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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts, and
interpretations emerge quite spontaneously and these are then discussed, used, dis-
carded or subsumed into the prevailing subject paradigm. Sometimes these innova-
tive concepts coalesce into a new sub-discipline within the broad subject tapestry of
control and signal processing. This preliminary battle between old and new usually
takes place at conferences, through the Internet and in the journals of the discipline.
After a little more maturity has been acquired by the new concepts then archival
publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialized tutorial
workshop or as a course to undergraduate, graduate or industrial engineers. Ad-
vanced Textbooks in Control and Signal Processing are designed as a vehicle for the
systematic presentation of course material for both popular and innovative topics
in the discipline. It is hoped that prospective authors will welcome the opportunity
to publish a structured and systematic presentation of some of the newer emerging
control and signal processing technologies in the textbook series.

It is always interesting to look back and review how a particular control sys-
tems theory developed. Intimations of paradigm change often seem to be associated
with short sharp papers that make the academic community think again about the
prevailing theoretical orthodoxy; so it was with robust control theory in which the
conference papers of George Zames and colleagues (circa 1980) and the short paper
of Doyle on the robustness of control systems using the very popular linear quadratic
Gaussian design method now stand as landmark contributions that initiated a new
control design paradigm. All through the 1980s came a steady stream of papers that
began to change the very language of control itself with terms like robustness, sys-
tem uncertainty, H∞ control design and μ synthesis entering the control lexicon.
This evolutionary development was vividly captured by Professor Christos G. Cas-
sandras writing in the IEEE Control Systems Magazine (Vol. 32, No. 3, pp. 10–13,
2012) in a short informal study article on papers submitted to the premier control
theory conference, the CDC; he wrote “The term “robust” appears in zero titles or
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viii Series Editors’ Foreword

abstracts in 1971 before showing up in 13–14 % of papers in 1991 and 2001”. In
fact in 1981, the proportion was just 3.4 %, and this was around the time that the
academic community was beginning to take note that change was at hand.

Throughout the 1960s and 1970s the formalism of state space and the methods
of optimal control were in the ascendant for system modeling and academic control
system design. One feature of this framework is that it is able to provide solutions
for multivariable system problems. However, it was found that despite clever use
of advanced matrix analysis and computer-aided design packages, classical control
frequency domain techniques did not easily generalize to multivariable systems; a
missing part of the control systems toolbox was really successful frequency do-
main design methods for multivariable systems. Thus, from the 1980s onward the
tools of robust control for multivariable systems were developed and refined, and
MATLAB® routines were developed to facilitate the implementation of the new de-
sign methods. As befits a “unified” theory, one nice feature of the new robust con-
trol methods is that it subsumes the terminology of classical control into the general
framework. With this development of the robust control paradigm, the publication
of the book Robust Control Design with MATLAB® by Da-Wei Gu, Petko H. Petkov,
and Mihail Konstantinov in the Advanced Textbooks in Control and Signal Process-
ing series in 2005 was very timely and the book was considered to be an excellent
addition to this series of advanced control textbooks.

With the benefit of hindsight, with the perspective of seven more years of con-
solidation in robust control theory and practice, and with a new MATLAB Robust
Control Toolbox 3 available, Da-Wei Gu, Petko H. Petkov, and Mihail Konstantinov
have now produced this second edition of their book. The revised text has grown
from 13 chapters and 389 pages to 19 chapters and just over 460 pages. But most
significantly the textbook has a slightly different and improved structure that makes
the MATLAB material more accessible and focused. Part I still looks at the dif-
ferent and basic elements of robust control design procedures. However, there is a
useful new chapter on general results that use Linear Matrix Inequalities (LMIs).
The newly introduced Part II presents chapters focusing on the use of tools and
routines from the Robust Control Toolbox Version 3. Thus, whereas in Part I the
theory of the robust control procedures is outlined, in this new part, the MATLAB
implementations are presented and demonstrated. Finally, in Part III we find six in-
depth design studies, two of which are entirely new. The case studies carried over
from the first edition of the textbook are the benchmark system examples, namely,
hard-disc-drive control, the triple inverted pendulum system, a high-purity distil-
lation system, and a flexible manipulator system, which is a distributed-parameter
system. The two new case studies are a twin rotor aerodynamical system and a self-
balancing two-wheeled robot; both systems that are often found as test rigs in the
control engineering teaching laboratory; a feature of these two new design studies
is the presentation of experimental results from laboratory test-rigs to demonstrate
and assess the performance of the robust control designs.

We have now passed through some 30 years of consolidation since the academic
control community began to look again at the foundations of control system de-
sign and formulated and developed the robust control paradigm. The fact that the
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MATLAB Robust Control Toolbox has reached “Version 3” demonstrates how ro-
bust control and MATLAB remain pervasive tools for the academic and industrial
control engineering community. Thus the Editors are very pleased to welcome this
second edition of Robust Control Design with MATLAB®. It is a valuable contri-
bution to the list of publications in the Advanced Textbooks in Control and Signal
Processing series; the authors’ new structure and material brings additional peda-
gogical value to the new edition as an advanced textbook for teaching on courses
and for self-study by the control engineer.

M.J. Grimble
M.A. Johnson

Glasgow, Scotland, UK
July 2012
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Preface to the Second Edition

It has been encouraging to receive comments and suggestions on this book of Ro-
bust Control Design with MATLAB® since it was published in 2005. And, we are
now very pleased to take the opportunity to offer our readers the 2nd edition of the
book.

Robustness is of crucial importance in control systems design, because real engi-
neering systems are vulnerable to external disturbance and measurement noise, and
there are always discrepancies between mathematical models used for design and
the actual system in practice. Typically a control engineer is required to design a
controller which will make the closed loop system stable and achieve certain perfor-
mance levels in the presence of disturbance signals, noise interference, unmodeled
plant dynamics and plant parameter variations. The purpose of this book is to help
post-graduate students and control engineers learn how to use well-developed, ad-
vanced robust control system design methods and the state-of-the-art MATLAB®

tools in practical design cases.
A major feature of the second edition is the inclusion of an introduction to the

use of the Robust Control Toolbox®3, as a new Part II between “Basic Methods
and Theory” (Part I) and “Design Examples” (now Part III). Main function rou-
tines available in Robust Control Toolbox®3, ranging from building dynamic plant
models and uncertainty models, systems stability and performance analysis to de-
sign of H∞ and μ as well as parameter-dependent controllers, are introduced in this
new Part II. With relatively simple examples, such as the mass–spring–damper sys-
tem, which is widely used in teaching laboratories of control engineering courses,
usage of those MATLAB® routines is explained and illustrated at a level easier
to be understood by readers, which of course follows the guidance in writing this
book. In addition to this new Part II and correction of a few minor errors in the
first edition, there is also a new chapter in Part I on introduction to Linear Matrix
Inequalities (LMI). Although LMI is not directly used in those examples presented
in Part III, it is indirectly used in some controller solution procedures. With its value
in control systems analysis and design and its popularity, a brief introduction on
LMI’s basic properties and use in control engineering would be welcomed by users,
we hope. There are also some changes in Part III. The mass–spring–damper sys-
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xii Preface to the Second Edition

tem case has now been moved to Part II for illustration of using Robust Control
Toolbox®3 function routines. The robust control of a rocket case has been removed.
Instead, we now include two other design examples, namely robust control of a twin-
rotor aerodynamic system and robust control of self-balancing two-wheeled robot.
These two new examples are very popular experimental devices widely available
in control teaching laboratories. Inclusion of these examples will better help read-
ers to understand robust control design methods and to practice their own design
which can be tested and verified in their own experiments. All design examples in
Part III are realistic case studies. They are presented in Part III in detail. These de-
sign exercises are all conducted using Robust Control Toolbox®3. It is the authors’
hope that studying these examples with attached programs used in all designs, with
minimum exposure of theory and formulas in earlier parts of the book, will help
readers obtain essential ideas and useful insights of several important robust con-
trol systems design approaches, including H∞ and related methods and μ-synthesis
methods, and develop their own skills to design real-world industrial, robust control
systems.

The authors are indebted to several people and institutions who helped them in
the preparation of the book. We are particularly grateful to The MathWorks, Inc.
for their continuous support, to Professor Sigurd Skogestad of Norwegian Uni-
versity of Science and Technology who kindly provided the nonlinear model of
the Distillation Column, to Associate Professor Georgi Lehov from Technical Uni-
versity of Russe, Bulgaria, who developed the uncertainty model of the Flexible-
Link Manipulator and to Associate Professor Tsonyo Slavov from Technical Uni-
versity of Sofia, Bulgaria, who developed the Simulink® model of the Hydro Tur-
bine Gain Scheduling Control. As always, help from the Springer Editors and com-
ments from the Series Editors in preparing this second edition are highly appreci-
ated.

Using the Downloadable Material

For readers who purchased this book, supporting material, comprised of six folders
with 170 M- and MDL-files intended for design, analysis, and simulation of the six
design examples in Part III, plus five folders containing 35 files with the examples
from Part II, plus a Readme.m file and a pdf, hypertext version of the book can be
downloaded from http://www.springer.com/978-1-85233-938-8.

In order to use the M- and MDL-files the reader should have at his/her disposi-
tion MATLAB® version R2011a or higher, with Robust Control Toolbox®3, Control
System Toolbox v9.1 and Simulink® v7.7. The design and experiments with the last
two examples (Twin-Rotor Aerodynamic System and Self-Balancing Two-Wheeled
Robot) are performed with MATLAB® version R2007b in order to have compati-
bility with the corresponding third-party software for real-time control. Please note
also that the programs downloadable are different from those contained on the CD
ROM distributed with the first edition of the book, for the convenience of readers to
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use the later version of Robust Control Toolbox instead of using functions from the
obsolete μ-toolbox.

Da-Wei Gu
Petko H. Petkov

Mihail M. Konstantinov

Leicester, UK
Sofia, Bulgaria
Sofia, Bulgaria
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Preface to the First Edition

Robustness has been an important issue in control-systems design ever since 1769
when James Watt developed his flyball governor. A successfully designed control
system should be always able to maintain a stability and performance level in spite
of uncertainties in system dynamics and/or in the working environment to a certain
degree. Design requirements such as gain margin and phase margin in using classi-
cal frequency-domain techniques are solely for the purpose of robustness. The ro-
bustness issue was not that prominently considered during the period of 1960s and
1970s when system models could be much more accurately described and design
methods were mainly mathematical optimizations in the time domain. Due to its
importance, however, the research on robust design has been going on all the time.
A breakthrough came in the late 1970s and early 1980s with the pioneering work by
Zames [192] and Zames and Francis [193] on the theory, now known as the H∞ op-
timal control theory. The H∞ optimization approach and the μ-synthesis/analysis
method are well developed and elegant. They provide systematic design procedures
of robust controllers for linear systems, though the extension into nonlinear cases is
being actively researched.

Many books have since been published on H∞ and related theories and meth-
ods [34, 45, 73, 150, 155, 158, 195, 196]. The algorithms to implement the design
methods are readily available in software packages such as MATLAB® and Slicot
[78]. However, from our experience in teaching and research projects, we have felt
that a reasonable percentage of people, students as well as practicing engineers, still
have difficulties in applying the H∞ and related theory and in using MATLAB®

routines. The mathematics behind the theory is quite involved. It is not straightfor-
ward to formulate a practical design problem, which is usually nonlinear, into the
H∞ or μ design framework and then apply MATLAB® routines. This hinders the
application of such a powerful theory. It also motivated us to prepare this book.

This book is for people who want to learn how to deal with robust control-system
design problems but may not want to research the relevant theoretic developments.
Methods and solution formulas are introduced in the first part of the book, but kept
to a minimum. The majority of the book is devoted to several practical design case
studies (Part II). These design examples, ranging from teaching laboratory experi-

xv



xvi Preface to the First Edition

ments such as a mass–damper–spring system to complex systems such as a super-
sonic rocket autopilot and a flexible-link manipulator, are discussed with detailed
presentations. The design exercises are all conducted using the new Robust Con-
trol Toolbox v3.0 and are in a hands-on, tutorial manner. Studying these examples
with the attached MATLAB® and Simulink® programs (170 plus M- and MDL-
files) used in all designs will help the readers learn how to deal with nonlinearities
involved in the system, how to parameterize dynamic uncertainties and how to use
MATLAB® routines in the analysis and design, etc. It is also hoped that by going
through these exercises the readers will understand the essence of robust control
system design and develop their own skills to design real, industrial, robust control
systems.

The readership of this book is postgraduates and control engineers, though senior
undergraduates may use it for their final-year projects. The material included in the
book has been adopted in recent years for M.Sc. and Ph.D. engineering students at
Leicester University and at the Technical University of Sofia. The design examples
are independent of each other. They have been used extensively in the laboratory
projects on the course Robust and Optimal Control Systems taught in a masters
programme in the Technical University of Sofia.

The authors are indebted to several people and institutions who helped them in
the preparation of the book. We are particularly grateful to The MathWorks, Inc. for
their continuous support, to Professor Sigurd Skogestad of Norwegian University of
Science and Technology who kindly provided the nonlinear model of the Distilla-
tion Column and to Associate Professor Georgi Lehov from Technical University of
Russe, Bulgaria, who developed the uncertainty model of the Flexible-Link Manip-
ulator.

Using the CD ROM

The attached CD ROM contains six folders with M- and MDL-files intended for
design, analysis, and simulation of the six design examples, plus a pdf file with
color hypertext version of the book. In order to use the M- and MDL-files the reader
should have at his (her) disposition MATLAB® v7.0.2 with Robust Control Toolbox
v 3.0, Control System Toolbox v6.1 and Simulink® v6.1. Further information on the
use of the files can be found in the file Readme.m on the disc.
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Chapter 1
Introduction

Robustness is of crucial importance in control-system design because real engineer-
ing systems are vulnerable to external disturbance and measurement noise and there
are always differences between mathematical models used for design and the ac-
tual system. Typically, a control engineer is required to design a controller that will
stabilize a plant, if it is not stable originally, and satisfy certain performance levels
in the presence of disturbance signals, noise interference, unmodeled plant dynam-
ics and plant-parameter variations. These design objectives are best realized via the
feedback control mechanism, although it introduces in the issues of high cost (the
use of sensors), system complexity (implementation and safety) and more concerns
on stability (thus internal stability and stabilizing controllers).

Though always having been appreciated, the need and importance of robustness
in control-systems design has been particularly brought into the limelight during
the last two decades. In classical single-input single-output control, robustness is
achieved by ensuring good gain and phase margins. Designing for good stability
margins usually also results in good, well-damped time responses, i.e. good perfor-
mance. When multivariable design techniques were first developed in the 1960s, the
emphasis was placed on achieving good performance, and not on robustness. These
multivariable techniques were based on linear quadratic performance criteria and
Gaussian disturbances, and proved to be successful in many aerospace applications
where accurate mathematical models can be obtained, and descriptions for external
disturbances/noise based on white noise are considered appropriate. However, ap-
plication of such methods, commonly referred to as the linear quadratic Gaussian
(LQG) methods, to other industrial problems made apparent the poor robustness
properties exhibited by LQG controllers. This led to a substantial research effort
to develop a theory that could explicitly address the robustness issue in feedback
design. The pioneering work in the development of the forthcoming theory, now
known as the H∞ optimal control theory, was conducted in the early 1980s by
Zames [192] and Zames and Francis [193]. In the H∞ approach, the designer from
the outset specifies a model of system uncertainty, such as additive perturbation
and/or output disturbance (details in Chap. 2), which is most suited to the problem
at hand. A constrained optimization is then performed to maximize the robust stabil-
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4 1 Introduction

ity of the closed-loop system to the type of uncertainty chosen, the constraint being
the internal stability of the feedback system. In most cases, it would be sufficient
to seek a feasible controller such that the closed-loop system achieves certain ro-
bust stability. Performance objectives can also be included in the optimization cost
function. Elegant solution formulas have been developed, which are based on the so-
lutions of certain algebraic Riccati equations, and are readily available in software
packages such as Slicot [78] and MATLAB®.

Despite the mature theory [34, 45, 73, 150, 158, 195, 196] and availability of
software packages, commercial or licensed freeware, many people have experienced
difficulties in solving industrial control-systems design problems with these H∞ and
related methods, due to the complex mathematics of the advanced approaches and
numerous presentations of formulas as well as adequate translations of industrial
design into relevant configurations. This book aims at bridging the gap between the
theory and applications. By sharing the experience in industrial case studies with
minimum exposure to the theory and formulas, the authors hope readers will obtain
insight into robust industrial control-system designs using major H∞ optimization
and related methods.

In this chapter, the basic concepts and representations of systems and signals will
be discussed.

1.1 Control-System Representations

A control system or plant or process is an interconnection of components to perform
certain tasks and to yield a desired response, i.e. to generate desired signal (the
output), when it is driven by manipulating signal (the input). A control system is a
causal, dynamic system, i.e. the output depends not only the present input but also
the input at the previous time.

In general, there are two categories of control systems, the open-loop systems
and closed-loop systems. An open-loop system uses a controller or control actuator
to obtain the design response. In an open-loop system, the output has no effect on the
input. In contrast to an open-loop system, a closed-loop control system uses sensors
to measure the actual output to adjust the input in order to achieve desired output.
The measure of the output is called the feedback signal, and a closed-loop system
is also called a feedback system. It will be shown in this book that only feedback
configurations are able to achieve the robustness of a control system.

Due to the increasing complexity of physical systems under control and rising
demands on system properties, most industrial control systems are no longer single-
input and single-output (SISO) but multi-input and multi-output (MIMO) systems
with a high interrelationship (coupling) between these channels. The number of
(state) variables in a system could be very large as well. These systems are called
multivariable systems.

In order to analyze and design a control system, it is advantageous if a math-
ematical representation of such a relationship (a model) is available. The system
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dynamics is usually governed by a set of differential equations in either open-loop
or closed-loop systems. In the case of linear, time-invariant systems, which is the
case this book considers, these differential equations are linear ordinary differential
equations. By introducing appropriate state variables and simple manipulations, a
linear, time-invariant, continuous-time control system can be described by the fol-
lowing model:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input (control) vector, and
y(t) ∈ Rp the output (measurement) vector.

With the assumption of zero initial condition of the state variables and using
Laplace transform, a transfer function matrix corresponding to the system in (1.1)
can be derived as

G(s) := C(sIn − A)−1B + D (1.2)

and can be further denoted in a short form by

G(s) =:
[
A B

C D

]
(1.3)

It should be noted that the H∞ optimization approach is a frequency-domain
method, though it utilizes the time-domain description such as (1.1) to explore the
advantages in numerical computation and to deal with multivariable systems. The
system given in (1.1) is assumed in this book to be minimal, i.e. completely control-
lable and completely observable, unless described otherwise.

In the case of discrete-time systems, similarly the model is given by

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(1.4)

or

xk+1 = Axk + Buk

yk = Cxk + Duk

with a corresponding transfer function matrix as

G(z) := C(zIn − A)−1B + D

=:
[
A B

C D

]
(1.5)

1.2 System Stabilities

An essential issue in control-systems design is the stability. An unstable system is of
no practical value. This is because any control system is vulnerable to disturbances
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Fig. 1.1 An interconnected
system of G and K

and noises in a real work environment, and the effect due to these signals would ad-
versely affect the expected, normal system output in an unstable system. Feedback
control techniques may reduce the influence generated by uncertainties and achieve
desirable performance. However, an inadequate feedback controller may lead to an
unstable closed-loop system though the original open-loop system is stable. In this
section, control-system stabilities and stabilizing controllers for a given control sys-
tem will be discussed.

When a dynamic system is just described by its input/output relationship such
as a transfer function (matrix), the system is stable if it generates bounded outputs
for any bounded inputs. This is called the bounded-input-bounded-output (BIBO)
stability. For a linear, time-invariant system modeled by a transfer function matrix
(G(s) in (1.2)), the BIBO stability is guaranteed if and only if all the poles of G(s)

are in the open-left-half complex plane, i.e. with negative real parts.
When a system is governed by a state-space model such as (1.1), a stability con-

cept called asymptotic stability can be defined. A system is asymptotically stable if,
for an identically zero input, the system state will converge to zero from any ini-
tial states. For a linear, time-invariant system described by a model of (1.1), it is
asymptotically stable if and only if all the eigenvalues of the state matrix A are in
the open-left-half complex plane, i.e. with positive real parts.

In general, the asymptotic stability of a system implies that the system is also
BIBO stable, but not vice versa. However, for a system in (1.1), if [A,B,C,D] is
of minimal realization, the BIBO stability of the system implies that the system is
asymptotically stable.

The above stabilities are defined for open-loop systems as well as closed-loop
systems. For a closed-loop system (interconnected, feedback system), it is more in-
teresting and intuitive to look at the asymptotic stability from another point of view
and this is called the internal stability [27]. An interconnected system is internally
stable if the subsystems of all input–output pairs are asymptotically stable (or the
corresponding transfer function matrices are BIBO stable when the state space mod-
els are minimal, which is assumed in this chapter). Internal stability is equivalent to
asymptotic stability in an interconnected, feedback system but may reveal explic-
itly the relationship between the original, open-loop system and the controller that
influences the stability of the whole system. For the system given in Fig. 1.1, there
are two inputs r and d (the disturbance at the output) and two outputs y and u (the
output of the controller K).
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The transfer functions from the inputs to the outputs, respectively, are

Tyr = GK(I + GK)−1

Tyd = G(I + KG)−1

Tur = K(I + GK)−1

Tud = −KG(I + KG)−1

(1.6)

Hence, the system is internally stable if and only if all the transfer functions in
(1.6) are BIBO stable, or the transfer function matrix M from

[ r
d

]
to

[ y
u

]
is BIBO

stable, where

M :=
[

GK(I + GK)−1 G(I + KG)−1

K(I + GK)−1 −KG(I + KG)−1

]
(1.7)

The stability of (1.7) is equivalent to the stability of

M̂ :=
[
I − GK(I + GK)−1 −G(I + KG)−1

K(I + GK)−1 I − KG(I + KG)−1

]
(1.8)

By simple matrix manipulations, we have

M̂ =
[

(I + GK)−1 −G(I + KG)−1

K(I + GK)−1 (I + KG)−1

]

=
[

I G

−K I

]−1

(1.9)

Hence, the feedback system in Fig. 1.1 is internally stable if (1.9) is stable.
It can be shown [27] that if there is no unstable pole/zero cancellation between

G and K , then any one of the four transfer functions being BIBO stable would be
enough to guarantee that the whole system is internally stable.

1.3 Coprime Factorization and Stabilizing Controllers

Consider a system given in the form of (1.2) with [A,B,C,D] assumed to be min-
imal. Matrices (M̃(s), Ñ(s)) ∈ H∞ ((M(s),N(s)) ∈ H∞), where H∞ denotes the
space of functions with no poles in the closed right-half complex plane, constitute a
left (right) coprime factorization of G(s) if and only if

(i) M̃ (M) is square, and det(M̃)(det(M)) �= 0
(ii) the plant model is given by

G = M̃−1Ñ
(= NM−1) (1.10)

(iii) There exists (Ṽ , Ũ )((V ,U)) ∈ H∞ such that

M̃Ṽ + ÑŨ = I (1.11)

(UN + V M = I )
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Transfer functions (or rational, fractional) matrices are coprime if they share no
common zeros in the right-half complex plane, including at the infinity. The two
equations in (iii) above are called Bezout identities [108] and are necessary and suf-
ficient conditions for (M̃, Ñ) ((M,N)) being left coprime (right coprime), respec-
tively. The left and right coprime factorizations of G(s) can be grouped together to
form a Bezout double identity as the following:[

V U

−Ñ M̃

][
M −Ũ

N Ṽ

]
= I (1.12)

For G(s) of minimal realization (1.2) (actually G is required to be stabilizable
and detectable only), the formulas for the coprime factors can be readily derived
[109] as in the following theorem.

Theorem 1.1 Let constant matrices F and H be such that A + BF and A + HC

are both stable. Then the transfer function matrices M̃ and Ñ (M and N ) defined
in the following constitute a left (right) coprime factorization of G(s):

[
Ñ(s) M̃(s)

] =
[
A + HC B + HD −H

C D I

]
(1.13)

[
N(s)

M(s)

]
=

⎡
⎣ A + BF B

C + DF D

F I

⎤
⎦ (1.14)

Furthermore, the following Ũ (s), Ṽ (s), U(s), and V (s) satisfy the Bezout double
identity (1.12):

[
Ũ (s) Ṽ (s)

] =
[
A + HC H B + HD

F 0 I

]
(1.15)

[
U(s)

V (s)

]
=

⎡
⎣ A + BF H

F 0
C + DF I

⎤
⎦ (1.16)

It can be easily shown that the pairs (Ũ , Ṽ ) and (U,V ) are stable and coprime.
Using (1.9), it is straightforward to show the following lemma.

Lemma 1.2

K := Ṽ −1Ũ = UV −1 (1.17)

is a stabilizing controller, i.e. the closed-loop system in Fig. 1.6 is internally stable.

Further, the set of all stabilizing controllers for G = M̃−1Ñ = NM−1 can be
obtained in the following Youla Parameterization Theorem [109, 189, 190].

Theorem 1.3 The set of all stabilizing controllers for G is
{(

Ṽ + QÑ
)−1(

Ũ + QM̃
) : Q ∈ H∞

}
(1.18)
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The set can also be expressed as{
(U + MQ)(V + NQ)−1 : Q ∈H∞

}
(1.19)

1.4 Signals and System Norms

In this section the basic concepts concerning signals and systems will be reviewed
in brief. A control system interacts with its environment through command signals,
disturbance signals and noise signals, etc. Tracking error signals and actuator driv-
ing signals are also important in control systems design. For the purpose of analysis
and design, appropriate measures, the norms, must be defined for describing the
“size” of these signals. From the signal norms, we can then define induced norms to
measure the “gain” of the operator that represents the control system.

1.4.1 Vector Norms and Signal Norms

Let the linear space X be Fm, where F =R for the field of real numbers, or F = C
for complex numbers. For x = [x1, x2, . . . , xm]T ∈ X, the p-norm of the vector x is
defined by

1-norm ‖x‖1 :=
m∑

i=1

|xi |, for p = 1

p-norm ‖x‖p :=
(

m∑
i=1

|xi |p
)1/p

, for 1 < p < ∞

∞-norm ‖x‖∞ := max
1≤i≤m

|xi |, for p = ∞
When p = 2, ‖x‖2 is the familiar Euclidean norm.
When X is a linear space of continuous or piecewise continuous time scalar-

valued signals x(t), t ∈R, the p-norm of a signal x(t) is defined by

1-norm ‖x‖1 :=
∫ ∞

−∞
∣∣x(t)

∣∣dt, for p = 1

p-norm ‖x‖p :=
(∫ ∞

−∞
∣∣x(t)

∣∣p dt

)1/p

, for 1 < p < ∞

∞-norm ‖x‖∞ := sup
t∈R

∣∣x(t)
∣∣, for p = ∞

The normed spaces, consisting of signals with finite norm as defined correspond-
ingly, are called L1(R), Lp(R), and L∞(R), respectively. From a signal point of
view, the 1-norm, ‖x‖1 of the signal x(t) is the integral of its absolute value. The
square of the 2-norm, ‖x‖2

2, is often called the energy of the signal x(t) since that



10 1 Introduction

is what it is when x(t) is the current through a 1 � resistor. The ∞-norm, ‖x‖∞, is
the amplitude or peak value of the signal, and the signal is bounded in magnitude if
x(t) ∈ L∞(R).

When X is a linear space of continuous or piecewise continuous vector-valued
functions of the form x(t) = [x1(t), x2(t), . . . , xm(t)]T , t ∈R, we may have

L
p
m(R) :=

{
x(t) : ‖x‖p =

(∫ ∞

−∞

m∑
i=1

∣∣xi(t)
∣∣p dt

)1/p

< ∞, for 1 ≤ p < ∞
}

L∞
m (R) :=

{
x(t) : ‖x‖∞ = sup

t∈R

∥∥x(t)
∥∥∞ < ∞

}

Some signals are useful for control systems analysis and design, for example,
the sinusoidal signal, x(t) = A sin(ωt + φ), t ∈ R. It is unfortunately not a 2-norm
signal because of the infinite energy contained. However, the average power of x(t)

lim
T →∞

1

2T

∫ T

−T

x2(t)dt

exists. The signal x(t) will be called a power signal if the above limit exists. The
square root of the limit is the well-known r.m.s. (root-mean-square) value of x(t). It
should be noticed that the average power does not introduce a norm, since a nonzero
signal may have zero average power.

1.4.2 System Norms

System norms are actually the input–output gains of the system. Suppose that G is
a linear and bounded system that maps the input signal u(t) into the output signal
y(t), where u ∈ (U,‖ · ‖U), y ∈ (Y,‖ · ‖Y ). U and Y are the signal spaces, endowed
with the norms ‖ · ‖U and ‖ · ‖Y , respectively. Then the norm, maximum system
gain, of G is defined as

‖G‖ := sup
u �=0

‖Gu‖Y

‖u‖U

(1.20)

or

‖G‖ = sup
‖u‖U =1

‖Gu‖Y = sup
‖u‖U ≤1

‖Gu‖Y

Obviously, we have

‖Gu‖Y ≤ ‖G‖ · ‖u‖U

If G1 and G2 are two linear, bounded and compatible systems, then

‖G1G2‖ ≤ ‖G1‖ · ‖G2‖
‖G‖ is called the induced norm of G with regard to the signal norms ‖ · ‖U

and ‖ · ‖Y . In this book, we are particularly interested in the so-called ∞-norm
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of a system. For a linear, time-invariant, stable system G: L2
m(R) → L2

p(R), the
∞-norm, or the induced 2-norm, of G is given by

‖G‖∞ = sup
ω∈R

∥∥G(jω)
∥∥

2 (1.21)

where ‖G(jω)‖2 is the spectral norm of the p × m matrix G(jω) and G(s) is
the transfer function matrix of G. Hence, the ∞-norm of a system describes the
maximum energy gain of the system and is decided by the peak value of the largest
singular value of the frequency response matrix over the whole frequency axis. This
norm is called the H∞-norm, since we denote by H∞ the linear space of all stable
linear systems.



This page intentionally left blank



Chapter 2
Modeling of Uncertain Systems

As discussed in Chap. 1, it is well understood that uncertainties are unavoidable
in a real control system. The uncertainty can be classified into two categories: dis-
turbance signals and dynamic perturbations. The former includes input and output
disturbance (such as a gust on an aircraft), sensor noise and actuator noise, etc.
The latter represents the discrepancy between the mathematical model and the ac-
tual dynamics of the system in operation. A mathematical model of any real system
is always just an approximation of the true, physical reality of the system dynam-
ics. Typical sources of the discrepancy include unmodeled (usually high-frequency)
dynamics, neglected nonlinearities in the modeling, effects of deliberate reduced-
order models, and system-parameter variations due to environmental changes and
torn-and-worn factors. These modeling errors may adversely affect the stability and
performance of a control system. In this chapter, we will discuss in detail how dy-
namic perturbations are usually described so that they can be accounted for in sys-
tem robustness analysis and design.

