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Analysis and Modeling of a FFHC Controlled
DC-DC Buck Converter Suitable for Wide Range of
Operating Conditions
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Abstract—To achieve the best optimized performance in terms elimination of discontinuous effect of the real convertestem
of stability and dynamic behavior of power electronics conert-  and ignoring the microscopic dynamics inside the switching
ers, it is necessary to use a more advanced control technlquecyde [8]. Because of this approximation, the traditions of

and accurate mathematical model. This paper propose a fixed ina techni d also Ii troll ekt
frequency hysteretic current (FFHC) controller that uses koth averaging technique and aiso finear controfler cannoaeklr

sliding mode control (SMC) technique and fixed frequency always the best optimized performances over wide operating
current controller with a hysteresis band to achieve all prgperties conditions [9]. It is therefore a great importance to be able

of the variable structure controller. However, realizing such fixed to analyze and predict such instabilities to extract thistbe

frequency sliding mode controller using small-signal aveaged . ; i ;
(SSA) model of the power converters and Utkin's equivalent optlmllzed performance m. terms of stability and dynamic
behavior of power electronics converters.

control technique may not be valid for all conditions. We sha )
that it can be applicable only when the fast scale dynamics dhe However, recently it has been reported that performances of
converter system is stable, which can be achieved succedhfloy —a power converter can be significantly improved by combining

analyzing the stability of the FFHC controlled buck converter  the different mode of controllers like sliding and constaat
using Filippov method and Floquet theory. The regions of 4 ency PWM voltage-mode or current-mode controller [10],

stability are then presented to show the domains of existemc - .
of nominal period-1 and higher periodic orbits in 2-dimensbnal [11], [12], [13], [14], [15], [16]. Due to this combination,

(2-D) parameter space. We also demonstrate how to derive the the SMC essentially utilizes a constant-frequency switghi
equivalent control law from modified tristate converter topology control law to drive the state trajectory from any initialgitton

to design the controller. Finally, the experimental resuls are onto a specified surface in the state space, called theglatin
presented to validate the effectiveness of this hybrid FFHC switching surface (SS), and to maintain it on this surfaceafo
controller. subsequent time [17]. The main features of this sliding mode
Index Terms—DC-DC buck converter, fixed frequency hys- are the robustness against the load and the input voltage fluc
teretic current (FFHC) control , sliding motion (SM), sliding ,a46ns. However, in spite of these unique advantagest mos
mode control (SMC), multi-scale oscillation, discontinuas sys- of the controllers ’re ted i . tical
tems. ported earlier are impractical for pow
converters — either requiring complicated control cindag
and more price [10], [11], [12], being variable-frequency
o . controllers [18], or having a slow dynamical response [13],
Obtaining the accurate mathematical models for DC-Df4). Moreover, they are completely relied on smooth avedag
converters and optimizing their performances over wideropgnodels of the power converters and the control is only valid
ating conditions, especially, for next-generation micom@s- 5 a reduced-order switching surface.
sors [1], [2]_, are a traditional challenge for power elentes With these views, we propose in this paper a hybrid FFHC
design engineers. In recent past, there are many effore®v ., noller, which is implemented on the basis of SMC tech-
to this research area, and reviews are now available on fig,e and fixed frequency hysteretic current-mode comtroll
subject [3], [4] and references therein. In most of the cabes \ith 4 hysteresis band. The choice of this variable strectur
methods of analysis are mainly based on constant-frequeRgpirolier is quite logical for power converters because th
pulsewidth modulated (PWM) operation, standard linear cogonirol and plant are both discontinuous. It retains all of
trollers, and small-signal averaging techniques [3], T8le ad- e properties of an ideal SMC; that is, simplicity in design
vantages of such methods include constant-frequencyswitgnq practical realization, good dynamic response and less
ing operation, well-established design methods, and magyershoot in the regulated output voltage. In addition, it
years of successful applications in practice. However, ayinerently acts as a current limiter to protect the convereen
eraging is only an approximated procedure to obtain thgeroads, provides relatively larger bandwidth by eliating
low frequency behavior of the actual switching model. Th@ompensating ramp signal and reduces the impact of very

averaged model was found to fail in predicting many of faﬂigh-frequency dynamics due to parameters uncertainties o
scale instabilities that may develop in the voltage andesurr o closed-loop system.

waveform at clock frequency result subharmonic osciltaio However, it has been seen that the sliding motion (SM)
and chaotic behavior [6], [7]. This shortcoming is due to thgt hyprid discontinuous systems (HDSs) can be successfully
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SS, there exists a unique solution of equivalent dynamids asliding motions or¥ as the solutions oR; , of the continuous
the SM obtained from these methods are the same. Howewedinary differential equation

with boundary layers control, the SM only exists when the dx

fast-scale dynamics is stable. The mathematical proofisf th 5 = F(@) =afi(z) + (1 - a)fa(z) (2)

concept has already been developed earlier in muIti—ch)\I,ﬁere F(z) is a convex combination off,(z) and f»(z)
HDSs [20]. Since the power electronics converters c:omeruncﬂgngent oS, at z, with a scalar functiono  —

this class of systems [21], [22], [23], the equivalent eqprat Oh(x) /0 fa(x) ; i i
. ; - L 1]. -
of motion derived from Utkin theory may not be successflﬁh(?ﬂ)/@?[fz(r)ffl(r € [0, 1]. Generically, this convex combi

