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Abstract—To achieve the best optimized performance in terms
of stability and dynamic behavior of power electronics convert-
ers, it is necessary to use a more advanced control technique
and accurate mathematical model. This paper propose a fixed
frequency hysteretic current (FFHC) controller that uses both
sliding mode control (SMC) technique and fixed frequency
current controller with a hysteresis band to achieve all properties
of the variable structure controller. However, realizing such fixed
frequency sliding mode controller using small-signal averaged
(SSA) model of the power converters and Utkin’s equivalent
control technique may not be valid for all conditions. We show
that it can be applicable only when the fast scale dynamics ofthe
converter system is stable, which can be achieved successfully by
analyzing the stability of the FFHC controlled buck converter
using Filippov method and Floquet theory. The regions of
stability are then presented to show the domains of existence
of nominal period-1 and higher periodic orbits in 2-dimensional
(2-D) parameter space. We also demonstrate how to derive the
equivalent control law from modified tristate converter topology
to design the controller. Finally, the experimental results are
presented to validate the effectiveness of this hybrid FFHC
controller.

Index Terms—DC-DC buck converter, fixed frequency hys-
teretic current (FFHC) control , sliding motion (SM), slidi ng
mode control (SMC), multi-scale oscillation, discontinuous sys-
tems.

I. I NTRODUCTION

Obtaining the accurate mathematical models for DC-DC
converters and optimizing their performances over wide oper-
ating conditions, especially, for next-generation microproces-
sors [1], [2], are a traditional challenge for power electronics
design engineers. In recent past, there are many efforts devoted
to this research area, and reviews are now available on the
subject [3], [4] and references therein. In most of the cases, the
methods of analysis are mainly based on constant-frequency
pulsewidth modulated (PWM) operation, standard linear con-
trollers, and small-signal averaging techniques [3], [5].The ad-
vantages of such methods include constant-frequency switch-
ing operation, well-established design methods, and many
years of successful applications in practice. However, av-
eraging is only an approximated procedure to obtain the
low frequency behavior of the actual switching model. The
averaged model was found to fail in predicting many of fast
scale instabilities that may develop in the voltage and current
waveform at clock frequency result subharmonic oscillations
and chaotic behavior [6], [7]. This shortcoming is due to the
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elimination of discontinuous effect of the real converter system
and ignoring the microscopic dynamics inside the switching
cycle [8]. Because of this approximation, the traditional use of
averaging technique and also linear controller cannot extract
always the best optimized performances over wide operating
conditions [9]. It is therefore a great importance to be able
to analyze and predict such instabilities to extract this best
optimized performance in terms of stability and dynamic
behavior of power electronics converters.

However, recently it has been reported that performances of
a power converter can be significantly improved by combining
the different mode of controllers like sliding and constantfre-
quency PWM voltage-mode or current-mode controller [10],
[11], [12], [13], [14], [15], [16]. Due to this combination,
the SMC essentially utilizes a constant-frequency switching
control law to drive the state trajectory from any initial position
onto a specified surface in the state space, called the sliding or
switching surface (SS), and to maintain it on this surface for all
subsequent time [17]. The main features of this sliding mode
are the robustness against the load and the input voltage fluc-
tuations. However, in spite of these unique advantages, most
of the controllers reported earlier are impractical for power
converters — either requiring complicated control circuitries
and more price [10], [11], [12], being variable-frequency
controllers [18], or having a slow dynamical response [13],
[14]. Moreover, they are completely relied on smooth averaged
models of the power converters and the control is only valid
on a reduced-order switching surface.

With these views, we propose in this paper a hybrid FFHC
controller, which is implemented on the basis of SMC tech-
nique and fixed frequency hysteretic current-mode controller
with a hysteresis band. The choice of this variable structure
controller is quite logical for power converters because the
control and plant are both discontinuous. It retains all of
the properties of an ideal SMC; that is, simplicity in design
and practical realization, good dynamic response and less
overshoot in the regulated output voltage. In addition, it
inherently acts as a current limiter to protect the converter from
overloads, provides relatively larger bandwidth by eliminating
compensating ramp signal and reduces the impact of very
high-frequency dynamics due to parameters uncertainties on
the closed-loop system.

However, it has been seen that the sliding motion (SM)
of hybrid discontinuous systems (HDSs) can be successfully
determined by using the notion of Utkin’s equivalent control
or Filippov continuation method [19]. For single discontinuous
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SS, there exists a unique solution of equivalent dynamics and
the SM obtained from these methods are the same. However,
with boundary layers control, the SM only exists when the
fast-scale dynamics is stable. The mathematical proof of this
concept has already been developed earlier in multi-scale
HDSs [20]. Since the power electronics converters come under
this class of systems [21], [22], [23], the equivalent equation
of motion derived from Utkin theory may not be successful
always in predicting the existence of a unique solution [20]. It
can only be successfully used when the long-time averaging
of fast-scale oscillations become zero, in other word, when the
fast-scale oscillations of the inductor current and the capacitor
voltage ripple of the converter are periodic. It is therefore
necessary to predict fast-scale instability margin for designing
the SMC power converters based on Utkin’s theory.