2.1 Unstructured Uncertainties

Many dynamic perturbations that may occur in different parts of a system can, how-
ever, be lumped into one single perturbation block Δ, for instance, some unmodeled,
high-frequency dynamics. This uncertainty representation is referred to as “unstruc-
tured” uncertainty. In the case of linear, time-invariant systems, the block Δ may
be represented by an unknown transfer function matrix. The unstructured dynamics
uncertainty in a control system can be described in different ways, such as is listed
in the following, where Gp(s) denotes the actual, perturbed system dynamics and
Go(s) a nominal model description of the physical system.

1. Additive perturbation (see Fig. 2.1):

Gp(s) = Go(s) + Δ(s) (2.1)

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_2,© Springer-Verlag London 2013
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Fig. 2.1 Additive
perturbation configuration

Fig. 2.2 Inverse additive
perturbation configuration

Fig. 2.3 Input multiplicative
perturbation configuration

Fig. 2.4 Output
multiplicative perturbation
configuration

Fig. 2.5 Inverse input
multiplicative perturbation
configuration

2. Inverse additive perturbation (see Fig. 2.2):
(
Gp(s)

)−1 = (
Go(s)

)−1 + Δ(s) (2.2)

3. Input multiplicative perturbation (see Fig. 2.3):

Gp(s) = Go(s)
[
I + Δ(s)

]
(2.3)

4. Output multiplicative perturbation (see Fig. 2.4):

Gp(s) = [
I + Δ(s)

]
Go(s) (2.4)

5. Inverse input multiplicative perturbation (see Fig. 2.5):
(
Gp(s)

)−1 = [
I + Δ(s)

](
Go(s)

)−1 (2.5)
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Fig. 2.6 Inverse output
multiplicative perturbation
configuration

Fig. 2.7 Left coprime factor
perturbations configuration

Fig. 2.8 Right coprime
factor perturbations
configuration

6. Inverse output multiplicative perturbation (see Fig. 2.6):
(
Gp(s)

)−1 = (
Go(s)

)−1[
I + Δ(s)

]
(2.6)

7. Left coprime factor perturbations (see Fig. 2.7):

Gp(s) = (M̃ + Δ
M̃

)−1(Ñ + Δ
Ñ

) (2.7)

8. Right coprime factor perturbations (see Fig. 2.8):

Gp(s) = (N + ΔN)(M + ΔM)−1 (2.8)

The additive uncertainty representations give an account of absolute error be-
tween the actual dynamics and the nominal model, while the multiplicative repre-
sentations show relative errors.

In the last two representations, (M̃, Ñ)/(M,N) are left/right coprime factoriza-
tions of the nominal system model Go(s), respectively; and (Δ

M̃
,Δ

Ñ
)/(ΔM,ΔN)

are the perturbations on the corresponding factors [111].
The block Δ (or, (Δ

M̃
,Δ

Ñ
)/(ΔM,ΔN) in the coprime factor perturbations

cases) is uncertain, but usually is norm-bounded. It may be bounded by a known
transfer function, say σ [Δ(jω)] ≤ δ(jω), for all frequencies ω, where δ is a known
scalar function and σ [·] denotes the largest singular value of a matrix. The uncer-
tainty can thus be represented by a unit, norm-bounded block Δ cascaded with a
scalar transfer function δ(s).

It should be noted that a successful robust control-system design would depend
on, to a certain extent, an appropriate description of the perturbation considered,
though theoretically most representations are interchangeable.
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Fig. 2.9 Absolute and relative errors in Example 2.1

Example 2.1 The dynamics of many control systems may include a “slow” part and
a “fast” part, for instance in a dc motor. The actual dynamics of a scalar plant may
be

Gp(s) = ggainGslow(s)Gfast(s)

where ggain is constant, and

Gslow(s) = 1

1 + sT
; Gfast(s) = 1

1 + αsT
, α � 1

In the design, it may be reasonable to concentrate on the slow response part while
treating the fast response dynamics as a perturbation. Let Δa and Δm denote the
additive and multiplicative perturbations, respectively. It can easily be worked out
that

Δa(s) = Gp − ggainGslow = ggainGslow(Gfast − 1)

= ggain
−αsT

(1 + sT )(1 + αsT )

Δm(s) = Gp − ggainGslow

ggainGslow
= Gfast − 1 = −αsT

1 + αsT

The magnitude Bode plots of Δa and Δm can be seen in Fig. 2.9, where ggain
is assumed to be 1. The difference between the two perturbation representations is
obvious: though the magnitude of the absolute error may be small, the relative error
can be large in the high-frequency range in comparison to that of the nominal plant.
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2.2 Parametric Uncertainty

The unstructured uncertainty representations discussed in Sect. 2.1 are useful in
describing unmodeled or neglected system dynamics. These complex uncertainties
usually occur in the high-frequency range and may include unmodeled lags (time
delay), parasitic coupling, hysteresis, and other nonlinearities. However, dynamic
perturbations in many industrial control systems may also be caused by inaccurate
description of component characteristics, torn-and-worn effects on plant compo-
nents, or shifting of operating points, etc. Such perturbations may be represented by
variations of certain system parameters over some possible value ranges (complex or
real). They affect the low-frequency range performance and are called “parametric
uncertainties”.

Example 2.2 A mass–spring–damper system can be described by the following sec-
ond order, ordinary differential equation:

m
d2x(t)

dt2
+ c

dx(t)

dt
+ kx(t) = f (t)

where m is the mass, c the damping constant, k the spring stiffness, x(t) the dis-
placement and f (t) the external force. For imprecisely known parameter values, the
dynamic behavior of such a system is actually described by

(mo + δm)
d2x(t)

dt2
+ (co + δc)

dx(t)

dt
+ (ko + δk)x(t) = f (t) (2.9)

where mo, co, and ko denote the nominal parameter values and δm, δc and δk possible
variations over certain ranges.

By defining the state variables x1 and x2 as the displacement variable and its
first order derivative (velocity), the second order differential equation (2.9) may be
rewritten into a standard state-space form

ẋ1 = x2

ẋ2 = 1

mo + δm

[−(ko + δk)x1 − (co + δc)x2 + f
]

y = x1

Further, the system can be represented by an analog block diagram as in Fig. 2.10.
Notice that 1

mo+δm
can be rearranged as a feedback in terms of 1

mo
and δm. Fig-

ure 2.10 can be redrawn as in Fig. 2.11, by pulling out all the uncertain variations.
Let z1, z2, and z3 be ẋ2, x2, and x1, respectively, considered as another, fictitious

output vector; and, d1, d2, and d3 be the signals coming out from the perturbation
blocks δm, δc , and δk , as shown in Fig. 2.11. The perturbed system can be arranged
in the following state-space model and represented as in Fig. 2.12:

[
ẋ1
ẋ2

]
=

[
0 1

− ko

mo
− co

mo

][
x1
x2

]
+

[
0 0 0

−1 −1 −1

]⎡
⎣d1

d2
d3

⎤
⎦ +

[
0
1

mo

]
f
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Fig. 2.10 Analog block diagram of Example 2.2

Fig. 2.11 Structured uncertainties block diagram of Example 2.2

⎡
⎣z1

z2
z3

⎤
⎦ =

⎡
⎣− ko

mo
− co

mo

0 1
1 0

⎤
⎦

[
x1
x2

]
+

⎡
⎣−1 −1 −1

0 0 0
0 0 0

⎤
⎦

⎡
⎣d1

d2
d3

⎤
⎦ +

⎡
⎣

1
mo

0
0

⎤
⎦f (2.10)

y = [
1 0

][
x1
x2

]

The state-space model of (2.10) describes the augmented, interconnection system
M of Fig. 2.12. The perturbation block Δ in Fig. 2.12 corresponds to parameter
variations and is called “parametric uncertainty”. The uncertain block Δ is not a
full matrix but a diagonal one. It has certain structure, hence the terminology of
“structured uncertainty”. More general cases will be discussed shortly in Sect. 2.4.
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Fig. 2.12 Standard
configuration of Example 2.2

Fig. 2.13 Standard M–Δ

configuration

2.3 Linear Fractional Transformations

The block diagram in Fig. 2.12 can be generalized to be a standard configuration
to represent how the uncertainty affects the input/output relationship of the control
system under study. This kind of representation first appeared in the circuit analysis
back in the 1950s [140, 141]. It was later adopted in the robust control study [145]
for uncertainty modeling. The general framework is depicted in Fig. 2.13.

The interconnection transfer function matrix M in Fig. 2.13 is partitioned as

M =
[
M11 M12
M21 M22

]

where the dimensions of M11 conform with those of Δ. By routine manipulations,
it can be derived that

z = [
M22 + M21Δ(I − M11Δ)−1M12

]
if (I − M11Δ) is invertible. When the inverse exists, we may define

F(M,Δ) = M22 + M21Δ(I − M11Δ)−1M12

F(M,Δ) is called a linear fractional transformation (LFT) of M and Δ. Be-
cause the “upper” loop of M is closed by the block Δ, this kind of linear fractional
transformation is also called an upper linear fractional transformation (ULFT), and
denoted with a subscript u, i.e. Fu(M,Δ), to show the way of connection. Similarly,
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Fig. 2.14 Lower LFT
configuration

there are also lower linear fractional transformations (LLFT) that are usually used
to indicate the incorporation of a controller K into a system. Such a lower LFT can
be depicted as in Fig. 2.14 and defined by

Fl(M,K) = M11 + M12K(I − M22K)−1M21

With the introduction of linear fractional transformations, the unstructured un-
certainty representations discussed in Sect. 2.1 may be uniformly described by
Fig. 2.13, with appropriately defined interconnection matrices Ms as listed below.

1. Additive perturbation:

M =
[

0 I

I Go

]
(2.11)

2. Inverse additive perturbation:

M =
[−Go Go

−Go Go

]
(2.12)

3. Input multiplicative perturbation:

M =
[

0 I

Go Go

]
(2.13)

4. Output multiplicative perturbation:

M =
[

0 Go

I Go

]
(2.14)

5. Inverse input multiplicative perturbation:

M =
[ −I I

−Go Go

]
(2.15)

6. Inverse output multiplicative perturbation:

M =
[−I Go

−I Go

]
(2.16)

7. Left coprime factor perturbations:

M =
⎡
⎣

[−M̃−1
G

0

] [−Go

I

]

M̃−1
G Go

⎤
⎦ (2.17)
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where Go = M̃−1
G ÑG, a left coprime factorization of the nominal plant; and, the

perturbed plant is Gp = (M̃G + Δ
M̃

)−1(ÑG + Δ
Ñ

).
8. Right coprime factor perturbations:

M =
[[−M−1

G 0
]

M−1
G[−Go I

]
Go

]
(2.18)

where Go = NGMG
−1, a right coprime factorization of the nominal plant; and,

the perturbed plant is Gp = (NG + ΔN)(MG + ΔM)−1.

In the above, it is assumed that [I − M11Δ] is invertible. The perturbed system
is thus

Gp(s) = Fu(M,Δ)

In the coprime factor perturbation representations, (2.17) and (2.18), Δ =
[ Δ

M̃
Δ

Ñ ] and Δ = [ ΔM

ΔN

]
, respectively. The block Δ in (2.11)–(2.18) is supposed

to be a “full” matrix, i.e. it has no specific structure.

2.4 Structured Uncertainties

In many robust design problems, it is more likely that the uncertainty scenario is a
mixed case of those described in Sects. 2.1 and 2.2. The uncertainties under con-
sideration would include unstructured uncertainties, such as unmodeled dynamics,
as well as parameter variations. All these uncertain parts still can be taken out from
the dynamics and the whole system can be rearranged in a standard configuration
of (upper) linear fractional transformation F(M,Δ). The uncertain block Δ would
then have the following general form:

Δ = diag[δ1Ir1, . . . , δsIrs ,Δ1, . . . ,Δf ], δi ∈ C,Δj ∈ Cmj ×mj (2.19)

where
∑s

i=1 ri + ∑f

j=1 mj = n with n is the dimension of the block Δ. We may
define the set of such Δ as �. The total block Δ thus has two types of uncertain
block: s repeated scalar blocks and f full blocks. The parameters δi of the repeated
scalar blocks can be real numbers only, if further information of the uncertainties is
available. However, in the case of real numbers, the analysis and design would be
even harder. The full blocks in (2.19) need not be square, but by restricting them as
such makes the notation much simpler.

When a perturbed system is described by an LFT with the uncertain block of
(2.19), the Δ considered has a certain structure. It is thus called “structured un-
certainty”. Apparently, using a lumped, full block to model the uncertainty in such
cases, for instance in Example 2.2, would lead to pessimistic analysis of the system
behavior and produce conservative designs.
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Chapter 3
Robust Design Specifications

A control system is robust if it remains stable and obeys certain performance criteria
in the presence of possible uncertainties as discussed in Chap. 2. The robust design
is to find a controller, for a given system, such that the closed-loop system is robust.
The H∞ optimization approach and its related approaches, being developed in the
last two decades and still an active research area, have been shown to be effective
and efficient robust design methods for linear, time-invariant control systems. We
will first introduce in this chapter the Small-Gain Theorem, which plays an impor-
tant role in the H∞ optimization methods, and then discuss the stabilization and
performance requirements in robust designs using the H∞ optimization and related
ideas.

3.1 Small-Gain Theorem and Robust Stabilization

The Small-Gain Theorem is of central importance in the derivation of many stability
tests. In general, it provides only a sufficient condition for stability and is therefore
potentially conservative. The Small-Gain Theorem is applicable to general opera-
tors. What will be included here is, however, a version that is suitable for the H∞
optimization designs, and in this case, it is a sufficient and necessary result.

Consider the feedback configuration in Fig. 3.1, where G1(s) and G2(s) are the
transfer function matrices of corresponding linear, time-invariant systems. We then
have the following theorem.

Theorem 3.1 [28] If G1(s) and G2(s) are stable, i.e. G1 ∈ H∞, G2 ∈ H∞, then
the closed-loop system is internally stable if and only if

‖G1G2‖∞ < 1 and ‖G2G1‖∞ < 1

A closed-loop system of the plant G and controller K is robustly stable if it
remains stable for all possible, under certain definition, perturbations on the plant.
This implies, of course, that K is a stabilizing controller for the nominal plant G,

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_3,© Springer-Verlag London 2013
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Fig. 3.1 A feedback
configuration

Fig. 3.2 Additive
perturbation configuration

since we always assume that the perturbation set includes zero (no perturbation).
Let us consider the case of additive perturbation as depicted in Fig. 3.2, where Δ(s)

is the perturbation, a “full” matrix unknown but stable.
It is easy to work out that the transfer function from the signal v to u is

Tuv = −K(I + GK)−1. As mentioned earlier, the controller K should stabilize the
nominal plant G. Hence, from the Small-Gain Theorem, we have the following the-
orem.

Theorem 3.2 [17, 121] For stable Δ(s), the closed-loop system is robustly stable if
K(s) stabilizes the nominal plant and the following holds:∥∥ΔK(I + GK)−1

∥∥∞ < 1

and ∥∥K(I + GK)−1Δ
∥∥∞ < 1

or, in a strengthened form,

∥∥K(I + GK)−1
∥∥∞ <

1

‖Δ‖∞
(3.1)

The second condition becomes necessary, when the unknown Δ may have all phases.

If required to find a controller to robustly stabilize the largest possible set of
perturbations, in the sense of ∞-norm, it is then clear that we need to solve the
following minimization problem:

min
K stabilizing

∥∥K(I + GK)−1
∥∥∞ (3.2)

In many cases, we may have a priori knowledge of the perturbation, say,
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σ
(
Δ(jω)

) ≤ σ
(
W2(jω)

)
for all ω ∈ R

Then, we may rewrite the perturbation block as

Δ(s) = Δ̃(s)W2(s)

where Δ̃(s) is the unit norm perturbation set. Correspondingly, the robust stabiliza-
tion condition becomes ∥∥W2K(I + GK)−1

∥∥∞ < 1

and the optimization problem

min
K stabilizing

∥∥W2K(I + GK)−1
∥∥∞ (3.3)

Robust stabilization conditions can be derived similarly for other perturbation
representations discussed in Chap. 2 and are listed below (Go is replaced by G for
the sake of simplicity).

1. Inverse additive perturbation:

∥∥G(I + KG)−1
∥∥∞ <

1

‖Δ‖∞
(3.4)

2. Input multiplicative perturbation:

∥∥KG(I + KG)−1
∥∥∞ <

1

‖Δ‖∞
(3.5)

3. Output multiplicative perturbation:

∥∥GK(I + GK)−1
∥∥∞ <

1

‖Δ‖∞
(3.6)

4. Inverse input multiplicative perturbation:

∥∥(I + KG)−1
∥∥∞ <

1

‖Δ‖∞
(3.7)

5. Inverse output multiplicative perturbation:

∥∥(I + GK)−1
∥∥∞ <

1

‖Δ‖∞
(3.8)

The cases of perturbation on coprime factors will be discussed in Chap. 5.

Remark In the above discussion, the stability of the perturbation block has been as-
sumed. Actually, the conclusions are also true if the perturbed systems have the same
number of closed right-half plane poles as the nominal system does (see [107]). If
even this is not satisfied, then we will have to use the coprime factor perturbation
models, as will be discussed in Chap. 5.

Robust stabilization is an important issue not just as a design requirement. As a
matter of fact, the H∞ design and related approaches first formulate the stability as
well as performance design specifications as a robust stabilization problem and then
solve the robust stabilization problem to find a controller.
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Fig. 3.3 A closed-loop
configuration of G and K

3.2 Performance Considerations

Figure 3.3 depicts a typical closed-loop system configuration, where G is the plant
and K the controller to be designed. r , y, u, e, d , n are, respectively, the reference
input, output, control signal, error signal, disturbance, and measurement noise. With
a little abuse of notations, we do not distinguish the notations of signals in the time
or frequency domains. The following relationships are immediately available:

y = (I + GK)−1GKr + (I + GK)−1d − (I + GK)−1GKn

u = K(I + GK)−1r − K(I + GK)−1d − K(I + GK)−1n

e = (I + GK)−1r − (I + GK)−1d − (I + GK)−1n

Assume that the signals r , d , n are energy bounded and have been normalized,
i.e. lying in the unit ball of L2 space. We, however, do not know what exactly these
signals are. It is required that the usual performance specifications, such as tracking,
disturbance attenuation and noise rejection, should be as good as possible for any r ,
d or n whose energy does not exceed 1. From the discussions in Chap. 1 on signal
and system norms, it is clear that we should minimize the ∞-norm, the gain, of
corresponding transfer function matrices. Hence, the design problem is that over
the set of all stabilizing controller Ks, (i.e. those Ks make the closed-loop system
internally stable), find the optimal one that minimizes

• for good tracking,
‖(I + GK)−1‖∞

• for good disturbance attenuation,
‖(I + GK)−1‖∞

• for good noise rejection,
‖−(I + GK)−1GK‖∞

• for less control energy,
‖K(I + GK)−1‖∞
It is conventional to denote S := (I + GK)−1, the sensitivity function, and T :=

(I + GK)−1GK , the complementary sensitivity function.
In general, weighting functions would be used in the above minimization to meet

the design specifications. For instance, instead of minimizing the sensitivity function
alone, we would aim at solving

min
K stabilizing

‖W1SWd‖∞
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where W1 is chosen to tailor the tracking requirement and is usually a high-gain
low-pass filter type, Wd can be regarded as a generator that characterizes all relevant
disturbances in the case considered. Usually, the weighting functions are stable and
of minimum phase.

3.3 Structured Singular Values

Systems with uncertain dynamics can all be put in the standard M–Δ configuration
of Fig. 2.13. The robust stabilization conditions derived in Sect. 3.1 are sufficient
and necessary conditions for unstructured uncertainties, i.e. Δ is a full block and
will have all phases. In the case of structured uncertainty (Sect. 2.4), these robust
stabilization results could be very conservative. To deal with structured uncertain-
ties, we need to introduce the so-called structured singular values (SSV).

In fact, these robust stabilization results, such as that in Theorem 3.2, can be
equivalently written as [17, 121]

det
[
I − M(jω)Δ(jω)

] �= 0, ∀ω ∈ R,∀Δ (3.9)

where the nominal (closed-loop) system M(s) is assumed to be stable as usual.
This condition for robust stability is sufficient and necessary even for structured

uncertainty Δ. Roughly speaking, in order to have the closed-loop system robustly
stable, all the uncertainties of a known structure of (2.19) should be small enough
not to violate the condition (i.e. not make I − M(jω)Δ(jω) singular at any fre-
quency ω). On the other hand, for a given M with a fixed controller K and a known
structure of the uncertainties, the smallest “size” of the uncertainty that makes
I − M(jω)Δ(jω) singular at some frequency ω describes how robustly stable the
controller K is in dealing with such structured uncertainties. This measurement is
the so-called structured singular values (SSV) introduced below.

First, as in Sect. 2.4, we define the structure of uncertainty of (2.19) and repeat
here for convenience,

� = {
diag[δ1Ir1, . . . , δsIrs ,Δ1, . . . ,Δf ] : δi ∈ C,Δj ∈ Cmj ×mj

}
(3.10)

where
∑s

i=1 ri + ∑f

j=1 mj = n with n is the dimension of the block Δ. We also
assume the set of � is bounded. And, we may thus define a normalized set of struc-
tured uncertainty by

B� := {
Δ : σ(Δ) < 1,Δ ∈ �

}
(3.11)

Definition 3.3 For M ∈ Cn×n, the structured singular value μΔ(M) of M with re-
spect to � is the number defined such that μ−1

Δ (M) is equal to the smallest σ(Δ)

needed to make (I − MΔ) singular (rank deficiency). That is

μ−1
Δ (M) := min

Δ∈�

{
σ(Δ) : det(I − MΔ) = 0

}
(3.12)

If there is no Δ ∈ � such that det(I − MΔ) = 0, then μΔ(M) := 0.
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When M is an interconnected transfer matrix as in Fig. 2.13, the structured sin-
gular value, with respect to �, is defined by

μΔ

(
M(s)

) := sup
ω∈R

μΔ

(
M(jω)

)
(3.13)

Correspondingly, the uncertainty set may be defined as

M(�) := {
Δ(·) ∈ RH∞ : Δ(jω) ∈ � for all ω ∈R

}
(3.14)

When the uncertainty structure is fixed, we may omit the subscript Δ of μΔ(M)

for brevity.
The reciprocal of the structured singular value denotes a frequency-dependent

stability margin [24, 145]. The robust stability result with regard to structured un-
certainty is now given in the following theorem.

Theorem 3.4 [31, 161] Let the nominal feedback system (M(s)) be stable and let
β > 0 be an uncertainty bound, i.e. ‖Δ‖∞ < β,∀Δ(·) ∈ M(�). The perturbed sys-
tem of Fig. 2.13 is robustly stable, with respect to �, if and only if μΔ(M(s)) ≤ 1

β
.

It is obvious that if the uncertainty lies in the unit ball B�, the robust stability
condition is then μΔ(M(s)) ≤ 1.

μΔ(M(s)) is frequency dependent and is calculated at “each” frequency over a
reasonable range in practical applications.

In the literature, μΔ(M(s)) is sometimes redefined as ‖M‖μ for an intercon-
nected transfer function matrix M(s). This notation is convenient; however, it
should be clear that it is not a norm. It does not satisfy the three basic properties
of a norm. Also, it depends on M(s) as well as the uncertainty structure of Δ.

The structured singular value plays an important role in robust design. As be-
came clear in the early parts of this chapter, the H∞ optimization approach can deal
with robust stabilization problems with regard to unstructured uncertainties and can
achieve nominal performance requirements. In the case of structured uncertainty,
Theorem 3.4 gives a sufficient and necessary condition for robust stabilization. Fur-
thermore, the robust performance design can also be transformed into a robust sta-
bilization problem with regard to structured uncertainties, as will be described in
Chap. 6. However, the computation of the structured singular value is not an easy
task. It is still an open topic and requires further research.

A few properties of the structured singular value and its computation are
listed below. Interested readers are referred to [31, 41, 42, 132–134, 196] for de-
tails. Coded routines for the μ computation are available in software packages
MATLAB® [11] and Slicot [78].

Let ρ(·) denote the spectral radius of a square matrix. By direct manipulations,
we have the following lemma.

Lemma 3.5 For a square, constant matrix M ,

μ(M) = max
Δ∈B�

ρ(MΔ)
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The following properties of μ can also easily be derived:

• μ(αM) = |α| · μ(M),∀α ∈ C
• det(I − MΔ) �= 0,∀Δ ∈ B� ⇐⇒ μ(M) ≤ 1
• if � = {δIn : δ ∈ C} (s = 1, f = 0; r1 = n) 
⇒ μ(M) = ρ(M)

• if � = Cn×n (s = 0, f = 1;m1 = n) 
⇒ μ(M) = σ(M)

In the above, s, f , and n are dimensions of the uncertainty set � as defined in
(3.10).

Further, we have the following lemma.

Lemma 3.6

ρ(M) ≤ μ(M) ≤ σ(M)

Lemma 3.6 gives upper and lower bounds for μ(M). They are, however, not
particularly useful for the computation of μ(M), because the gap between ρ(M)

and σ(M) could be arbitrarily large. More accurate bounds are needed and these
can be obtained by using some transformations on M that may change the values of
ρ(M) and σ(M) but not change μ(M). The following two constant matrix sets are
introduced for this purpose.

Define

U = {
U ∈ � : UU∗ = In

}
and

D = {
D = diag[D1, . . . ,Ds, d1Im1, . . . , df Imf

] :
Di ∈ Cri×ri ,Di = D∗

i > 0, dj > 0
}

The matrix sets U and D match the structure of �. U is of a (block-) diagonal
structure of unitary matrices and for any D ∈ D and Δ ∈ �, D (D−1) commutes
with Δ. Furthermore, for any Δ ∈ �, U ∈ U, and D ∈ D, we have

• U∗ ∈ U, UΔ ∈ �, ΔU ∈ �, and σ(UΔ) = σ(ΔU) = σ(Δ)

• DΔD−1 = Δ, DΔD−1 ∈ Δ, and σ(DΔD−1) = σ(Δ)

More importantly, we have

ρ(MU) ≤ μ(MU) = μ(M) = μ
(
DMD−1) ≤ σ

(
DMD−1) (3.15)

In the above, μ(MU) = μ(M) is derived from det(I − MΔ) = det(I −
MUU∗Δ) and U∗Δ ∈ �, σ(U∗Δ) = σ(Δ). Also, μ(M) = μ(DMD−1) can be
seen from det(I − DMD−1Δ) = det(I − DMΔD−1) = det(I − MΔ).

The relations in (3.15) directly lead to the following theorem.

Theorem 3.7

max
U∈U

ρ(MU) ≤ μ(M) ≤ inf
D∈D

σ
(
DMD−1)
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Theorem 3.7 provides tighter upper and lower bounds on μ(M). In [31], it was
shown that the above lower bound is actually an equality,

max
U∈U

ρ(MU) = μ(M)

Unfortunately, this optimization problem is not convex. ρ(MU) may have multiple
local maxima. Direct computation of maxU∈U ρ(MU) may not find a global maxi-
mum. On the other hand, the upper bound of μ(M) in Theorem 3.7 is easier to find,
since σ(DMD−1) is convex in lnD [33, 153]. However, this upper bound is not
always equal to μ(M). For the cases of 2s + f ≤ 3, it can be shown that

μ(M) = inf
D∈D

σ
(
DMD−1)

The problem of calculating μ(M) is therefore reduced to an optimal diagonal scal-
ing problem. Most algorithms proposed so far for the structured singular values
compute this upper bound.



Chapter 4
H∞ Design

A control system is robust if it remains stable and obeys certain performance criteria
in the presence of possible uncertainties as discussed in Chap. 2. The robust design
is to find a controller, for a given system, such that the closed-loop system is robust.
The H∞ optimization approach, having been developed in the last two decades and
still an active research area, has been shown to be an effective and efficient robust
design method for linear, time-invariant control systems. In the previous chapter,
various robust stability considerations and nominal performance requirements were
formulated as a minimization problem of the infinitive norm of a closed-loop trans-
fer function matrix. Hence, in this chapter, we shall discuss how to formulate a
robust design problem into such a minimization problem and how to find the so-
lutions. The H∞ optimization approach solves, in general, the robust stabilization
problems and nominal performance designs.

4.1 Mixed Sensitivity H∞ Optimization

Every practicing control engineer knows very well that it will never be appropriate
in any industrial design to use just a single cost function, such as those formulated
in Chap. 3. A reasonable design would use a combination of these functions. For
instance, it makes sense to require a good tracking as well as to limit the control
signal energy, as depicted in Fig. 4.1. We may then want to solve the following
mixed sensitivity (or so-called S over KS) problem:

min
K stabilizing

∥∥∥∥ (I + GK)−1

K(I + GK)−1

∥∥∥∥∞
(4.1)

This cost function can also be interpreted as the design objectives of nominal
performance, good tracking or disturbance attenuation, and robust stabilization, with
regard to additive perturbation.

In order to adopt a unified solution procedure, the above cost function (4.1) can be
recast into a standard configuration as in Fig. 4.2. This can be obtained by using the

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_4,© Springer-Verlag London 2013
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Fig. 4.1 A mixed sensitivity
consideration

Fig. 4.2 The standard H∞
configuration

LFT technique introduced in Chap. 2 and by specifying/grouping signals into sets of
external inputs, outputs, input to the controller and output from the controller, which
of course is the control signal. Note that in Fig. 4.2 all the external inputs are denoted
by w; z denotes the output signals to be minimized/penalized that includes both
performance and robustness measures, y is the vector of measurements available to
the controller K , and u the vector of control signals. P(s) is called the generalized
plant or interconnected system. The objective is to find a stabilizing controller K to
minimize the output z, in the sense of energy, over all w with energy less than or
equal to 1. Thus, it is equivalent to minimizing the H∞-norm of the transfer function
from w to z.

Partitioning the interconnected system P as

P(s) =
[
P11(s) P12(s)

P21(s) P22(s)

]

we directly find

z = [
P11 + P12K(I − P22K)−1P21

]
w

=:Fl (P ,K)w

where Fl(P ,K) is the lower linear fractional transformation of P and K . The
design objective now becomes

min
K stabilizing

∥∥Fl(P ,K)
∥∥∞ (4.2)

and is referred to as the H∞ optimization problem.
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Referring to the problem in (4.1), it is easy to derive its standard form by defining
w = r , z = [ z1

z2

] = [ e
u

]
, y = e and u = u. Consequently, the interconnected system

is

P =
⎡
⎣I −G

0 I

I −G

⎤
⎦ (4.3)

where we may set

P11 =
[

I

0

]
, P12 =

[−G

I

]

P21 = I, P22 = −G

Other mixed cases of cost transfer function matrices such as S over T, S over T
over KS, etc., can be dealt with similarly to formulate into the standard configura-
tion. In practical designs, it is often necessary to include (closed-loop) weights with
these cost functions. For instance, instead of (4.1), we may have to consider with
z1 = W1e and z2 = W2u,

min
K stabilizing

∥∥∥∥ W1(I + GK)−1

W2K(I + GK)−1

∥∥∥∥∞
(4.4)

These weighting functions can be easily absorbed into the interconnected system
P(s), as in this case,

P =
⎡
⎣W1 −W1G

0 W2
I −G

⎤
⎦ (4.5)

4.2 2-Degree-of-Freedom H∞ Design

Among control-system design specifications, reference-signal tracking is often a
requirement. The output of a designed control system is required to follow a pre-
selected signal, or in a more general sense, the system is forced to track, for in-
stance, the step response of a specified model (infinite-time model following task).
A 2-degree-of-freedom (2DOF) control scheme naturally suits this situation. The
idea of a 2DOF scheme is to use a feedback controller (K2) to achieve the inter-
nal and robust stability, disturbance rejection, etc., and to design another controller
(K1) on the feedforward path to meet the tracking requirement, which minimizes
the difference between the output of the overall system and that of the reference
model. 2DOF control schemes were successfully applied in some practical designs
[75, 98, 125].