X . . . ! ation is unique. Thus, the state portrait of a Filippov eyst
always in predicting the existence of a unique solution [20] is composec? of the sliding statg portrait éhder;ipr)]ed g;

can only be successfully used when the long-time averagiBgundarie§: — {z € h(z) : a = 0,1} and of the standard
of fast-scale oscillations become zero, in other word, when thgtate evoluticl)ﬁs—in each regidhl_g a’s shown in Fig. 1(a)

fast-scale oscillations of the inductor current and theac#pr
voltage ripple of the converter are periodic. It is therefor Ry - Sliding domains —!
necessary to predict fast-scale instability margin foiigleag f1(x)
the SMC power converters based on Utkin’s theory. / /\ \ \ \ \ h(x)
In this paper, we apply this concept and design the FFHC /‘ /‘ / / / A\
controlled tristate DC-DC buck converter for extracting it f,(x)
| 5, R

best optimized performance, i.e, fast transient respoitbeut x(t) =1

fast-scale instability under wide range of line- and load-va (@)
ation. The paper is organized as follows. Section Il rewisit f1 (¥

the condition of SM in a HDS with single, and multiple \ \

switching surfaces. In Section Ill we describe the proposed - g wmmm v
system and its mathematical model. We then illustrate how € [ feq® \

Utkin's equivalent control law and Filippov's method toget ... NN N

can be used to design this converter system and to extract / /

its best optimized performance. Finally, in Section V, the f2(¥) (b)

performance of proposed scheme is experimentally verified o _ o S
and compared with the classical peak current-mode coattol['9: 1. A representative diagram showing: (a) the direc6dhoth piecewise

. . smooth vector fieldg; (x) and f2(x) for a sliding motion on an ideal switch-
buck converter without slope compensation. ing surfaceh (z)

II. SLIDING-MOTION IN A DISCONTINUOUSSYSTEM

From dynamical system [24], or from control theory point
of view [17], the HDSs with right-hand side discontinuitynca
be descried as

x); x € Ry if h(x) <0
%:f(w):{fl(), € Ry it hr) < 0
fa(x); x € Ry if h(xz) >0
where Ry »(z) € R? are the smooth regions separated by an

one-dimensional discontinuous switching hyper-surface).

The systems are called continuous switchingifz) = f2(z)

at any point of the boundary; » separating two adjacent
regionsR; and R», and the vectort: is uniquely defined at
any point of the state space and trajectories in regian
approaching transversally the boundalys,, cross it and enter
into the adjacent regiorR;. By contrast, in discontinuous
systems (called Filippov systems), two different vectors
namelyfi(z) andf2(z), can be associated to a pointE X o.

If the transversal components ¢f () and f2(x) have the
same sign, the trajectory crosses the boundary and hastat tha
point, a discontinuity in its tangent vector. On the contrér

the transversal components Aif(«) and f»(x) are of opposite
sign, i.e., if the two vector fields are pushing in opposite
directions, the state of the system is forced to remain on
the boundary and slide on it. Although, in principle, mogon
on the boundary could be defined in different ways [19], the
most natural one is Filippov convex method [24] that defines
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happen when the long-time averaged values of coefficients 1l Qo
aa, andas becomes constant [20], [25]. These coefficients are Q1 Er
known as the Fillipov coefficients. Once these coefficiest ar T3] 000 -
well defined, there will not be any transversal components of - L J;\"/'
the average vector fieldq(x) € (f1(x), f2(z), f3(z)) along Vin
the SS. We can write this transversal condition mathenigtica D o C = R
as
o L | |-
M) ) =0 @ = | = ==
Here, it is important to note that the equation (4) is inhdyen | j Q
same, as the SM determined from the Utkin’s equivalent coni- % Q
trol [17] for single discontinuous SS. Where the dynamics i$ °D -
essentially determined by replacing the discontinuougrobn ! ir:f +5VJ' 1 LT

input w by an equivalent control,, given by the solution
of ) — 0, or 225 £ (z,ueq) = 0, if such a solution K= Inner controller
exists. When the state-space dynamic is expressed in the fot-----------------------

% = Az + Bu+ D, the equivalent control may be explicitly

calculated by § -+
_ 5 f
_ [on() 7" oh(x) 3 .
whereaf;—(;)B should be a nonsingular square matrix. Substi- é
tuting (8) into (7), we get the equivalent dynamics _0 777777
-1
i = Az p | 2D gl Ay (6)
Ox Ox

Therefore a solution is an absolutely continuous vecttweé  uq
function, which outside the surfaces satisfies (1), and on
and inside their boundaries satisfies (6) for almosttaths
mentioned before.

