
Image Compression Using Neural Networks

Yahya M. Masalmah
Advisor: Dr. Jorge Ortiz

Electrical and Computer Engineering Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681-5000

masalmah@larsip.uprm.edu

Abstract

In this project, multilayer neural network will be
employed to achieve image compression. The network
parameters will be adjusted using different learning
rules for comparison purposes. Mainly, the input
pixels will be used as target values so that assigned
mean square error can be obtained, and then the
hidden layer output will be the compressed image. It
was noticed that selection between learning
algorithms is important as a result of big variations
among them with respect to convergence time and
accuracy of results.

1. Introduction
Since images can be regarded as two-dimensional
signals with the spatial coordinated as independent
variables, image compression has been an active area
of research since the inception of digital image
processing. It is extremely important for efficient
storage and transmission of image data. Since it was
an area of interest of many researchers, many
techniques have been introduced. Artificial Neural
network have found increasing applications in this
field due to their noise suppression and learning
capabilities.

 A number of different neural network models, based
on learning approach have been proposed. Models
can be categorized as either linear or nonlinear neural
nets according to their activation function.

In the literature different approaches of image
compression have been developed, one of these
algorithms [Watanabe01] have been developed on the
basis of a modular structured neural network which
consists of multiple neural networks with different
block size(the number of input units) for the region
segmentation. Multilayer neural network [Charif00]
have been developed in [Wahhab97] as another
image compression algorithm, in which the use of

two-layer neural networks had been extended to
multilayer network. Also in [Wahhab97] Auto
associative transform coding approach which
employs two-layer feed forward neural net to
compress images have been compared to the new
technique of four or more layers which in turn needs
along time to be trained. As a continuation of
algorithm developments, a new approach has been
introduced in [Patnaik01] which uses auto-associative
neural network and embedded zero-tree coding. In
[Patnaik01] network training is achieved through
recursive least square (RLS) algorithm.

A self organizing neural network has been used
[Erickson92] in which vector quantization learning
rule have been employed. As seen from the literature
different coding methods have been addressed, in
[Dony95] predictive coding, transform coding, and
vector quantization have been utilized in multilayer
perceptron training. In this project, feed forward back
propagation algorithm will be employed to achieve
image compression. A two-layer feed forward neural
network will be used and different learning rules will
be employed for training the network. Back
propagation could be trained by different rules.

In this project, different learning rule will be employed
to train multilayer neural network. The network will be
constructed from input layer, hidden layer, and output
layer. The image should be subdivided into sub
blocks and the pixels gray level values within the
block will be reshaped into a column vector and input
to the neural network through the input layer. Input
pixels will be used as the target values, so that the
mean square error could be adjusted as needed. The
network will be trained by back propagation, using
different learning algorithms. Mainly one step secant,
Newton’s method, gradient descent and adaptive
gradient descent learning algorithms will be used for
this purpose.

2. Back-propapagation Neural Network

 The neural network structure can be illustrated in fig.
1. Three layers, one input layer, one output layer and
one hidden layer, are assigned. Both of input layer
and output layer are fully connected to hidden layer.
Compression is achieved by designing the value of
the number of neurons at the hidden layer, less than
that of neurons at both input and output layers.

Figure1 Back propagation neural network
[Watanabe01]

The above neural network could be either linear or
nonlinear network according to the transfer function
employed in the layers. Log-sigmoid function which is
given in equation1 is one of the most common
functions employed in different neural networks
problems.

)exp(1
1

)(
x

xf
−+

= (1)

Some networks employs log-sigmoid in the hidden
layer and linear in the output layer. It was shown that
nonlinear functions have a more capability of learning
both linear and nonlinear problems than linear ones.