Figure 4.3 shows one structure of these 2DOF control schemes. In this config-
uration, in addition to the internal stability requirement, two signals e and u are to
be minimized. The signal e shows the difference between the system output and the
reference model output. u is the control signal and also is related to robust stability
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Fig. 4.3 A 2DOF design configuration

in the additive perturbation case. In Fig. 4.3, two weighting functions are included
to reflect the trade-off between and/or characteristics of these two penalized signals.

The configuration of Fig. 4.3 can be rearranged as the standard configuration of
Fig. 4.2 by defining w = r , z = [ z1

z2

] = [ W1e
W2u

]
, y = [ r

y

]
and u = u. Note that in this

configuration, K = [K1 −K2]. Consequently, the interconnected system is

P =

⎡
⎢⎢⎣

−W1Mo W1G

0 W2
I 0
0 G

⎤
⎥⎥⎦

where we may set

P11 =
[−W1Mo

0

]
, P12 =

[
W1G

W2

]

P21 =
[

I

0

]
, P22 =

[
0
G

]

4.3 H∞ Suboptimal Solutions

The solution to the optimization problem (4.2) is not unique except in the scalar case
[64, 196]. Generally speaking, there are no analytic formulas for the solutions. In
practical design, it is usually sufficient to find a stabilizing controller K such that the
H∞-norm of the closed-loop transfer function is less than a given positive number,
i.e., ∥∥Fl(P ,K)

∥∥∞ < γ (4.6)

where γ > γo := minK stabilizing ‖Fl(P ,K)‖∞. This is called the H∞ suboptimal
problem. When certain conditions are satisfied, there are formulas to construct a set
of controllers that solve the problem (4.6). The solution set is characterized by a free
parameter Q(s), which is stable and of ∞-norm less than γ .
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It is imaginable that if we successively reduce the value of γ , starting from a rela-
tively large number to ensure the existence of a suboptimal solution, we may obtain
an optimal solution. It should, however, be pointed out here that when γ is approach-
ing its minimum value γo the problem would become more and more ill-conditioned
numerically. Hence, the “solution” thus obtained might be very unreliable.

4.3.1 Solution Formulas for Normalized Systems

Let the state-space description of the generalized (interconnected) system P in
Fig. 4.2 be given by

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)

y(t) = C2x(t) + D21w(t)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rm1 the exogenous input vector,
u(t) ∈ Rm2 the control input vector, z(t) ∈ Rp1 the error (output) vector, and
y(t) ∈ Rp2 the measurement vector, with p1 ≥ m2 and p2 ≤ m1. P(s) may be fur-
ther denoted as

P(s) =
[
P11(s) P12(s)

P21(s) P22(s)

]

=
⎡
⎣ A B1 B2

C1 D11 D12
C2 D21 0

⎤
⎦

=:
[

A B

C D

]
(4.7)

Note that in the above definition it is assumed that there is no direct link between
the control input and the measurement output, i.e. D22 = 0. This assumption is rea-
sonable because most industrial control systems are strictly proper and the corre-
sponding P(s) would have a zero D22 in a sensible design configuration. The case
of a nonzero direct term between u(t) and y(t) will be, however, considered in the
next subsection for the sake of completeness.

The H∞ solution formulas use solutions of two algebraic Riccati equations
(ARE). An algebraic Riccati equation

ET X + XE − XWX + Q = 0

where W = WT and Q = QT uniquely corresponds to a Hamiltonian matrix[
E −W

−Q −ET

]

The stabilizing solution X, if it exists, is a symmetric matrix that solves the ARE
and is such that E − WX is a stable matrix. The stabilizing solution is denoted as
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X := Ric
[

E −W

−Q −ET

]

Define

Rn := DT
1∗D1∗ −

[
γ 2Im1 0

0 0

]

and

R̃n := D∗1D
T∗1 −

[
γ 2Ip1 0

0 0

]

where

D1∗ = [
D11 D12

]
and D∗1 =

[
D11
D21

]

Assume that Rn and R̃n are nonsingular. We define two Hamiltonian matrices H
and J as

H :=
[

A 0
−CT

1 C1 −AT

]
−

[
B

−CT
1 D1∗

]
R−1

n

[
DT

1∗C1 BT
]

J :=
[

AT 0
−B1B

T
1 −A

]
−

[
CT

−B1D
T∗1

]
R̃−1

n

[
D∗1B

T
1 C

]
Let

X := Ric (H)

Y := Ric (J)

Based on X and Y , a state feedback matrix F and an observer gain matrix L can
be constructed, which will be used in the solution formulas,

F := −R−1
n

(
D1∗T C1 + BT X

) =:
[
F1
F2

]
=:

⎡
⎣F11

F12
F2

⎤
⎦

L := −(
B1D∗1

T + YCT
)
R̃−1

n =: [L1 L2
] =: [L11 L12 L2

]
where F1, F2, F11, and F12 have m1,m2,m1 − p2, and p2 rows, respectively, and
L1,L2,L11 and L12 have p1,p2,p1 − m2, and m2 columns, respectively.

Glover and Doyle [57] derived necessary and sufficient conditions for the exis-
tence of an H∞ suboptimal solution and further parameterized all such controllers.
The results are obtained under the following assumptions:

(A1) (A,B2) is stabilizable and (C2,A) detectable;
(A2) D12 =

[
0

Im2

]
and D21 = [

0 Ip2

] ;

(A3)

[
A − jωI B2

C1 D12

]
has full column rank for all ω;

(A4)

[
A − jωI B1

C2 D21

]
has full row rank for all ω.
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Together with appropriate partition of

D11 =
[
D1111 D1112
D1121 D1122

]
,

where D1122 has m2 rows and p2 columns, the solution formulas are given in the
following theorem.

Theorem 4.1 [196] Suppose P(s) satisfies the assumptions (A1)–(A4).

(a) There exists an internally stabilizing controller K(s) such that ‖Fl(P ,K)‖∞ <

γ if and only if

(i)

γ > max
(
σ [D1111,D1112], σ

[
D1111

T ,D1121
T
])

and
(ii) there exist stabilizing solutions X ≥ 0 and Y ≥ 0 satisfying the two AREs

corresponding to the Hamiltonian matrices H and J, respectively, and such
that

ρ(XY) < γ 2

where ρ(·) denotes the spectral radius.
(b) Given that the conditions of part (a) are satisfied, then all rational, internally

stabilizing controllers, K(s), satisfying ‖Fl(P ,K)‖∞ < γ are given by

K(s) =Fl (M,Φ)

for any rational Φ(s) ∈H∞ such that ‖Φ(s)‖∞ < γ , where M(s) has the real-
ization

M(s) =
⎡
⎢⎣

Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0

⎤
⎥⎦

and

D̂11 = −D1121D1111
T
(
γ 2I − D1111D1111

T
)−1

D1112 − D1122

D̂12 ∈ Rm2×m2 and D̂21 ∈ Rp2×p2 are any matrices (e.g. Cholesky factors) sat-
isfying

D̂12D̂
T
12 = I − D1121

(
γ 2I − D1111

T D1111
)−1

D1121
T

D̂T
21D̂21 = I − D1112

T
(
γ 2I − D1111D1111

T
)−1

D1112

and
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B̂2 = Z(B2 + L12)D̂12

Ĉ2 = −D̂21(C2 + F12)

B̂1 = −ZL2 + B̂2D̂
−1
12 D̂11

= −ZL2 + Z(B2 + L12)D̂11

Ĉ1 = F2 + D̂11D̂
−1
21 Ĉ2

= F2 − D̂11(C2 + F12)

Â = A + BF + B̂1D̂
−1
21 Ĉ2

= A + BF − B̂1(C2 + F12)

where

Z = (
I − γ −2YX

)−1

When Φ(s) = 0 is chosen, the corresponding suboptimal controller is called the
central controller that is widely used in the H∞ optimal design and has the state-
space form

Ko(s) =
[

Â B̂1

Ĉ1 D̂11

]

In the assumptions made earlier, (A2) assumes that the matrices D12 and D21
are in normalized forms and the system P(s) is thus a so-called normalized system.
When these two matrices are of full rank but not necessarily in the normalized forms
will be discussed later.

4.3.2 Solution to S-over-KS Design

The mixed sensitivity optimization S-over-KS is a common design problem in prac-
tice. The problem is formulated as in (4.1) or (4.4), and the interconnected system
is in (4.3) or (4.5). In this case, the second algebraic Riccati equation is of a special
form, i.e. the constant term is zero. We list the solution formulas for this special
design problem here.

For simplicity, we consider the suboptimal design of (4.1). That is, for a given γ ,
we want to find a stabilizing controller K(s) such that∥∥∥∥ (I + GK)−1

K(I + GK)−1

∥∥∥∥∞
< γ

The interconnected system in the standard configuration is

P =
⎡
⎣Ip −G

0 Im

Ip −G

⎤
⎦ =

⎡
⎢⎢⎣

A 0 −B[
C

0

] [
Ip

0

] [
0
Im

]

C Ip 0

⎤
⎥⎥⎦
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where we assume that G(s) has m inputs and p outputs, and

G(s) =
[

A B

C 0

]

It is clear that γ must be larger than 1 from the assumption (a)(i) of Theorem 4.1,
because the 2-norm of the constant matrix D11 of the above P(s) is 1. In this case,
the two algebraic Riccati equations are

AT X + XA − XBBT X + (
1 − γ −2)−1

CT C = 0

AY + YAT − YCT CY = 0

The formula of the central controller is

Ko =
[

A − BBT X − (1 − γ −2)−1ZYCT C ZYCT

BT X 0

]

where Z = (I − γ −2YX)−1.
The formulas for all suboptimal controllers are

K(s) =Fl (M,Φ)

with M(s) having the state-space realization

M(s) =
⎡
⎣A − BBT X − (1 − γ −2)−1ZYCT C ZYCT −ZB

BT X 0 Im

−(1 − γ −2)−1C Ip 0

⎤
⎦

and Φ(s) ∈ H∞, such that ‖Φ‖∞ < γ .

4.3.3 The Case of D22 �= 0

When there is a direct link between the control input and the measurement output,
the matrix D22 will not disappear in (4.7). The controller formulas for the case
D22 �= 0 are discussed here.

As a matter of fact, the D22 term can be easily separated from the rest of the
system as depicted in Fig. 4.4. A controller K(s) for the system with zero D22 will
be synthesized first, and then the controller K̃(s) for the original system can be
recovered from K(s) and D22 by

K̃(s) = K(s)
(
I + D22K(s)

)−1

The state-space model of K̃(s) can be derived as

K̃(s) =
[

AK − BKD22(I + DKD22)
−1CK BK(I + D22DK)−1

(I + DKD22)
−1CK DK(I + D22DK)−1

]

where we assume that

K(s) =
[
AK BK

CK DK

]
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Fig. 4.4 The case of
nonzero D22

4.3.4 Normalization Transformations

In general, the system data given would not be in the normalization form as dis-
cussed in Sect. 4.3.1, though D12 will be of full column rank and D21 of full row
rank, respectively, for any realistic control systems. In order to apply the results in
Theorem 4.1, certain transformations must be used first. Using the singular value
decomposition (SVD) or otherwise, we may find orthonormal matrices U12, V12,
U21, and V21, such that

U12D12V
T
12 =

[
0

Σ12

]
(4.8)

U21D21V
T
21 = [

0 Σ21
]

(4.9)

where Σ12: m2 × m2 and Σ21: p2 × p2 are nonsingular. Furthermore, we have

U12D12V
T
12Σ

−1
12 =

[
0
I

]
(4.10)

Σ−1
21 U21D21V

T
21 = [

0 I
]

(4.11)

The right-hand sides of the above equations are now in the normalized form.
When p1 > m2 and p2 < m1, the matrices U12 and V21 can be partitioned as

U12 =
[
U121
U122

]
(4.12)

V21 =
[
V211
V212

]
(4.13)

with U121: (p1 −m2)×p1,U122: m2 ×p1,V211: (m1 −p2)×m1 and V212: p2 ×m1.
The normalization of P(s) into P(s) is based on the above transformations and

shown in Fig. 4.5.
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Fig. 4.5 Normalization
configuration

Given P(s), the state-space form of P(s) is obtained as follows:

B1 = B1V
T
21

B2 = B2V
T
12Σ

−1
12

C1 = U12C1

C2 = Σ−1
21 U21C2

D11 = U12D11V
T
21 =

[
U121D11V

T
211 U121D11V

T
212

U122D11V
T
211 U122D11V

T
212

]

D12 =
[

0
I

]
= U12D12V

T
12Σ

−1
12

D21 = [
0 I

] = Σ−1
21 U21D21V

T
21

Since V21 and U12 are orthonormal, the infinitive norms of the transfer function
matrices from w to z and from w to z are the same, i.e. ‖Tzw‖∞ = ‖Tzw‖∞, with
obviously K(s) = V T

12Σ
−1
12 K(s)Σ−1

21 U21, where K(s) is a suboptimal solution with
regard to P(s).

4.3.5 Direct Formulas for H∞ Suboptimal Central Controller

Based on the transformations discussed in the last subsection and by further ma-
nipulations, direct solution formulas can be derived for the general, non-normalized
system data (4.7) [67].

We first discuss the two algebraic Riccati equations that are essential in the com-
putations of H∞ suboptimal controllers. The conclusion is a little surprising: the
two AREs remain the same as the matrices in the normalized system data (matrices
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with bars) replaced by corresponding matrices in the general form (matrices without
bars) of P(s). This is obtained by the following routine matrix manipulations:

C
T

1 C1 = CT
1 UT

12U12C1 = CT
1 C1[

B

−C
T

1 D1∗

]
=

[
B1V

T
21 B2V

T
12Σ

−1
12

−CT
1 UT

12U12D11V
T
21 −CT

1 UT
12U12D12V

T
12Σ

−1
12

]

=
[

B

−CT
1 D1∗

][
V T

21 0
0 V T

12Σ
−1
12

]

D
T

1∗D1∗ =
[

V21D
T
11U

T
12

Σ−T
12 V12D

T
12U

T
12

][
U12D11V

T
21 U12D12V

T
12Σ

−1
12

]

=
[
V21 0
0 Σ−T

12 V12

]
DT

1∗D1∗
[
V T

21 0
0 V T

12Σ
−1
12

]

where

D1∗ := [
D11 D12

]
(4.14)

Thus,

Rn =
[
V21 0
0 Σ−T

12 V12

]
R

[
V T

21 0
0 V T

12Σ
−1
12

]

with

R := DT
1∗D1∗ −

[
γ 2Im1 0

0 0

]
(4.15)

Consequently, the Hamiltonian H defined for normalized system data is given by

H =
[

A 0
−CT

1 C1 −AT

]
−

[
B

−CT
1 D1∗

]
R−1 [

DT
1∗C1 BT

]
(4.16)

Similarly, the Hamiltonian J is given by

J =
[

AT 0
−B1B

T
1 −A

]
−

[
CT

−B1D
T∗1

]
R̃−1 [

D∗1B
T
1 C

]
(4.17)

where

D∗1 :=
[
D11
D21

]
(4.18)

and

R̃ := D∗1D∗1
T −

[
γ 2Ip1 0

0 0

]
(4.19)

with

R̃n =
[
U12 0

0 Σ−1
21 U21

]
R̃

[
UT

12 0
0 UT

21Σ
−T
21

]
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Hence, we have shown that the two AREs are exactly the same and so we may, in
the following, let X and Y be the stabilizing solutions of the two AREs correspond-
ing to the general system data.

Another pair of matrices used in Theorem 4.1 may also be defined from the
solutions X and Y ,

F := −R−1(DT
1∗C1 + BT X

) =:
[
F1
F2

]
(4.20)

L := −(
B1D

T∗1 + YCT
)
R̃−1 =: [L1 L2

]
(4.21)

with F1: m1 × n,F2: m2 × n,L1: n × p1 and L2: n × p2. It is easy to check that

F =
[
V21 0
0 Σ12V12

]
F

and

F 11 = V211F1

F 12 = V212F1

F 2 = Σ12V12F2

Similarly, we have

L = L

[
UT

12 0
0 UT

21Σ21

]

and

L11 = L1U
T
121

L12 = L1U
T
122

L2 = L2U
T
21Σ21

Using the above results and Theorem 4.1, with further manipulations, we can get
the following corollary. Note that the assumption (A2) is relaxed to the general case:

(A2) D12 is of full column rank and D21 of full row rank

Also, note that for the sake of simplicity, only the formulas for the central sub-
optimal controller is given. Formulas for all suboptimal controllers can be derived
accordingly.

Corollary 4.2 Suppose P(s) satisfies the assumptions (A1)–(A4).

(a) There exists an internally stabilizing controller K(s) such that ‖Fl(P,K)‖∞ <

γ if and only if

(i)

γ > max
{
σ(U121D11), σ

(
D11V

T
211

)}
(4.22)

where U121 and V211 are as defined in (4.12) and (4.13), and
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(ii) there exist solutions X ≥ 0 and Y ≥ 0 satisfying the two AREs correspond-
ing to (4.16) and (4.17), respectively, and such that

ρ(XY) < γ 2 (4.23)

where ρ(•) denotes the spectral radius.
(b) Given that the conditions of part (a) are satisfied, then the central H∞ subopti-

mal controller for P(s) is given by

K(s) =
[

AK BK

CK DK

]

where

DK = −γ 2(U122D12)
−1U122

(
γ 2I − D11V

T
211V211D

T
11U

T
121U121

)−1

× D11V
T
212

(
D21V

T
212

)−1 (4.24)

BK = −Z
[
L2 − (B2 + L1D12)DK

]
(4.25)

CK = F2 − DK(C2 + D21F1) (4.26)

AK = A + BF − BK(C2 + D21F1) (4.27)

where

Z = (
I − γ −2YX

)−1 (4.28)

and U12,V21,F , and L are as defined in (4.8) and (4.12), (4.9) and (4.13),
(4.20), and (4.21), respectively.

Remark The above corollary addresses the general case of p1 > m2 and p2 < m1.
There are three special cases of the dimensions in which the solution formulas would
be simpler.

Case 1: p1 = m2 and p2 < m1.
In this case, the orthogonal transformation on D12 is not needed. The condition
(a)(i) in Corollary 4.2 is reduced to γ > σ(D11V

T
211), and

DK = −D−1
12 D11V

T
212

(
D21V

T
212

)−1

Case 2: p1 > m2 and p2 = m1.
In this case, the orthogonal transformation on D21 is not needed. The condition
(a)(i) in Corollary 4.2 is reduced to γ > σ(U121D11), and

DK = −(U122D12)
−1U122D11D

−1
21

Case 3: p1 = m2 and p2 = m1.
In this case, both orthogonal transformations are not needed. The condition (a)(i)
in Corollary 4.2 is reduced to any positive γ , and

DK = −D−1
12 D11D

−1
21
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Another special case is when D11 = 0, in which the central controller is simply
given by

K(s) =
[
A + BF + ZL2(C2 + D21F1) −ZL2

F2 0

]

4.4 Formulas for Discrete-Time Cases

In this section, formulas for H∞ solutions in discrete-time cases [62, 63] will be
given. Consider a generalized, linear, discrete-time system, described by the equa-
tions

xk+1 = Axk + B1wk + B2uk

zk = C1xk + D11wk + D12uk (4.29)

yk = C2xk + D21wk + D22uk

where xk ∈ Rn is the state vector, wk ∈ Rm1 is the exogenous input vector (the
disturbance), uk ∈ Rm2 is the control input vector, zk ∈ Rp1 is the error vector,
and yk ∈ Rp2 is the measurement vector, with p1 ≥ m2 and p2 ≤ m1. The transfer
function matrix of the system will be denoted by

P(z) =
[
P11(z) P12(z)

P21(z) P22(z)

]

=
⎡
⎣ A B1 B2

C1 D11 D12
C2 D21 D22

⎤
⎦

=:
[

A B

C D

]
(4.30)

Similar to the continuous-time case, the H∞ suboptimal discrete-time control
problem is to find an internally stabilizing controller K(z) such that, for a prespeci-
fied positive value γ , ∥∥F�(P,K)

∥∥∞ < γ (4.31)

We need the following assumptions.

(A1) (A,B2) is stabilizable and (C2,A) is detectable;
(A2)

[
A − ejΘIn B2

C1 D12

]
has full column rank for all Θ ∈ [0,2π);

(A3)

[
A − ejΘIn B1

C2 D21

]
has full row rank for all Θ ∈ [0,2π).

We shall also assume that a loop-shifting transformation that enables us to set
D22 = 0 has been carried out. The general case (D22 �= 0) will be dealt with at the
end of this section.
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Note that the method under consideration does not involve reduction of the ma-
trices D12 and D21 to some special form, as is usually required in the design of
continuous-time H∞ controllers.

Let

C =
[
C1
0

]
, D =

[
D11 D12
Im1 0

]

and define

J =
[
Ip1 0
0 −γ 2Im1

]
, Ĵ =

[
Im1 0
0 −γ 2Im2

]
, J̃ =

[
Im1 0
0 −γ 2Ip1

]

Let X∞ be the solution to the discrete-time Riccati equation

X∞ = C
T
JC + AT X∞A − LT R−1L (4.32)

where

R = D
T
JD + BT X∞B =:

[
R1 RT

2
R2 R3

]

L = D
T
JC + BT X∞A =:

[
L1
L2

]

Assume that there exists an m2 × m2 matrix V12 such that

V T
12V12 = R3

and an m1 × m1 matrix V21 such that

V T
21V21 = −γ −2∇, ∇ = R1 − RT

2 R−1
3 R2 < 0

Define the matrices

[
At B̃t

Ct D̃t

]
=:

⎡
⎢⎣

At B̃t1B̃t2

Ct1 D̃t11D̃t12

Ct2 D̃t21D̃t22

⎤
⎥⎦

=
⎡
⎢⎣

A − B1∇−1L∇ B1V
−1
21 0

V12R
−1
3 (L2 − R2∇−1L∇) V12R

−1
3 R2V

−1
21 I

C2 − D21∇−1L∇ D21V
−1
21 0

⎤
⎥⎦

where

L∇ = L1 − RT
2 R−1

3 L2

Let Z∞ be the solution to the discrete-time Riccati equation

Z∞ = B̃t Ĵ B̃T
t + AtZ∞AT

t − MtS
−1
t MT

t (4.33)

in which

St = D̃t Ĵ D̃T
t + CtZ∞CT

t =:
[

St1 St2

ST
t2

St3

]

Mt = B̃t Ĵ D̃T
t + AtZ∞CT

t =: [Mt1 Mt2]
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Equations (4.32) and (4.33) are referred to as the X-Riccati equation and Z-Riccati
equation, respectively.

A stabilizing controller that satisfies∥∥F�(P,K)
∥∥∞ < γ

exists if and only if [62]

(1) there exists a solution to the Riccati equation (4.32) satisfying

X∞ ≥ 0

∇ < 0

such that A − BR−1L is asymptotically stable;
(2) there exists a solution to the Riccati equation (4.33) such that

Z∞ ≥ 0

St1 − St2S
−1
t3

ST
t2

< 0

with At − MtS
−1
t Ct asymptotically stable.

In this case, a controller that achieves the objective may be given by [62]

x̂k+1 = At x̂k + B2uk + Mt2S
−1
t3

(yk − Ct2 x̂k)

V12uk = −Ct1 x̂k − St2S
−1
t3

(yk − Ct2 x̂k)

which yields

K0 =
[

At − B2V
−1
12 (Ct1 − St2S

−1
t3

Ct2) − Mt2S
−1
t3

Ct2 −B2V
−1
12 St2S

−1
t3

+ Mt2S
−1
t3

−V −1
12 (Ct1 − St2S

−1
t3

Ct2) −V −1
12 St2S

−1
t3

]

(4.34)

This is the so-called central controller, which is widely used in practice.
Consider now the general case of D22 �= 0. Suppose

K̂ =
[

Âk B̂k

Ĉk D̂k

]

is a stabilizing controller for D22 set to zero, and satisfies∥∥∥∥F�

(
P −

[
0 0
0 D22

]
, K̂

)∥∥∥∥∞
< γ

Then

F�

(
P, K̂

(
I + D22K̂

)−1) = P11 + P12K̂
(
I + D22K̂ − P22K̂

)−1
P21

= F�

(
P −

[
0 0
0 D22

]
, K̂

)

In this way, a controller K̂ for

P −
[

0 0
0 D22

]
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yields a controller K = K̂(I + D22K̂)−1 for P . It may be shown that

K =
[

Âk − B̂kD22(Im2 + D̂kD22)
−1Ĉk B̂k − B̂kD22(Im2 + D̂kD22)

−1D̂k

(Im2 + D̂kD22)
−1Ĉk (Im2 + D̂kD22)

−1D̂k

]

In order to find K from K̂ we must exclude the possibility of the feedback system
becoming ill-posed, i.e. det(I + K̂(∞)D22) = 0.



Chapter 5
H∞ Loop-Shaping Design Procedures

In the previous chapter the H∞ optimization approach was introduced, which for-
mulated robust stabilization and nominal performance requirements as (sub)opti-
mization problems of the H∞ norm of certain cost functions. Several formulations
of cost function are applicable in the robust controller design, for instance, the
weighted S/KS and S/T design methods. The optimization of S/KS, where S is
the sensitivity function and K the controller to be designed, could achieve the nom-
inal performance in terms of tracking or output disturbance rejection and robustly
stabilize the system against additive model perturbations. On the other hand, the
mixed sensitivity optimization of S/T , where T is the complementary sensitivity
function, could achieve robust stability against multiplicative model perturbations
in addition to the nominal performance. Both of them are useful robust controller
design methods, but the model perturbation representations are limited by the con-
dition on the number of right-half complex plane poles. Also, there may exist unde-
sirable pole-zero cancellations between the nominal model and the H∞ controllers
[151]. In this chapter, an alternative way to represent the model uncertainty is in-
troduced. The uncertainty is described by the perturbations directly on the coprime
factors of the nominal model [171, 172]. The H∞ robust stabilization against such
perturbations and the consequently developed design method, the H∞ loop-shaping
design procedure (LSDP) [111, 112], could relax the restrictions on the number of
right-half plane poles and produce no pole-zero cancellations between the nominal
model and controller designed. This method does not require an iterative procedure
to obtain an optimal solution and thus raises the computational efficiency. Further-
more, the H∞ LSDP inherits classical loop-shaping design ideas so that practicing
control engineers would feel more comfortable to use it.

5.1 Robust Stabilization Against Normalized Coprime Factor
Perturbations

Matrices (M̃, Ñ) ∈ H+∞, where H+∞ denotes the space of functions with no poles
in the closed right-half complex plane, constitute a left coprime factorization of a
given plant model G if and only if

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_5,© Springer-Verlag London 2013
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(i) M̃ is square, and det(M̃) �= 0
(ii) the plant model is given by

G = M̃−1Ñ (5.1)

(iii) there exists (Ṽ , Ũ ) ∈H+∞ such that

M̃Ṽ + ÑŨ = I (5.2)

A left coprime factorization of a plant model G as defined in (5.1) is normalized
if and only if

ÑÑ− + M̃M̃− = I, ∀s (5.3)

where Ñ−(s) = ÑT (−s), etc.
For a minimal realization of G(s),

G(s) = D + C(sI − A)−1B

=:
[
A B

C D

]
(5.4)

A state-space construction for the normalized left coprime factorization can be ob-
tained in terms of the solution to the generalized filter algebraic Riccati equation

(
A − BDT R−1C

)
Z + Z

(
A − BDT R−1C

)T − ZCT R−1CZ

+ B
(
I − DT R−1D

)
BT = 0 (5.5)

where R := I + DDT and Z ≥ 0 is the unique stabilizing solution. If H =
−(ZCT + BDT )R−1, then

[
Ñ M̃

] :=
[
A + HC B + HD H

R−1/2C R−1/2D R−1/2

]
(5.6)

is a normalized left coprime factorization of G such that G = M̃−1Ñ .
The normalized right coprime factorization can be defined similarly and a state-

space representation can be similarly obtained in terms of the solution to the gener-
alized control algebraic Riccati equation [111],

(
A − BS−1DT C

)T
X + X

(
A − BS−1DT C

) − XBS−1BT X

+ CT
(
I − DS−1DT

)
C = 0 (5.7)

where S := I + DT D and X ≥ 0 is the unique stabilizing solution.
A perturbed plant transfer function can be described by

G� = (
M̃ + �

M̃

)−1(
Ñ + �

Ñ

)
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Fig. 5.1 Robust stabilization with regard to coprime factor uncertainty

where (�
M̃

,�
Ñ

) are unknown but stable transfer functions that represent the un-
certainty (perturbation) in the nominal plant model. The design objective of robust
stabilization is to stabilize not only the nominal model G, but the family of perturbed
plants defined by

Gε = {(
M̃ + �

M̃

)−1(
Ñ + �

Ñ

) : ∥∥[�
M̃

,�
Ñ

]∥∥∞ < ε
}

where ε > 0 is the stability margin. Using a feedback controller K as shown
schematically in Fig. 5.1 and the Small-Gain Theorem, the feedback system
(M̃, Ñ,K, ε) is robustly stable if and only if (G,K) is internally stable and

∥∥∥∥
[
K(I − GK)−1M̃−1

(I − GK)−1M̃−1

]∥∥∥∥
∞

≤ ε−1

To maximize the robust stability of the closed-loop system given in Fig. 5.1, one
must minimize

γ :=
∥∥∥∥
[
K

I

]
(I − GK)−1M̃−1

∥∥∥∥∞
The lowest achievable value of γ for all stabilizing controllers K is

γo = inf
K stabilizing

∥∥∥∥
[
K

I

]
(I − GK)−1M̃−1

∥∥∥∥∞
(5.8)

and is given in [111] by

γo = (
1 − ∥∥[

Ñ M̃
]∥∥2

H

)−1/2 (5.9)

where ‖ · ‖H denotes the Hankel norm. From [111]
∥∥[

Ñ M̃
]∥∥2

H
= λmax

(
ZX(I + ZX)−1) (5.10)
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where λmax(·) represents the maximum eigenvalue, hence from (5.9),

γo = (
1 + λmax(ZX)

)1/2 (5.11)

From [111], all controllers optimizing γ are given by K = UV −1, where U and
V are stable and are right coprime factorizations of K , and where

∥∥∥∥
[−Ñ∗

M̃∗
]

+
[
U

V

]∥∥∥∥
∞

= ∥∥[
Ñ M̃

]∥∥
H

This is a Hankel approximation problem and can be solved using an algorithm de-
veloped by Glover [55].