uz

ol

=
_|
T

X
I11. M ODELING OF FFHC GoNTROLLED DC-DC Buck o
CONVERTER

The schematic diagram of a FFHC controlled tristate buck o _
converter is shown in Fig. 2(a). It consists of an indudtor (Fg?éené?;ti%hgp]tiﬂ‘;g’iﬁmlﬁgﬂ%ggggﬁgﬁ?ﬂ? év'ﬁgmgcgg‘)’éger
a capacitorC, a load resistancé?, a conduction |0Ss serieSHere black region indicates where both switcligs and Q» are turned off.
resistance:, an uncontrollable switcl, and two controllable
switches@; and Q;. The switching of the); and @, are
controlled by the FFHC control logic. combination of these three signals eventually forms a bednd

“chattered box” or simply called thswitching box

Lt

A. Controller Architecture and Switching Logic

The controller architecture to achieve such switchingdogi

circuit is implemented by means of a nested feedback cd@r this converter system. Depending on the initial positid

troller. The slow outer voltage controller is used to geteetlie  the inductor current(0), the converter may operate into two

quasi-stationary boundary layers [25] of the hysteresiplo modes: one when the inductor curreis outside the boundary

This is achieved by obtaining the equivalent referenceerurr Jayers and the other when it is inside. At the beginning of the

signalsi; andi_, as a linear combination of the outputevery switching cycles, we determine whether the inductor

capacitor voltage v and a reference voltdge in the form  currenti|,_; is within the boundary ofSg or not. If it is
inside, at the start of the clock period, the switgh is turned

@) on andQ), i . L )

o is turned off, the inductor currentraise. When
wherek,, is the gain of the proportional controller, aidis the reaches a peak valug , the Q; is turned off. The inductor
bandwidth betweer ; andi_.. While the fast inner current currenti starts falling until it reaches the lower threshold
controller is used to generate the binary control signat currenti .. The switchQ is turned on whenreaches _; and
(0,1) whereu = (u; us)T, by comparing the sensing inductoremains on until the arrival of the next clock pulsei teaches
currenti with two threshold reference current$;, i, and next clock pulse with a nonzero value without intersecting
an externally generated clock pulse of time peribd The i_., the operation is said to be in continuous conduction mode

Sp={(6,v) iy < i <iifp, t <T} € R 8)

.+ _ o— _ .+
[ kP(V;Ef - U)7 and lref = lret T A

ref?
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(CCM), otherwise it is in pseudo-continuous conduction mods the state variables. Here, the switching occurs whertbeer
(PCCM) [26]. But, ifi reach zero value before the next cloclsolution of each subsystem (vector field) reaches the sintch
cycle, the switchD is turned off, and then the operation is saidunction specifically defined for that subsystem. The svititgh

to be in discontinuous conduction mode (DCM). This mode dfinction between the subsystems, and M, is given by

operation occurs when the boundary layers curréhtsand
i (from equation (7)) become negative.

However, if the inductor current;_r is outside ofSg, Q1
is turned on andy; is turned off wherd < i|,—7 < i, and
both the switches are turned off whélp—r > i . > 0. But

ref

all three switches remain OFF throughout the clock period if

ili=1 = 0.

00— T
Vin L ! L | +
C— R v cL R=V
@) (b)

g i i

L ¥ L ¥
c—= R=V | C— R=V
() (d)

Fig. 3. Circuit configurations of a tristate buck converteridg different
modes of operation: (a)/1, (b) M2, (c) M3, and (d) My respectively.

B. Converter Dynamics and Equations of SSs

There are four configurations as shown in Fig. 3, argq/

described by four sets of differential equations, as fodlow

hi(x) (13)

where k is the scaling factor. When: hits the boundary
hi(x), switching occurs and subsequently, the evolution: of

gt _
= iy —kry=0

if hy =0

CCM c@

if hy =0

PCCM cycle

if h3 =0 if hp =0

DCM cycle

if h, =0

Fig. 4. Switching flow diagram of tristate hysteretic cutreantrolled buck
converter.

is governed by the subsysteid,. Three switching functions
may exist when trajectories are in the subsystéfy. One

is the clock signal for resetting the switch that moves the
stem fromA/; to M; and the others are d@t= i, and

1 = 0, which moves the system fro/, back toM; through

M, whenQy is on, @ is off and D is in reverse-bias, the g, psystemiz,, or from M, to M, through subsystems/s

system equation is
dx

a fi(r) = Ajx + By; (u1,uz) = (1,0) 9)

Ms: when @, is off, Q- is off and D is in forward-bias, the
system equation is

for

Ccll_:tc = fo(x) = Aoz + Bo; for (ui,u2) =(0,0) (10)

and M, respectively. These three functions can be described
as

ho(z) = kzy—i =0 (14)
hy = t—T=0 (15)
hey = x2=0 (16)

while in My, the system has only one switching function

Ms: when @ is off, Q5 is on andD is in reverse-bias, the hs(z) :==t — T = 0. If the state hitshs(z), it returns toM.