The network shown in Fig.1 also have been used in
[Charif00] as a feed forward neural network. The
output Zj of the jth neuron in the hidden layer is given
by

 







+= ∑

=

N

i
jijij bXwfZ

1

1 (2)

And the output Yk of the kth neuron in the output
layer is given by

 







+= ∑

=

M

l
klklk bZwfY

1

2 (3)

Where f1, f2 are the activation function of the hidden
layer and the output layer respectively, wj i in (2) is the

synaptic weight connecting the ith input node to the jth

neuron of the hidden layer, bj is the bias of the jth
neuron in the hidden layer. N is the number of
neurons in the hidden layer, f1 is the activation
function, and Zj is the output in the hidden layer.
Similarly, (3) describes the subsequent layer where Yk
is the output of the kth neuron in the output layer, M
is number of neurons in the output layer.

3. Network Training
Training the network is an important step to get the
optimal values of weights and biases after being
initialized randomly or with a certain values. The
network could be trained for different purposes like
function approximation, pattern association, or
pattern classification. The training processes require a
set of prototypes and targets to learn the proper
network behavior. During training, the weights and
biases of the network are iteratively adjusted to
minimize the network performance function which is
the mean square error for the feed forward networks.
The mean square error is calculated as the average
squared error between the inputs and targets .

In the basic back propagation training algorithm, the
weights are moved in the direction of the negative
gradient, which is the direction in which the
performance function decreases most rapidly.
Iteration of this algorithm can be written as:

 kkkk gXX α−=+1 (4)

Where Xk+1 is a vector of current weights and biases,
gk is the current gradient, and ak is the learning rate.
Based on the same idea as before, different algorithms
had been introduced. In [Bouzerdoum01] different
learning methods have been introduced, Classic back
propagation (BP), and conjugate gradient (back
propagation (CGBP) have been addressed.

In this project, all training algorithms have been
developed using MATLAB.

4. Procedure
As our purpose in this project is image compression,
it is important to explain the steps which have been
done. For our purpose three layers feed forward
neural network had been used. Input layer, hidden
layer with 16 neurons, and output layer with 64
neurons. Back propagation algorithms had been
employed for the training processes. To do the
training input prototypes and target values are
necessary to be introduced to the network so that the

suitable behavior of the network could be learned.
The idea behind supplying target values is that this
will enable us to calculate the difference between the
output and target values and then recognize the
performance function which is the criteria of our
training. For training the network, the 256x256 pixels
Lena image had been employed.
4.1 Pre-processing
For the original image to be used, it has to be divided
into 8x8 pixel blocks, and then each block should be
reshaped into a column vector of 64x1elements. In my
case i had 1024 block of which 64x1024 matrix have
been formed with each column represent one block.
Also for scaling purposes, each pixel value should be
divided by 255 to obtain numbers between 0 and 1.

4.2 Training algorithms
With the input matrix constructed in (4.1) and each
column represents a prototype, and with the target
matrix equal to the input matrix, the training could be
started. Different algorithms have been employed;
they can be classified into two main categories: slow
and fast algorithms.

4.2.1 Fast algorithms
 From fast algorithms: quasi-Newton (trainbfg,
trainoss), Conjugate gradient (traincfg, traincpg), and
Levenberg-Marquardt (trainlm). The quasi-Newton
algorithms were employed and it was found that
trainbfg is very slow but on the other hand, it is good
at memory management, where as trainoss is fast and
good at memory management. The Levenberg-
Marquardt is very fast but it is very bad at memory
management since it keeps some matrices from
previous iterations.

4.2.2 Slow algorithms
From slow algorithms: gradient descent(traingd,
traingda). It is slow at speed and good at memory
management.

4.3 Simulation of Results
After training, the network had been simulated by the
input matrix and the target matrix. In the simulation
process two outputs obtained, the hidden layer
output, and the output layer output. The hidden
layer produces a matrix of 16x1024, where as the
output layer produces a matrix of 64x1024.
4.4 Post-Processing
The next step is to display both matrices in (4.3) as
images. This can be done by reshaping each column

into a block of the desired size and then arrange the
blocks to form the image again. In the hidden layer
each column should be reshaped into 4x4 pixel blocks,
while in the output layer, each column should be
reshaped into 8x8 pixel blocks as the input. In both
cases each pixel value should be multiplied by 255 to
obtain the original gray level value of the pixels.