In this paper, we apply this concept and design the FFHC
controlled tristate DC-DC buck converter for extracting its
best optimized performance, i.e, fast transient response without
fast-scale instability under wide range of line- and load vari-
ation. The paper is organized as follows. Section II revisits
the condition of SM in a HDS with single, and multiple
switching surfaces. In Section III we describe the proposed
system and its mathematical model. We then illustrate how
Utkin’s equivalent control law and Filippov’s method together
can be used to design this converter system and to extract
its best optimized performance. Finally, in Section V, the
performance of proposed scheme is experimentally verified
and compared with the classical peak current-mode controlled
buck converter without slope compensation.

II. SLIDING -MOTION IN A DISCONTINUOUSSYSTEM

From dynamical system [24], or from control theory point
of view [17], the HDSs with right-hand side discontinuity can
be descried as

dx

dt
= f(x) =

{

f1(x); x ∈ R1 if h(x) < 0

f2(x); x ∈ R2 if h(x) > 0
(1)

whereR1,2(x) ∈ ℜ2 are the smooth regions separated by an
one-dimensional discontinuous switching hyper-surfaceh(x).
The systems are called continuous switching iff1(x) = f2(x)
at any point of the boundaryΣ1,2 separating two adjacent
regionsR1 and R2, and the vectoṙx is uniquely defined at
any point of the state space and trajectories in regionR1

approaching transversally the boundaryΣ1,2, cross it and enter
into the adjacent regionR2. By contrast, in discontinuous
systems (called Filippov systems), two different vectorsẋ,
namelyf1(x) andf2(x), can be associated to a pointx ∈ Σ1,2.
If the transversal components off1(x) and f2(x) have the
same sign, the trajectory crosses the boundary and has at that
point, a discontinuity in its tangent vector. On the contrary, if
the transversal components off1(x) andf2(x) are of opposite
sign, i.e., if the two vector fields are pushing in opposite
directions, the state of the system is forced to remain on
the boundary and slide on it. Although, in principle, motions
on the boundary could be defined in different ways [19], the
most natural one is Filippov convex method [24] that defines

sliding motions onΣ as the solutions onΣ1,2 of the continuous
ordinary differential equation

dx

dt
= F (x) = αf1(x) + (1 − α)f2(x) (2)

where F (x) is a convex combination off1(x) and f2(x)
tangent to Σ1,2 at x, with a scalar function α =

∂h(x)/∂xf2(x)
∂h(x)/∂x[f2(x)−f1(x)] ∈ [0, 1]. Generically, this convex combi-
nation is unique. Thus, the state portrait of a Filippov system
is composed of the sliding state portrait onΣ defined by
boundariesΣ1,2 = {x ∈ h(x) : α = 0, 1} and of the standard
state evolutions in each regionR1,2 as shown in Fig. 1(a).

Sliding domainΣR
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Fig. 1. A representative diagram showing: (a) the directionof both piecewise
smooth vector fieldsf1(x) andf2(x) for a sliding motion on an ideal switch-
ing surfaceh(x)
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happen when the long-time averaged values of coefficientsα1,
α2, andα3 becomes constant [20], [25]. These coefficients are
known as the Fillipov coefficients. Once these coefficient are
well defined, there will not be any transversal components of
the average vector fieldfeq(x) ∈ (f1(x), f2(x), f3(x)) along
the SS. We can write this transversal condition mathematically
as

∂h(x)

∂x
feq(x) = 0 (4)

Here, it is important to note that the equation (4) is inherently
same, as the SM determined from the Utkin’s equivalent con-
trol [17] for single discontinuous SS. Where the dynamics is
essentially determined by replacing the discontinuous control
input u by an equivalent controlueq, given by the solution
of dh(x)

dt = 0, or ∂h(x)
∂x feq(x, ueq) = 0, if such a solution

exists. When the state-space dynamic is expressed in the form
dx
dt = Ax + Bu + D, the equivalent control may be explicitly
calculated by

ueq = −

[

∂h(x)

∂x
B

]

−1
∂h(x)

∂x
[Ax + D], (5)

where ∂h(x)
∂x B should be a nonsingular square matrix. Substi-

tuting (8) into (7), we get the equivalent dynamics

ẋ = Ax − B

[

∂h(x)

∂x
B

]

−1
∂h(x)

∂x
[Ax + D]. (6)

Therefore a solution is an absolutely continuous vector-valued
function, which outside the surfaces satisfies (1), and on
and inside their boundaries satisfies (6) for almost allt, as
mentioned before.

III. M ODELING OF FFHC CONTROLLED DC-DC BUCK

CONVERTER

The schematic diagram of a FFHC controlled tristate buck
converter is shown in Fig. 2(a). It consists of an inductorL,
a capacitorC, a load resistanceR, a conduction loss series
resistancer, an uncontrollable switchD, and two controllable
switchesQ1 and Q2. The switching of theQ1 and Q2 are
controlled by the FFHC control logic.