system equation is
dx

7 f3(r) = Azx + Bg; (u1,uz) = (0,1)

My: when both@), and Q. are off andD is in reverse-bias,
the system equation is

for (12)

d
d—“t’ = fi(z) = Aoz + By (12)
where
B [ —-1/RC -1/C
A= A= ( 1/L —r/L )
[ —1/RC 0 [ -1/RC 0
A = (o —r/L)’A4_(O 0)’
_ V;ef/RC _ V;"ef/RC
B = ( (Vin — Vier) /L ) Bz = ( ~Viet/L )
B3 = By= ( (‘)/ref/RC), andz = [(Vier —v) i]”

Since in each clock cycle the system may operate either in
CCM or in PCCM, or in DCM, the model can be represented
by the switching flow diagram shown in Fig. 4. However, only

dynamics of PCCM operation is presented here.

C. Critical Hysteresis Bandwidth A,

In order to operate the converter in PCCM, we need to
calculate first the critical hysteresis bandwidiy. Here, A,
is the boundary condition between two isolated converter
topologies CCM and PCCM respectively. If the inductor
current rippleA less than this critical valué .., the converter
operates in PCCM, otherwise it operates in CCM. Moreover,
here,A. can be defined as

(17)

wherei.. is theT*" instant inductor current at the edge of CCM
operation as shown in Fig. 5. Considering the initial positi

o + .
Ac =i —ic
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of state variables:(dT) = [Viet — Vs, ijef}T (V,, represents . 1.53
the steady-state dc output voltage) and solving, the soluti <
of subsystem equation (10), given as o
T € 1526
x(T) = eAQ(l*d)Ta:(dT)—i—/ eA2T=")Bydr; Ya € M, (18) %
dT o
where d is the steady-state duty ratio, the critical inductor g
currenti. can be easily expressed as a function of on/off é 1529
switching instants inductor currentd’). However, since £
x(T) in (18) is a function of matrix exponent**=47 one
cannot find its exact explicit form of expression as a funrctio
of i(dT'). Based on first-order approximation, it can expressed 151 e
0.76 0.762 0.764 0766 07

Error voltage X1 (V)

Fig. 6. A typical periodic trajectory evolution of FFHC cooited tristate
buck converter within the switching bo¥p for L=200uH, C=100uF,
r=0.010, A=0.001,T=2ys, k=1, kp=5.5, V,e=5V, Viy=12V, and R=7.5.

IV. SM AND SMC IN THE FFHC CONTROLLED TRISTATE
BUCK CONVERTER

The classical smooth equivalent control law (8) always
approximates the dynamics due to MSSs. Because of this
improper approximation, achieving a unique solution ofl rea

Fig. 5. Inductor current at the edge of CCM operation. power electronic systems is not so straightforward. The sys
licitl tems having single SS or MSSs with — 0 always have
explicitly as a unique solution [24], [17], whereas in multi-scale power

Pt r(l - d)TZ-+ _dl-=dT ) €electronics systems, the unique solution only exits when th
¢ et L ref L long-time averaging ofast-scale oscillations become zero (as
wherei(dT) = i, and i, is the upper boundary functionexplained in Section Il). This zero average dynamics céorlit
defined byi', = k,(Vier — v). Further substitution of however, can be obtained by analyzing the stability of a
z‘jcf|t:dT ~ ky(Viet — dVin) into (19) therefore yields the periodic orbit. There are four general approaches which are
critical condition normally used to analyze fast scale instability: 1) the Paié
rky,(1 —d)T d(1—d)T(1 —rky) map [27], [28]; 2) the Floquet theory; and 3) the monodromy
A= TVM"" i3 Vi (20)  matrix using Filippov theory [29]. To apply this concept,
Here, the parameters L, T', V..t are known and otherk,, We organize this section as follows. First, based on an ideal

constant, from (20) we can get the maximum current rigple @ sliding mode are found. Second, using monodromy matrix,

Vi (19

required for the PCCM operation is dt= 0.5: the fast-scale stability analysis is performed and cooedmg
kT (1= k)T regions of different periodic orbits are identified for safe
A= SL Vet + TpVi (21) operating condition. Finally the equivalent equation oé th

For every clock cycle, the value a& in (21) thus gives us motion is derived to design the controller accordingly.

the necessary condition for a successful converter operati
in PCCM when state vectors evolve inside the boundafy Existence Conditions of e-neighborhoods SSs
layers of Sp periodically. In two-dimensional state space, a Assume there exist-neighborhoods SSs (where— 0),
representative periodic evolution of state trajectoried their  given by
corresponding boundary layers are shown in Fig. 6.

