, we first studied the continuous-time
RNN’s with time-varying weights. Two real-time training
algorithms based on 2-D system theory were then describ
The obtained results indicate that the proposed 2-D traini
algorithms require very few iterations, and the convergen
is always assured. The RNN’'s-based 2-D training algorith
together with our proposed ILC approach forms a very efficie
continuous-time nonlinear control methodology which ca
obtain very high control accuracy with only a few iterations
The obtained results show that the proposed 2-D RNN'’s
training algorithm together with the ILC approach form a very
promising control methodology for nonlinear continuous-time
systems. Also, the algorithm is very computation efficient
which makes real-time implementation possible.
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