A. Controller Architecture and Switching Logic

The controller architecture to achieve such switching logic
circuit is implemented by means of a nested feedback con-
troller. The slow outer voltage controller is used to generate the
quasi-stationary boundary layers [25] of the hysteresis loop.
This is achieved by obtaining the equivalent reference current
signals i+ref and i−ref as a linear combination of the output
capacitor voltage v and a reference voltageVref in the form

i+ref = kp(Vref − v), and i−ref = i+ref − ∆ (7)

wherekp is the gain of the proportional controller, and∆ is the
bandwidth betweeni+ref and i−ref . While the fast inner current
controller is used to generate the binary control signalu ∈
(0, 1) whereu = (u1 u2)

T , by comparing the sensing inductor
current i with two threshold reference currentsi+ref , i

−
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an externally generated clock pulse of time periodT . The
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Fig. 2. (a) Schematic diagram of the FFHC controlled tristate buck converter.
(b) Generation of binary switching signalsu1 andu2 in a switching boxSB .
Here black region indicates where both switchesQ1 andQ2 are turned off.

combination of these three signals eventually forms a bounded
“chattered box” or simply called theswitching box

SB = {(i, v) : i−ref ≤ i ≤ i+ref , t < T } ∈ ℜ2 (8)

for this converter system. Depending on the initial position of
the inductor currenti(0), the converter may operate into two
modes: one when the inductor currenti is outside the boundary
layers and the other when it is inside. At the beginning of the
every switching cycles, we determine whether the inductor
current i|t=T is within the boundary ofSB or not. If it is
inside, at the start of the clock period, the switchQ1 is turned
on andQ2 is turned off, the inductor currenti raise. Wheni
reaches a peak valuei+ref , the Q1 is turned off. The inductor
current i starts falling until it reaches the lower threshold
currenti−ref . The switchQ2 is turned on wheni reachesi−ref and
remains on until the arrival of the next clock pulse. Ifi reaches
next clock pulse with a nonzero value without intersecting
i−ref , the operation is said to be in continuous conduction mode
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(CCM), otherwise it is in pseudo-continuous conduction mode
(PCCM) [26]. But, if i reach zero value before the next clock
cycle, the switchD is turned off, and then the operation is said
to be in discontinuous conduction mode (DCM). This mode of
operation occurs when the boundary layers currentsi+ref and
i−ref (from equation (7)) become negative.

However, if the inductor currenti|t=T is outside ofSB, Q1

is turned on andQ2 is turned off when0 < i|t=T < i−ref and
both the switches are turned off wheni|t=T > i+ref > 0. But
all three switches remain OFF throughout the clock period if
i|t=T = 0.
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Fig. 3. Circuit configurations of a tristate buck converter during different
modes of operation: (a)M1, (b) M2, (c) M3, and (d)M4 respectively.

B. Converter Dynamics and Equations of SSs

There are four configurations as shown in Fig. 3, and
described by four sets of differential equations, as follows:

M1: whenQ1 is on,Q2 is off andD is in reverse-bias, the
system equation is

dx

dt
= f1(x) = A1x + B1; for (u1, u2) = (1, 0) (9)

M2: whenQ1 is off, Q2 is off andD is in forward-bias, the
system equation is

dx

dt
= f2(x) = A2x + B2; for (u1, u2) = (0, 0) (10)

M3: when Q1 is off, Q2 is on andD is in reverse-bias, the
system equation is

dx

dt
= f3(x) = A3x + B3; for (u1, u2) = (0, 1) (11)

M4: when bothQ1 andQ2 are off andD is in reverse-bias,
the system equation is

dx

dt
= f4(x) = A2x + B4 (12)

where

A1 = A2 =

(

−1/RC −1/C
1/L −r/L

)

,

A3 =

(

−1/RC 0
0 −r/L

)

, A4 =

(

−1/RC 0
0 0

)

,

B1 =

(

Vref/RC
(Vin − Vref) /L

)

, B2 =

(

Vref/RC
−Vref/L

)

,

B3 = B4 =

(

Vref/RC
0

)

, andx = [(Vref − v) i]T

is the state variables. Here, the switching occurs wheneverthe
solution of each subsystem (vector field) reaches the switching
function specifically defined for that subsystem. The switching
function between the subsystemsM1 andM2 is given by

h1(x) := i+ref − kx2 = 0 (13)

where k is the scaling factor. Whenx hits the boundary
h1(x), switching occurs and subsequently, the evolution ofx

h3if      =0

2M

3M

CCM cycle

PCCM cycle

DCM cycle

h3if      =0

h

h4if      =0

if      =0h3

M1

M4

if      =0

h

1

2if      =0

Fig. 4. Switching flow diagram of tristate hysteretic current controlled buck
converter.

is governed by the subsystemM2. Three switching functions
may exist when trajectories are in the subsystemM2. One
is the clock signal for resetting the switch that moves the
system fromM2 to M1 and the others are ati = i−ref and
i = 0, which moves the system fromM2 back toM1 through
subsystemM3, or from M2 to M1 through subsystemsM3

and M4 respectively. These three functions can be described
as

h2(x) := kx2 − i−ref = 0 (14)

h3 := t − T = 0 (15)

h4 := x2 = 0 (16)

while in M4, the system has only one switching function
h3(x) := t − T = 0. If the state hitsh3(x), it returns toM1.
Since in each clock cycle the system may operate either in
CCM or in PCCM, or in DCM, the model can be represented
by the switching flow diagram shown in Fig. 4. However, only
dynamics of PCCM operation is presented here.