However, it is important to note that in each clock cycle, h(z) = kpz1 — k2 (23)
trajectories may evolve outside or inside boundary layérs Brom Utkin theory [17], we know that a SM exists in

Sp. For an arbitrary initial position:(0), the controller the vicinity of a switching surfacei(z) if the following

o dh(z)
up =1, M(r) <0 }if z is outside

(24)

local reachability conditionslimy,)_o- =5~ > 0, and
u = up =0, hi(z)>0 (22)  limp () o+ d}jff) <0, or limy,(;)—o d’;(f)h(x) < 0 are simul-
Ueq € (u1,uz), if z is inside taneously satisfied. The explicit form of suemeighborhood
therefore drives the trajectories to reach iste in finite time :ﬁgctihrizllcl;gri(\:/grt-lisle“%gz (ca;n be derived by simply substitg
ts > 0. Once they reach, a hysteretic flow inside the switching *
box starts and an equivalent motion continue to move towardh(z) _ Oh(x)dz _ [ Jfi(x) >0 if h(z) <0
the quasi-equilibrium point. dt Oz dt | Jfa(x) <0 if h(z)>0

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs—permissions@ieee.o
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Fig. 7. Regions of existence of SM and state trajectoriedugea of FFHC controlled tristate buck converter for: (agripdic mode of operation when

R=8Q, and (b) aperiodic mode of operation wh&+4(2. The other parameters are same as Fig. 6. Here, the criticaldaries>; 2 are obtained from (25)
and and (26).

into this conditions, whereJ = 0Oh(x)/0x = [k, — k]. (27), the region of existence of SM is identified and the state
Replacing (9) and (10) into (24), and applying the contral latrajectories evolution are also captured (see Figs. 7)eHer
(23), the existence region of SM or SMC can be expressedthe critical boundariesl; » represent the conditions where
LV vector field f1(x) or fo(x) is tangent toh(xz) and outside
¥ o= —Mxl—Na:Q—s—PVref—%>0;for u =1(25) of X, ; the approaching trajectories on either side of SS,
cross it transversely and enter into the adjacent region. On
By 1= —May — NoptPher <0; for uf =0 (26) o contrary, inside):he boundaries, bgitiz) iind f2(.7:)gare
pushing in opposite direction; so the trajectories areddrio
- o _ _ remain onh(z) and start sliding along the surface. However,
(z + %) The limiting boundaries (25) and (26) give thét is observed that the motion may or may not remain strictly
necessary region of existence for the SM on smooth SS [1Riside the sliding segment ast — oo (see inset of Fig. 7(a)
[30]. Here L, C, k and V¢ are the known parameters andand (b)).
their exact values can be substituted directly into the abov
inequalities for inspection. However, for a range 16§ and
R, it is necessary to consider the boundary points of these
parameters value. The conformation of either the maximum
or minimum point of these parameters value is generally
sufficient for ensuring the abidance of the existence cardit
for the entire range of operation. Knowing the boundary tsin
of Vi, and R, and making the assumption that the controller
is designed with a static sliding surface to meet the extgten
conditions for steady-state operation. Therefore it issjie
to calculate the boundaries of proportional g&jnas

FRC (Viet |\, krC Vier
L L T1ss

— k kp — kp T’k p—
where M = <f+m), N = (ﬁff), and P =

N
[N)

Sampled inductor current (A)

0<k,<

(27)

Tl1ss

Load resistance Q )

where the steady-state state variablesaate= [x14s 725"
The expressions (25)-(27) are essentially interpretedama Fig. 8.  Bifurcation diagrams of sampled inductor currenbveing the
dition, requirement for the system trajectories to be dedn ?peeﬁg?:ésm Ogéoéfﬂorezt;?]'_“ﬁﬁé ng;gdrjsggﬁwez?g_gg‘ftgkz:”e':'sa'g .
towards the sliding surface, from both sides. Since theesyst pifurcation parameter. All other parameter values are sasBig. 6.
trajectories are directed towards th€x), once they reach
h(z), they cannot leave it anymore and continue to slide alongA closer look on inner dynamics of state trajectories reveal
the sliding surface towards the equilibrium, and this solut that, when the inductor current "bounces” off of the edge
is unique []. Is it valid in power electronic circuits with MSS? of S and returns to the interior of 5, the associated time
To prove this question, we numerically simulate the corfractions of vector field or duty ratios are well defined anel th
verter using MATLAB/SIMULINK for two different cases: existence condition is satisfied. However, with a finite Wwidt
one when converter operates in periodic mode; and the otheundary layers control, the converter may toggles between
when it operates in aperiodic mode. Based on approximat®re than one circuit topologies insidg;, thereby can also
smooth sliding surfacé(z) ~ 0 and the inequality constraintexhibit various kinds of nonlinear behaviors such as chaos,
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quasi-periodicity; and limit cycle oscillations [7]. Out these acceptance among mainstream power electronic practigone
nonlinear phenomena, there are two degenerate caspms— The stability analysis using the fundamental solution iratr
periodicity and chaos, where the inductor currertinside S over a complete cycle or monodromy matrix, thus provides an
can either aperiodically oscillates and hits the cornes©f7] alternative method of obtaining the Jacobian of the Po#car
or moves without hitting the corner points if it evolves on anap when the nonlinear map cannot be explicitly derived.
torus. The dynamics is then characterized by the existehce oThe monodromy matrix is eventually a composition of the
two (or more) frequencies which are incommensurate [3Htate transition matrices for the pieces of the orbit that li
[32] and the duty ratios of the converter would not be welh the individual subsystems, and the saltation matrix can b
defined. In such situations, the existence conditions (28) aexpressed as [24], [33]
z(a_zlv?/)aWhICh wer_e.orlgmallly defined for single SS is not valid - [+ (2) — f~(2))0h(x)/0z