A controller that achieves a γ > γ0 is given in [111] by

K :=
[
A + BF + γ 2(LT )−1ZCT (C + DF) γ 2(LT )−1ZCT

BT X −DT

]
(5.12)

where F = −S−1(DT C + BT X) and L = (1 − γ 2)I + XZ.
However, if γ = γo, then L = XZ − λmax(XZ)I , which is singular, and thus

(5.12) cannot be implemented. This problem can be resolved using the descriptor
system [147, 148]. A controller that achieves γ ≥ γo can be given in the descriptor
form by

K :=
[
−LT s + LT (A + BF) + γ 2ZCT (C + DF) γ 2ZCT

BT X −DT

]
(5.13)

5.2 Loop-Shaping Design Procedures

In the classical control systems design with single-input–single-output (SISO) sys-
tems, it is a well-known and practically effective technique to use a compensator to
alter the frequency response (the Bode diagram) of the open-loop transfer function
so that the unity feedback system will achieve stability, good performance and cer-
tain robustness. Indeed, these performance requirements discussed in Chap. 3 can
be converted into corresponding frequency requirements on the open-loop system.
For instance, in order to achieve good tracking, it is required that ‖(I + GK)−1‖∞
should be small. That is σ((I + GK)−1(jω)) 
 1, for ω over a low-frequency
range, since the signals to be tracked are usually of low frequency. This in turn im-
plies that σ(GK(jω)) � 1, for ω over that frequency range. Similar deductions can
be applied to other design-performance specifications.

However, a direct extension of the above method into multivariable systems is
difficult not only because multi-input and multi-output (MIMO) are involved but
also due to the lack of phase information in MIMO cases that makes it impossible to
predict the stability of the closed-loop system formed by the unity feedback. How-
ever, based on the robust stabilization against perturbations on normalized coprime
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Fig. 5.2 One-degree-of-freedom LSDP configuration

factorizations, a design method, known as the H∞ loop-shaping design procedure
(LSDP), has been developed [112]. The LSDP method augments the plant with ap-
propriately chosen weights so that the frequency response of the open-loop system
(the weighted plant) is reshaped in order to meet the closed-loop performance re-
quirements. Then a robust controller is synthesized to meet the stability.

This loop-shaping design procedure can be carried out in the following steps.

(i) Using a precompensator, W1, and/or a postcompensator, W2, as depicted in
Fig. 5.2, the singular values of the nominal system G are modified to give a
desired loop shape. Usually, the least singular value of the weighted system
should be made large over the low-frequency range to achieve good perfor-
mance such as the tracking, the largest singular value is small over the high-
frequency range to deal with unmodeled dynamics, and the bandwidth affects
the system response speed, while the slope of the singular values near the band-
width frequency should not be too steep. The nominal system and weighting
functions W1 and W2 are combined to form the shaped system, Gs , where
Gs = W2GW1. It is assumed that W1 and W2 are such that Gs contains no
hidden unstable modes.

(ii) A feedback controller, Ks , is synthesized that robustly stabilizes the normal-
ized left coprime factorization of Gs , with a stability margin ε. It can be shown
[112] that if ε is not less than 0.2, the frequency response of KsW2GW1 will
be similar to that of W2GW1. On the other hand, if the achievable ε is too
large, this would probably indicate an overdesigned case with respect to the
robustness, which means that the performance of the system may possibly be
improved by using a larger γ in computing Ks .

(iii) The final feedback controller, Kfinal, is then constructed by combining the H∞
controller Ks , with the weighting functions W1 and W2 such that

Kfinal = W1KsW2

For a tracking problem, the reference signal generally comes between Ks and
W1. In order to reduce the steady-state tracking error, a constant gain Ks(0)W2(0)

is placed on the feedforward path, where

Ks(0)W2(0) = lim
s→0

Ks(s)W2(s)
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Fig. 5.3 Two-degree-of-freedom LSDP

The closed-loop transfer function between the reference r and the plant output y

then becomes

Y(s) = [
I − G(s)Kfinal(s)

]−1
G(s)W1(s)Ks(0)W2(0)R(s)

The above design procedure can be developed further into a two-degree-of-
freedom (2DOF) scheme as shown in Fig. 5.3.

The philosophy of the 2DOF scheme is to use the feedback controller K2(s) to
meet the requirements of internal and robust stability, disturbance rejection, mea-
surement noise attenuation, and sensitivity minimization. The precompensator K1
is applied to the reference signal, which optimizes the response of the overall sys-
tem to the command input such that the output of the system would be “near” to
that of a chosen ideal system Mo. The feedforward compensator K1 depends on
design objectives and can be synthesized together with the feedback controller in a
single step via the H∞ LSDP [75]. In the 2DOF LSDP, the postcompensator W2 is
usually chosen as an identity matrix. The constant ρ is a scaling parameter used to
emphasize the model-matching part in the design.

5.3 Formulas for the Discrete-Time Case

In this section, the formulas for the (1-block) H∞ LSDP controller in the discrete-
time case will be introduced [68].

5.3.1 Normalized Coprime Factorization of Discrete-Time Plant

Let G(z) be a minimal realization, discrete-time model of a plant,

G(z) = D + C(zI − A)−1B

:=
[
A B

C D

]

with A: n × n, B: n × m, C: p × n, and D: p × m.



5.3 Formulas for the Discrete-Time Case 55

Matrices (M̃(z), Ñ(z)) ∈ H+∞, where H+∞ denotes the space of functions with
all poles in the open unit disc of the complex plane, constitute a left coprime factor-
ization of G(z) if and only if

(i) M̃ is square, and det(M̃) �= 0
(ii) the plant model is given by

G = M̃−1Ñ (5.14)

(iii) There exists (Ṽ , Ũ ) ∈ H+∞ such that

M̃Ṽ + ÑŨ = Ip (5.15)

A left coprime factorization of G as defined in (5.14) is normalized if and only if

Ñ(z)ÑT

(
1

z

)
+ M̃(z)M̃T

(
1

z

)
= Ip (5.16)

The concept of right coprime factorization and normalized right coprime factor-
ization can be introduced similarly. However, the work presented here will follow
the (normalized) left coprime factorization, although all results concerning the (nor-
malized) right coprime factorization can be derived similarly.

State-space constructions for the normalized coprime factorizations can be ob-
tained in terms of the solutions to the following two discrete algebraic Riccati equa-
tions (DARE):

ΦT PΦ − P − ΦT PBZ1Z
T
1 BT PΦ + CT R1

−1C = 0 (5.17)

and

ΦQΦT − Q − ΦQCT ZT
2 Z2CQΦT + BR−1

2 BT = 0 (5.18)

where R1 = Ip + DDT , R2 = Im + DT D, Φ = A − BR−1
2 DT C, Z1Z

T
1 = (R2 +

BT PB)−1, ZT
2 Z2 = (R1 + CQCT )−1. And, P ≥ 0 and Q ≥ 0 are the unique sta-

bilizing solutions, respectively.
Without loss of generality, we may assume that both Z1 and Z2 are square ma-

trices, and Z1 = ZT
1 , Z2 = ZT

2 .
Further, by defining H = −(AQCT + BDT )ZT

2 Z2 and F = −Z1Z
T
1 (BT PA +

DT C), then

[
Ñ M̃

] :=
[
A + HC B + HD H

Z2C Z2D Z2

]
(5.19)

and

[
N

M

]
:=

⎡
⎣A + BF BZ1

C + DF DZ1
F Z1

⎤
⎦ (5.20)

are the normalized left and right coprime factorizations of G, respectively.
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5.3.2 Robust Controller Formulas

As in the continuous-time case, the discrete-time H∞ loop-shaping design proce-
dure is based on the construction of a robust stabilizing controller against the per-
turbations on the coprime factors. The same form of cost function for robust stabi-
lization will be derived, and the optimal achievable γ is given by

γo = (
1 + λmax(QP )

)1/2 (5.21)

where Q and P are the solutions to (5.17) and (5.18), respectively.
For a given γ > γo, a suboptimal H∞ LSDP controller K in the discrete-time

case can be recast as a standard H∞ suboptimal control problem as was discussed
in Sect. 4.4. The generalized (interconnected) system in this case is

P(z) =
[
P11(z) P12(z)

P21(z) P22(z)

]

=
⎡
⎣ 0 Im

M̃−1 G

M̃−1 G

⎤
⎦

=

⎡
⎢⎢⎣

A −HZ2
−1 B

0 0 Im

C Z2
−1 D

C Z2
−1 D

⎤
⎥⎥⎦ (5.22)

Following the solution procedure given in Sect. 4.4, one more DARE needs to
be solved in order to compute the required controller. In general H∞ suboptimal
problems, two more algebraic Riccati equations are to be solved. Here, however,
due to the structure of P(z) in (5.22), it can be shown that the solution to one of the
DARE is always zero. The third DARE is the following:

AT X∞A − X∞ − F̃ T

(
R +

[−Z2
−1HT

R2
−1/2BT

]
X∞

[−HZ2
−1 BR2

−1/2
])

F̃

+ CT C = 0 (5.23)

where

F̃ = −
(

R +
[−Z2

−1HT

R2
−1/2BT

]
X∞

[−HZ2
−1 BR2

−1/2
])−1

×
([ −Z2

−1C

DT R1
−1/2C

]
+

[−Z2
−1HT

R2
−1/2BT

]
X∞A

)

and

R =
[

Z2
−2 − γ 2Ip Z2

−1R1
−1/2D

DT R1
−1/2Z2

−1 Im

]
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Further, by defining F̃ = [ F1
F2

]
, where F1: p × n and F2: m × n, a suboptimal

H∞ discrete-time LSDP (DLSDP) controller K can be constructed as

K(z) =
[
AK BK

CK DK

]

where

AK = ÂK − B̂KD(I + D̂KD)−1ĈK

BK = B̂K(I + DD̂K)−1

CK = (I + D̂KD)−1ĈK

DK = D̂K(I + DD̂K)−1

(5.24)

with

D̂K = −(
R2 + BT X∞B

)−1(
DT − BT X∞H

)
B̂K = −H + BD̂K

ĈK = R
−1/2
2 F2 − D̂K

(
C + Z2

−1F1
)

ÂK = A + HC + BĈK

(5.25)

5.3.3 The Strictly Proper Case

It may be appropriate to say that most (formulated) plants considered in the prac-
tical, discrete-time control-systems design are, in using the H∞ optimization ap-
proach in particular, strictly proper, i.e. D = 0. This is not only because most phys-
ical plants in industrial studies are strictly proper, as in the continuous-time case,
but also because the H∞ controllers designed tend to be proper due to the “flat-
ness” of the optimality sought in the synthesis. Hence, when the (formulated) plant
is just proper, it is possible to encounter the problem of an algebraic loop in the
implementation of the resultant controller.

When the plant under consideration is strictly proper, all the computations and
formulas described in Sect. 5.3.2 will be significantly simpler. The two DAREs
(5.17) and (5.18) become

AT PA − P − AT PBZ1Z1
T BT PA + CT C = 0 (5.26)

and

AQAT − Q − AQCT ZT
2 Z2CQAT + BBT = 0 (5.27)

where Z1Z1
T = (Im + BT PB)−1, Z2

T Z2 = (Ip + CQCT )−1.
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The third DARE (5.23) is now the following:

AT X∞A − X∞ − F̃ T

(
R +

[−Z2
−1HT

BT

]
X∞

[−HZ2
−1 B

])
F̃

+ CT C = 0 (5.28)

where

F̃ = −
(

R +
[−Z2

−1HT

BT

]
X∞

[−HZ2
−1 B

])−1

×
([−Z2

−1C

0

]
+

[−Z2
−1HT

BT

]
X∞A

)

and

R =
[
Z2

−2 − γ 2Ip 0
0 Im

]

H = −AQCT Z2
T Z2

Further, by defining F̃ = [ F1
F2

]
, where F1: p × n and F2: m × n, the suboptimal

H∞ DLSDP controller K in the case of a strictly proper G can be constructed as

K(z) =
[
AK BK

CK DK

]

where

DK = (
Im + BT X∞B

)−1
BT X∞H

BK = −H + BDK

CK = F2 − DK

(
C + Z2

−1F1
)

AK = A + HC + BCK

(5.29)

5.3.4 On the Three DARE Solutions

As discussed above, the discrete-time H∞ LSDP suboptimal controller formulae
require the solutions to the three discrete-time algebraic Riccati equations, (5.17),
(5.18), and (5.23), or (5.26), (5.27), and (5.28) in the strictly proper case. In this sub-
section, we will show that there is a relation between these three solutions, namely
the solution X∞ to the third DARE can be calculated directly from the first two
solutions P and Q. This fact is important and useful, especially in the numerical
implementation of the DLSDP routines.
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We start with a general DARE, hence the notations are not related to those defined
earlier in the chapter. We have

FT XF − X − FT XG1
(
G2 + GT

1 XG1
)−1

GT
1 XF + CT C = 0 (5.30)

where F,H,X ∈ Rn×n, G1 ∈ Rn×m, G2 ∈ Rm×m, and G2 = GT
2 > 0. We assume

that (F, G1) is a stabilizable pair and that (F,C) is a detectable pair. We also define
G = G1G

−1
2 GT

1 .
It is well known [136] that solutions to DARE (5.30) are closely linked with a

matrix pencil pair (M, L), where

M =
[

F 0
−H I

]
, L =

[
I G

0 FT

]
(5.31)

It also can be shown that if there exist n × n matrices S, U1 and U2, with U1

invertible, such that

M

[
U1
U2

]
= L

[
U1
U2

]
S (5.32)

then, X = U2U
−1
1 is a solution to (5.30). Further, the matrix F − G1(G2 +

GT
1 XG1)

−1GT
1 XF shares the same spectrum as S. Hence, if S is stable, i.e. all the

eigenvalues are within the open unit disc, F − G1(G2 + GT
1 XG1)

−1GT
1 XF is also

stable. Such an X is non-negative definite and unique, and is called the stabilizing
solution to (5.30).

Under the above assumptions on (5.30), it was shown in [136] that none of the
generalized eigenvalues of the pair (M,L) lies on the unit circle, and if λ �= 0 is a
generalized eigenvalue of the pair, then 1/λ is also a generalized eigenvalue of the
same multiplicity. In other words, the stable spectrum, consisting of n generalized
eigenvalues lying in the open unit disc, is unique. Therefore, if there exists another
triple (V1,V2, T ) satisfying (5.32), with V1 being invertible and T stable, then there
must exist an invertible R such that T = R−1SR. Consequently,

[
U1
U2

]
=

[
V1
V2

]
R−1 (5.33)

The solution, of course, remains the same, since X = V2V
−1
1 = (U2R)(U1R)−1 =

U2U
−1
1 .

In the present case, we can accordingly define the three matrix pencils as

MP =
[

Φ 0
−CT R−1

1 C I

]

LP =
[
I BR−1

2 BT

0 ΦT

] (5.34)
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MQ =
[

ΦT 0
−BR−1

2 BT I

]

LQ =
[
I CT R−1

1 C

0 Φ

] (5.35)

MX =

⎡
⎢⎢⎢⎢⎣

A −
[
−HZ−1

2 BR
−1/2
2

]
R−1

[
Z−1

2 C

DT R
−1/2
1 C

]
0

−CT C +
[
CT Z−1

2 CT R
−1/2
1 D

]
R−1

[
Z−1

2 C

DT R
−1/2
1 C

]
I

⎤
⎥⎥⎥⎥⎦

LX =

⎡
⎢⎢⎢⎢⎣

I
[
−HZ−1

2 BR
−1/2
2

]
R−1

[−Z−1
2 HT

R
−1/2
2 BT

]

0 AT −
[
CT Z−1

2 CT R
−1/2
1 D

]
R−1

[−Z−1
2 HT

R
−1/2
2 BT

]

⎤
⎥⎥⎥⎥⎦

(5.36)

With all the above properties of the DAREs and the notations, the following
theorem may be proved [68].

Theorem 5.1 Let P , Q and X∞ be the stabilizing solutions to the DAREs (5.17),
(5.18) and (5.23), (or, (5.26), (5.27) and (5.28) when G is strictly proper), respec-
tively, the following identity holds:

X∞ = P
[(

1 − γ −2)In − γ −2QP
]−1

= γ 2P
[
γ 2In − (In + QP)

]−1 (5.37)

A similar result can be found in [173] for the relationship between three discrete-
time algebraic Riccati equations arising in the general H∞ suboptimal design. The
results concerning the discrete-time loop-shaping design procedure are with three
different DAREs and the conclusion is of a slightly different form.

5.4 A Mixed Optimization Design Method with LSDP

It is well known that control-system design problems can be naturally formulated as
constrained optimization problems, the solutions of which will characterize accept-
able designs. The numerical optimization approach to controller design can directly
tackle design specifications in both the frequency domain and the time domain.
The optimization problems derived, however, are usually very complicated with
many unknowns, many nonlinearities, many constraints, and in most cases they are
multiobjective with several conflicting design aims that need to be simultaneously
achieved. It is also known that a direct parameterization of the controller will in-
crease the complexity of the optimization problem.
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On the other hand, the H∞ loop-shaping design procedure (LSDP) discussed
in this chapter is an efficient, robust design method that just depends on appropriate
choice of weighting functions to shape the open-loop system. In general, the weight-
ing functions are of low orders. This indicates if we take the weighting functions as
design parameters it may well combine the advantages of both the numerical opti-
mization approach and the H∞ LSDP in terms of flexible formulation of design ob-
jectives, mature numerical algorithms, tractable optimization problems, guaranteed
stability and a certain degree of robustness. Such a design method is proposed in
[178]. The numerical optimization component of the method is based on the method
of inequalities(MOI).

Performance specifications for control-systems design are frequently, and more
naturally, given in terms of algebraic or functional inequalities, rather than in the
minimization of some objective function. For example, the system may be required
to have a rise time of less than one second, a settling time of less than five seconds
and an overshoot of less than 10 %. In such cases, it is obviously more logical and
convenient if the design problem is expressed explicitly in terms of such inequal-
ities. The method of inequalities [191] is a computer-aided multiobjective design
approach, where the desired performance is represented by such a set of algebraic
inequalities and where the aim of the design is to simultaneously satisfy these in-
equalities. The design problem is expressed as

φi(p) ≤ εi, for i = 1, . . . , n (5.38)

where εi are real numbers, p ∈ P is a real vector (p1,p2, . . . , pq) chosen from a
given set P , and φi are real functions of p. The functions φi are performance in-
dices, the components of p represent the design parameters, and εi are chosen by the
designer and represent the largest tolerable values of φi . The aim is the satisfaction
of the set of inequalities so that an acceptable design p is reached.

For control-systems design, the functions φi(p) may be functionals of the system
step response, for example, the rise-time, overshoot or the integral absolute tracking
error, or functionals of the frequency responses, such as the bandwidth. They can
also represent measures of the system stability, such as the maximum real part of
the closed-loop poles. Additional inequalities that arise from the physical constraints
of the system can also be included, to restrict, for example, the maximum control
signal. In practice, the constraints on the design parameters p that define the set P

are also included in the inequality set, e.g. to constrain the possible values of some
of the design parameters or to limit the search to stable controllers only.

Each inequality φi(p) ≤ εi of the set of inequalities (5.38) defines a set Si

of points in the q-dimensional space Rq and the coordinates of this space are
p1,p2, . . . , pq , so

Si = {
p : φi(p) ≤ εi

}
(5.39)

The boundary of this set is defined by φi(p) = εi . A point p ∈ Rq is a solution to
the set of inequalities (5.38) if and only if it lies inside every set Si , i = 1,2, . . . , n,
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and hence inside the set S that denotes the intersection of all the sets Si :

S =
n⋂

i=1

Si (5.40)

S is called the admissible set and any point p in S is called an admissible point
denoted ps .

The objective is thus to find a point p such that p ∈ S . Such a point satisfies
the set of inequalities (5.38) and is said to be a solution. In general, a point ps is
not unique unless the set S is a singleton in the space Rq . In some cases, there is
no solution to the problem, i.e. S is an empty set. It is then necessary to relax the
boundaries of some of the inequalities, i.e. increase some of the numbers εi , until
an admissible point ps is found.

The actual solution to the set of inequalities (5.38) may be obtained by means of
numerical search algorithms, such as the moving-boundaries process (MBP); details
of the MBP may be found in [176, 191]. The procedure for obtaining a solution is
interactive, in that it requires supervision and intervention from the designer. The
designer needs to choose the configuration of the design, which determines the di-
mension of the design parameter vector p, and initial values for the design param-
eters. The progress of the search algorithm should be monitored and, if a solution
is not found, the designer may either change the starting point, relax some of the
desired bounds εi , or change the design configuration. Alternatively, if a solution
is found easily, to improve the quality of the design, the bounds could be tightened
or additional design objectives could be included in (5.38). The design process is
thus a two-way process, with the MOI providing information to the designer about
conflicting requirements, and the designer making decisions about the “trade-offs”
between design requirements based on this information as well as on the designer’s
knowledge, experience, and intuition about the particular problem. The designer can
be supported in this role by various graphical displays [131] or expert systems [66].

A difficult problem in control-systems design using the MOI method is how
to define the design parameter vector p. A straightforward idea is to directly
parametrize the controller, i.e. let p be the system matrices of the controller, or
the coefficients of the numerator and denominator polynomials of the controller. In
doing so, the designer has to choose the order of the controller first. In general, the
lower the dimension of the design vector p, the easier it is for numerical search al-
gorithms to find a solution, if one exists. Choosing a low-order controller, say a PI
controller p1 + p2

s
, may reduce the dimension of p. However, it may not yield a so-

lution and, in that case, a solution may exist with higher order controllers. A further
limitation of using the MOI alone in the design is that an initial point that gives the
stability of the closed-loop system must be located as a prerequisite to searching the
parameter space in order to improve the index set of (5.38).

Two aspects of the H∞ LSDP make it amenable to combine this approach with
the MOI. First, unlike the standard H∞-optimization approaches, the H∞-optimal
controller for the weighted plant can be synthesized from the solutions of two al-
gebraic Riccati equations (5.5) and (5.7) and does not require time-consuming γ -
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iteration. Second, in the LSDP described earlier in this chapter, the weighting func-
tions are chosen by considering the open-loop response of the weighted plant, so
effectively the weights W1 and W2 are the design parameters. This means that the
design problem can be formulated as in the method of inequalities, with the param-
eters of the weighting functions used as the design parameters p to satisfy the set
of closed-loop performance inequalities. Such an approach to the MOI overcomes
the limitations of the MOI. The designer does not have to choose the order of the
controller, but instead chooses the order of the weighting functions. With low-order
weighting functions, high-order controllers can be synthesized that often lead to sig-
nificantly better performance or robustness than if simple low-order controllers were
used. Additionally, the problem of finding an initial point for system stability does
not exist, because the stability of a closed-loop system is guaranteed through the
solution to the robust stabilization problem, provided that the weighting functions
do not cause undesirable pole/zero cancellations.

The design problem is now stated as follows.

Problem For the system of Fig. 5.2, find a (W1,W2) such that

γo(W1,W2) ≤ εγ (5.41)

and

φi(W1,W2) ≤ εi for i = 1, . . . , n (5.42)

where

γo = [
1 + λmax(ZX)

]1/2

with Z and X the solutions of the two AREs, (5.5) and (5.7), of the weighted plant.

In the above formulation, φi are functionals representing design objectives, εγ

and εi are real numbers representing desired bounds on γo and φi , respectively,
and (W1,W2) a pair of fixed order weighting functions with real parameters w =
(w1,w2, . . . ,wq).

Consequently, a design procedure can be stated as follows.

Design Procedure A design procedure to solve the above problem is

1. Define the plant G, and define the functionals φi .
2. Define the values of εγ and εi .
3. Define the form and order of the weighting functions W1 and W2. Bounds should

be placed on the values of wj to ensure that W1 and W2 are stable and minimum
phase to prevent undesirable pole/zero cancellations. The order of the weighting
functions, and hence the value of q , should be small initially.

4. Define initial values of wj based on the open-loop frequency response of the
plant.
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5. Implement the MBP, or other appropriate algorithms, in conjunction with (5.12)
or (5.13) to find a (W1,W2) that satisfies inequalities (5.41) and (5.42). If a solu-
tion is found, the design is satisfactory; otherwise, either increase the order of the
weighting functions, or relax one or more of the desired bounds ε, or try again
with different initial values of w.

6. With satisfactory weighting functions W1 and W2, a satisfactory feedback con-
troller is obtained from (5.12) or (5.13).

This mixed optimization design approach has been applied in some design cases.
Examples of application and some extensions can be found in [124, 160, 177–181].



Chapter 6
μ-Analysis and Synthesis

As discussed earlier in the book, the H∞ optimization approach may achieve robust
stabilization against unstructured system perturbations and nominal performance re-
quirements. It is though possible that by applying appropriate weighting functions
some robust performance requirements can be obtained. Satisfactory designs have
been reported, in particular when using the H∞ loop-shaping design methods. In or-
der to achieve robust stability and robust performance, design methods based on the
structured singular value μ can be used. In this chapter, we first show how a robust
performance design specification for a control system with unstructured/structured
perturbations can be transformed into a robust stabilization problem with regard to
structured perturbation. We then discuss how these design specifications are related
to some indications of this new setting, followed by introduction of two iterative
μ-synthesis methods, the D–K iteration and μ–K iteration methods.

We recall, as defined in Chap. 3, for M ∈ Cn×n and a known structure of Δ

(usually representing uncertainties),

� = {
diag[δ1Ir1, . . . , δsIrs ,Δ1, . . . ,Δf ] : δi ∈ C,Δj ∈ Cmj ×mj

}
(6.1)

where
∑s

i=1 ri +∑f

j=1 mj = n with n is the dimension of the block Δ, the structure
singular value μ is defined by

μ−1
Δ (M) := min

Δ∈�

{
σ(Δ) : det(I − MΔ) = 0

}
(6.2)

If there is no Δ ∈ � such that det(I − MΔ) = 0, then μΔ(M) := 0.
Some important properties of μ have been listed in Chap. 3.

6.1 Consideration of Robust Performance

When M is an interconnected transfer function matrix M(s) formed with respect to
the uncertainty set �, the structured singular value of M(s)

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_6,© Springer-Verlag London 2013
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Fig. 6.1 Standard M–Δ

configuration

Fig. 6.2 Standard M–Δ

configuration for RP analysis

μΔ

(
M(s)

) := sup
ω∈R

μΔ

(
M(jω)

)
(6.3)

indicates the robust stability of the perturbed system. Without loss of generality, we
assume that the uncertainties have been normalized in the rest of this chapter, i.e.
Δ ∈ B�. From Theorem 3.4, the standard configuration Fig. 6.1 is robustly stable if
M(s) is stable and μΔ(M(s)) < 1 (or ‖M‖μ < 1).

As discussed in Chap. 3 in design of control systems, in addition to the stability
the performance of the system must be taken into account. The designed system
should perform well (for instance, good tracking) against exogenous disturbances,
which requires a closed-loop structure. The feedback controller is usually designed
based on a nominal plant model. In the case of the existence of plant perturbations,
the closed-loop system may well possibly perform badly, even degrade to an un-
satisfactory level. The robust performance requires that a designed control system
maintains a satisfactory performance level even in the presence of plant dynamic
uncertainties.

We now expand Fig. 6.1 to include input and output signals, as depicted in
Fig. 6.2.

In Fig. 6.2, w, z, v and d are usually vector signals. w denotes the exogenous
input typically including command signals, disturbances, noises, etc.; z denotes the
error output usually consisting of regulator output, tracking errors, filtered actuator
signals, etc.; v and d are the input and output signals of the dynamic uncertainties.
System-performance specifications can usually be interpreted as reduction of z with
respect of w. With the assumption that w and z are both energy-bounded signals,
the performance requirement is equivalent to the minimization of the H∞ norm of
the transfer function from w to z. Let M be partitioned accordingly as

M =
[
M11 M12
M21 M22

]



6.1 Consideration of Robust Performance 67

Fig. 6.3 Standard M–Δ

configuration with Δp

analysis

it can easily be derived that

z = [
M22 + M21Δ(I − M11Δ)−1M12

]
w

= Fu(M,Δ)w (6.4)

Using normalization, a satisfactory level of performance requirement can be set
as ∥∥Fu(M,Δ)

∥∥∞ < 1 (6.5)

Equation (6.5) implies the stability of Fu(M,Δ), which means robust stability
with respect to the plant perturbations Δ.

Condition (6.5) is equivalent to the system loop in Fig. 6.3 to be robustly stable
with regard to a fictitious uncertainty block Δp . Δp is unstructured with appropriate
dimensions, satisfies ‖Δp‖∞ ≤ 1 and is usually called the performance uncertainty
block. The part enclosed in the dotted line is, of course, Fu(M,Δ).

For robust performance, (6.5) should hold for all Δ ∈ B�. Based on Fig. 6.3, the
robust performance design as well as robust stabilization against Δ, can be equiva-
lently considered as a robust stabilization problem in Fig. 6.1 with the uncertainty
block to be replaced by Δ̃ where

Δ̃ ∈ �̃ := {
diag{Δ,Δp} : Δ ∈ B�,‖Δp‖∞ ≤ 1

}
This is thus a robust stabilization problem with respect to a structured uncertainty

�̃. And, we have the following indications.

• Robust Performance (RP) ⇐⇒ ‖M‖μ < 1, for structured uncertainty �̃
• Robust Stability (RS) ⇐⇒ ‖M11‖μ < 1, for structured uncertainty B�
• Nominal Performance (NP) ⇐⇒ ‖M22‖∞ < 1
• Nominal Stability (NS) ⇐⇒ M is internally stable

Of course, if the uncertainty Δ is unstructured, then the robust stability require-
ment corresponds to ‖M11‖∞ < 1.

It is easy to see that, by setting Δp ≡ 0, ‖M‖μ < 1 implies ‖M11‖μ < 1. Hence,
the former condition yields a robust stability and robust performance (RSRP) de-
sign.
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Fig. 6.4 Standard M–Δ

configuration with K

6.2 μ-Synthesis: D–K Iteration Method

The transfer function matrix M(s) in Fig. 6.2 usually contains the controller K ,
hence a closed-loop interconnected matrix. For the purpose of controller design, we
may rearrange the configuration and explicitly show the dependence of the closed-
loop system on the controller K . That is, Fig. 6.2 is again shown in Fig. 6.4.

The nominal, open-loop interconnected transfer function matrix P(s) in Fig. 6.4
does not include the controller K(s) nor any perturbations that are under consider-
ation. P(s) may be partitioned as

P(s) =
⎡
⎣P11 P12 P13

P21 P22 P23
P31 P32 P33

⎤
⎦

The signals y and u represent the feedback signals (measured output, tracking
error, etc., the input to the controller) and the control signal (the output from the
controller), respectively.