C. Critical Hysteresis Bandwidth ∆c

In order to operate the converter in PCCM, we need to
calculate first the critical hysteresis bandwidth∆c. Here,∆c

is the boundary condition between two isolated converter
topologies CCM and PCCM respectively. If the inductor
current ripple∆ less than this critical value∆c, the converter
operates in PCCM, otherwise it operates in CCM. Moreover,
here,∆c can be defined as

∆c = i+ref − ic (17)

whereic is theT th instant inductor current at the edge of CCM
operation as shown in Fig. 5. Considering the initial position
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of state variablesx(dT ) =
[

Vref − Vo i+ref
]T

(Vo represents
the steady-state dc output voltage) and solving, the solution
of subsystem equation (10), given as

x(T ) = eA2(1−d)T x(dT )+

∫ T

dT

eA2(T−τ)B2dτ ; ∀x ∈ M2 (18)

where d is the steady-state duty ratio, the critical inductor
current ic can be easily expressed as a function of on/off
switching instants inductor currenti(dT ). However, since
x(T ) in (18) is a function of matrix exponenteA(1−d)T , one
cannot find its exact explicit form of expression as a function
of i(dT ). Based on first-order approximation, it can expressed

∆c ∆

tdT i

iref
+

c

T

i

Fig. 5. Inductor current at the edge of CCM operation.

explicitly as

ic = i+ref −
r(1 − d)T

L
i+ref −

d(1 − d)T

L
Vin (19)

where i(dT ) = i+ref and i+ref is the upper boundary function
defined by i+ref = kp(Vref − v). Further substitution of
i+ref |t=dT ≈ kp(Vref − dVin) into (19) therefore yields the
critical condition

∆c =
rkp(1 − d)T

L
Vref +

d(1 − d)T (1 − rkp)

L
Vin (20)

Here, the parametersr, L, T , Vref are known and otherskp,
Vin andd are unknown. KeepingVin and all other parameters
constant, from (20) we can get the maximum current ripple∆
required for the PCCM operation is atd = 0.5:

∆ =
kprT

2L
Vref +

(1 − rkp)T

4L
Vin (21)

For every clock cycle, the value of∆ in (21) thus gives us
the necessary condition for a successful converter operation
in PCCM when state vectors evolve inside the boundary
layers ofSB periodically. In two-dimensional state space, a
representative periodic evolution of state trajectories and their
corresponding boundary layers are shown in Fig. 6.

However, it is important to note that in each clock cycle,
trajectories may evolve outside or inside boundary layers of
SB. For an arbitrary initial positionx(0), the controller

u =











u+
1 = 1, h1(x) < 0

u−

1 = 0, h1(x) > 0

}

if x is outside

ueq ∈ (u1, u2), if x is inside

(22)

therefore drives the trajectories to reach intoSB in finite time
ts > 0. Once they reach, a hysteretic flow inside the switching
box starts and an equivalent motion continue to move toward
the quasi-equilibrium point.
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Fig. 6. A typical periodic trajectory evolution of FFHC controlled tristate
buck converter within the switching boxSB for L=200µH, C=100µF,
r=0.01Ω, ∆=0.001,T=2µs, k=1, kp=5.5, Vref=5V, Vin=12V, andR=7.5Ω.

IV. SM AND SMC IN THE FFHC CONTROLLED TRISTATE

BUCK CONVERTER

The classical smooth equivalent control law (8) always
approximates the dynamics due to MSSs. Because of this
improper approximation, achieving a unique solution of real
power electronic systems is not so straightforward. The sys-
tems having single SS or MSSs with∆ → 0 always have
a unique solution [24], [17], whereas in multi-scale power
electronics systems, the unique solution only exits when the
long-time averaging offast-scale oscillations become zero (as
explained in Section II). This zero average dynamics condition,
however, can be obtained by analyzing the stability of a
periodic orbit. There are four general approaches which are
normally used to analyze fast scale instability: 1) the Poincaré
map [27], [28]; 2) the Floquet theory; and 3) the monodromy
matrix using Filippov theory [29]. To apply this concept,
we organize this section as follows. First, based on an ideal
switching surfaceh(x), the conditions for the existence of
a sliding mode are found. Second, using monodromy matrix,
the fast-scale stability analysis is performed and corresponding
regions of different periodic orbits are identified for safe
operating condition. Finally the equivalent equation of the
motion is derived to design the controller accordingly.

A. Existence Conditions of ǫ-neighborhoods SSs

Assume there existǫ-neighborhoods SSs (whereǫ → 0),
given by

h(x) = kpx1 − kx2 (23)

From Utkin theory [17], we know that a SM exists in
the vicinity of a switching surfaceh(x) if the following
local reachability conditions:limh(x)→0−

dh(x)
dt > 0, and

limh(x)→0+
dh(x)

dt <0, or limh(x)→0
dh(x)

dt h(x) < 0 are simul-
taneously satisfied. The explicit form of suchǫ neighborhood
reachability condition can be derived by simply substituting
the time derivative ofh(x)

dh(x)

dt
=

∂h(x)

∂x

dx

dt
=

{

Jf1(x) > 0 if h(x) < 0
Jf2(x) < 0 if h(x) > 0

(24)



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs−permissions@ieee.org.