ys for deriving equivalent control law with MSSs. The S=1+ (28)
representative bifurcation diagram of the FFHC controlled Oh(z)/ 0z f~(x) + Oh(x)/0t
buck converter is shown in Fig. 8 where the sampled inductehere! is the identity matrix of the same order as the number
current taken as the plotted variable. At high valuesipf of state variables. When converter operates in PCCM, the
a stable period-1 orbit exists in PCCM. However, with atate transition matrix over the complete cycle can be then
decrease imk, this orbit becomes unstable through a smoottomposed of the state transition matrices over the thresgsha
period-doubling bifurcation at? ~ 7.05Q2. Subsequently, of evolution and three saltation matrices for the switctiogn
one of the branches of the period-2 orbit hits the bord@d; to M;(S1), from M, to the free-wheeling staté/s(.Sz)
between PCCM and CCM operation At~ 6.83C2 as shown and finally switching back td; (Ss) [34]:
in Fig. 9(a). Available theory predicts that this bifureati
also leads to and a direct transition from a periodic orbit to W = 53055, 825101 (29)
aperiodic orbit. As the parameter is further reduced, aeseriyhere the state transition matricés, ®, and®; are obtained
of smooth and border collision bifurcations occur in closgs matrix exponentialg®1@7 42427 gnd 42457 respec-
succession, and finally it bifurcates into a chaotic behavigively. In order to evaluate these, one needs to know the duty
at R ~ 4.68(2. The continuous-time waveform of a typicalatio d;, d», andds. This can be obtained following [27] using
chaotic inductor current oscillation d = 4§ is shown in the Newton-Raphson method. Alternatively one can use any

Fig. 9(b). standard simulator to obtain the stable behavior, from twhic
—-— the information aboutd;, d», and d3 can be extracted. In
é Transition from PCCM.to. CCM ;;, | calculating the saltation matri%;, the switching function is
=1 f % | j‘\ i = A hi(x) = kyr1 — kxo, so that the normal i9h;(z)/0r =
o {\ f\ f\ I f\ 2 / \\ o] \ /\ [k, — k] and the time derivative i8h,(x)/0t = 0. Similarly,
§ Jl o \ \ \ 4 § / \ /\\ | Vo /A\ | /\\ for calculatingS2, the expression for the switching function
gl \ /QD SRR / NI W |\ || is simply derived from (19) ass(x) = ka2 — (kpz: — A).
gl L/ R -1 || Wy Thusohs(z)/0x = [k, k| anddh,(z)/0t = 0. With these
- ‘ @] .. (b)] expressions, we can obtain the saltation matrices
YSe et 192 7°%1s 219 2.2

Time (msec) Time (msec) n _ Ohq(x) n _ . Oho(x)

(f2 = /1) (fs = f2)

Fig. 9. The continuous-time inductor current waveform singw (a) the S1=I+ Oz ; So=1I+ Oz
direct transition from PCCM to CCM operation f&=6.832, and (b) a typical Oh (I)f— + O (x) 8h2($)f— + Oho(x)
chaotic oscillation forR=4.682. or ‘1 ot ox *2 ot

Thus, we can see that, if the converter operates in PCCM,"Ch are evaluated as

the existence conditions (25) and (26) derived forea ¢ _ | 1 0 g, — | 17kpaz  kaz 30

. 1= _k 1+k s PK2— —k 1+k ( )
neighborhood ofh(z) can be successfully used only for a po1  1+ka; pa3 +kasz
guaranteed reaching condition of trajectories ifiig, but not \ynere
for the SM of that hysteretic flow inside.

Vin/L
“T Tk K b Lk ik

B. Existence Region for Hysteretic Flow (R—pc‘*‘f) Viet = Vin— (R_?; + f) L1t (T_ﬁp) T2

In order to identify existence region of the high frequency x9/C
hysteretic flow inside and to observe the stability status 8¢ (k_p N &) o (k_p N &) Ve — (ﬂ B k_p) N
the converter system, it is therefore necessary to estithate R L)t RC T L) Fref L)

fast-scale stability margin at the clock speed [23]. It isoal “
required to estimate the range of external parameters tilat w” (k_p + &) Ty — (k_p + &) Ve — (ﬂ — k_p)

- . ) RC T L)% RC T L) Vref —\ T T T )72
ensure periodic operation without the onset of chaos. The
sampled-data model (or Poincaré map) addressed earfigr [&nd S5 is an identity matrix. Note that the form of the
[6] to solve this problem. Even though it is conceptualljnonodromy matrix is sufficiently general. If the orbit cant
simple, it yields complicated equations for most convaiterpassage through more number of subsystems with a number
and as a result, this approach has not found widesprezdcrossings (for example, in a higher periodic orbit), one

