
Image Compression Using Neural Networks 
 

Yahya M. Masalmah  
Advisor: Dr. Jorge Ortiz  

 
Electrical and Computer Engineering Department 

University of Puerto Rico, Mayagüez Campus 
Mayagüez, Puerto Rico 00681-5000 

masalmah@larsip.uprm.edu 
 

Abstract 
 
In this project, multilayer neural network will be 
employed to achieve image compression. The network 
parameters will be adjusted using different learning 
rules for comparison purposes. Mainly, the input 
pixels will be used as target values so that assigned 
mean square error can be obtained, and then the 
hidden layer output will be the compressed image. It 
was noticed that selection between learning 
algorithms is important as a result of big variations 
among them with respect to convergence time and 
accuracy of results. 
 
1. Introduction 
Since images can be regarded as two-dimensional 
signals with the spatial coordinated as independent 
variables, image compression has been an active area 
of research since the inception of digital image 
processing. It is extremely important for efficient 
storage and transmission of image data. Since it was 
an area of interest of many researchers, many 
techniques have been introduced. Artificial Neural 
network have found increasing applications in this 
field due to their noise suppression and learning 
capabilities.  
 
 A number of different neural network models, based 
on learning approach have been proposed. Models 
can be categorized as either linear or nonlinear neural 
nets according to their activation function. 
 
In the literature different approaches of image 
compression  have been developed, one of these 
algorithms [Watanabe01] have been developed on the 
basis of a modular structured neural network which 
consists of multiple neural networks with different 
block size(the number of  input units) for the region 
segmentation. Multilayer neural network [Charif00] 
have been developed in [Wahhab97] as another 
image compression algorithm, in which the use of 

two-layer neural networks had been extended to 
multilayer network. Also in [Wahhab97] Auto 
associative   transform coding approach which 
employs two-layer feed forward neural net to 
compress images have been compared to the new 
technique of four or more layers which in turn needs 
along time to be trained. As a continuation of 
algorithm developments, a new approach has been 
introduced in [Patnaik01] which uses auto-associative 
neural network and embedded zero-tree coding. In 
[Patnaik01] network training is achieved through 
recursive least square (RLS) algorithm. 
 
A self organizing neural network has been used 
[Erickson92] in which vector quantization learning 
rule have been employed. As seen from the literature 
different coding methods have been addressed, in 
[Dony95] predictive coding, transform coding, and 
vector quantization have been utilized in multilayer 
perceptron training. In this project, feed forward back 
propagation algorithm will be employed to achieve 
image compression.  A two-layer feed forward neural 
network will be used and different learning rules will 
be employed for training the network. Back 
propagation could be trained by different rules. 
   
In this project, different learning rule will be employed 
to train multilayer neural network. The network will be 
constructed from input layer, hidden layer, and output 
layer. The image should be subdivided into sub 
blocks and the pixels gray level values within the 
block will be reshaped into a column vector and input 
to the neural network through the input layer. Input 
pixels will be used as the target values, so that the 
mean square error could be adjusted as needed. The 
network will be trained by back propagation, using 
different learning algorithms. Mainly one step secant, 
Newton’s method, gradient descent and adaptive 
gradient descent learning algorithms will be used for 
this purpose. 



2. Back-propapagation Neural Network 
 
 The neural network structure can be illustrated in fig. 
1. Three layers, one input layer, one output layer and 
one hidden layer, are assigned. Both of input layer 
and output layer are fully connected to hidden layer. 
Compression is achieved by designing the value of 
the number of neurons at the hidden layer, less than 
that of neurons at both input and output layers.  
 

 

Figure1 Back propagation neural network 
[Watanabe01] 

The above neural network could be either linear or 
nonlinear network according to the transfer function 
employed in the layers. Log-sigmoid function which is 
given in equation1 is one of the most common 
functions employed in different neural networks 
problems. 
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Some networks employs log-sigmoid in the hidden 
layer and linear in the output layer. It was shown that 
nonlinear functions have a more capability of learning 
both linear and nonlinear problems than linear ones.  
 
The network shown in Fig.1 also have been used in 
[Charif00] as a feed forward neural network. The 
output Zj of the jth neuron in the hidden layer is  given 
by  
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And the output Yk of the kth  neuron in the output 
layer is given by  

        







+= ∑

=

M

l
klklk bZwfY

1

2                    (3)     

Where f1, f2 are the activation function of the hidden 
layer and the output layer respectively, wj i in (2) is the 

synaptic weight connecting the ith input node to the jth 

neuron of the hidden layer, bj is the bias of the jth   
neuron in the hidden layer.   N is the number of 
neurons in the hidden layer, f1 is the activation 
function, and  Zj is the output in the hidden layer. 
Similarly, (3) describes the subsequent layer where Yk 
is the output of the   kth  neuron in the output layer, M 
is number of neurons in the output layer. 

3. Network Training  
Training the network is an important step to get the 
optimal values of weights and biases after being 
initialized randomly or with a certain values. The 
network could be trained for different purposes like 
function approximation, pattern association, or 
pattern classification. The training processes require a 
set of prototypes and targets to learn the proper 
network behavior. During training, the weights and 
biases of the network are iteratively adjusted to 
minimize the network performance function which is 
the mean square error for the feed forward networks. 
The mean square error is calculated as the average 
squared error between the inputs and targets . 
 
In the basic back propagation training algorithm, the 
weights are moved in the direction of the negative 
gradient, which is the direction in which the 
performance function decreases most rapidly. 
Iteration of this algorithm can be written as:  

   kkkk gXX α−=+1                                (4)  

Where Xk+1 is a vector of current weights and biases, 
gk is the current gradient, and ak is the learning rate. 
Based on the same idea as before, different algorithms 
had been introduced. In [Bouzerdoum01] different 
learning methods have been introduced, Classic back 
propagation (BP), and conjugate gradient (back 
propagation (CGBP) have been addressed. 
 