6

x1

0.6 0.7 0.80.50.40.3 0.9 1.0 1.1 1.2

1.5

0.5

−0.5

x2

2.5
1f  (x)

Σ

2f  (x)

Sliding mode

Σ  =0

Σ  >0

Σ  >0

Initial point
Σ  =01

2

1

2

h<0

h>0

(a) x1

x2

1.2−0.2 1.00.80.60 0.2 0.4
0

2

3

1

4

2f  (x)

1f  (x)

Σ
Sliding mode

Σ  >0

Σ  >0

Initial point

1

Σ  =0

Σ  =0

2

1

2
h>0

h<0

(b)

Fig. 7. Regions of existence of SM and state trajectories evolution of FFHC controlled tristate buck converter for: (a) periodic mode of operation when
R=8Ω, and (b) aperiodic mode of operation whenR=4Ω. The other parameters are same as Fig. 6. Here, the critical boundariesΣ1,2 are obtained from (25)
and and (26).

into this conditions, whereJ = ∂h(x)/∂x = [kp − k].
Replacing (9) and (10) into (24), and applying the control law
(23), the existence region of SM or SMC can be expressed as

Σ1 := −Mx1−Nx2+PVref−
kVin

L
>0; for u+

1 =1(25)

Σ2 := −Mx1 − Nx2+PVref < 0; for u+
1 = 0 (26)

where M =
(

k
L +

kp

RC

)

, N =
(

kp

C − rk
L

)

, and P =
(

k
L +

kp

RC

)

. The limiting boundaries (25) and (26) give the
necessary region of existence for the SM on smooth SS [12],
[30]. Here L, C, k and Vref are the known parameters and
their exact values can be substituted directly into the above
inequalities for inspection. However, for a range ofVin and
R, it is necessary to consider the boundary points of these
parameters value. The conformation of either the maximum
or minimum point of these parameters value is generally
sufficient for ensuring the abidance of the existence condition
for the entire range of operation. Knowing the boundary points
of Vin andR, and making the assumption that the controller
is designed with a static sliding surface to meet the existence
conditions for steady-state operation. Therefore it is possible
to calculate the boundaries of proportional gainkp as

0 < kp <
kRC

L

(

Vref

x1ss
− 1

)

+
krC

L

Vref

x1ss
(27)

where the steady-state state variables arexss = [x1ss x2ss]
T .

The expressions (25)-(27) are essentially interpreted as acon-
dition, requirement for the system trajectories to be oriented
towards the sliding surface, from both sides. Since the system
trajectories are directed towards theh(x), once they reach
h(x), they cannot leave it anymore and continue to slide along
the sliding surface towards the equilibrium, and this solution
is unique []. Is it valid in power electronic circuits with MSSs?

To prove this question, we numerically simulate the con-
verter using MATLAB/SIMULINK for two different cases:
one when converter operates in periodic mode; and the other
when it operates in aperiodic mode. Based on approximate
smooth sliding surfaceh(x) ≈ 0 and the inequality constraint

(27), the region of existence of SM is identified and the state
trajectories evolution are also captured (see Figs. 7). Here,
the critical boundariesΣ1,2 represent the conditions where
vector field f1(x) or f2(x) is tangent toh(x) and outside
of Σ1,2; the approaching trajectories on either side of SS,
cross it transversely and enter into the adjacent region. On
the contrary, inside the boundaries, bothf1(x) andf2(x) are
pushing in opposite direction; so the trajectories are forced to
remain onh(x) and start sliding along the surface. However,
it is observed that the motion may or may not remain strictly
inside the sliding segmentΣ ast → ∞ (see inset of Fig. 7(a)
and (b)).
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Fig. 8. Bifurcation diagrams of sampled inductor current showing the
mechanism of loss of stability of period-1 orbit when the converter is initially
operated in PCCM region. The load resistanceR =(8-3)Ω is taken as the
bifurcation parameter. All other parameter values are sameas Fig. 6.

A closer look on inner dynamics of state trajectories reveal
that, when the inductor current ”bounces“ off of the edge
of SB and returns to the interior ofSB, the associated time
fractions of vector field or duty ratios are well defined and the
existence condition is satisfied. However, with a finite width
boundary layers control, the converter may toggles between
more than one circuit topologies insideSB, thereby can also
exhibit various kinds of nonlinear behaviors such as chaos,
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quasi-periodicity; and limit cycle oscillations [7]. Out of these
nonlinear phenomena, there are two degenerate cases —quasi-
periodicity andchaos, where the inductor currenti insideSB

can either aperiodically oscillates and hits the corner ofSB [7]
or moves without hitting the corner points if it evolves on a
torus. The dynamics is then characterized by the existence of
two (or more) frequencies which are incommensurate [31],
[32] and the duty ratios of the converter would not be well
defined. In such situations, the existence conditions (25) and
(26) which were originally defined for single SS is not valid
always for deriving equivalent control law with MSSs. The
representative bifurcation diagram of the FFHC controlled
buck converter is shown in Fig. 8 where the sampled inductor
current taken as the plotted variable. At high values ofR,
a stable period-1 orbit exists in PCCM. However, with a
decrease inR, this orbit becomes unstable through a smooth
period-doubling bifurcation atR ≈ 7.05Ω. Subsequently,
one of the branches of the period-2 orbit hits the border
between PCCM and CCM operation atR ≈ 6.83Ω as shown
in Fig. 9(a). Available theory predicts that this bifurcation
also leads to and a direct transition from a periodic orbit to
aperiodic orbit. As the parameter is further reduced, a series
of smooth and border collision bifurcations occur in close
succession, and finally it bifurcates into a chaotic behaviors
at R ≈ 4.68Ω. The continuous-time waveform of a typical
chaotic inductor current oscillation atR = 4Ω is shown in
Fig. 9(b).
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Fig. 9. The continuous-time inductor current waveform showing: (a) the
direct transition from PCCM to CCM operation forR=6.83Ω, and (b) a typical
chaotic oscillation forR=4.68Ω.