The relationship between M in Fig. 6.2 and P can be obtained by straightforward
calculations as

M(P,K) = Fl(P,K)

=
[
P11 P12
P21 P22

]
+

[
P13
P23

]
K(I − P33K)−1 [

P31 P32
]

(6.6)

where M(s) is explicitly written as M(P,K) to show that M is formed by P and K .
For the RSRP design, it is required to find a stabilizing controller K such that

sup
ω∈R

μ
[
M(P,K)(jω)

]
< 1 (6.7)

where the subscript Δ̃ has been suppressed for the sake of simplicity.
Or, for the “optimal” RSRP design, the objective is to solve for K

inf
K(s)

sup
ω∈R

μ
[
M(P,K)(jω)

]
(6.8)
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An iterative method was proposed to solve (6.8) in [32]. The method is called
the D–K iteration μ-synthesis method, and is based on solving the following op-
timization problem, for a stabilizing controller K and a diagonal constant scaling
matrix D:

inf
K(s)

sup
ω∈R

inf
D∈D

σ
[
DM(P,K)D−1(jω)

]
(6.9)

where the scaling matrix set D is defined in Sect. 3.3. The justification for using
(6.9) is obvious, from Theorem 3.7 and the discussion afterwards, with μ[M(P,K)]
replaced by its upper bound infD∈D σ [DM(P,K)D−1].

Corresponding to the case of (6.7), a stabilizing controller is to be found such
that

sup
ω∈R

inf
D∈D

σ
[
DM(P,K)D−1(jω)

]
< 1 (6.10)

The D–K iteration method is to alternately minimize (6.9), or to reduce the left-
hand-side value of (6.10), for K and D in turn while keeping the other one fixed.

For a given matrix D, either constant or transfer function, (6.9) is a standard H∞
optimization problem

inf
K(s)

∥∥DM(P,K)D−1
∥∥∞ (6.11)

that can be further written as

inf
K

∥∥DFl(P,K)D−1
∥∥∞ = inf

K

∥∥Fl

(
P̃ ,K

)∥∥∞ (6.12)

with P̃ = [
D 0
0 I

]
P

[
D−1 0

0 I

]
compatible with the partition of P .

On the other hand, for a fixed K(s), infD∈D σ [DM(P,K)D−1(jω)] is a con-
vex optimization problem at each frequency ω. After the minimization over a range
of frequency of interest, the resultant diagonal (constant) matrices Ds can be ap-
proximated, via curve fitting, by a stable, minimum phase, rational transfer function
matrix D(s), which will be used in the next iteration for K .

The D–K iterative μ-synthesis algorithm is thus:

Step 1: Start with an initial guess for D, usually set D = I .
Step 2: Fix D and solve the H∞-optimization for K ,

K = arg inf
K

∥∥Fl

(
P̃ ,K

)∥∥∞

Step 3: Fix K and solve the following convex optimization problem for D at each
frequency over a selected frequency range:

D(jω) = arg inf
D∈D

σ
[
DFl(P,K)D−1(jω)

]
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Step 4: Curve fit D(jω) to get a stable, minimum-phase D(s); go to Step 2 and
repeat, until a prespecified convergence tolerance or (6.10) is achieved, or a
prespecified maximum iteration number is reached.

Successful applications of the D–K iteration method have been reported. This
method has also been applied in the case studies in Part II of this book. It should be
noticed, however, that the algorithm may not converge in some cases. The resultant
controller may be very conservative, particularly in the case of real and/or mixed
perturbations, due to the possible gap between μ(M) and infD∈D σ [DMD−1] in
general cases, and due to the lack of powerful algorithms to compute the real and
mixed μ values and to solve the optimization problem for D. Another adverse effect
in practical designs is that the order of resultant μ-controllers is usually very high,
and hence controller-order reduction must be applied.

6.3 μ-Synthesis: μ–K Iteration Method

As discussed above, the structured singular value μ plays an important role in the
robust stability and robust performance designs. The μ-design is to seek a stabilizing
controller that either minimizes or reduces the μ value over a frequency range. There
is another design method proposed in the literature that can be applied to find a
μ-controller. That is the so-called μ–K iteration method [99, 101, 139].

It is shown in [72] that in many optimization-based control-system designs, the
resultant, optimal controller will make a “well-posed” cost function (i.e. satisfying
certain assumptions [72], Theorem 4.1) constant in the frequency ω almost every-
where. This feature is obvious in the H∞ optimizations and can also be observed
in the μ-designs using the D–K iterations where the controller K(s) obtained in
the iteration gradually flattens the curve of μ(M). The μ–K iteration method is
motivated by the above. In the μ–K iterations, the obtained μ curves are used as
weighting functions on the H∞ cost function ‖Fl(P̃ ,K)‖∞ with the aim to sup-
press the peak values of the μ curves in the successive iterations. An algorithm to
implement the μ–K iteration method is described below.

Step 1: Solve the H∞-optimization problem for K0,

K0 := arg inf
K

∥∥Fl

(
P̃ ,K

)∥∥∞

Step 2: Compute the μ curve corresponding to K0 over a chosen frequency range,

μ0(jω) := μ
[
Fl(P,K0)(jω)

]
Step 3: Normalize μ0 by its maximum value, i.e.

μ̃0 := μ0

maxω μ0

Step 4: Curve fit μ̃0(jω) to get a stable, minimum-phase, rational μ̃0(s).
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Step 5: Solve for the H∞ optimal controller K1(s),

K1 := arg inf
K

∥∥μ̃0Fl

(
P̃ ,K

)∥∥∞ (6.13)

go to Step 2, multiply the newly obtained μ curve function onto the previous
cost function in (6.13) (e.g. ‖μ̃1μ̃0Fl(P̃ ,K)‖∞); repeat until the μ curve is
sufficiently flat or until a desired level of performance (measured by the peak
value of μ) has been achieved.
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Chapter 7
Lower-Order Controllers

There is a dilemma concerning design of control systems. Due to increasing de-
mands on quality and productivity of industrial systems and with deeper under-
standing of these systems, mathematical models derived to represent the system
dynamics are more complete, usually of multi-input-multi-output form, and are of
high orders. Consequently, the controllers designed are complex. The order of such
controllers designed using, for instance, the H∞ optimization approach or the μ-
method, is higher than, or at least similar to, that of the plant. On the other hand, in
the implementation of controllers, high-order controllers will lead to high cost, diffi-
cult commissioning, poor reliability and potential problems in maintenance. Lower-
order controllers are always welcomed by practicing control engineers. Hence, how
to obtain a low-order controller for a high-order plant is an important and interesting
task, and is the subject of the present chapter.

In general, there are three directions to obtain a lower-order controller for a rela-
tively high-order plant, as depicted in Fig. 7.1,

(1) plant model reduction followed by controller design;
(2) controller design followed by controller-order reduction; and,
(3) direct design of low-order controllers.

Approaches (1) and (2) are widely used and can be used together. When a con-
troller is designed using a robust design method, Approach (1) would usually pro-
duce a stable closed loop, though the reduction of the plant order is likely to be
limited. In Approach (2), there is freedom in choosing the final order of the con-
troller, but the stability of the closed-loop system should always be verified.

The third approach usually would heavily depend on some properties of the plant,
and require numerous computations. This approach will not be introduced in this
book. Interested readers are referred to [14, 23, 65, 76, 80].

From the viewpoint of being a control system, model reductions (usually referred
to the reduction of orders of the original plant models) and controller reductions are
similar. Indeed, most methods introduced in this chapter are applicable in both cases,
though some methods may be more suitable for one of them. This will be discussed
along with the introduction of methods.

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_7,© Springer-Verlag London 2013
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Fig. 7.1 Diagram for design of low-order controllers

In this book, only details of continuous-time case reduction will be discussed.
Where the method is applicable in the discrete-time case as well references will be
given. When we use the phrase order reductions of plants/systems, we actually refer
to the order reduction of a model of the plant/system.

In the rest of the chapter, let the original system have a state-space representation

G(s) := C(sI − A)−1B + D (7.1)

=:
[
A B

C D

]
(7.2)

where A: n × n, B: n × m, C: p × n, D: p × m, and [A,B,C] is assumed to be a
minimal realization. A reduced-order system Gr(s) is represented by

Gr(s) := Cr(sI − Ar)
−1Br + Dr (7.3)

=:
[
Ar Br

Cr Dr

]
(7.4)

with Ar : r × r , Br : r × m, Cr : p × r , Dr : p × m, and r < n.

7.1 Absolute-Error Approximation Methods

The aim of the following methods is to find a reduced-order system Gr(s) such that
some norm of the error system is small, i.e. to minimize

∥∥G(s) − Gr(s)
∥∥ (7.5)

Three methods are to be introduced: Balanced Truncation, Singular Perturba-
tion Approximation (Balanced Residualization), and Hankel-Norm Approximation.
These methods are for stable systems only. The case of unstable systems will be
discussed at the end of this section.
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7.1.1 Balanced Truncation Method

The general idea of truncation methods is to neglect those parts of the original sys-
tem that are less observable and/or less controllable. Hopefully, this would lead to
a system that is of lower order and retains the important dynamic behavior of the
original system. However, in some systems, a mode would be weakly observable
but highly controllable, or vice versa. To delete such a mode may be inappropriate
with regard to the whole characteristics of the system. Hence, in the balanced trun-
cation method [38, 39, 120, 138], a state similarity transformation is applied first to
“balance” the controllability and observability features of the system.

A stable system G(s) is called balanced if the solutions P and Q to the following
Lyapunov equations:

AP + PAT + BBT = 0 (7.6)

AT Q + QA + CT C = 0 (7.7)

are such that P = Q = diag(σ1, σ2, . . . , σn) := Σ , with σ1 ≥ σ2 ≥ · · · ≥ σn > 0.
P and Q are called the controllability Gramian and observability Gramian, respec-
tively. When the system is balanced, both Gramians are diagonal and equal. σi ,
i = 1, . . . , n, is the ith Hankel singular value of the system.

For a general system not in the balanced realization form, the following algorithm
[92] can be applied.

Balanced Realization Algorithm

Step 1: Calculate the Gramians P and Q from (7.6) and (7.7), respectively
Step 2: Calculate a Cholesky factor R of Q, i.e. Q = RT R

Step 3: Form a positive-definite matrix RPRT and diagonalize it,

RPRT = UΣ2UT

where U is an orthonormal matrix, UT U = I , and Σ = diag(σ1, σ2, . . . , σn),
σ1 ≥ σ2 ≥ · · · ≥ σn > 0

Step 4: Let T = Σ− 1
2 UT R. [T ,T −1] is a required state similarity transformation

(balancing transformation). That is, [T AT −1, T B,CT −1] is a balanced realiza-
tion.

We now assume that the state-space model of the original system G(s),
[A,B,C,D], is already in the balanced realization form. Assume Σ = diag(Σ1,

Σ2), with Σ1 = diag(σ1, . . . , σr ), Σ2 = diag(σr+1, . . . , σn), where σr > σr+1. The
matrices A, B , and C can be partitioned compatibly as A = [ A11 A12

A21 A22

]
, B = [ B1

B2

]
,

and C = [
C1 C2

]
. Then, a reduced-order system Gr(s) can be defined by

Gr(s) = C1(sI − A11)
−1B1 + D =

[
A11 B1
C1 D

]
(7.8)
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Such a Gr(s) is of r th order and is called a balanced truncation of the full order
(nth) system G(s). It can be shown that Gr(s) is stable, in the balanced realization
form, and

∥∥G(s) − Gr(s)
∥∥∞ ≤ 2 tr(Σ2) (7.9)

where tr(Σ2) denotes the trace of the matrix Σ2, i.e. tr(Σ2) = σr+1 + · · · + σn, the
sum of the last (n − r) Hankel singular values [39, 55].

In most applications, to reduce the original system into an r th-order system there
should be a large gap between σr and σr+1, i.e. σr � σr+1.

7.1.2 Singular Perturbation Approximation

In many engineering systems, the steady-state gain of a system, usually called dc-
gain (the system gain at infinitive time, equivalent to G(0)), plays an important
role in assessing system performances. It is thus better to maintain the dc gain in
a reduced-order model, i.e. Gr(0) = G(0). The Balanced Truncation method intro-
duced in the last subsection does not keep the dc gain unchanged in the reduced-
order system. The singular perturbation approximation method [103] (or, balanced
residualization method [149]) presented below does retain the dc gain.

Assume that [A,B,C,D] is a minimal and balanced realization of a stable sys-
tem G(s), and partitioned compatibly as in the previous subsection. It can be shown
that A22 is stable (e.g. see Theorem 4.2 of [55]), and thus invertible. Define

Ar = A11 − A12A
−1
22 A21 (7.10)

Br = B1 − A12A
−1
22 B2 (7.11)

Cr = C1 − C2A
−1
22 A21 (7.12)

Dr = D − C2A
−1
22 B2 (7.13)

A reduced-order system Gr(s) defined by

Gr(s) = Cr(sI − Ar)
−1Br + Dr (7.14)

is called a singular perturbation approximation (or, balanced residualization) of
G(s). It is a straightforward computation to show that the dc-gain remains un-
changed, i.e.

−CA−1B + D = −CrA
−1
r Br + Dr (7.15)

by noting that
[

I 0
−A−1

22 A21 I

][
I 0

A−1
22 A21 I

]
= I (7.16)
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[
I A12A

−1
22

0 I

][
I −A12A

−1
22

0 I

]
= I (7.17)

and
([

I −A12A
−1
22

0 I

][
A11 A12
A21 A22

][
I 0

−A−1
22 A21 I

])−1

=
[
A−1

r 0
0 A−1

22

]
(7.18)

It can also be shown that such a reduction Gr(s) is a stable and balanced real-
ization [149] and enjoys the same error bound as the balanced truncation method,
i.e. ∥∥G(s) − Gr(s)

∥∥∞ ≤ 2(σr+1 + · · · + σn)

It can be seen that instead of discarding the “less important” part totally as in the
balanced truncation method, the derivative of x2 in the following equation is set to
zero, in the singular perturbation approximation (balanced residualization) method,

ẋ2 = A21X1 + A22x2 + B2u (7.19)

x2 is then solved in (7.19) in terms of x1 and u, and is substituted as residual into the
state equation of x1 and output equation to obtain the reduced-order system Gr(s)

as given above.
This idea resembles what happens in analysis of singular perturbation systems

with

εẋ2 = A21X1 + A22x2 + B2u

where 0 < ε � 1, and hence the term of singular perturbation approximation.

7.1.3 Hankel-Norm Approximation

For a stable system G(s) with Hankel singular values defined in Sect. 7.1.1, the
largest Hankel singular value σ1 is defined as the Hankel-norm of G(s) [55]. The
Hankel-norm denotes the largest possible L2-gain from past inputs to future outputs.
In some order-reduction cases, minimization of the Hankel-norm of the error system
is more appropriate and thus required.

Approximation 1 Let G(s) represent a stable and square system with a state-space
model [A,B,C,D] of minimal and balanced realization. Let the Gramians be P =
Q = diag(Σ1, σ Il), where σ is the smallest Hankel singular value with multiplicity
l and every diagonal element of Σ1 is larger than σ . Let [A,B,C] be partitioned
compatibly. An (n − l)th-order system Gh(s) can be constructed as follows. Define

Â = Γ −1(σ 2A11
T + Σ1A11Σ1 − σC1

T UB1
T
)

(7.20)

B̂ = Γ −1(Σ1B1 + σC1
T U

)
(7.21)
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Ĉ = C1Σ1 + σUB1
T (7.22)

D̂ = D − σU (7.23)

where U is an orthonormal matrix satisfying

B2 = −C2
T U (7.24)

and

Γ = Σ1
2 − σ 2I (7.25)

The reduced-order system Gh(s) is defined as

Gh(s) = Ĉ(sI − Â)−1B̂ + D̂ (7.26)

It is shown in [55] that the (n − l)th-order Gh(s) is stable and is an optimal
approximation of G(s) satisfying

∥∥G(s) − Gh(s)
∥∥

H
= σ (7.27)

And, it is also true that G(s) − Gh(s) is all-pass with the inf-norm
∥∥G(s) − Gh(s)

∥∥∞ = σ (7.28)

Approximation 2 It can be shown that the Hankel singular values of Gh(s) defined
in (7.26) are correspondingly equal to those first (n − l) Hankel singular values of
G(s). Hence, the above reduction formula can be repeatedly applied to get further
reduced-order systems with known error bounds.

Let the Hankel singular values of G(s) be σ1 > σ2 > · · · > σr with multiplicities
mi, i = 1, . . . , r , i.e. m1 +m2 + · · ·+mr = n. By repeatedly applying the formulas
(7.20)–(7.26), we may have

G(s) = D0 + σ1E1(s) + σ2E2(s) + · · · + σrEr(s) (7.29)

where D0 is a constant matrix and Ei(s), i = 1, . . . , r , are stable, norm-1, all-pass
transfer function matrices. Ei(s)s are the differences at each approximation. Con-
sequently, we may define reduced-order models, for k = 1, . . . , r − 1,

Ĝk(s) = D0 +
k∑

i=1

σiEi(s) (7.30)

Such a Ĝk(s) is stable, with the order m1 + · · · + mk , and satisfies
∥∥G(s) − Ĝk(s)

∥∥∞ ≤ (σk+1 + · · · + σr) (7.31)

However, Ĝk(s) is not an optimal Hankel approximation, for k < r −1. The method
to obtain an optimal Hankel approximation with “general” order is given below.
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Approximation 3 Let the Hankel singular values of G(s) be σ1 ≥ σ2 ≥ · · · ≥ σk >

σk+1 = · · · = σk+l > σk+l+1 ≥ · · · ≥ σn. Apply appropriate state similarity transfor-
mations to make the Gramians of G(s) be arranged as

Σ = diag(σ1, σ2, . . . , σk, σk+l+1, . . . , σn, σk+1, . . . , σk+l )

Define the last l Hankel singular values to be σ . Following the formulas (7.20)–
(7.26), define an (n − l)th-order Ĝ(s). This Ĝ(s) is not stable but has exactly k

stable poles. The kth-order stable part Gh,k(s) of Ĝ(s), obtained by using modal
decompositions say, is an kth-order Hankel optimal approximation of G(s) and sat-
isfies

∥∥G(s) − Gh,k(s)
∥∥

H
= σ (7.32)

Nonsquare plants can be augmented with zero columns/rows and then be applied
by the above procedures.

Remarks

1. The three methods introduced in the last three subsections can be applied to
original systems (plants) as well as to controllers. However, most reported cases
are on plant reductions. This may be due to robust controller design methods used
subsequently that leads to better closed-loop performance even with a reduced-
order plant. Examples of application on controller-size reduction can be found in
[149]. In [149] it is also observed that the Balanced Truncation method and the
Hankel-norm Approximation usually perform better at high frequency, while the
singular perturbation approximation (balanced residualization) method performs
better in the low- and medium-frequency ranges.

2. Glover shows in [55] that any stable, r th-order approximation Gr of G(s) can
never achieve ‖G(s) − Gr(s)‖∞ ≤ σr+1. This lower error bound may serve as a
yardstick to compare with the actual error obtained in practice.

3. All the three methods are applicable for stable systems only. If a system is un-
stable, modal decomposition can be applied first. That is, find a stable Gs(s) and
an antistable Gus(s) (with all the poles in the closed right-half complex plane)
such that

G(s) = Gs(s) + Gus(s) (7.33)

Then, Gs(s) can be reduced to Gsr(s), by using any of the three methods, and a
reduced-order system of the original G(s) can be formed as

Gr(s) = Gsr(s) + Gus(s) (7.34)

The routines to calculate a modal decomposition can be found in software pack-
ages such as MATLAB® or Slicot.
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4. The formulas introduced here are for continuous-time systems. In the case of
discrete-time systems, the Gramians are calculated from the discrete Lyapunov
equations instead,

APAT − P + BBT = 0 (7.35)

AT QA − Q + CT C = 0 (7.36)

The balanced truncation method can then be applied similar to the case of
continuous time. However, it should be noted that the reduced-order system is
no longer in a balanced realization form [43, 138], though the same error bound
still holds [7].

For using the singular perturbation approximation (balanced residualiza-
tion) on a system with zero D-matrix, the reduced-order system Gr(s) =
[Ar,Br,Cr,Dr ] can be instead defined by

Ar = A11 + A12(I − A22)
−1A21

Br = B1 + A12(I − A22)
−1B2

Cr = C1 + C2(I − A22)
−1A21

Dr = C2(I − A22)
−1B2

(7.37)

Such a reduced-order system is still in a balanced realization and enjoys the same
error bound [7, 44, 103, 123].

The discrete-time case of Hankel-norm approximation has been studied for
a long time and is also called the Hankel-matrix approximation. Details can be
found in [6, 89, 90, 129, 194].

5. Research has been conducted on numerical implementations of the above re-
duction methods. For instance, in balanced transformation in order to avoid nu-
merical instability of forming products BBT and CT C, algorithms for direction
calculation of the Choleski factors and improved balanced truncation scheme
have been proposed [70, 93, 162]. Also, to avoid ill-conditioned computational
problems, balancing-free approaches can be considered [146, 147, 168]. It is
recommended that the model-reduction subroutines developed in the software
package Slicot be used because of their superior numerical properties.

7.2 Reduction via Fractional Factors

The modal decomposition can be used to reduce the order of a general, unstable
system as discussed in the last section. However, the order of the antistable part will
not be reduced at all. Another reduction method applicable in the case of unstable
systems is via reduction of normalized coprime factors of the system introduced in
Chap. 5.
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For a minimal realization model G(s) = [A B

C 0

]
, recall that a normalized left co-

prime factorization is defined by G(s) = M̃(s)
−1

Ñ(s), where M̃(s) and Ñ(s) are
stable and satisfy (5.2) and (5.3). Note that we assume G(s) has a zero D-matrix
and model reduction is conducted with regard to such a strictly proper system. In
the case of a nonzero feedthrough term in G(s), the nonzero D-matrix should be
added to the reduced-order model. Such a treatment greatly simplifies formulas. It
will keep the high-frequency gain of the original system in the fractional balanced
truncation (FBT) method, or maintain the dc-gain in the fractional singular pertur-
bation approximation (FSPA) method, both introduced below.

The factors M̃(s) and Ñ(s) have the following state-space models:

[
Ñ M̃

] =
[

A + HC B H

C 0 I

]
(7.38)

where H = −ZCT with Z > 0 solves the following algebraic Riccati equation:

AZ + ZAT − ZCT CZ + BBT = 0 (7.39)

[ Ñ M̃ ] in (7.38) is stable and a balanced realization transformation can be found.
Following the balanced realization algorithm in Sect. 7.1.1, a state similarity trans-
formation [T ,T −1] can be obtained such that [T (A + HC)T −1, T [B H ],CT −1]
is a balanced realization with the Gramian Σ = diag(σ1, σ2, . . . , σn). To reduce the
system to r th order, where σr > σr+1, let

T (A + HC)T −1 =:
[
Ã11 Ã12

Ã21 Ã22

]
=

[
A11 + H1C1 A12 + H1C2
A21 + H2C1 A22 + H2C2

]
(7.40)

T
[
B H

] =:
[
B̃1

B̃2

]
=

[
B1 H1
B2 H2

]
(7.41)

CT −1 =: [
C̃1 C̃2

] = [
C1 C2

]
(7.42)

D̃ := [
0 I

]
(7.43)

where

T AT −1 =:
[
A11 A12
A21 A22

]
(7.44)

T B =:
[
B1
B2

]
(7.45)

CT −1 =: [
C1 C2

]
(7.46)

T H =:
[
H1
H2

]
(7.47)
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Accordingly, the Gramian is divided as

Σ =
[
Σ1 0
0 Σ2

]
(7.48)

with Σ1 = diag(σ1, . . . , σr ) and Σ2 = diag(σr+1, . . . , σn).
Now, the reduction methods introduced in Sect. 7.1 can be applied to obtain

an r th-order [ Ñr M̃r ], which leads to a reduced order (r th-order) model Gr(s) =
M̃r(s)

−1
Ñr (s).

7.2.1 Fractional Balanced Truncation (FBT) Method

In this direct truncation method, we define

[
Ñr M̃r

] :=
[
Ã11 B̃1

C̃1
[
0 I

]
]

=
[
A11 + H1C1 B1 H1

C1 0 I

]
(7.49)

It is easy to check that the above realization of
[

Ñr M̃r

]
is still a balanced real-

ization with the Gramian Σ1. Define

Gr(s) := M̃r(s)
−1

Ñr (s) (7.50)

By direct manipulations, we have

Gr(s) =
[
A11 B1
C1 0

]
(7.51)

An error bound directly follows from the result in Sect. 7.1.1 and as shown in
[119] it is

∥∥[
Ñ − Ñr M̃ − M̃r

]∥∥∞ ≤ 2
n∑

i=r+1

σi (7.52)

7.2.2 Fractional Singular Perturbation Approximation (FSPA)
Method

Naturally, the singular perturbation approximation method (or, the balanced residu-
alization method) in Sect. 7.1.2 can be used to reduce the order of [ Ñ M̃ ].

Define

Ar = Ã11 − Ã12Ã
−1
22 Ã21 (7.53)
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Br = B̃1 − Ã12Ã
−1
22 B̃2 (7.54)

Cr = C̃1 − C̃2Ã
−1
22 Ã21 (7.55)

Dr = D̃ − C̃2Ã
−1
22 B̃2 (7.56)

Furthermore, Br and Dr can be compatibly partitioned as

Br = [
Br,1 Br,2

] := [
B1 − Ã12Ã

−1
22 B2 H1 − Ã12Ã

−1
22 H2

]
(7.57)

Dr = [
Dr,1 Dr,2

] := [−C2Ã
−1
22 B2 I − C2Ã

−1
22 H2

]
(7.58)

Hence, let

[
Ñr M̃r

] :=
[

Ar Br,1 Br,2
Cr Dr,1 Dr,2

]
(7.59)

which is of balanced realization form with the Gramian Σ1. An r th-order model
Gr(s) is then obtained by

Gr(s) = M̃r(s)
−1

Ñr (s) =
[
Ar − Br,2D

−1
r,2 Cr Br,1 − Br,2D

−1
r,2 Dr,1

D−1
r,2 Cr D−1

r,2 Dr,1

]
(7.60)

In the case that the original model G(s) is not strictly proper, the nonzero
feedthrough term should be added in the D-matrix in (7.60).

The error bound (7.52) obviously holds here as well, from the result in Sect. 7.1.2.

Remarks

1. Meyer [119] shows that ‖[ Ñ M̃ ]‖H < 1, i.e. Σ < I . Also, the infinitive norm
‖[ Ñ M̃ ]‖∞ = 1, because of the normalized coprime factorization.

2. The result can be obtained that, in either the FBT method or FSPA method, we
have

∥∥G(s) − Gr(s)
∥∥∞ ≤ ∥∥M̃−1

r

∥∥∞
∥∥[

Ñ − Ñr M̃ − M̃r

]∥∥∞
∥∥M̃−1

∥∥∞ (7.61)

by writing

G − Gr = M̃−1Ñ − M̃−1
r Ñr

= M̃−1
r

([
Ñ − Ñr M̃ − M̃r

][
I

−M̃−1Ñ

])

= M̃−1
r

([
Ñ − Ñr M̃ − M̃r

]
M̃−1

[
M̃

−Ñ

])
(7.62)

and by the fact that
∥∥[

M̃

−Ñ

]∥∥∞ = 1.
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3. Note that the methods introduced above are based on the left coprime factoriza-
tion. Similarly, model reductions can be done with regard to the normalized right
coprime factorization.

4. The model reduction in the discrete-time case using the fractional balanced trun-
cation method is straightforward, and using the fractional singular perturbation
approximation method can be found in [123, 127].

7.3 Relative-Error Approximation Methods

As discussed in Sect. 7.1.3, the balanced truncation method gives a good approxi-
mation over high-frequency ranges, while the singular perturbation approximation
performs better over low- and medium-frequency ranges. If a reduced-order system
is required in some practical problems to approximate equally well over the whole
frequency range, then the method called the balanced stochastic truncation (BST)
method may be considered [26, 60, 61, 102, 169]). The effect of this method may
be viewed, for a stable, square and invertible G(s), as a minimization of

∥∥G−1(s)
(
G(s) − Gr(s)

)∥∥∞ (7.63)

Hence, the reduced-order system Gr(s) approximates the original system in the
sense of making G−1Gr nearer to identity. Problem (7.63) represents a minimiza-
tion of a relative error and is one of several relative-error approximation methods
(e.g., see [56, 58]).

The idea of the BST method is the following. First, a spectral factor W(s) of
G(s)G−(s) is to be found. That is,

W−(s)W(s) = G(s)G−(s)

where W−(s) := WT (−s), similarly for G−(s); and W(s) is stable, square and
of minimum phase (i.e. (W(s))−1 ∈ H∞). W(s) contains the “magnitude” part
of G(s). Correspondingly, a “phase” matrix of G(s) can be defined as F(s) =
(W−(s))−1G(s). F(s) is an all-pass transfer function matrix and contains both sta-
ble and unstable modes. The BST method is then to apply a balanced truncation on
the stable part of F(s) (which is of the same order as G(s)), with the same state
similarity transformation and partition on the state space model of G(s) to obtain a
reduced-order Gr(s).

For a given nth-order, stable and square G(s) = [A B

C D

]
we assume this is a min-

imal realization and the invertibility of G(s) implies the existence of D−1.
The computational steps of the BST method can be described as

Step 1: Solve the Lyapunov equation

AP + PAT + BBT = 0 (7.64)

where the solution P > 0.
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Step 2: Let

BW = PCT + BDT (7.65)

CW = D−1(C − BT
WQW

)
(7.66)

where QW is the stabilizing solution to the following Riccati equation:

AT QW + QWA + CT
WCW = 0 (7.67)

Remark: (A,BW ,CW) forms the stable part of F(s).
Step 3: Decide a balanced realization transformation with regard to (P,QW) and

apply the transformation onto G(s). Let the balanced Gramian matrix be Σ =
diag(σ1, . . . , σn) in descending order.
Remarks: (1) After applying the above transformation, G(s) is, in general, not
in the balanced realization form, but with its controllability Gramian being Σ ;
(2) Σ ≤ I , due to F(s) being an all-pass matrix.