4.5 Algorithm
1. Divide the original image into 8x8 pixel blocks and

reshape each one into 64x1 column vector.
2. Arrange the column vectors into a matrix of

64x1024.
3. Let the target matrix equal to the matrix in step 2.
4. Choose a suitable learning algorithm, and

parameters to start training.
5. Simulate the network with the input matrix and

the target matrix.
6. Obtain the output matrices of the hidden layer

and the output layer.
7. Post-process them to obtain the compressed

image, and the reconstructed image respectively.

5. Results
The algorithm had been tested with different learning
algorithms and the results had been observed. Herein,
all the results were displayed in pairs; the left part is
the performance function which is the criteria of
training, and the right part which includes the original
image in the left top corner, the compressed image in
the right top corner, and the reconstructed image in
the left bottom corner. The entire three images in right
were displayed for comparison purposes . Since our
target is the original image, the accuracy of the
compression will be how close the reconstructed
image is from the original image.
1. Using tansig function in the hidden layer and
linear function in the output. This part was done to
check the ability of learning of linear activation
functions (see Figure 2.).
2. The trainbfg algorithm takes long time to

converge, so the goal had been changed to 0.01
instead of 0.001(see Figure 3.).

It can be easily shown that reconstructed image
needs more iteration to converge. From Figure. 3, the
number of epochs needed to reach the goal was 227,
while it took long time to get there. For better results,
the goal could be .001 while the time needed will be
more than 4 hours.

3. The traingda algorithm is an algorithm where the
learning rate is variable; the results are shown in
Figure 4.

 Figure 2 Performance function (left), original
, compressed, reconstructed

 Figure 3 Trainbfg algorithm results

 Figure 4 Traingda algorithm results.

5. Conclusion
This paper has introduced a comparison among back
propagation training algorithms in image
compression. Gradient descent (traingd, traingda),
Newton method (trainbfg, trainoss) were be tested
while Levenberg-Marquardt (trainlm) was not
completed; it was difficult as a result of memory
management errors. The employed algorithms were
tested for against parameters, like the number of
epochs, and goal. With respect to time of execution,
it is important to choose algorithms of acceptable time
of execution. It was noted that there was a notable
time variation between the used algorithms. It is
important to choose the goal as small as possible to
improve the image reconstruction.
Finally, Image compression could be achieved with
high accuracy using feedforward back propagation.

Our judge of accuracy was the comparison of
recovered image pixels value with the original image;
and minimization of the mean square error between
them. For future work the compression process could
be done and the histogram of the recovered image
and the original image could be compared.

References
[Watanabe01] Watanabe, Eiji, and Mori, Katsumi,

"Lossy image compression using a modular
structured neural Network," Proc. of IEEE signal
processing society workshop, pp.403-412, and
2001.

[Wahhab97] Abdel-Wahhab, O., and Fahmy, M.
M., "Image compression using multilayer neural
networks,” IEEE proc. V is Signal Processing, vol.
144, No. 5, October 1997.

[Erickson92] Erickson, D. S., and Thyagarajan, K.
S., “A neural network approaches to image
compression," Proc. of IEEE international
symposium on circuits and systems, vol. 6,
pp.2921-2924, 1992.

[Patnaik01] Patnaik, Suprava and Pal, R. N.,
"Image compression using Auto-associative
neural network and embedded zero-tree coding,
"Third IEEE processing workshop advances in
wireless communications, Taiwan, March 2001.

[Charif00] Charif, H. Nait, and Salam, Fathi
M.,"Neural networks-based image compression
system," Proc. 43rd IEEE Midwest symp. on
circuits and systems, Lansing MI, August 2000.

[Dony95] Dony, Robert D., and Haykin,
Simon, "neural network approaches to image
compression,” Proc. of the IEEE, vol. 83, No. 2,
February 1995.

[Bouzerdoum01] Bouzerdoum, Abdesselam,"Image
compression using a stochastic competitive
learning algorithm (SCOLA)," International
Symposium on signal processing and its
applications (ISSPA), pp. 541-544, Kuala Lumpur,
Malaysia, August 2001.