Thus, we can see that, if the converter operates in PCCM,
the existence conditions (25) and (26) derived for aǫ-
neighborhood ofh(x) can be successfully used only for a
guaranteed reaching condition of trajectories intoSB, but not
for the SM of that hysteretic flow inside.

B. Existence Region for Hysteretic Flow

In order to identify existence region of the high frequency
hysteretic flow inside and to observe the stability status of
the converter system, it is therefore necessary to estimatethe
fast-scale stability margin at the clock speed [23]. It is also
required to estimate the range of external parameters that will
ensure periodic operation without the onset of chaos. The
sampled-data model (or Poincaré map) addressed earlier [27],
[6] to solve this problem. Even though it is conceptually
simple, it yields complicated equations for most converters,
and as a result, this approach has not found widespread

acceptance among mainstream power electronic practitioners.
The stability analysis using the fundamental solution matrix
over a complete cycle or monodromy matrix, thus provides an
alternative method of obtaining the Jacobian of the Poincaré
map when the nonlinear map cannot be explicitly derived.

The monodromy matrix is eventually a composition of the
state transition matrices for the pieces of the orbit that lie
in the individual subsystems, and the saltation matrix can be
expressed as [24], [33]

S = I +
[f+(x) − f−(x)]∂h(x)/∂x

∂h(x)/∂x f−(x) + ∂h(x)/∂t
(28)

whereI is the identity matrix of the same order as the number
of state variables. When converter operates in PCCM, the
state transition matrix over the complete cycle can be then
composed of the state transition matrices over the three phases
of evolution and three saltation matrices for the switchingfrom
M1 to M2(S1), from M2 to the free-wheeling stateM3(S2)
and finally switching back toM1(S3) [34]:

W = S3Φ3S2Φ2S1Φ1 (29)

where the state transition matricesΦ1, Φ2 andΦ3 are obtained
as matrix exponentialseA1d1T , eA2d2T and eA3d3T respec-
tively. In order to evaluate these, one needs to know the duty
ratio d1, d2, andd3. This can be obtained following [27] using
the Newton-Raphson method. Alternatively one can use any
standard simulator to obtain the stable behavior, from which
the information aboutd1, d2, and d3 can be extracted. In
calculating the saltation matrixS1, the switching function is
h1(x) = kpx1 − kx2, so that the normal is∂h1(x)/∂x =
[kp − k] and the time derivative is∂h1(x)/∂t = 0. Similarly,
for calculatingS2, the expression for the switching function
is simply derived from (19) ash2(x) = kx2 − (kpx1 − ∆).
Thus∂h2(x)/∂x = [−kp k] and∂h2(x)/∂t = 0. With these
expressions, we can obtain the saltation matrices

S1 =I+
(f+

2 − f−

1 )
∂h1(x)

∂x
∂h1(x)

∂x
f−

1 +
∂h1(x)

∂t

, S2 =I+
(f+

3 − f−

2 )
∂h2(x)

∂x
∂h2(x)

∂x
f−

2 +
∂h2(x)

∂t

which are evaluated as

S1 =

[

1 0
−kpa1 1+ka1

]

, S2 =

[

1−kpa2 ka2

−kpa3 1+ka3

]

(30)

where

a1 =
Vin/L

(

kp

RC + k
L

)

Vref−
k
LVin−

(

kp

RC + k
L

)

x1+
(

rk
L −

kp

C

)

x2

a2 =
x2/C

(

kp

RC + k
L

)

x1 −
(

kp

RC + k
L

)

Vref −
(

rk
L −

kp

C

)

x2

a3 =
(Vref − x1) /L

(

kp

RC + k
L

)

x1 −
(

kp

RC + k
L

)

Vref −
(

rk
L −

kp

C

)

x2

and S3 is an identity matrix. Note that the form of the
monodromy matrix is sufficiently general. If the orbit contains
passage through more number of subsystems with a number
of crossings (for example, in a higher periodic orbit), one
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Fig. 10. Stability region of the period-1 orbits: (a) inR-kp and (b) inVin-kp parameter space. The contours are obtained using the condition that the lower
eigenvalue of the monodromy matricesW is equal to -1.

just has to compose the monodromy matrix out of the state
transition matrices for the passage through each subsystemand
the saltation matrices related to the crossings. This will greatly
simplify the analysis as each crossing can be treated separately.
Furthermore, the monodromy matrix essentially representsthe
linearized system integrated around the periodic orbits and
hence their eigenvaluesλ1,2 respectively, represent the Floquet
multipliers. If they lie within the unit circle, the orbit isstable.
For example, if we choose the parametersVin = 12 V, L=
0.2 mH, C=100 µF, T = 2 µsec, kp = 5.5, ∆ = 0.001,
Vref = 5 V andR = 7.06 Ω, the corresponding the duty ratio
are found to be0.2496, 0.3718, 0.3786, and the eigenvalues of
the monodromy matrix−0.996 and0.2848 are inside the unit
circle. Therefore the orbit is stable. Once it is stable, average
dynamics will be zero value.