(V;ef - 1'1) /L

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.or
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18 Chaotic or C'haotic o '
higher periodic region higher periodic region
14 ot
10 ‘ A ‘ "
|
° Stable period-1 region Stable period-1 region ‘
: |
5 10 15 20 25 3 8 10 12 14
R(Q) (a) Vin (V) (b)

Fig. 10. Stability region of the period-1 orbits: (a) Rk, and (b) inVi,-k, parameter space. The contours are obtained using the iconttiat the lower
eigenvalue of the monodromy matriceg is equal to -1.

just has to compose the monodromy matrix out of the stadaitching box can be described by the state-space averaged
transition matrices for the passage through each subsystdm model

the saltation matrices related to the crossings. This wihty

simplify the analysis as each crossing can be treated sefyara —~ = [A1z + Bi] uieq + [A2x + Ba] (1 — U1eq — U2eq)
I_:urtht_ermore, the m_onodromy matrix essentlall_y r(_epresid_mts + [Asz + Bs) tneq (31)
linearized system integrated around the periodic orbitd an
hence their eigenvalues » respectively, represent the Floquev\/hereum,u2cc1 € (0,1). Further substitution of (9)-(11) into
multipliers. If they lie within the unit circle, the orbit istable. (31) yields

For example, if we choose the parametéis = 12 V, L=

0.2 mH, C=100 yF, T = 2 usec,k, = 55, A = 0001, 411 _ (hetzz) 22

Viet = 5 V and R = 7.06 ©, the corresponding the duty ratio dt RC c h

are found to bé.2496, 0.3718, 0.3786, and the eigenvalues of drz _ _M(l — Ugeq) — ™2 4 Eul (32)
the monodromy matrix-0.996 and0.2848 are inside the unit dt L Lo

circle. Therefore the orbit is stable. Once it is stablefage Here, it is important to point out that the discontinuousteoin
dynamics will be zero value. inputs u; and u; have been replaced by their equivalent

This provides a simple way for the circuit designer to choos®ntinuous controlsiie, and ug., Where the corresponding
the parameters for successful operation of SMC. Givenicertalynamics of dz/dt = feq(z) is essentially composed of
specifications oy and power throughput, the designer woulghree subsystems equations. The derivation of such awtrage
first roughly set the range of parameters in a conventiongnamics of a PWM controlled DC-DC converter operated
way based on Utkin's theory. This gives the desired slojtf DCM has been reported by Sw al. [36] earlier. Based
time scale stability and transient performance, but wilt n@n this concept, the equivalent dynamics of FFHC controlled

guarantee that the system will be stable on a fast time sc@le-DC converter can be obtained in full-order form, as
when variable parameters like input voltage and load rastst
dxy (Viet —x1) (w2 — Ip)

fluctuate. In order to ensure the nominal period-1 operation - _

it will be necessary to calculate the range of the variable dt RC c
parameters for which the period-1 orbit will remain stalfie. @ - —2(Veer — a1) (2 — L) V—iulcq (33)
representative parameter space diagram of FFHC controlled dt UteqT[Vin— (Viet —a1)] L

converter is shown in Fig. 10(a) and (b). The designer W%herer ~ 0, uteq € (0,v/Vin) andly is the dc-offset value of
have to ensure that the external parameters remain witkin f ductorcurrentqdue t;Mg, operation. In eq.(33), whem, ., —
. . ’ eq

shaded region of the parameter space. Once it is ensured,ot' Both s — Io anddas/dt — 0, getting a reduced order

solution of equivalent motion (6) always exists. systemM; defined byzs = Ip andCdar, /dt = (Vier—1)/R.
Therefore, to conclude the analysis and the controller de-

i ) sign, the stability of the converter system should be shdwn.

~ The equivalent controlieq € (u1eq; U2eq) 1S @ MeaNs of generic system, described Hy/dt = f(z) as (33) and whose

finding the system motion restricted to the switching mad#o jacopian matrix at the equilibrium point, = (Veet =V, 1)

hi(x) =0 (1= 1,2,3_).and it can be determined by applyinghere Uteq = Viet/Vin and Iy = ky(Vier — V) — A) is

the invariance conditiond;(z) = 0, dhi(z)/dz = 0 [17], denoted a$D)|..., is asymptotically stable if the eigenvalues

[35], if the average hysteretic flow of impinging vector figld X, have negative real part [37]. That leads to solving the

fi(z), f2(x), and f3(x) with their associated time durationcharacteristics equation given by
Uteqs (1 — Uteq — U2eq), ANduaeq are tangent to the switching

surfaces. Therefore the dynamics within the quasi-statipn A2 4 (Ji1 4+ J22) A + (Ji1Jag — Ji2Jo1) =0 (34)

C. Equivalent Control and Equation of Motions
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where coefficients/i1, J1/ Jo1, and Joo are shown in Ap-
pendix. A criterion to ghoose the value féf, could be to
design the eigenvalyés in order to make them coincide on t
real axis [5]. Howexer, to achieve the best dynamic respmnsg
the system shoufd evolve in steady state like a second-org
system with adamping factgr= 1. In essence, the existence

selectigh to design the control gains of the proposed S
current controller (35) in terms of the converters specificg
tiopr. Satisfaction of these conditions assures the clésep-
sfability of the system.