In this project, all training algorithms have been 
developed using MATLAB. 

4. Procedure 
As our purpose in this project is image compression, 
it is important to explain the steps which have been 
done.  For our purpose three layers feed forward 
neural network had been used. Input layer, hidden 
layer with 16 neurons, and output layer with 64 
neurons. Back propagation algorithms had been 
employed for the training processes. To do the 
training input prototypes and target values are 
necessary to be introduced to the network so that the 



suitable behavior of the network could be learned.  
The idea behind supplying target values is that this 
will enable us to calculate the difference between the 
output and target values and then recognize the 
performance function which is the criteria of our 
training. For training the network, the   256x256 pixels 
Lena image had been employed.   
4.1 Pre-processing  
For the original image to be used, it has to be divided 
into 8x8 pixel blocks, and then each block should be 
reshaped into a column vector of 64x1elements. In my 
case i had 1024 block of which 64x1024 matrix have 
been formed with each column represent one block. 
Also for scaling purposes, each pixel value should be 
divided by 255 to obtain numbers between 0 and 1. 

4.2 Training algorithms 
With the input matrix constructed in (4.1) and each 
column represents a prototype, and with the target 
matrix equal to the input matrix, the training could be 
started. Different algorithms have been employed; 
they can be classified into two main categories: slow 
and fast algorithms.   

4.2.1   Fast algorithms  
 From fast algorithms: quasi-Newton (trainbfg, 
trainoss), Conjugate gradient (traincfg, traincpg), and 
Levenberg-Marquardt (trainlm). The quasi-Newton 
algorithms were employed and it was found that 
trainbfg is very slow but on the other hand, it is good 
at memory management, where as trainoss is fast and 
good at memory management. The Levenberg-
Marquardt is very fast but it is very bad at memory 
management since it keeps some matrices from 
previous iterations. 

4.2.2   Slow algorithms  
From slow algorithms: gradient descent(traingd, 
traingda). It is slow at speed and good at memory 
management. 
 
4.3     Simulation of Results 
After training, the network had been simulated by the 
input matrix and the target matrix. In the simulation 
process two outputs  obtained, the hidden layer 
output, and the output layer output.  The hidden  
layer produces a matrix of 16x1024, where as the 
output layer produces a matrix of 64x1024.  
4.4     Post-Processing  
The next step is to display both matrices in (4.3) as 
images. This can be done by reshaping each column 

into a block of the desired size and then arrange the 
blocks to form the image again. In the hidden layer 
each column should be reshaped into 4x4 pixel blocks, 
while in the output layer, each column should be 
reshaped into 8x8 pixel blocks as the input. In both 
cases each pixel value should be multiplied by 255 to 
obtain the original gray level value of the pixels.  
 
4.5 Algorithm 
1. Divide the original image into 8x8 pixel blocks and 

reshape each one into 64x1 column vector. 
2. Arrange the column vectors into a matrix of 

64x1024. 
3. Let the target matrix equal to the matrix in step 2. 
4. Choose a suitable learning algorithm, and 

parameters to start training. 
5. Simulate the network with the input matrix and 

the target matrix. 
6. Obtain the output matrices of the hidden layer 

and the output layer. 
7. Post-process them to obtain the compressed 

image, and the reconstructed image respectively. 
 
5. Results 
The algorithm had been tested with different learning 
algorithms and the results had been observed. Herein, 
all the results were displayed in pairs; the left part is 
the performance function which is the criteria of 
training, and the right part which includes the original 
image in the left top corner, the compressed image in 
the right top corner, and the reconstructed image in 
the left bottom corner. The entire three images in right 
were displayed for comparison purposes . Since our 
target is the original image, the accuracy of the 
compression will be how close the reconstructed 
image is from the original image.  
1. Using tansig function in the hidden layer and 
linear function in the output. This part was done to 
check the ability of learning of linear activation 
functions (see Figure 2.). 
2. The trainbfg algorithm takes long time to 

converge, so the goal had been changed to 0.01 
instead of 0.001(see Figure 3.). 

 
It can be easily shown that reconstructed image 
needs more iteration to converge. From Figure. 3, the 
number of epochs needed to reach the goal was 227, 
while it took long time to get there. For better results, 
the goal could be .001 while the time needed will be 
more than 4 hours. 
 
 



3. The traingda algorithm is an algorithm where the 
learning rate is variable; the results are shown in 
Figure 4. 

  
 

 
 
 
 
 
 
 
 

 
 Figure  2 Performance function (left), original                 
, compressed, reconstructed   
 
 

  
  Figure 3 Trainbfg algorithm results 
 
 

 
 

 Figure 4 Traingda algorithm results. 
 
5. Conclusion  
This paper has introduced a comparison among back 
propagation training algorithms  in image 
compression. Gradient descent (traingd, traingda), 
Newton method (trainbfg, trainoss) were be tested 
while Levenberg-Marquardt (trainlm) was not 
completed; it was difficult as a result of memory 
management errors. The employed algorithms were 
tested for against parameters, like the number of 
epochs, and goal.  With respect to time of execution, 
it is important to choose algorithms of acceptable time 
of execution. It was noted that there was a notable 
time variation between the used algorithms. It is 
important to choose the goal as small as possible to 
improve the image reconstruction. 
Finally, Image compression could be achieved with 
high accuracy using feedforward back propagation. 

Our judge of accuracy was the comparison of 
recovered image pixels value with the original image; 
and minimization of the mean square error between 
them. For future work the compression process could 
be done and the histogram of the recovered image 
and the original image could be compared.  
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