This provides a simple way for the circuit designer to choose
the parameters for successful operation of SMC. Given certain
specifications ofv and power throughput, the designer would
first roughly set the range of parameters in a conventional
way based on Utkin’s theory. This gives the desired slow
time scale stability and transient performance, but will not
guarantee that the system will be stable on a fast time scale
when variable parameters like input voltage and load resistance
fluctuate. In order to ensure the nominal period-1 operation,
it will be necessary to calculate the range of the variable
parameters for which the period-1 orbit will remain stable.A
representative parameter space diagram of FFHC controlled
converter is shown in Fig. 10(a) and (b). The designer will
have to ensure that the external parameters remain within the
shaded region of the parameter space. Once it is ensured, the
solution of equivalent motion (6) always exists.

C. Equivalent Control and Equation of Motions

The equivalent controlueq ∈ (u1eq, u2eq) is a means of
finding the system motion restricted to the switching manifolds
hi(x) = 0 (i = 1, 2, 3) and it can be determined by applying
the invariance conditionshi(x) = 0, ∂hi(x)/∂x = 0 [17],
[35], if the average hysteretic flow of impinging vector fields
f1(x), f2(x), and f3(x) with their associated time duration
u1eq, (1−u1eq −u2eq), andu2eq are tangent to the switching
surfaces. Therefore the dynamics within the quasi-stationary

switching box can be described by the state-space averaged
model

dx

dt
= [A1x + B1] u1eq + [A2x + B2] (1 − u1eq − u2eq)

+ [A3x + B3] u2eq (31)

whereu1eq, u2eq ∈ (0, 1). Further substitution of (9)-(11) into
(31) yields

dx1

dt
=

(Vref − x1)

RC
−

x2

C
(1 − u2eq)

dx2

dt
= −

(Vref − x1)

L
(1 − u2eq) −

rx2

L
+

Vin

L
u1eq (32)

Here, it is important to point out that the discontinuous control
inputs u1 and u2 have been replaced by their equivalent
continuous controlsu1eq and u2eq where the corresponding
dynamics of dx/dt = feq(x) is essentially composed of
three subsystems equations. The derivation of such averaged
dynamics of a PWM controlled DC-DC converter operated
in DCM has been reported by Sunet al. [36] earlier. Based
on this concept, the equivalent dynamics of FFHC controlled
DC-DC converter can be obtained in full-order form, as

dx1

dt
=

(Vref − x1)

RC
−

(x2 − I0)

C
dx2

dt
=

−2(Vref − x1)(x2 − I0)

u1eqT [Vin−(Vref − x1)]
+

Vin

L
u1eq (33)

wherer ≈ 0, u1eq ∈ (0, v/Vin) andI0 is the dc-offset value of
inductor current due toM3 operation. In eq.(33), whenu1eq →
0, both x2 → I0 and dx2/dt → 0, getting a reduced order
systemM3 defined byx2 = I0 andCdx1/dt = (Vref−x1)/R.

Therefore, to conclude the analysis and the controller de-
sign, the stability of the converter system should be shown.A
generic system, described bydx/dt = f(x) as (33) and whose
Jacobian matrix at the equilibrium pointxss = (Vref − V, I)
(where U1eq ≈ Vref/Vin and I0 = kp(Vref − V ) − ∆) is
denoted as(Df )|xss, is asymptotically stable if the eigenvalues
λs

1,2 have negative real part [37]. That leads to solving the
characteristics equation given by

λs2 + (J11 + J22)λs + (J11J22 − J12J21) = 0 (34)
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where coefficientsJ11, J12, J21, and J22 are shown in Ap-
pendix. A criterion to choose the value forkp could be to
design the eigenvalues in order to make them coincide on the
real axis [5]. However, to achieve the best dynamic responses,
the system should evolve in steady state like a second-order
system with a damping factorξ = 1. In essence, the existence
conditions (25) and (26), and the stability conditions derived
from the monodromy matrix (29) form the basis for the
selection to design the control gains of the proposed SM
current controller (35) in terms of the converters specifica-
tion. Satisfaction of these conditions assures the closed-loop
stability of the system.