Step 4: Partition Σ as

Σ =
[
Σ1 0
0 Σ2

]
(7.68)

where Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn), with σr > σr+1. Parti-
tion compatibly the matrices A, B , and C (of the transformed state-space model
of G(s)) A = [ A11 A12

A21 A22

]
, B = [ B1

B2

]
, and C = [

C1 C2

]
. Then, a reduced-order sys-

tem Gr(s) can be defined by

Gr(s) = C1(sI − A11)
−1B1 + D (7.69)

For this reduced-order system, a relative error bound can be derived [61] as

∥∥G−1(G − Gr)
∥∥∞ ≤

n∏
i=r+1

1 + σi

1 − σi

− 1 (7.70)

The errors between the phase matrices, with the same antistable and constant
parts, are bounded by

∥∥F(s) − Fr(s)
∥∥∞ ≤ 4(σr+1 + · · · + σn) (7.71)∥∥F(s) − Fr(s)
∥∥

H
≤ 2(σr+1 + · · · + σn) (7.72)

Remarks

1. The BST method can be applied to nonsquare G(s) as well, with slight modifi-
cations. The invertibility of G(s) is changed to the assumption that D is of full
row rank. The constant matrix of the square spectral factor W(s) would be DW ,
with DT

WDW = DDT , and the output matrix CW = DW(DDT )−1(C −BT
WQW).
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Fig. 7.2 Closed-loop system
with reduced-order
controllers

However, in the nonsquare case, there would be no explicit explanation of the rel-
ative error format (7.63). The reduction just shows an approximation with respect
to phase.

2. In the above method, instead of balanced truncation, the Hankel-norm approxi-
mation can be used [56]. That is, the balanced realization of the stable part, Fs(s),
of the phase matrix F(s) is to be approximated by a Hankel-norm approximant,
Fs,r (s), calculated using the formula in Sect. 7.1.3. The reduced model, Gr , can
then be defined as

Gr = G − W−(Fs − Fs,r ) (7.73)

It can be shown [56, 61] that Gr is stable and satisfies the following error bound:

∥∥G−1(G − Gr)
∥∥∞ ≤

n∏
i=r+1

(1 + σi) − 1 (7.74)

7.4 Frequency-Weighted Approximation Methods

The model-order reduction approaches introduced above can be in theory applied
to plants (the original system models) as well as to controllers. However, to reduce
the order of a designed controller, it is necessary to take into account the plant that
is being compensated and other design specifications of the closed-loop system.
With such considerations, the controller-order reduction problem would be better
formulated as a frequency-weighted model reduction, and suitable approaches have
been suggested.

Assume that a controller K(s) has been designed for a plant with a model G(s),
and denote a reduced-order controller by Kr(s). The configuration with K(s) re-
placed by Kr(s) in the closed-loop system can be depicted by Fig. 7.2.

From the Small-Gain Theorem (Theorem 3.1), it is easy to obtain the result that
the closed-loop system with the reduced-order controller Kr(s) remains stable if
K(s) and Kr(s) have the same number of unstable poles and if

∥∥[
K(s) − Kr(s)

]
G(s)

[
I + K(s)G(s)

]−1∥∥∞ < 1 (7.75)
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or

∥∥[
I + G(s)K(s)

]−1
G(s)

[
K(s) − Kr(s)

]∥∥∞ < 1 (7.76)

Let Wi(s) := G(s)[I + K(s)G(s)]−1 and Wo(s) := [I + G(s)K(s)]−1G(s). Then
in order to reserve the stability of the closed-loop system, a reduced-order controller
Kr(s) is sought to minimize the frequency-weighted cost functions

∥∥[
K(s) − Kr(s)

]
Wi(s)

∥∥∞ (7.77)

or

∥∥Wo(s)
[
K(s) − Kr(s)

]∥∥∞ (7.78)

Note in this case the input frequency weight function Wi(s) equals the output fre-
quency weight function Wo(s).

Another consideration is about the performance of the closed-loop system. The
performance is closely related to the transfer function of the closed-loop system.
Naturally, to maintain the performance of the designed, closed-loop system, it re-
quires the transfer function of the closed-loop system with reduced-order controller
to be as near as possible to that with the original controller. The two transfer func-
tions are, respectively,

G(s)K(s)
[
I + G(s)K(s)

]−1 and G(s)Kr(s)
[
I + G(s)Kr(s)

]−1

The difference between these two transfer functions, by neglecting terms of second
and higher orders in K − Kr , is

G(s)
[
I + K(s)G(s)

]−1[
K(s) − Kr(s)

][
I + G(s)K(s)

]−1

Hence, a reduced-order controller Kr(s) should try to minimize

∥∥Wo(s)
[
K(s) − Kr(s)

]
Wi(s)

∥∥∞ (7.79)

where Wi(s) := [I + G(s)K(s)]−1 and Wo(s) := G(s)[I + K(s)G(s)]−1.
Let us now concentrate on the general form of frequency-weighted model re-

duction of (7.79), but replacing K(s) and Kr(s) by G(s) and Gr(s), respectively.
Assume that G(s)is stable and has the minimal realization as defined in (7.2). The
input weight function Wi(s) and the output weight Wo(s) are also stable with mini-

mal realizations: Wi(s) = [Ai Bi

Ci Di

]
and Wo(s) = [Ao Bo

Co Do

]
, respectively.

Remark Obviously the stability assumption of G(s) would be a restriction in the
case of controller-order reduction. In the case of unstable G(s), the modal decom-
position discussed in Sect. 7.1.3 can be considered.
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The augmented systems G(s)Wi(s) and Wo(s)G(s) have the state-space models

G(s)Wi(s) =
[
Âi B̂i

Ĉi D̂i

]
=

⎡
⎣A BCi

0 Ai

BDi

Bi

C DCi DDi

⎤
⎦ (7.80)

WoG(s) =
[
Âo B̂o

Ĉo D̂o

]
=

⎡
⎣ A 0

BoC Ao
B BoD

DoC Co DoD

⎤
⎦ (7.81)

Let P̂ and Q̂ be two non-negative matrices satisfying the following two Lya-
punov equations, respectively:

ÂP̂ + P̂ ÂT + B̂B̂T = 0 (7.82)

ÂT Q̂ + Q̂Â + ĈT Ĉ = 0 (7.83)

Furthermore, partition P̂ and Q̂ as

P̂ =
[

P P12

P T
12 P22

]
(7.84)

Q̂ =
[

Q Q12

QT
12 Q22

]
(7.85)

where P and Q are of n-dimension, and are called the input weighted Gramian and
output weighted Gramian, respectively.

Several frequency-weighted model-reduction algorithms use balanced realization
transformations on P and Q or are related with truncations. Three such methods are
introduced below.

7.4.1 Frequency-Weighted Balanced Truncation (FWBT)

Enns [38, 39] proposes to find a balanced realization on P and Q, i.e. to find an
invertible n × n matrix T (see Sect. 7.1.1) such that

T PT T = (
T −1)T

QT −1 = diag(σ1, . . . , σr , σr+1, . . . , σn)

with σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 ≥ · · · ≥ σn ≥ 0. Apply such a state similarity trans-
formation (T ,T −1) on G(s) and partition it accordingly,

[
T AT −1 T B

CT −1 D

]
=

⎡
⎣A11 A12

A21 A22
B1 B2

C1 C2 D

⎤
⎦ (7.86)
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where A11 is of r × r dimension. A reduced-order Gr(s) can then be defined by

Gr(s) =
[
A11 B1
C1 D

]
(7.87)

Gr(s) obtained in (7.87) is not necessarily stable, except in the cases where either
Wi = I or Wo = I (one-side weight only). There is an error bound derived [84] for

∥∥Wo(s)
[
G(s) − Gr(s)

]
Wi(s)

∥∥∞
However, this bound has to be computed iteratively, depending on reduced-order
models of n − 1, . . . , r + 1, and is not practically useful.

7.4.2 Frequency-Weighted Singular Perturbation Approximation
(FWSPA)

Lin and Chiu [100] introduce another truncation method to obtain a frequency-
weighted reduced model. Assume that P22 and Q22 in (7.84) and (7.85), respec-
tively, are nonsingular. This condition is guaranteed, for example, in the case that
the realizations (7.80) and (7.81) are minimal, i.e. if there are no pole/zero cancel-
lations between G(s) and Wi(s), nor between Wo(s) and G(s). Instead of applying
a balanced realization transformation on P and Q as in the Enns method, a bal-
anced realization transformation is to be found with regard to P − P12P

−1
22 P T

12 and
Q−QT

12Q
−1
22 Q12. This balanced realization is then applied onto the original model

G(s) and truncation taken in the same way as in (7.86) and (7.87).
Apparently, this method is so named because the matrices P − P12P

−1
22 P T

12 and
Q − QT

12Q
−1
22 Q12 are in the form of the reduced-order state matrix used in the

Singular Perturbation Approximation method (Sect. 7.1.2). It is observed that, by

pre/postmultiplying
[

I −P12P
−1
22

0 I

]
and

[ I 0
−P−1

22 PT
12 I

]
on (7.82), and similar multiplica-

tions with regard to Q on (7.83), matrices P − P12P
−1
22 P T

12 and Q − QT
12Q

−1
22 Q12

satisfy two Lyapunov equations, respectively. Hence, the diagonalized matrices of
these two after the balanced realization transformations satisfy the Lyapunov equa-
tions, too. This indicates the reduced-order system is guaranteed to be stable.

There is an error bound available for this method [157]. However, it suffers the
same weakness as the error bound for the Enns method. The error bound cannot be
simply calculated from the original model data.

7.4.3 Frequency-Weighted Moduli Truncation Method (FWMT)

The error bounds for the above two methods are not practically useful. In [175],
Wang et al. propose another truncation method with a priori computable error
bound.
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Quoting the upper-left blocks of (7.82) and (7.83) gives the following two matrix
equations:

AP + PAT + BCiP12 + P T
12C

T
i BT + BDiD

T
i BT = 0 (7.88)

AT Q + QA + Q12BoC + CT BT
o QT

12 + CT DT
o DoC = 0 (7.89)

Let

X = BCiP12 + P T
12C

T
i BT + BDiD

T
i BT (7.90)

Y = Q12BoC + CT BT
o QT

12 + CT DT
o DoC (7.91)

Note that X and Y defined above are symmetric but not sign-definite in general.
Apply congruent transformations on X and Y to obtain orthogonal matrices U and
V such that

X = UΘUT (7.92)

Y = V Γ V T (7.93)

where Θ = diag(θ1, . . . , θi,0, . . . ,0), Γ = diag(γ1, . . . , γo,0, . . . ,0), with |θ1| ≥
· · · ≥ |θi | > 0 and |γ1| ≥ · · · ≥ |γo| > 0. Now, define

B̃ = Udiag
(|θ1| 1

2 , . . . , |θi | 1
2 ,0, . . . ,0

)
(7.94)

C̃ = diag
(|γ1| 1

2 , . . . , |γo| 1
2 ,0, . . . ,0

)
V T (7.95)

Solve the following two Lyapunov equations:

AP̃ + P̃AT + B̃B̃T = 0 (7.96)

Q̃A + AT Q̃ + C̃T C̃ = 0 (7.97)

It can be shown [175] that (A, B̃, C̃) is a minimal realization and hence the so-
lutions P̃ and Q̃ to (7.96) and (7.97), respectively, are positive definite. Similar
to FWBT and FWSPA methods, a balanced realization is found with regard to P̃

and Q̃ and the transformation is applied to the original model (A,B,C) to yield a
reduced-order model Gr(s). Such a Gr(s) is stable, following the same reasoning
as in the FWSPA method. Furthermore, the following error bound can be derived
[175].

Define

K = diag
(|θ1| 1

2 , . . . , |θi | 1
2 ,0, . . . ,0

)
UT B (7.98)

L = CV diag
(|γ1| 1

2 , . . . , |γo| 1
2 ,0, . . . ,0

)
(7.99)

Then, it is shown in [175] that

∥∥Wo(s)
(
G(s) − Gr(s)

)
Wi(s)

∥∥∞ ≤ k

n∑
j=r+1

σj (7.100)
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where

k = 2
∥∥Wo(s)L

∥∥∞
∥∥KWi(s)

∥∥∞
and (σ1, ·, σr , σr+1, . . . , σn) are the diagonal elements of the balanced form of P̃

(Q̃).
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Chapter 8
LMI Approach

In Chaps. 4, 5, and 6, we discussed how a robust controller design problem can
be cast as an optimization problem, in H∞ or μ-synthesis formulations. Optimal
or sub-optimal solutions can be found by following some formulas which are de-
rived using functional analysis or operator theories. There is actually another way to
consider the robust design problem, and control system design in general, as an op-
timization problem, solutions to which can be directly computed by convex compu-
tational procedures. That is the so called Linear Matrix Inequality (LMI) approach.
In this chapter, basic concepts of LMI and a few applications of LMI in robust and
other control system design problems will be introduced.

8.1 Basics About LMI

Variables involved in a linear matrix inequality problem are either scalars or sign-
definite matrices. Recall that a (real) symmetric matrix M is positive (negative) def-
inite if xT Mx > (<) 0, ∀x �= 0. Also, M is called positive (negative) semi-definite
if xT Mx ≥ (≤) 0, ∀x. The most general form of an LMI is

F(x) = M0 +
l∑

i=1

xiMi > 0 (8.1)

where xi are real, scalar variables, x = [x1, . . . , xl]T , and M0 and Mi are constant
(given), symmetric matrices of dimension n × n. The above LMI is feasible, if a
vector x exists which satisfies (8.1).

In some control system problems, it is more convenient to be formulated as the
following LMI:

F(X1, . . . ,Xk) = M0 +
k∑

i=1

GiXiHi > 0 (8.2)

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_8,© Springer-Verlag London 2013
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where Xi ∈ �pi×qi are matrix variables to be found and Gi ∈ �n×pi ,Hi ∈ �qi×n

are known matrices. It is easy to see that the vector variable x in (8.1) can be formed
by stacking the columns of Xi in (8.2).

In general, an optimization problem can have an LMI as its cost function with
several other LMI’s of the same matrix variables as constraints.

Introduction of LMI can be as a matter of fact traced back to the work of Lya-
punov. It has also been known for several decades that some control problems can
be formulated as LMI problems (see [49, 184, 185], for example). The major im-
pact behind the wide use of LMIs in control systems analysis and design in the
last decade or so is due to the breakthrough of efficient numerical algorithms of
interior-point methods in convex optimization [50, 130]. Such a development makes
it practically possible to find solutions to LMI’s representing many control systems
problems which we will introduce next.

8.2 Control Problems Using LMI

8.2.1 Lyapunov Stability Criterion

For a continuous-time linear system S

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(8.3)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input (control) vector, and
y(t) ∈ Rp the output (measurement) vector, the system is asymptotically stable if
there exists a positive definite matrix P > 0 such that

AT P + PA < 0 (8.4)

This is an LMI feasibility problem.

Remark Let P = {pij }, pij = pji . (8.4) can be re-written as
∑
i,j

pij

(
AT Eij + EjiA

)
< 0 (8.5)

where Eij is a zero matrix except its (i, j) element being 1. (8.5) is obviously in the
form of (8.1).

8.2.2 Stabilization by State Feedback

Consider the system in (8.3) again. In the case that it is not asymptotically stable,
a state feedback matrix F , in u = v − Fx, may be sought to form the following
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closed-loop system:

ẋ = (A − BF)x + Bv(t)

y(t) = Cx(t) + Dv(t)
(8.6)

where we use v(t) to denote the external input and u(t) in (8.3) is given as u(t) =
v(t)−Fx(t). To make the closed-loop system asymptotically stable, we require the
state feedback matrix F to satisfy, following (8.4),

(A − BF)T P + P(A − BF) < 0 (8.7)

or

AT P + PA − FT BT P − PBF < 0 (8.8)

where P > 0 is to be found. Here we want to find two matrices, F and P , in (8.8).
This is not a linear inequality, rather a quadratic one, due to the last two terms in the
inequality. To make it linear, we may pre- and post-multiply P −1 on (8.8), which
leads to

P −1AT + AP −1 − P −1FT BT − BFP −1 < 0 (8.9)

By letting P −1 =: Q and defining R = FQ, (8.9) becomes

QAT + AQ − RT BT − BR < 0 (8.10)

which obviously is “linear”. Once the variables Q and R are found, the original
variables P and F can be directly recovered.

Remark The technique used above is called “change of variables”, which is useful
to derive a linear inequality from an originally nonlinear one. It is important to note
that in the transformations the equivalence of inequalities should be retained and the
original variables should be recoverable.

8.2.3 Computation of L2 Norm

For a general (stable) system with u(t) as its input and z(t) as the output, L2 norm
can be defined as a number γ which is the minimum positive satisfying the following
inequality:

‖y‖2 < γ ‖u‖2 + β (8.11)

where ‖ · ‖2 denotes the standard 2-norm of a vector function, i.e.

‖x‖2 =
(∫ ∞

0
xT (t)x(t)dt

)1/2
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as defined earlier in the book, and β is a positive constant. γ is also called the L2-
gain of the system which shows the maximum gain of the system output in terms of
“size” with regard to that of the input, the RMS energy gain.

For a linear system in (8.3), the gain γ can be calculated from solving the fol-
lowing matrix inequality, for P > 0:

[
AT P + PA + 1

γ
CT C PB + 1

γ
CT D

BT P + 1
γ
DT C −γ I + 1

γ
DT D

]
< 0 (8.12)

(8.12) can be derived as follows.
(8.12) is equivalent to (8.13) below, by pre- and post-multiplying [xT uT ] and[ x

u

]
, ∀[xT uT ]T �= 0, respectively,

[
x

u

]T
[
AT P + PA + 1

γ
CT C PB + 1

γ
CT D

BT P + 1
γ
DT C −γ I + 1

γ
DT D

][
x

u

]
< 0 (8.13)

which leads to

xT AT Px + xT PAx + 1

γ
xT CT Cx + xT

(
PB + 1

γ
CT D

)
u

+ uT

(
BT P + 1

γ
DT C

)
x + 1

γ
uT DT Du − γ uT u < 0 (8.14)

and

xT AT Px + xT PAx + 2xT PBu + 1

γ
yT y − γ uT u < 0 (8.15)

By defining V = xT Px and using V̇ = xT AT Px + xT PAx + 2xT PBu, (8.15)
can be expressed as

V̇ + 1

γ
yT y − γ uT u < 0 (8.16)

Integrating the above from 0 to ∞ yields

V∞ − V0 +
∫ ∞

0

1

γ
yT (t)y(t)dt −

∫ ∞

0

1

γ
uT (t)u(t)dt < 0

Further by shifting terms, taking the square root and applying the triangle inequality,
the above inequality can be re-written in the form of (8.11).
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8.2.4 Computation of H∞ Norm

The H∞ norm of a linear, stable system S as in (8.3) is bounded by a constant
number γ , i.e. ‖S‖∞ < γ , if there exists P > 0 such that

[
AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ 2I

]
< 0

The above can be used iteratively to find the H∞-norm of S , the minimum γ .
This result is actually the well-known bounded-real lemma [184]. Such a system

as in (8.3) is called nonexpansive; it has the property

∫ tf

0
yT (t)y(t)dt ≤ γ 2

∫ tf

0
uT (t)u(t)dt

for any tf > 0, when x(0) = 0.

8.2.5 Formulation of LQR in LMI

For the linear, time-invariant system in (8.3), the Linear–Quadratic Regulator (LQR)
problem is, given an initial condition x(0) = xo, to find a state feedback u = −Fx

that minimizes the cost function

J =
∫ ∞

0

(
xT Qx + uT Ru

)
dt (8.17)

where Q,R > 0.
The solution to this problem is well known (for example see [8]) and u = −Fx =

−R−1BT P , where P > 0 and solves the following Algebraic Riccati Equation
(ARE):

AT P + PA − PBR−1BT P + Q = 0

Furthermore,

Jmin = min
∫ ∞

0

(
xT Qx + uT Ru

)
dt = xT

o Pxo

The LQR problem can also be formulated as an LMI Problem. It can be shown
by direct deductions that with a P > 0 satisfying the following matrix inequality:

AT P + PA − PBR−1BT P + Q < 0 (8.18)

and by setting the negative state feedback matrix F = R−1BT P , we have

J =
∫ ∞

0

(
xT Qx + uT Ru

)
dt < xT

o Pxo
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Hence we can reduce the cost function J if we can find smaller P . However, (8.18)
is not a linear inequality in P . We need a few “tricks” here.

First, we define L = P −1 and pre- and post-multiply L on both sides of the
inequality (8.18), which changes it into

LAT + AL − BR−1BT + LQL < 0 (8.19)

Next, we use the following Schur Complement Formula to transform equiva-
lently (8.19) into linear inequalities.

Schur Complement Formula For a symmetric matrix

M =
[
M11 M12

MT
12 M22

]
(8.20)

M < 0 if and only if M22 < 0 and M11 − M12M
−1
22 MT

12 < 0.

Schur Complement Formula can be verified by pre- and post-multiplying

[
I −M12M

−1
22

0 I

]

and [
I 0

−M−1
22 MT

12 I

]

respectively, on both sides of the inequality M < 0.
Now by defining M11 = LAT + AL − BR−1BT , M12 = L and M22 = −Q−1

and using the Schur Complement Formula, solving the quadratic matrix inequality
(8.19) is equivalent to solving the following linear matrix inequality:

[
LAT + AL − BR−1BT L

L −Q−1

]
< 0 (8.21)

Further, in order to find the minimal cost function, we may minimize γ , where
γ > xT

o Pxo is required, i.e. xT
o Pxo − γ < 0. To write this inequality in terms of L,

the Schur Complement Formula can be used again. By defining M11 = −γ , M12 =
xT
o and M22 = −L = (−P −1), it is equivalent to

[−γ xT
o

xo −L

]
< 0 (8.22)

Therefore, the state feedback matrix F , in u = −Fx, which leads to the minimal
cost function J can be found by solving the following LMI optimization problem
for L > 0 and γ > 0:
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min γ

s.t.

[−γ xT
o

xo −L

]
< 0

[
LAT + AL − BR−1BT L

L −Q−1

]
< 0

and F = R−1BT L−1.

8.3 A Few More Properties Concerning LMI

In formulations and solution procedures of LMIs, a number of existing results, such
as the Schur Complement Formula, can be used to help solve the problems. In this
section, we will introduce a few of them. Please note that proofs are not given here.
Interested readers can consult the literature, for example [15, 49, 50] and references
therein.

8.3.1 Congruence Transformation

For a given positive definite (real) matrix M > 0, the matrix V MV T > 0 holds,
where V is a real matrix of full row rank. This can be proved by using the definition
of positive definiteness and is called congruence transformation. The positive def-
initeness is therefore invariant under congruence transformations. This property is
useful, for example, to transform bilinear terms in a matrix inequality into a linear
one, with variable changes as in the following.

We have the matrix inequality

M =
[

AT P + PA PBF + CT Q

FT BT P + QC −2Q

]
< 0 (8.23)

where the matrices A, B and C are given and P > 0, Q > 0 and (unstructured) F

are matrix variables to be found. (8.23) is not a linear matrix inequality because of

the “bilinear” terms involved. By defining V = [
P−1 0

0 Q−1

]
and pre-multiplying V

and post-multiplying V T (= V ) on both sides of (8.23), yields
[

P −1AT + AP −1 BFQ−1 + P −1CT

Q−1FT BT + CP −1 −2Q−1

]
< 0 (8.24)

Further, by introducing X = P −1, Y = Q−1 and Z = FQ−1, we have the following
linear matrix inequality instead of (8.24) or (8.23):

[
XAT + AX BZ + XCT

ZT BT + CX −2Y

]
< 0 (8.25)

It is straightforward to recover P , Q and F from X, Y and Z.
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8.3.2 Schur Complements for Nonstrict Inequalities

In the previous section, the Schur Complement Formula was introduced for the case
of strict inequalities. For nonstrict inequalities, the Moore–Penrose pseudo inverse
of constant matrix will have to be used [15].

For a symmetric matrix

M =
[
M11 M12

MT
12 M22

]

M ≤ 0 if and only if M22 ≤ 0 and M11 −M12M
†
22M

T
12 ≤ 0, and M12(I −M22M

†
22) =

0, where M
†
22 denotes the Moore–Penrose pseudo inverse of M22.

8.3.3 Projection and Finsler’s Lemmas

In analysis and synthesis of control systems using LMIs, a few results, listed below,
can be used to test the solvability of the LMIs and further to find solutions. The first
is a quite straightforward one.

8.3.3.1 Lemma 1

The inequality, with the symmetric variable X,

⎡
⎢⎣

P11 P12 P13

P T
12 P22 + X P23

P T
13 P T

23 P33

⎤
⎥⎦ < 0 (8.26)

has a solution if and only [
P11 P13

P T
13 P33

]
< 0 (8.27)

and, furthermore, any X satisfying the following inequality is a solution:

X < −P22 + [
P T

12 P23
][

P11 P13

P T
13 P33

]−1 [
P12

P T
23

]

It can be shown that the above lemma holds by first interchanging Rows 1 and
2 as well as Columns 1 and 2 of (8.26), and then applying the Schur Complement
Formula.
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8.3.3.2 Lemma 2

Consider the LMI below, with symmetric P11, P22 and P33 and the unstructured
variable X, ⎡

⎣ P11 P12 + XT P13

P T
12 + X P22 P23

P T
13 P T

23 P33

⎤
⎦ < 0 (8.28)

The LMI (8.28) has a solution X if and only if
[
P11 P13

P T
13 P33

]
< 0 and

[
P22 P23

P T
23 P33

]
< 0

Furthermore, when the above two inequalities hold, a solution is given by

X = P23P
−1
33 P T

13 − P T
12 (8.29)

The necessary condition is straightforward by the fact that all leading minors of
a negative (positive) definite matrix are negative (positive) definite and by certain
interchange of rows and columns. To show the sufficiency part, it is obvious that the
LMI (8.28) is equivalent to the following LMI, by the Schur complement:

[
P11 P12 + XT

P T
12 + X P22

]
−

[
P T

13

P T
23

]
P −1

33

[
P31 P32

]
< 0 (8.30)

The matrix X defined in (8.29) simply cancels the off-diagonal terms in the left-
hand side matrix above which leads to the inequality (8.30) due to the negativeness
property of (8.28).

8.3.3.3 Lemma 3 (Projection Lemma)

For matrices A, B and a symmetric matrix P , the LMI below with unstructured
variable X

AT XB + BT XT A + P < 0 (8.31)

has a solution if and only if

Ax = 0 or Bx = 0 imply xT Px < 0 or x = 0 (8.32)

Further, let A⊥ and B⊥ be matrices whose columns form a basis of ker(A) and
ker(B), i.e. the orthogonal complements of A and B , respectively, (8.32) is equiva-
lent to

AT⊥PA⊥ < 0 and BT⊥PB⊥ < 0 (8.33)

A proof can be found in, for example, [36].
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8.3.3.4 Lemma 4 (Finsler’s Lemma)

It can also be shown that (8.33) is equivalent to the following two inequalities, for
some σ :

P − σAT A < 0

P − σBT B < 0

This result is sometimes referred to as Finsler’s Lemma [15, 36].

8.3.4 The S-Procedure for Quadratic Functions

Many control problems can be formulated as constrained optimization problems
with the cost as well as constraint inequalities in quadratic forms. Some of such
problems may be re-formulated as a single LMI, by so-called the S-procedure.

Let F0,F1, . . . ,Fp be quadratic functions of the variable vector x,

Fi(x) = xT Tix + 2uT
i x + vi, i = 0, . . . , p

where Ti is symmetric. F0,F1, . . . ,Fp are required to satisfy

F0(x) ≥ 0 for all x such that Fi(x) ≥ 0, i = 1, . . . , p (8.34)

Obviously, a sufficient condition for (8.34) to be true is that there exist τ1 ≥ 0,

. . . , τp ≥ 0 such that

for all x, F0(x) −
p∑

i=1

τiFi(x) ≥ 0 (8.35)

The vice versa is not true, except when p = 1 and with the condition that F1 is
strictly positive for some x.

(8.35) can be written in the form of an LMI as

[
T0 u0

uT
0 v0

]
−

p∑
i=1

τi

[
Ti ui

uT
i vi

]
≥ 0

Similar results exist when the cost inequality in (8.34) is strict.

8.3.5 Dualization Lemma

Let P be a non-singular symmetric matrix in �n×n and let U and V be two comple-
mentary subspaces whose (direct) sum forms �n. Then

xT Px < 0 for all x ∈ U \ O and xT Px ≥ 0 for all x ∈ V
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is equivalent to

xT P −1x > 0 for all x ∈ U⊥ \ O and xT P −1x ≤ 0 for all x ∈ V⊥.

The above is called the “Dualization Lemma” and may in some cases lead to a
simpler procedure of LMI solutions.
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Chapter 9
Building Uncertain Models

In this chapter we show how to build uncertain system models using the functions
of Robust Control Toolbox®3. Building such models is an important step in the
design of control systems whose plants possess some type of uncertainty. The cor-
responding functions of Robust Control Toolbox®3 allow to facilitate the process
of building different uncertainty models and to analyze easily the properties of such
models. First we describe how to build models of open-loop and closed-loop linear
time-invariant systems (LTI models) and how to investigate their basic properties.
Then we present various functions of Robust Control Toolbox®3 that allow to create
models of systems with structured (real) uncertainties. The usage of these functions
is illustrated for the simple case of a second order mass–damper–spring system. It is
shown how to investigate several properties of uncertain models in the time domain
and frequency domain. Finally, we show how to build models of systems with un-
structured (complex) uncertainty. Creation of models with additive or multiplicative
uncertainty is considered in detail.

The presentation in this and the next three chapters of Part II is based to some
extent on the information given in the Robust Control Toolbox®3 User’s Guide [12]
and its previous editions.

9.1 LTI Models

In this section we describe how to create and manipulate models of linear time-
invariant systems (LTI models) in MATLAB®.

Creation of LTI models is done by the following commands:

• ss—State-space models (SS objects)
• tf—Transfer function matrices (TF objects)
• zpk—Zero-pole-gain models (ZPK objects)
• frd—Frequency response data models (FRD objects)

Further on we show how to create models of multivariable systems by using the
commands ss and tf.

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_9,© Springer-Verlag London 2013

107
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Creation of a state-space model of time-invariant continuous-time system is il-
lustrated by the following example.

Example 9.1 Let us consider a two-input, two-output system described in the state-
space by the equations

ẋ = Ax + Bu

y = Cx + Du

where

A =
⎡
⎣−1 0 5

2 1 −4
−6 −3 −2

⎤
⎦ , B =

⎡
⎣ 5 0

−4 1
0 6

⎤
⎦

C =
[−1 0 −4

2 3 6

]
, D =

[
3 −2

−4 1

]

This system is completely controllable and completely observable so that its state-
space model represents a minimal realization.

After entering the matrices A, B , C, and D in MATLAB®, the state-space model
is obtained by the command line

Gss = ss(A,B,C,D)

Entering the line

Gss

produces the following result:

a =
x1 x2 x3

x1 -1 0 5
x2 2 1 -4
x3 -6 -3 -2

b =
u1 u2

x1 5 0
x2 -4 1
x3 0 6

c =
x1 x2 x3

y1 -1 0 -4
y2 2 3 6
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d =
u1 u2

y1 3 -2
y2 -4 1

Continuous-time model.