V. EXPERIMENTAL RESULTS
A. Experimental Validation of Theoretical Results
To verify the derived fixed frequency MSSs based SM
controller (see Fig. 11), we have implemented the systey
experimentally. The parameters used in the experimenp sgtu
are: L=1.80mH, C=72uF, r=0.012, A=0.2, T=100Qus, k=1
Vier=5V, and Vi,=10V. Keeping the constraint of FEHC

ne app altlon o1 equivaler
However, as we change the
R= 12Q), the converter operat
region as shown in Fig. 12(}
of chaotic attractor described
Fig. 10). Although the propos|
fast-scale oscillations beyond
stable period-1 operating zong
peak current-mode (PCM) co
compensation (SC). For a cha
inequality (27)), Figs. 10 sh
converter can operate in no
range{8V < Vi, < 14V} afd
PCM controller show its fas
d becomes greater thaiy 0}

Therefore, in order/to
mance, the FFHC cghtrg
the approach propbseg
critically-damped /fresp
tence condition

h give the fastest
controlles-exi

B. Performante

Based ¢h 3
FFHC contrgl|e

of the proposed
tally verified a

H buck converter
3. The PCM con-
ansient respe

as voltage-mode
. The excellent

out SC), however
en the caawvert

lication of this

any other purposes, permission must be obtained from the IEEE b
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Fig. 13. Comparison of (a) simulation, and experimentalugtdr current waveforms between proposed FFHC controlfestate buck converter and
conventional PCM controlled buck converter without SC un@® step load change(Bto 62; and (c) &2 to 32, and input voltage change (d) 8V to 14V,
and (e) 14V to 8V respectively. Here, simulated results stimvinductor current response due to change of step loastarse from & to 6 and back to
3Q.

properties, and the selection of the control parameterdiare Then the linearization of (33) around the equilibrium psint
cussed. It is shown that equivalent control based SMC desidfiet — V. I, Uieq) Can be expressed as
is only valid when the converter operates in periodic mode. W

» ) 91 0 991 Oureq \ "
have also addressed how both Filippov’s method and Utkins 8—? 8—? N ;;; - (T T
equivalent control law together can be used to design, and §p= dgs 0gs |TT| 9gs || Oureq $:<J21 Jos )l’
extract its best optimized performance. Finally, its perfance 921 Oxa Diteq O
is experimentally verified and compared with PCM controlled he
buck converter (without SC). The results demonstrate thaf/"ere
over a wide range of operating conditions (i.e., wide variat 991 _ b 991 _ 1 992 2(I —1o)Vin
of input voltage and load resistance) the transient respons 921 RC’ 0wz~ C' 0z UregT(Via— V)?’
of FFHC controller is as good as the reference one, without 99> _ -2V 991 _
any subharmonic oscillations. It can be therefore condude Jdz UteqT(Vin = V) Oureq
that the proposed FFHC controller may be a good alternativedg. ~ Via 2V(I—1o)  Ouieq _ 5 8u1cq s
over conventional PCM (without SC) controller to achieve th duieq L Ut T(Vin = V)" Ox1 b -
optimized performance with a low implementation cost and
e : . ! - kp/RC + k/L ky/C .
circuit complexity. However, investigations on efficienayd Here 5, = _W nd B, = AT Substituting
losses calculation unde_r different loading conditions quths these values into above equation, we gértl
controlled system are still necessary. Currently we areingr .
on that. Ji = —— 0 Jig= ——
11 RC ) 12 C
J. — ﬁl‘/in + 2(1 - —Io)‘/in Qﬁlv(—[ —Io)
2t L Ulch(‘/in - V)2 U12€q (V - V)
APPENDIX Joy = B2Vin 2V . 28V (I — I,)
L UteT (Vi = V) " U T(Vin — V)
To obtain the Jacobian matrix of $33) let us consiger
(me zl) (12 . andg uiS;T‘f/mz(l‘)/r:f LIO))]_‘— 23 Uleq Where
equalent control input1.4 can be derived by using (5) when REEERENCES
h(z) = hy (). By substituting the result into (33) and applying
dhl(x)/dt =0, It can be obtained from 9)-(10) as [1] “International Technology Roadmap for Semicondutt®@03. [Online].
Available: http:// www. public.itrs.net
[2] M. T. Zhang, M. M. Jovanovic, and F. C. Lee, “Design comsations
Fp oy ﬁ) (Viet — 1) — L for low-voltage on-board DC-DC modules for next generaiaf data
_ ref 1 o2 (35) processing circuits,IEEE Transactions on Power Electronjcgol. 11,
Uleq = kVin/L no. 2, pp. 328-337, March 1996.
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