V. EXPERIMENTAL RESULTS

A. Experimental Validation of Theoretical Results

To verify the derived fixed frequency MSSs based SM
controller (see Fig. 11), we have implemented the system
experimentally. The parameters used in the experiment setup
are:L=1.80mH, C=72µF, r=0.01Ω, ∆=0.2, T=100µs, k=1,
Vref=5V, and Vin=10V. Keeping the constraint of FFHC
controller in mind (see Section IV), we have investigated
fast scale dynamics of the converter system under different
parameters value. Fig. 12(a) shows that forkp=8 andR= 3Ω
the converter operates in period-1 mode, so that, the long-
time average value of fast-scale chattered dynamics is zero.
The application of equivalent SM control is therefore valid.
However, as we change the parameters value tokp=2 and
R= 12Ω, the converter operates in a high periodic or chaotic
region as shown in Fig. 12(b), which is inside the domain
of chaotic attractor described in 2-parameter bifurcation(see
Fig. 10). Although the proposed controlled converter exhibits
fast-scale oscillations beyond certain parameter ranges,still its
stable period-1 operating zone is quite larger than the classical
peak current-mode (PCM) controlled converter without slope
compensation (SC). For a chosen value ofkp = 3.5 (satisfying
inequality (27)), Figs. 10 show that the FFHC controlled
converter can operate in nominal period-1 mode for parameters
range{8V ≤ Vin ≤ 14V } and {2.5Ω ≤ R ≤ 30Ω}. Where
PCM controller show its fast-scale instability when duty ratio
d becomes greater than 0.5.

Therefore, in order to extract the best optimized perfor-
mance, the FFHC controller gainkp is optimally tuned using
the approach proposed in (34) and (29) to give the fastest
critically-damped response ensuring the SM controller exis-
tence condition.

B. Performance Comparison

Based on this principle, the performance of the proposed
FFHC controlled buck converter is experimentally verified and
compared with conventional PMC controlled buck converter
without slop compensation as shown in Fig. 13. The PCM con-
troller without SC is known to exhibit faster transient response
than other commonly used controller such as voltage-mode
or, PCM controller with compensating ramp. The excellent
system response under PCM controller (without SC), however
shows steady-state oscillatory behaviors when the converter
operates ford > 0.5. Hence, it limits the application of this

iref+LM31110k10k10k10k10k10k10k+12V −12V+5V−12V−12V +12V+5V1k

1k+12V100k10kirefViref-u 2 u 110k10.1uF 1.0nFLM31150k1k

Dvclk+5V TL08474LS7474LS00555
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Fig. 13. Comparison of (a) simulation, and experimental inductor current waveforms between proposed FFHC controlled tristate buck converter and
conventional PCM controlled buck converter without SC under (b) step load change 3Ω to 6Ω; and (c) 6Ω to 3Ω, and input voltage change (d) 8V to 14V,
and (e) 14V to 8V respectively. Here, simulated results showthe inductor current response due to change of step load resistance from 3Ω to 6Ω and back to
3Ω.

properties, and the selection of the control parameters aredis-
cussed. It is shown that equivalent control based SMC design
is only valid when the converter operates in periodic mode. We
have also addressed how both Filippov’s method and Utkin’s
equivalent control law together can be used to design, and to
extract its best optimized performance. Finally, its performance
is experimentally verified and compared with PCM controlled
buck converter (without SC). The results demonstrate that,
over a wide range of operating conditions (i.e., wide variation
of input voltage and load resistance) the transient response
of FFHC controller is as good as the reference one, without
any subharmonic oscillations. It can be therefore concluded
that the proposed FFHC controller may be a good alternative
over conventional PCM (without SC) controller to achieve the
optimized performance with a low implementation cost and
circuit complexity. However, investigations on efficiencyand
losses calculation under different loading conditions of such
controlled system are still necessary. Currently we are working
on that.

APPENDIX

To obtain the Jacobian matrix of (33), let us considerg1 =
(Vref−x1)

RC
−

(x2−I0)
C

andg2 = −2(Vref−x1)(x2−I0)
u1eqT [Vin−(Vref−x1)]

+Vin

L
u1eq where

equivalent control inputu1eq can be derived by using (5) when
h(x) = h1(x). By substituting the result into (33) and applying
dh1(x)/dt = 0, it can be obtained from 9)-(10) as

u1eq =

“

kp

RC
+ k

L

”

(Vref − x1) −
kp

C
x2

kVin/L
. (35)

Then the linearization of (33) around the equilibrium points
(Vref − V, I, U1eq) can be expressed as

dx̃

dt
=

0

B

@

∂g1

∂x1

∂g1

∂x2
∂g2

∂x1

∂g2

∂x2

1

C

A
x̃+

0

B

B

@

∂g1

∂u1eq

∂g2

∂u1eq

1

C

C

A

0

B

@

∂u1eq

∂x1
∂u1eq

∂x2

1

C

A

T

x̃=

„

J11 J12

J21 J22

«

x̃

where

∂g1

∂x1
= −

1

RC
,
∂g1

∂x2
= −

1

C
,
∂g2

∂x1
=

2(I − Io)Vin

U1eqT (Vin − V )2
,

∂g2

∂x2
=

− 2V

U1eqT (Vin − V )
,

∂g1

∂u1eq
= 0,

∂g2

∂u1eq
=

Vin

L
+

2V (I − Io)

U2
1eqT (Vin − V )

,
∂u1eq

∂x1
= β1,

∂u1eq

∂x2
= β2.

Here β1 = −

kp/RC + k/L

kVin/L
and β2 = −

kp/C

kVin/L
. Substituting

these values into above equation, we get

J11 = −

1

RC
, J12 = −

1

C

J21 =
β1Vin

L
+

2(I − Io)Vin

U1eqT (Vin − V )2
+

2β1V (I − Io)

U2
1eqT (Vin − V )

J22 =
β2Vin

L
−

2V

U1eqT (Vin − V )
+

2β2V (I − Io)

U2
1eqT (Vin − V )
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