To display the state matrix A of the model we enter the line

A = Gss.A

In a similar way it is possible to display other matrices of the state-space model.
The state-space model is converted to a transfer function matrix model by the

command line

Gtf = tf(Gss)

As a result one obtains

Transfer function from input 1 to output...
3 s^3 + s^2 + 118 s - 80

#1: ------------------------
s^3 + 2 s^2 + 17 s - 14

-4 s^3 - 10 s^2 - 172 s + 144
#2: -----------------------------

s^3 + 2 s^2 + 17 s - 14

Transfer function from input 2 to output...
-2 s^3 - 28 s^2 - 52 s + 109

#1: ----------------------------
s^3 + 2 s^2 + 17 s - 14

s^3 + 41 s^2 - 4 s + 46
#2: -----------------------

s^3 + 2 s^2 + 17 s - 14

It follows from the result obtained that the transfer function matrix of the system
is

G =
⎡
⎣ 3s3+s2+118s−80

s3+2s2+17s−14
−2s3−28s2−52s+109

s3+2s2+17s−14

−4s3−10s2−172s+144
s3+2s2+17s−14

s3+41s2−4s+46
s3+2s2+17s−14

⎤
⎦

The system is not strictly proper since the degree of numerator polynomials is equal
to the degree of denominator polynomials.

To determine the poles and transmission zeros we may use the state-space model
implementing the commands pole and zero. As a result we obtain
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p = pole(Gss)

p =

-1.3681 + 4.1404i
-1.3681 - 4.1404i
0.7363

z = zero(Gss)

z =

-0.9087 +11.1357i
-0.9087 -11.1357i
2.2174

Note that the transmission zeros are not necessarily the zeros of the polynomials
in the numerators of transfer function matrix elements.

The commands pole and zero may be used also to determine the poles and
zeros from the transfer function matrix model. However, in this case we obtain

p = pole(Gtf)

p =

-1.3681 + 4.1404i
-1.3681 - 4.1404i
0.7363

-1.3681 + 4.1404i
-1.3681 - 4.1404i
0.7363

z = zero(Gtf)

z =

-0.9087 +11.1357i
-0.9087 -11.1357i
-1.3681 + 4.1404i
-1.3681 - 4.1404i
2.2174
0.7363

i.e., the poles and zeros of the original system are repeated twice. In this case instead
of finding the poles and zeros of the third order system the commands pole and
zero determine the poles and zeros of the state-space realization of sixth order
that is obtained as an intermediate result in the poles and zeros computation. (The
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computation of these quantities is done in the state-space.) This fact is confirmed
executing the command line

G = ss(Gtf)

which produces a state-space realization from the transfer function matrix computed
previously. The result of this command is

a =
x1 x2 x3 x4 x5 x6

x1 -2 -2.125 1.75 0 0 0
x2 8 0 0 0 0 0
x3 0 1 0 0 0 0
x4 0 0 0 -2 -4.25 3.5
x5 0 0 0 4 0 0
x6 0 0 0 0 1 0

b =
u1 u2

x1 4 0
x2 0 0
x3 0 0
x4 0 8
x5 0 0
x6 0 0

c =
x1 x2 x3 x4 x5 x6

y1 -1.25 2.094 -1.188 -3 -0.5625 2.531
y2 -0.5 -3.25 2.75 4.875 -0.6562 1.875

d =
u1 u2

y1 3 -2
y2 -4 1

Continuous-time model.

It is seen that after the inverse conversion from transfer function matrix to state-
space model we obtain a sixth order realization. This realization is obviously non-
minimal.

The minimal state-space realization may be obtained in the given case by the
command

G = ss(Gtf,’min’)

The result is
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a =
x1 x2 x3

x1 -1.784 -5.23 2.632
x2 3.298 -0.3631 -0.01393
x3 0.2271 1.286 0.147

b =
u1 u2

x1 0.6277 6.158
x2 2.925 -0.03289
x3 -0.1801 0.2784

c =
x1 x2 x3

y1 -4.016 -0.691 2.544
y2 6.238 -1.907 1.88

d =
u1 u2

y1 3 -2
y2 -4 1

To create a state-space model of the discrete-time system

xk+1 = Axk + Buk,

yk = Cxk + Duk,

one may use again the command ss setting in addition the sampling period Ts :

Gd = ss(A,B,C,D,Ts)

The discretization of a continuous-time state-space model G for a given sampling
period Ts may be done by the command c2d.

Gd = c2d(G,Ts)

Consider now how to obtain a model of a multivariable system described by a
transfer function matrix.

Example 9.2 Given is a two-input two-output fifth order system with transfer func-
tion matrix

G =
[ 6

(0.9s+1)(0.1s+1)
−0.05
0.1s+1

0.07
0.3s+1

5
(1.8s−1)(0.06s+1)

]
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To enter this matrix we use the command lines

s = tf(’s’);
g11 = 6/((0.9*s + 1)*(0.1*s + 1));
g12 = -0.05/(0.1*s + 1);
g21 = 0.07/(0.3*s + 1);
g22 = 5/((1.8*s - 1)*(0.06*s+1));
G = [g11 g12; g21 g22]

As a result we obtain

Transfer function from input 1 to output...
6

#1: ----------------
0.09 s^2 + s + 1

0.07
#2: ---------

0.3 s + 1

Transfer function from input 2 to output...
-0.05

#1: ---------
0.1 s + 1

5
#2: ----------------------

0.108 s^2 + 1.74 s - 1

A state-space realization of this transfer function matrix may be obtained as
shown in Example 9.1 always trying to obtain a minimal realization.

The singular value plot of the system frequency response is obtained by the com-
mand sigma. (The same command is used for SS and TF models.) To obtain the
singular values in the range 10−2–103 rad/s we enter the command line

sigma(G,{10^(-2) 10^3})

The system singular values are shown in Fig. 9.1. It is seen that below the fre-
quency 1 rad/s the system gain remains constant.

Given two systems with transfer function matrices G1 and G2, the transfer matrix
of their series connection (provided that the first system has the same number of
outputs as the inputs of second system) is found by the command line

G = G2*G1

The parallel connection of two systems G1 and G2 with equal number of inputs and
equal number of outputs is found by the command line

G = G1 + G2
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Fig. 9.1 System singular value plot

Coprime factorization of a transfer function matrix may be done by the command
ncfmr.

The H∞ system norm may be obtained using the singular value plot of the fre-
quency response. However, this may lead to errors in case of lightly damped systems
so that it is better to use the function norm(G,’inf’), which performs the com-
putation of H∞-norm of G in the state space.

Example 9.3 Consider the 2 × 2 transfer function matrix

G(s) =
⎡
⎣

10(s+1)

s2+0.2s+100
1

s+1

s+2
s2+0.1s+10

5(s+1)
(s+2)(s+3)

⎤
⎦

The singular values of G(jω) are shown in Fig. 9.2. From the largest singular
value we obtain the result that its maximum is about 34 dB which corresponds to
H∞ norm equal to 50.12. More accurate computation of the norm may be done by
the command line

norm(G,’inf’)

which gives

ans =

50.2471
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Fig. 9.2 Largest and smallest singular values of G(jω)

Fig. 9.3 Multivariable feedback system

Consider now the block-diagram of a multivariable feedback system shown in
Fig. 9.3. The system consists of plant G and controller K and has reference r , sensor
noise n, input disturbance di , and output disturbance d . All signals are assumed to
be vector signals and the transfer function matrices have appropriate dimensions.

If the closed-loop system is internally stable, it satisfies the following equations:

y = To(r − n) + GSidi + Sod (9.1)

r − y = So(r − d) + Ton − GSidi (9.2)

u = KSo(r − n) − KSod − Tidi (9.3)

ug = KSo(r − n) − KSod + Sidi (9.4)
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where we make use of the following notation. The input loop transfer matrix Li and
the output loop transfer matrix Lo are defined, respectively, as

Li = KG, Lo = GK

The input sensitivity matrix is defined as the transfer function matrix from di to ug :

Si = (I + Li)
−1

The output sensitivity matrix is defined as the transfer function matrix from d to y:

So = (I + Lo)
−1

The input and output complementary sensitivity matrix are defined as

Ti = I − Si = Li(I + Li)
−1

To = I − So = Lo(I + Lo)
−1

respectively.
The sensitivity transfer matrices are called also sensitivity functions.
The computation of these transfer function matrices and corresponding frequency

responses is illustrated by the following example.

Example 9.4 Consider a two-channel system (i.e., a system with two inputs and two
outputs) with a structure shown in Fig. 9.3. The plant is of fifth order with two inputs
and two outputs and has a transfer function matrix

G =
[ 6

(0.9s+1)(0.1s+1)
−0.05
0.1s+1

0.07
0.3s+1

5
(1.8s−1)(0.06s+1)

]

(How to enter this transfer function matrix was shown in Example 9.2.)
The system controller has the transfer function matrix

K =
[ 7(s+1)

0.3s+1 0

0 18(s+2)
s+1

]

The closed-loop input and output sensitivity functions and input and output loop
transfer matrices are found by the command lines

looptransfer = loopsens(G,K);
Si = looptransfer.Si;
Ti = looptransfer.Ti;
So = looptransfer.So;
To = looptransfer.To;
Li = looptransfer.Li;
Lo = looptransfer.Lo;

It should be taken into account that the command loopsens does not produce
the transfer matrices themselves but their realizations in the state-space. If necessary,
the corresponding transfer matrices may be obtained from these realizations by the
command tf.
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Fig. 9.4 Output loop transfer functions

Using the command line

poles = looptransfer.Poles

one finds the closed-lop poles and using the command line

stab = looptransfer.Stable

one checks the closed-loop system stability (stab = 1 means that the system is
stable and stab = 0 means that the system is unstable).

The singular value plots of output loop transfer matrix Lo are shown in Fig. 9.4.
The singular value plots of input sensitivity and complementary sensitivity func-

tions are shown in Fig. 9.5. In the low frequency range the singular values of the
matrix Si(jω) are below −30 dB, which means that the input disturbance di is at-
tenuated more than 30 times at plant input.

It should be noted that in the multivariable case the sensitivity functions with
respect to the input and output are generally different (So �= Si,Lo �= Li ).

The singular value plots of output sensitivity and complementary sensitivity
functions are shown in Fig. 9.6. It is seen that for frequencies above 1000 rad/s
the singular values of matrix To(jω) are below −40 dB, i.e., the noise n in this
frequency range is suppressed more than 100 times at plant output.

It is instructive to see also the sensitivity of the plant input to sensor noise. Ac-
cording to (9.4) this sensitivity is determined by the singular values of K(jω)So(jω)

which are shown in Fig. 9.7. It is seen that the maximum of the sensitivity is more
than 30 dB for a frequency close to 40 rad/s and it is not less than 25 dB for frequen-
cies greater than 100 rad/s. This means that while the sensor noises are suppressed
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Fig. 9.5 Input sensitivity and complementary sensitivity

more than 100 times at plant output, they are amplified 18 times at plant input. The
amplification of system noises at plant input is undesirable since it may lead to sat-
uration of actuators and introduces nonlinear effect in closed-loop system behavior.

Consider now how to obtain the transient responses of the closed-loop system.

Example 9.5 Let us consider again the system described in Example 9.4. The tran-
sient response of the first output y1 due to the step reference r1 is obtained according
to (9.2) by the command lines

tfin = 1;
time = 0:tfin/500:tfin;
nstep = size(time,2);
ref1(1:nstep) = 1.0;
ref2(1:nstep) = 0.0;
ref = [ref1’ ref2’];
[y,t] = lsim(To(1:2,1:2),ref,time);
plot(t,y(:,1),’r-’) grid
title(’From ref 1 to outp 1’)
xlabel(’Time (secs)’)
ylabel(’y_1’)
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Fig. 9.6 Output sensitivity and complementary sensitivity

In y(:,2) one obtains the transient response of the second output y2 due to
the first reference. Setting ref1(1:nstep) = 0.0; ref2(1:nstep) =
1.0; one obtains the transient responses due to the second reference.

The closed-loop transient responses due to step references are shown in Fig. 9.8.
It is seen that there is some influence between the channels (i.e., they are not fully
decoupled), due to the presence of off-diagonal elements in the plant transfer matrix
and the diagonal structure of the controller transfer matrix. The overshoot of the first
output does not exceed 50 %.

Since the relationship between the input disturbances and closed-system outputs
is given by y = GSidi the transient response of the first output due to step input
disturbance d1 is obtained by the commands

time = 0:tfin/500:tfin;
nstep = size(time,2);
dist1(1:nstep) = 1.0;
dist2(1:nstep) = 0.0;
dist = [dist1’ dist2’];
sys = G*Si;
[y,t] = lsim(sys(1:2,1:2),dist,time);
plot(t,y(:,1),’r-’) grid
title(’From dist 1 to output 1’)
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Fig. 9.7 Sensitivity to noise at plant input

Fig. 9.8 Transient responses to reference
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Fig. 9.9 Transient responses due to input disturbances

xlabel(’Time (secs)’)
ylabel(’y_1’)

The transient response of the second output due to the first input disturbance d1 is
obtained in y(:,2).

Similarly one may obtain the transient responses due to the output disturbances.
The closed-loop transient responses due to input and output disturbances are

shown in Figs. 9.9 and 9.10, respectively.

9.2 Structured Uncertainty Models

In this section we shall consider how to build models with parametric (real) uncer-
tainty by implementing various ways to describe such models available in Robust
Control Toolbox®3. In our presentation we shall use a simple, second order, me-
chanical system, namely a mass–damper–spring system. The mass–damper–spring
system is a common control experimental device frequently seen in an undergradu-
ate teaching laboratory.

The one-degree-of-freedom (1DOF) mass–damper–spring system is depicted in
Fig. 9.11.

The dynamics of such a system can be described by the following second order
differential equation, by Newton’s Second Law,

mẍ + cẋ + kx = u (9.5)
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Fig. 9.10 Transient responses due to output disturbances

Fig. 9.11
Mass–damper–spring system

Fig. 9.12 Block diagram of
the mass–damper–spring
system

where x is the displacement of the mass block from the equilibrium position and
u = F is the force acting on the mass, with m the mass, c the damper constant and
k the spring constant.

A block diagram of such a system is shown in Fig. 9.12, setting y = x.
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Denoting x1 = x, x2 = dx/dt , the system (9.5) may be described in the state-
space form

ẋ = Ax + Bu (9.6)

y = Cx + Du (9.7)

where

A =
[

0 1
− k

m
− c

m

]
, B =

[
0
1
m

]
, C = [

1 0
]
, D = 0

The transfer function of this system is given by

y(s)

u(s)
= 1

ms2 + cs + k
(9.8)

In a realistic system, the three physical parameters m, c, and k are not known
exactly. However, it can be assumed that their values are within certain, known
intervals. That is,

m = m(1 + pmδm), c = c(1 + pcδc), k = k(1 + pkδk)

where m = 3, c = 1, k = 2 are called nominal values of m, c, and k. The quantities
pm, pc, and pk , and δm, δc , and δk represent the possible (relative) perturbations on
these three parameters. In the present case, we let pm = 0.4, pc = 0.2, pk = 0.3 and
−1 ≤ δm, δc, δk ≤ 1. Note that this represents up to 40 % uncertainty in the mass,
20 % uncertainty in the damping coefficient and 30 % uncertainty in the spring
stiffness.

The command lines for building uncertain models of mass-damper-spring system
and accessing their properties may be found in the M-file mds_models.m.

9.2.1 Uncertain Real Parameters

The simplest way to describe uncertain real parameter in Robust Control Toolbox®3
is to use the function ureal. The syntax of this function is

p = ureal(’Name’,NominalValue,’Property1’,Value1, ...
’Property2’,Value2,...)

The uncertain real parameter will have a name, set by ’Name’ and a nominal
value set by NominalValue.

The maximum deviation from NominalValue may be set in three different
manners (by using the corresponding ’Property’):

• PlusMinus: the absolute deviation from NominalValue
• Range: the interval containing NominalValue
• Percentage: the percentage deviation from NominalValue
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The Mode property specifies which one of these three descriptions remains un-
changed if the NominalValue is changed. The possible values of Mode are
’Range’, ’Percentage’ and ’PlusMinus’, the default value of Mode being
’PlusMinus’ with value [−1 1].

The property AutoSimplify of ureal specifies how to simplify expressions,
containing uncertain parameters and is useful in cases when some parameters appear
several times. Its default value is basic which means that elementary methods for
algebraic simplification are implemented. Other possible values are off (without
simplification) and full (model-reduction methods are applied to the uncertain
object).

Using the function ureal the uncertain parameters of the mass-damper-spring
system may be set by the following lines:

m = ureal(’m’,3,’Percentage’,[-40, 40])
c = ureal(’c’,1,’Range’,[0.8, 1.2])
k = ureal(’k’,2,’PlusMinus’,[-0.6, 0.6])

As a result the following information is displayed:

Uncertain Real Parameter: Name m, NominalValue 3,
variability = [-40 40]%

Uncertain Real Parameter: Name c, NominalValue 1,
Range [0.8 1.2]

Uncertain Real Parameter: Name k, NominalValue 2,
variability = [-0.6 0.6]

9.2.2 Uncertain State-Space Systems

Once the uncertain parameters are set, there are several ways to obtain the uncertain
system description.

First, it is possible to use the state-space description (9.6), (9.7). Entering the
lines

A = [ 0 1
-k/m -c/m];

B = [0 1/m]’;
C = [1 0];
D = 0;
uss1 = ss(A,B,C,D)

we obtain an object uss1 from the class uss—uncertain state space. It should be
noted that in the case of uncertain parameters the resulting system is always from
the class uss no matter which function is used to build the system. In the given case
we obtain

USS: 2 States, 1 Output, 1 Input, Continuous System
c: real, nominal = 1, range = [0.8 1.2], 1 occurrence
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k: real, nominal = 2, variability = [-0.6 0.6],
1 occurrence

m: real, nominal = 3, variability = [-40 40]%,
3 occurrences

This result shows that the parameter m appears in the system uss1 three times
which means that the state-space realization obtained does not contain the minimum
possible number of the parameter m. The usage of the command line

simplify(uss1,’full’)

does not help in the given case to produce a model in which the parameter m appears
again three times.

Another possibility to obtain the uncertain state-space description is to use the
transfer function (9.8). Entering the line

uss2 = tf(1,[m,c,k])

we obtain the uncertain object uss2. Here we use the extended capabilities of the
function tf to work with uncertain parameters. In the given case we obtain

USS: 2 States, 1 Output, 1 Input, Continuous System
c: real, nominal = 1, range = [0.8 1.2], 1 occurrence
k: real, nominal = 2, variability = [-0.6 0.6],

1 occurrence
m: real, nominal = 3, variability = [-40 40]%,

1 occurrence

Note that the parameter m appears in the system uss2 only once.
It is possible also to build the uncertain system describing directly the block-

diagram presented in Fig. 9.12 by using the function feedback.

s = tf(’s’);
g1 = (1/s)/m;
int2 = 1/s;
uss3 = feedback(int2*feedback(g1,c),k)

The result is again an object of class uss:

USS: 2 States, 1 Output, 1 Input, Continuous System
c: real, nominal = 1, range = [0.8 1.2], 1 occurrence
k: real, nominal = 2, variability = [-0.6 0.6],

1 occurrence
m: real, nominal = 3, variability = [-40 40]%,

1 occurrence

Here the three uncertain parameters participate only once.

9.2.3 Properties of Uncertain Systems

The properties of uncertain object uss1 may be seen by entering the line

get(uss1)
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which gives

a: [2x2 umat]
b: [2x1 umat]
c: [1 0]
d: 0

StateName: {2x1 cell}
Ts: 0

InputName: {’’}
OutputName: {’’}
InputGroup: [1x1 struct]

OutputGroup: [1x1 struct]
Name: ’’

NominalValue: [1x1 ss]
Uncertainty: [1x1 atomlist]

Notes: {}
UserData: []

The command

uss1.Uncertainty

produces

c: [1x1 ureal]
k: [1x1 ureal]
m: [1x1 ureal]

and the command

uss1.NominalValue

produces the nominal state-space description

a =
x1 x2

x1 0 1
x2 -0.6667 -0.3333

b =
u1

x1 0
x2 0.3333

c =
x1 x2

y1 1 0

d =
u1
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y1 0

Continuous-time model.

The uncertain elements of uncertain object may be substituted by specific values
using the function usubs. The command line

B = usubs(A,name1,value1,name2,value2,...)

instantiates the uncertain elements name1, name2, . . . of A to the values value1,
value2, . . . . In particular, value is set to ‘NominalValue’ or ‘Random’ in order
to use the nominal value or a random instance of a particular element. For instance,
the nominal state-space description of uss1 may be obtained by

usubs(uss1,’m’,3,’c’,1,’k’,2)

Another useful command implemented on uncertain objects is the command
usample which randomly samples the uncertain system at a specified number of
points. The command line

B = usample(A,n)

picks n random samples of the uncertainty in A and returns these samples in an array
B of size [size(A) n].

It is interesting to see the frequency responses of the mass-damper-spring system
for different values of the parameters m, c, and k. For this aim we may use the
extended capabilities of the function bode in MATLAB®7. For objects of the class
uss this function plots a family of frequency responses for 20 random values of the
uncertain elements as well as for the nominal values. In the given case we obtain

w = logspace(-1,1,200);
figure(1)
bode(uss1,w)
title(’Bode plot of uncertain system’)
grid

The result is shown in Fig. 9.13.
This sampling is done also when the functions bodemag, impulse, nyquist

and step are called on a uss object. The command line

step(uss1), grid

produces the step responses of the mass–damper–spring system for 20 random val-
ues of the uncertain elements as well as for the nominal values. These step responses
are shown in Fig. 9.14.

The command lines

frres = frd(uss2,w)
nyquist(frres), grid

produce the Nyquist diagram of the uncertain system uss2, shown in Fig. 9.15.
The uncertain system uss2 is sampled at 20 values, as well as its nominal value,
and the Nyquist plots of these 21 systems are drawn.
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Fig. 9.13 Bode plot of uncertain system

Fig. 9.14 Step responses of uncertain system
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Fig. 9.15 Nyquist diagram of uncertain system

Sometimes it is necessary to analyze the behavior of an uncertain system for uni-
formly spaced values of its uncertain real parameters. In such a case it is appropriate
to use the command gridureal. The command line

B = gridureal(A,n)

substitutes n uniformly spaced samples of the uncertain real parameters in uncer-
tain object A. The size of array B is equal to [size(A) n]. The n samples are
generated by uniformly griding each ureal parameter in A across its range. If A
includes uncertain objects other than ureal, then B is an uncertain object.

The command line

[B,SampleValues] = gridureal(A,names1,n1,names2,n2,...)

takes n1 samples of the uncertain real parameters listed in names1, and n2 samples
of the uncertain real parameters listed in names2 and so on. size(B) will equal
[size(A) n1 n2 ...].

As an example consider how to obtain the step response of the mass-damper-
spring system for a grid of 50 values altogether of the uncertain parameters m, c
and k. The line

step(gridureal(uss3,50)), grid

produces the step response of the uncertain system uss3 for a grid of 50 values of
the parameters m, c, and k, shown in Fig. 9.16.
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Fig. 9.16 Step response for a grid of 50 values of uncertain parameters

9.2.4 Other Functions to Build Uncertain Models

There are some additional functions that may be useful in building uncertain models.
The command ucomplex creates uncertain complex parameter. The syntax of

this command resembles the syntax of command ureal.

B = ucomplex(’Name’,NominalValue,’Property1’,Value1,...
’Property2’,Value2,...)

Here the uncertainty (maximum deviation) is specified in two different manners:
by the property Radius (radius of disc centered at NominalValue), or by the
property Percentage (disc size is percentage of magnitude of NominalValue).

Uncertain matrices (class umat) are built from uncertain parameters using
MATLAB® matrix building syntax. These matrices can be added, subtracted, mul-
tiplied, inverted, transposed, etc., resulting in uncertain matrices. The rows and
columns of an uncertain matrix are referenced in the same manner that MATLAB®

references rows and columns of an array, using parentheses, and integer indices.
Similarly to the case of real uncertain systems, specific values may be substituted
for any of the uncertain parameters within a umat using the command usubs. The
command usample generates a random sample of the uncertain matrix, substitut-
ing random samples (within their ranges) for each of the uncertain parameters.

Uncertain complex matrices are built with the command ucomplexm .
The command frd to compute frequency responses works also for objects of

class uss. In this case one obtains object of class ufrd—uncertain frequency re-



9.2 Structured Uncertainty Models 131

Fig. 9.17 Decomposition of
uncertain object

sponse. As an example, the frequency response of the system uss1may be obtained
by the lines

w = logspace(-1,1,200);
freqs = frd(uss1,w)

The result is

UFRD: 1 Output, 1 Input, Continuous System, 200 Frequency
points

c: real, nominal = 1, range = [0.8 1.2], 1 occurrence
k: real, nominal = 2, variability = [-0.6 0.6],

1 occurrence
m: real, nominal = 3, variability = [-40 40]%,

3 occurrences

Now the line

bode(freqs)

reproduces the Bode plot, shown in Fig. 9.13.
Uncertain state-space system may be included in Uncertain State Space block

and used in Simulink® to simulate and linearize uncertain systems. The reader is
referred to [12, Chap. 5] for more information and examples on the representation
and analysis of uncertain systems in Simulink®.

9.2.5 Decomposing Uncertain Objects

Each uncertain object (umat, uss, ufrd) may be represented as a linear fractional
transformation of non-uncertain part and a matrix containing the uncertain parame-
ters. Using the command lftdata an uncertain object may be decomposed into a
nominal part and a normalized uncertainty matrix with H∞ norm, equal to 1. For a
given uncertain object usys the command line

[Gnom,Delta,Blkstruct,Normunc] = lftdata(usys)

produces a nominal system Gnom and an uncertainty matrix Δ connected in a lin-
ear fractional transformation (Fig. 9.17). The variable Blkstruct returns n × 1
structure, where Blkstruct(i) describes the ith normalized uncertain element.
The variable Normunc returns an array of normalized uncertain elements.

Let us decompose the uncertain system uss2:

[Gnom,Delta,Blkstruct,Normunc] = lftdata(uss2)
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The variable Gnom is obtained as a state-space description of class ss, since it
does not contain uncertain parameters, and Delta is of class umat containing the
uncertain elements m, c and k.

9.3 Building Uncertain Models Using iconnect and sysic

The class iconnect is used to build complex interconnections of uncertain matri-
ces and systems. The iconnect objects have three fields that should be set by the
user.

• Input: symbolic column vector, represents the input variables;
• Output: symbolic column vector, represents the output variables;
• Equation: cell-array of equality constraints (created using the command
equate) describing the relations between input, output and intermediate vari-
ables.

Initially, an empty object of class iconnect is created, and then the fields
Input, Output, and Equation are specified.

The input, output, and intermediate variables should be objects of class icsig-
nal. They are symbolic vectors representing the signals in the interconnection. For
instance, the command

icsignal(4)

creates a four element column vector for use by iconnect.
Let us describe the mass–damper–spring system interconnection, shown in

Fig. 9.12, by using iconnect assuming that the uncertain parameters m, c and
k are already defined. For intermediate variables we choose x and ẋ. The input,
output, and intermediate variables are created by using icsignal.

u = icsignal(1)
x = icsignal(1)
xdot = icsignal(1)
iconnect1 = iconnect;
iconnect1.Input = u;
iconnect1.Output = x;
iconnect1.Equation{1} = equate(x, tf(1,[1,0])*xdot);
iconnect1.Equation{2} = equate(xdot, tf(1,[m,0])*

(u-k*x-c*xdot));

With get(iconnect1) one may see the properties of the system obtained:

Equation: {[1x1 icsignal] [1x1 icsignal]}
Input: [1x1 icsignal]

Output: [1x1 icsignal]
System: [1x1 uss]

As a result of the command

iconnect1.System
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we see that system iconnect1 is of the class uss:

USS: 2 States, 1 Output, 1 Input, Continuous System
c: real, nominal = 1, range = [0.8 1.2], 1 occurrence
k: real, nominal = 2, variability = [-0.6 0.6],

1 occurrence
m: real, nominal = 3, variability = [-40 40]%,

1 occurrence

As an alternative of the command iconnect to build complex interconnections
of uncertain systems, one may use the command sysic. In order to implement
this command, it is necessary to enter into the workspace of MATLAB® the follow-
ing variables: systemnames, inputvar, and outputvar. These variables are
character strings (char’s) with the following meaning.

• systemnames is a char containing the names of systems that should be con-
nected. They have to be separated by spaces with no additional punctuation. The
systems specified in the char should already exist in the workspace.

• inputvar is a char, specifying the external inputs to the interconnection (the
names are formal, i.e., it is not necessary that these variables exist). The char
should have the form of a column vector (i.e., enclosed in square brackets [ ]).
The dimension of each input in the list may be set in braces { }, for instance
U1{3}.

• outputvar is a char, containing the system outputs or actually the equations,
used to produce the output variables (they have no names); the outputs are ob-
tained as linear combinations of external inputs and subsystem outputs described
in systemnames. For multivariable subsystems, arguments within parentheses
specify which subsystem outputs are to be used and in what order. For instance,
the expression G(2:3,5) specifies output 2, 3, and 5 from the subsystem G.

For each of the subsystems, specified in systemnames, it is necessary to define
a separate variable describing its inputs in a way valid for outputvar. The names
of these variables should begin with input_to_ and to finish with the subsystem
name.

Then the command

SysOutName = sysic

reads the subsystem names specified in systemnames, the interconnection
descriptions, and computes the description of the resulting system with name
SysOutName. Also a check of the signal number is done.

For the mass–damper–spring system, description with sysic may be obtained
as follows (it is assumed that the uncertain parameters m, c and k already exist in
the workspace).

m1 = inv(m);
int1 = 1/s;
int2 = tf(1,[1,0]);
systemnames = ’int1 int2 c k m1’;
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inputvar = ’[u]’;
outputvar = ’[int2]’;
input_to_int1 = ’[m1]’;
input_to_int2 = ’[int1]’;
input_to_c = ’[int1]’;
input_to_k = ’[int2]’;
input_to_m1 = ’[u-c-k]’;
uss4 = sysic

Note that to obtain 1
m

we use the function inv, since m contains uncertainty and
the direct division 1

m
leads to an error. Also, two different but equivalent ways to

define the integrators int1 and int2 are implemented.
The system uss4 obtained is also of class uss.
The interconnections built with sysic are componentwise minimal in the sense

that the state dimension of the interconnection equals the sum of the state dimen-
sions of the components. This makes sysic appropriate for building complex un-
certainty models.

9.4 Unstructured Uncertainty Models

The unstructured (complex) uncertainty models are built using the function
ultidyn. The uncertain linear, time-invariant dynamics object ultidyn rep-
resents an unknown linear system whose only known attribute is a magnitude bound
on its frequency response. The syntax of this function is

H = ultidyn(’Name’,ioSize,’Property1’,Value1, ...
’Property2’,Value2,...)

The uncertain dynamic object will have a name, set by ’Name’ and size ioSize,
[number-of-outputs number-of-inputs]. The property Type specifies whether the
known attributes about the frequency response are related to gain or phase and has
value ’GainBounded’ or ’PositiveReal’, respectively. The default value
is ’GainBounded’. The property Bound is a single number, which, along with
Type, completely specifies what is known about the uncertain system frequency
response. Specifically, if Δ is an ultidyn object, and if γ denotes the value of the
Bound property, then the object represents the set of all stable, linear, time-invariant
systems whose frequency response satisfies the conditions:

– If Type is ’GainBounded’, σmax[Δ(ω)] ≤ γ for all frequencies, where
σmax[Δ(ω)] is the maximum singular value of Δ(ω). When Type is ’Gain-
Bounded’, the default value for Bound (i.e., γ ) is 1.

– If Type is ’PositiveReal’, Δ(ω) + Δ∗(ω) ≥ γ for all frequencies,
where Δ∗(ω) denotes the Hermitian conjugate matrix of Δ(ω). When Type
is PositiveReal, the default value for Bound (i.e., γ ) is 0.
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Fig. 9.18 Plant with additive
uncertainty

The property SampleStateDim is a positive integer, defining the state dimen-
sion of random samples of the uncertain object when sampled with usample. The
default value is 1.

The property AutoSimplify of ultidyn is similar to the property Auto-
Simplify of the function ureal.

For instance, the command line

uns = ultidyn(’uns’,[3 2],’Type’,’GainBounded’,’Bound’,1.8)

creates a ultidyn object with internal name uns, dimension 3-by-2 (three out-
puts, two inputs), norm bounded by 1.8.

Objects of class ultidyn may be used together with uss objects to create
uncertain systems by using interconnect or sysic functions along with ba-
sic system interconnection functions defined in Control System Toolbox (append,
blkdiag, series, parallel, feedback, lft, and stack).

9.4.1 Models with Additive Uncertainty

The following example illustrates the using of Robust Control Toolbox®3 com-
mands to obtain a model of SISO system with additive uncertainty.

Example 9.6 Consider a first order plant with uncertainty in the gain and time con-
stant:

G(s) = K

T s + 1
, 0.8 ≤ K ≤ 1.2,

0.7

15
≤ T ≤ 1.3

15

The nominal model is taken as

Gn(s) = 1
1

15 s + 1

The model with additive uncertainty is chosen as

G(s) = Gn(s) + Δa(s)Wa(s)

where ∣∣Δa(jω)
∣∣ ≤ 1

The block-diagram of the plant with additive uncertainty is shown in Fig. 9.18.
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To determine the weighting transfer function Wa(s) we compute the error fre-
quency response G(jω) − Gn(jω) for different values of parameters K and T .
This is done with commands

omega = logspace(-1,3,100);
%
K0 = 1.0; T0 = 1/15;
Gnom = tf([K0],[T0 1]);
Gnom_frd = frd(Gnom,omega);
figure(1)
hold off
for K = 0.8*K0:0.08*K0:1.2*K0

for T = 0.7*T0:0.06*T0:1.3*T0
G = tf([K],[T 1]);
G_frd = frd(G,omega);
diff = G_frd - Gnom_frd;
bodemag(diff,’c--’,omega)
hold on

end
end
grid
temp1 = ’Approximation of uncertain transfer function’;
temp2 = ’ by additive uncertainty’; title([temp1 temp2])
legend(’|Wa(j\omega)|’,’|G(j\omega)-G_{nom}(j\omega)|’,3)

The computation of the frequency responses is done by the command frd.
The error frequency responses are shown in Fig. 9.19.
We have ∣∣G(jω) − Gn(jω)

∣∣ = ∣∣Wa(jω)Δa(jω)
∣∣ ≤ ∣∣Wa(jω)

∣∣
so that |Wa(jω)| represents an upper bound on the error frequency response. By the
commands

ord = 2;
wfit

one finds a sufficiently accurate second order approximation of this bound. By the
commands

[freq,resp_db] = ginput(20); % pick 20 points
for i = 1:20 % Converts the logarithmic

resp(i) = 10^(resp_db(i)/20); % response to magnitude
end % response
sys = frd(resp,freq); % creates frd object
W = fitmagfrd(sys,ord); % fits the frequency

% response
Wtf = tf(W); % converting into transfer

% function form

stored in the file wfit.m, one finds a stable and minimum-phase approximation of
the transfer function for a given logarithmic frequency response. For this aim we
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Fig. 9.19 Approximation with additive uncertainty

use 20 data points of the upper bound, positioning the cursor using a mouse. Data
points are entered by pressing the left mouse button.

As a result we obtain

Transfer function:

0.0121 s^2 + 11.4 s + 56.95

---------------------------

s^2 + 36.25 s + 283.7

As a disadvantage of this model one may note the fact that to present the uncer-
tainty in a first order model it is necessary to use a weighted transfer function of a
second order system.

The frequency response of Wa is also shown in Fig. 9.19.
The model with additive uncertainty is obtained by the command lines

Delta_a = ultidyn(’Delta_a’,[1 1]);

G = Gnom + Wa*Delta_a

In the given case the complex scalar uncertainty Δa is set by the function ultidyn.
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Fig. 9.20 Plant with
multiplicative uncertainty

9.4.2 Models with Multiplicative Uncertainty

The following example illustrates how to obtain a model of SISO plant with multi-
plicative uncertainty.

Example 9.7 Consider the uncertain plant presented in Example 9.6.
The model with multiplicative uncertainty is chosen as

G(s) = Gn(s)
[
1 + Wm(s)Δm(s)

]
where ∣∣Δm(jω)

∣∣ ≤ 1

The block-diagram of the plant with multiplicative uncertainty is shown in
Fig. 9.20.

In the given case we construct the magnitude frequency responses of the relative
error

|G(jω) − Gn(jω)|
|Gn(jω)|

which is done by the following command lines:

omega = logspace(-1,3,100);
%
K0 = 1.0; T0 = 1/15;
Gnom = tf([K0],[T0 1]);
Gnom_frd = frd(Gnom,omega);
figure(1)
hold off
for K = 0.8*K0:0.08*K0:1.2*K0

for T = 0.7*T0:0.06*T0:1.3*T0
G = tf([K],[T 1]);
G_frd = frd(G,omega);
reldiff = (G_frd - Gnom_frd)/Gnom_frd;
bodemag(reldiff,’c--’,omega)
hold on

end
end
grid
temp1 = ’Approximation of uncertain transfer function’;
temp2 = ’ by multiplicative uncertainty’;
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Fig. 9.21 Approximation with multiplicative uncertainty

title([temp1 temp2]);
legend(’|Wm(j\omega)|’,...

’|(G(j\omega)-G_{nom}(j\omega))/G_{nom}(j\omega)|’,3)

The frequency responses obtained are shown in Fig. 9.21.
Since

|G(jω) − Gn(jω)|
|Gn(jω)| ≤ ∣∣Wm(jω)

∣∣
determining Wm(jω) is equivalent to finding of the upper bound of the magnitude
response of relative error. This is done by the commands

ord = 1;
wfit
Wm = Wtf

using again the file wfit.m with approximation order equal to 1. After execut-
ing these commands we find a stable, minimum-phase approximation of the upper
bound:

Transfer function:
0.7351 s + 4.288
----------------

s + 20.65

The frequency response of Wm is shown in Fig. 9.21.
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Fig. 9.22 Frequency responses of the uncertain model

Obtaining the model with multiplicative uncertainty is done by the commands

Delta_m = ultidyn(’Delta_m’,[1 1]);
G = Gnom*(1 + Wm*Delta_m)

which results in second order uncertain state-space model

USS: 2 States, 1 Output, 1 Input, Continuous System
Delta_m: 1x1 LTI, max. gain = 1, 1 occurrence

the frequency responses of the uncertain model are obtained by the command line

bode(Gnom,’r--’,G,’b-’,omega)

and are shown in Fig. 9.22.

9.4.3 Unmodeled Dynamics

Consider the set of plants

G(s) = Gn(s)f (s)

where Gn(s) is a fixed (and known) transfer function. We desire to neglect the term
f (s) (which may be a fixed transfer function or belongs to an uncertainty set) and to
represent G(s) by multiplicative uncertainty with a nominal model Gn in the form

G(s) = Gn(s)
(
1 + Wm(s)Δm(s)

)
where Δm(jω) ≤ 1.
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Since
G(s) − Gn(s)

Gn(s)
= f (s) − 1

then the magnitude frequency response of the relative uncertainty due to the neglect
of the dynamics of f (s), is

|G − Gn|
|Gn| = ∣∣f (jω) − 1

∣∣
From this expression one obtains that

∣∣Wm(jω)
∣∣ = max

∣∣∣∣G − Gn

Gn

∣∣∣∣ = max
∣∣f (jω) − 1

∣∣
This procedure is illustrated by the following example, in which the neglect time
delay is represented by a multiplicative uncertainty.

Example 9.8 Given is the plant G = Gn(s)e
−τs , where 0 ≤ τ ≤ 0.1 and Gn(s) does

not depend on τ . Our desire is to represent the plant by a multiplicative uncertainty
and nominal model Gn(s). For this aim first we compute the magnitude response of
the relative error∣∣f (jω) − 1

∣∣ = ∣∣e−jωτ − 1
∣∣ =

√(
cos(ωτ) − 1

)2 + sin(ωτ)2

for values of τ between 0 and 0.1. This is done by the commands

omega = logspace(-1,3,200);
figure(1)
hold off
for tau = 0:0.01:0.1;

for i = 1:200
om = omega(i);
pert(i) = sqrt((cos(om*tau)-1)^2 + sin(om*tau)^2);

end
magg = frd(pert,omega);
bodemag(magg,’c--’)
hold on

end
grid
temp1 = ’Approximation of uncertain time delay’;
temp2 = ’ by multiplicative uncertainty’;
title([temp1 temp2])
legend(’|Wm(j\omega)|’, ...

’|(G(j\omega)-G_{nom}(j\omega))/G_{nom}(j\omega)|’,2)

The frequency responses obtained are shown in Fig. 9.23. After that we find a
stable and minimum-phase approximation of the multiplicative uncertainty as in
Example 9.7 using the commands

ord = 2;
wfit
Wm = Wtf
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Fig. 9.23 Approximation of uncertain time delay

As a result, for the weighting transfer function Wm(s) we obtain

Transfer function:
2 s^2 + 54 s + 1.1
------------------
s^2 + 37 s + 485

9.4.4 Multivariable Plants with Unstructured Uncertainty

Obtaining models of multivariable plants with unstructured uncertainty may be done
using the methods considered previously in this section, finding for each element of
the transfer function matrix SISO model with additive or multiplicative uncertainty.
The scalar models obtained are then combined in a transfer matrix in order to deter-
mine the uncertainty model of the multivariable plant.

Consider for example the model of two-input, two-output uncertain plant with
transfer function matrix

G =
[
g11 g12
g21 g22

]

where g11, g12, g21, g22 are scalar transfer function containing uncertainty. These
transfer functions are represented by the corresponding models approximating sep-
arately the maximum error of each element.
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If each element is represented by multiplicative uncertainty model, the model of
the whole system is obtained as

G =
[
gn11(1 + W11Δ11) gn12(1 + W12Δ12)

gn21(1 + W21Δ11) gn22(1 + W22Δ22)

]

where gn11, gn12, gn21, gn22 are nominal transfer functions, W11, W12, W21, W22

are the weighting functions obtained after approximation and Δ11, Δ12, Δ21, Δ22

are complex scalar uncertainties of class ultidyn.
Note that the uncertainty in model obtained is characterized by a certain structure

independently on the fact that in the individual elements the uncertainty is unstruc-
tured.

Finally, it is necessary to point out that models with mixed uncertainty (struc-
tured and unstructured) may be created form the corresponding objects by using
interconnect or sysic functions.

9.5 Exercises

Exercise 9.1 For a two-channel system with plant and controller transfer matrices

G =
[ 1

s−1 0

0 1
s+1

]
, K =

[
s−1
s+1 1

0 1

]

obtain the sensitivity matrices Si , So, complementary sensitivity matrices Ti , To and
loop transfer matrices Li , Lo and compute the singular value plots of the corre-
sponding frequency responses.

Exercise 9.2 For the system with plant and controller transfer matrices

G =
[ 2

0.015s2+0.8s+1
0.02

0.3s+1
−0.08
0.4s+1

0.04
0.1s+1

1
0.04s2+1.2s+1

−0.03
s+1

]

K =

⎡
⎢⎢⎣

20(0.3s+1)
0.1s+1 0

0 30(0.5s+1)
0.2s+1

s+1
0.2s+1

−0.4
0.5s+1

⎤
⎥⎥⎦

obtain the closed-loop transient responses due to step reference r and step input and
output disturbances di , d .

Exercise 9.3 For the system in the previous problem analyze the influence of con-
troller elements K11 and K22 gains on the closed-loop frequency responses and
transient responses. What is the influence of these gains on the magnitude of the
steady-state errors in both channels?
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Exercise 9.4 Build an uncertain model for the system

G =
[

K
10s+1

1
T s+1

]

where the nominal values of the parameters K , T are 5 and 0.5, respectively, and
the uncertainty in K is ±30 %, and in T —±10 %.

Exercise 9.5 For the system, described by the differential equation

a0ẍ + 2a0ẋ + a1x = b0u̇ + b1u

where the nominal values of the parameters a0, a1, b0, b1 are 0.9,2,0.2,1, respec-
tively, and all parameters have uncertainty of ±30 %, build an uncertain state-space
model (class uss). Note the repeated parameter a0.

Exercise 9.6 For the SISO system with transfer function

W(s) = K

T 2s2 + 2ξT s + 1

where K changes in the range [10,12], T changes in the range [0.1,0.15] and
ξ changes in the range [0.3,0.4], find a model with additive uncertainty.

Exercise 9.7 For the system from the previous exercise find a model with multi-
plicative uncertainty.

Exercise 9.8 For the two-channel plant with nominal transfer function matrix

G(s) =
[ 10

s2+0.4s+16
1

s+1

1
s+2

5
(s+2)(s+3)

]

and uncertain delays in the first and second input in the range [0,0.2], find a model
with unstructured uncertainty.



Chapter 10
Robust Stability and Performance

This chapter is devoted to the important subject of robust stability and robust perfor-
mance analysis using MATLAB®. First we show how to implement functions from
Robust Control Toolbox®3 to analyze the robust stability of systems with unstruc-
tured, structured and mixed uncertainty. Then we consider the implementation of
the function robustperf to analyze the robust performance of closed-loop sys-
tems and show how to interpret the results obtained by this function. Similarly to
robust stability margin, we use the notion of performance margin that shows the un-
certainty level, up to which the system possess specified performance. Finally, we
consider how to determine the so called “worst-case” gain, which is determined as
the largest value of the frequency response maximum for the allowed uncertainty.

10.1 Robust Stability Analysis

For the aim of robust stability analysis, it is convenient to represent the uncertain
control system by the M–Δ loop, shown in Fig. 10.1. In this loop the transfer func-
tion of the nominal part (denoted by M) is separated from uncertain part (denoted
by Δ). In the simpler case of unstructured Δ it is possible to use the small-gain
theorem (see Sect. 3.1 of Part I). In the general case of structured Δ(s) the robust
stability analysis is done by using the structured singular value μ, (see Sect. 3.3 of
Part I).

Except some simple cases, the structured singular value μ, which is a frequency
function, cannot be computed exactly. However, there exist efficient algorithms to
determine upper and lower bounds of μ. That is why the conclusions about sys-
tem robust stability should be drawn in terms of these bounds. Specifically, let the
maximums along frequency of the upper and lower bound of the structured singular
values be denoted respectively by βu and βl . Then

• The uncertain system under consideration is guaranteed stable for all structured
uncertain matrices Δ with ‖Δ(s)‖∞ < 1/βu.

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_10,© Springer-Verlag London 2013
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Fig. 10.1 M–Δ loop for
robust stability analysis

• There exists a specific structured transfer matrix Δ with ‖Δ(s)‖∞ = 1/βl that
destabilizes the system.

In addition, for the case of normalized uncertainty

‖Δ‖∞ ≤ 1

it follows that

• If βu < 1, the system is robustly stable with respect to the modeled uncertainty.
• If βl > 1, the robust stability is not achieved.
• If βl < 1 and βu > 1, it is not possible to draw with certainty a conclusion about

stability; it is possible that the system is not robustly stable.

The main tool in Robust Control Toolbox®3 for robust stability analysis, based
on computing of structured singular value, is the command robuststab. This
command may be used for stability analysis of systems with unstructured, structured
or mixed uncertainty. The command robuststab does not require the system to
be presented in some special form (for instance, as an M–Δ loop). Its syntax is

[stabmarg,destabunc,report] = robuststab(sys,opt)
[stabmarg,destabunc,report,info] = robuststab(sys,opt)

Input arguments:

– sys: model of the uncertain system under investigation, may be of class uss or
of class ufrd. If sys is of class uss, the computations are done for appropri-
ately chosen by the command robuststab frequency values. If it is of class
ufrd, the associated with sys frequency vector is used;

– opt: optional input arguments. It represents an object, created by the command
opt = robopt(’name1’,value1,’name2’,value2,...). Some of
the most frequently used properties are
• Display: displays progress of computations; default is ’off’;
• Sensitivity: computes the influence of individual uncertainties on the sta-

bility margin; default is ’on’.

Output arguments:

– stabmarg: structure with the following fields:
• UpperBound: upper bound on stability margin;
• LowerBound: lower bound on stability margin;
• DestabilizingFrequency: frequency at which system instability oc-

curs. Corresponds to the upper bound of stability margin;
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– destabunc: structure containing a combination of uncertain parameter values
closest to their nominal values that cause system instability—it corresponds to
the upper bound of stability margin;

– report: variable containing text description of robustness analysis results;
– info: structure with several fields:

• Frequency: frequency vector used in the computations;
• MussvBnds: frd object containing the computed values of the upper bound

(MussvBnds(1,1)) and lower bound (MussvBnds(1,2)) of the struc-
tured singular value;

• Sensitivity: structure with number of fields equal to the number of un-
certain elements. In each field is stored a number, indicating the influence of
the corresponding uncertain element on the stability margin. For instance, the
number 40 means that if the uncertainty range is increased with 25 %, the sta-
bility margin will decrease 10 % (25 % of 40).

Consider in some detail how to interpret the results obtained by command
robuststab. If the uncertain system sys is of class uss, the command
robuststab checks the stability of the nominal system. In case the system is
unstable, to UpperBound and to LowerBound is assigned the value −∞. If,
however, sys is of class ufrd, such a check is not done assuming that the nominal
system is stable.

The robust stability analysis done by the command robuststab is based on the
computation of bounds on the structured singular value, decomposing the uncertain
system before that into M–Δ form with ‖Δ(s)‖∞ ≤ 1, i.e., the results from analysis
pertain to normalized uncertainty.

The results of stability analysis are obtained in terms of upper and lower bounds
of the stability margin. Remember that in the given case the stability margin is de-
fined as the reciprocal value of the maximum of structured singular values with
respect to the frequency. Hence, the upper bound of stability margin is equal to
the reciprocal value of the maximum along frequency of the lower bound of the
structured singular value (i.e., UpperBound = 1/βl) and the lower bound of the
stability margin is obtained in the same way from the upper bound of the structured
singular value (LowerBound= 1/βu).

Taking into account the stability conditions, derived by the bounds of structured
singular value, it is possible to draw the following conclusions.

• If LowerBound> 1, the uncertain system is robustly stable with respect to mod-
eled uncertainty.

• If UpperBound< 1, the system does not achieve robust stability.
• If LowerBound< 1 and UpperBound> 1, it is not possible to draw a definite

conclusion about stability; the system may not be robustly stable.

Let for instance LowerBound= 1.2 and UpperBound= 1.3. Apart from the
fact that the system is robustly stable for the given uncertainty level, in this case it
is guaranteed that

• The system remains stable for uncertainty levels smaller than 120 % of the given
one.
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• There exist at least one collection of uncertainty values with level 130 % of the
given one which causes instability. (One of these destabilizing sets is included in
the structure destabunc.)

Apart by robuststab, the robust stability analysis may be done also by the
command mussv which calculates upper and lower bound on the structured singu-
lar values μΔ(M) as a function of frequency. In order to implement this command,
the uncertain system should be decomposed in an M–Δ loop (Fig. 10.1) with nor-
malized uncertainty ‖Δ(s)‖∞ ≤ 1. The basic syntax of mussv is

bounds = mussv(M,BlkStructure)

Description of arguments:

– M: model of the known part of the uncertain system that may be of class frd (this
is usual in implementing the function mussv) or a complex matrix. If it is of
class frd, the structured singular value bounds are calculated for the associated
with M frequency vector;

– BlkStructure: input argument, specifying the block- structure of the uncer-
tainty matrix Δ(s). It represents a matrix with two columns and as many rows
as the number of uncertain system blocks. Each row contains information which
specifies the corresponding uncertainty block.
• Scalar real parameter (uncertain element of class ureal) is described by
[-1 0], and n times repeated scalar real parameter—by [-n 0];

• Scalar complex block (1 × 1 element of class ultidyn or element of class
ucomplex) is set by [1 0], and n times repeated element—by [n 0];

• n × m full complex block (n × m element of class ultidyn) is specified by
[n m].

– bounds: output argument. If M is of class frd, then bounds is a frd object,
containing the computed values of the upper bound (bounds(1,1)) and lower
bound (bounds(1,2)) of the structured singular value of M with respect to the
uncertainty structure specified by BlkStructure.

To represent the uncertain system in the form required by mussv one usually
implements the function lftdata,

[M,Delta,BlkStruct] = lftdata(sys)

which determines the M-Delta decomposition (with normalized uncertain ele-
ments) of the uncertain system with model sys. The output argument BlkStruct
describes the block-diagonal structure of Delta and it is in the form that allows its
direct use as an input argument of the function mussv (avoiding in this way to spec-
ify the block-structure of the uncertainty, as already described). Also, it is necessary
to take into account that in the robust stability analysis it is necessary to take only
the part of M that is connected to Delta.

Note that the functions lftdata and mussv are used by the command
robuststab that facilitates the robust stability analysis.

The commands robuststab and mussv may be implemented in the analysis
of continuous-time as well as discrete-time systems. The type of the system is not
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Fig. 10.2 Magnitude responses of weighting filters

necessary to be indicated by the user since this information is stored in uss and
ufrd models.

Example 10.1 Consider a fifth order two channel system with two inputs, two out-
puts and nominal transfer function

Gnom =
[ 6

(0.9s+1)(0.1s+1)
−0.05
0.1s+1

0.07
0.3s+1

5
(1.8s−1)(0.06s+1)

]

(This transfer function was used already in Examples 9.2 and 9.4.) The system has
an uncertainty at the first input that consists of 20 % error in the low-frequency
range, increases to 100 % at 35 rad/s, and reaches 1000 % in the high-frequency
range. The uncertainty at the second input is 25 % in the low-frequency range,
100 % at 40 rad/s and increases to 1000 % in the high-frequency range. These
uncertainties may be represented as input multiplicative uncertainties by using un-
certain ultydin objects and appropriate weighting filters, created by the function
makeweight.

W1 = makeweight(0.20,35,10);
W2 = makeweight(0.25,40,10);

The magnitude responses of weighting filters are shown in Fig. 10.2.
Next, the model with input multiplicative uncertainty is obtained by the com-

mand lines
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Fig. 10.3 Closed-loop system with input multiplicative uncertainty

Delta1 = ultidyn(’Delta1’,[1 1]);
Delta2 = ultidyn(’Delta2’,[1 1]);
W = blkdiag(W1,W2);
Delta = blkdiag(Delta1,Delta2);
G = Gnom*(eye(2) + Delta*W)

As a result we obtain an eighth order uncertain object,

USS: 8 States, 2 Outputs, 2 Inputs, Continuous System
Delta1: 1x1 LTI, max. gain = 1, 1 occurrence
Delta2: 1x1 LTI, max. gain = 1, 1 occurrence

The robust stability of the closed-loop system will be analyzed for the controller

K =
⎡
⎣

2(s+1)
s

−s
3s+1

−5(s+1)
0.8s+1

4(0.7s+1)
s

⎤
⎦

The block-diagram of the closed-loop system is shown in Fig. 10.3.
Since the plant has unstructured uncertainties Δ1 and Δ2 it is instructive to see

what result will produce the small gain theorem if we assume as unstructured the
plant uncertainty matrix

Δ =
[
Δ1 0
0 Δ2

]

For this aim we present the system as an M–Δ loop, shown in Fig. 10.1 with

M = −W(I + KG)−1KG = −WTi

where

W =
[
W1 0
0 W2

]

and Ti is the input complementary sensitivity. Now according to the results pre-
sented in Sect. 3.1 of Part I, the condition for robust stability, based on small-gain
theorem, is

‖WTi‖∞ < 1
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The input sensitivity is determined by the command lines

looptransfer = loopsens(G,K);
Ti = looptransfer.Ti;

The H∞-norm of the transfer function matrix WTi (the nominal transfer function
matrix is used in the computations) is determined as

[PeakNorm,freq] = norm(W*Ti.Nominal,’inf’)

As a result one obtains

PeakNorm =

1.2353

freq =

4.8763

This result shows that the closed-loop system does not achieve robust stability as-
suming that the uncertain matrix Δ is unstructured. However, the matrix Δ actually
has a block-diagonal structure which affects very much the robustness of the closed-
loop system. Further on, taking into account the structure of Δ, we show that the
closed-loop system in fact achieves robust stability even for larger input multiplica-
tive uncertainties than the given ones.

The robust stability analysis is done by the function robuststab with input
argument the uncertain frequency response corresponding to the output comple-
mentary sensitivity.

omega = logspace(-1,2,200);
To_g = ufrd(To,omega);
opt = robopt(’Display’,’on’);
[stabmarg,destabunc,report,info] = robuststab(To_g,opt);

As a result we obtain

stabmarg =

UpperBound: 2.020374929266748
LowerBound: 2.020373919079788

DestabilizingFrequency: 3.696912707195026

It follows that

• for the given structure and level of uncertainty the closed-loop system is robustly
stable (the lower bound of stability margin satisfies LowerBound > 1);

• the system remains stable for uncertainty levels smaller than 202.03 % from the
given one;

• there exists uncertainty with level 202.03 % from the given one which destabilizes
the system.
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These conclusions about the robust stability of the system are contained in the vari-
able report. It contains also an information about the influence of the uncertain
elements on the stability margin. The influence of the uncertainty Δ2 is stronger.

report =

Assuming nominal UFRD system is stable ...
Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 202% of the modeled uncertainty.
-- A destabilizing combination of 202% of the modeled

uncertainty exists, causing an instability at 3.7 rad/s.
-- Sensitivity with respect to uncertain element ...
’Delta1’ is 63%. Increasing ’Delta1’ by 25% leads

to a 16% decrease in the margin.
’Delta2’ is 90%. Increasing ’Delta2’ by 25% leads

to a 23% decrease in the margin.

In this way we see that taking into account the block-diagonal structure of the uncer-
tainty Δ will lead us to the conclusion that the closed-loop system achieves robust
stability as opposite to the case when we assumed Δ as unstructured. This confirms
the well known fact that neglecting the uncertainty structure leads to pessimistic
conclusions about the system stability.

The command lines

destabunc.Delta1
destabunc.Delta2

produce the state-space realizations of the perturbations Δ1 and Δ2 that destabilize
the closed-loop system. The corresponding transfer functions are

tf(destabunc.Delta1)

Transfer function:
-10.56 s^2 + 14.35 s + 6.374e-015
---------------------------------
s^3 + 6.587 s^2 + 20.77 s + 18.57

and

tf(destabunc.Delta2)

Transfer function:
-10.56 s^2 + 9.88 s + 2.194e-015
---------------------------------
s^3 + 6.164 s^2 + 18.56 s + 12.78

If these perturbations are substituted in the transfer function matrix To it is possible
to find the poles of the closed-loop system:

pole(usubs(To,destabunc))
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As a result we obtain

ans =

1.0e+002 *

-4.117820048554725
-3.552895319158590
-0.090818247953519 + 0.087226740827892i
-0.090818247953519 - 0.087226740827892i
-0.100000000000026
-0.088879355942136
-0.021603036018368 + 0.048364783432694i
-0.021603036018368 - 0.048364783432694i
0.000000000000000 + 0.036969127071950i
0.000000000000000 - 0.036969127071950i

-0.046004083820114 + 0.016746382352412i
-0.046004083820114 - 0.016746382352412i
-0.033451309908770
-0.003583579386419 + 0.000780496584728i
-0.003583579386419 - 0.000780496584728i
-0.010671435327352
-0.009480508626777
-0.006893138594670

We see that the destabilizing poles which correspond to the destabilizing perturba-
tions are ±j3.697. In Fig. 10.4 we show the frequency responses of the upper and
lower bounds of the structured singular value μ obtained by the command lines

semilogx(info.MussvBnds(1,1),’r-’,info.MussvBnds(1,2),
’b--’)

grid
title(’Robust stability’)
xlabel(’Frequency (rad/s)’)
ylabel(’mu’)
legend(’\mu-upper bound’,’\mu-lower bound’,2)

Consider now the robust stability of the given system by using the command
mussv. For this aim we decompose the output sensitivity function To into M–Δ

loop.

[M,Delta,BlockStructure] = lftdata(To);

To do the stability analysis it is necessary to take only the part of M that is connected
to Δ,

size_Delta = size(Delta);
M11 = M(1:size_Delta(2),1:size_Delta(1));
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Fig. 10.4 Robust stability

The frequency response of M11 is determined for the frequency vector used by
robuststab:

omega = info.Frequency;
M11_g = frd(M11,omega);

Now we are in position to calculate the upper and lower bounds on μ using the
function mussv.

rbounds = mussv(M11_g,BlockStructure);

The bounds obtained are the same as the bounds determined in case of using the
function robuststab that are shown in Fig. 10.4.

10.2 Robust Performance Analysis

For the aim of robust performance analysis the closed-loop system is represented
by the block-diagram, shown in Fig. 10.5. The known system part M includes
the model of the nominal control system, weighting functions to represent the un-
certainty and weighting functions used to specify performance requirements. The
unknown part represents a set of transfer function matrices Δ with given block-
diagonal structure, corresponding to the uncertainty structure of the system under
consideration. The input vector v contains all exogenous signals to the system: refer-
ences, disturbances, and sensor noises. The output vector z includes signals having
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Fig. 10.5 Block-diagram for
robust performance analysis

the meaning of “errors” which characterize the system performance: for instance,
the weighted (by weighting transfer functions) tracking errors, control actions and
so on.

Let Tzv(s) denotes the transfer function matrix from v to z. It is appropriate as a
system performance index to use the quantity

∥∥Tzv(s)
∥∥∞ (10.1)

Smaller values of this index means smaller “errors” z due to the “worst” input sig-
nals v and hence better system performance.

The problem of robust performance analysis may be reduced to the problem of
robust stability analysis of the closed-loop which consists of the block M and the
extended uncertainty block

ΔP =
[
Δ 0
0 ΔF

]
(10.2)

In (10.2) ΔF is a fictitious complex (unstructured) uncertain block with size nv ×nz

where nv and nz are the size of vectors v and z, respectively. The robust performance
analysis of the system is done by using the structured singular value of M with
respect to the extended uncertainty ΔP (see Sect. 6.1 of Part I).

Since it is only possible to calculate upper and lower bounds of the structured
singular value, the conclusions about robust performance should be drawn on the
basis of these bounds. Let the maxima with respect to the frequency of the upper
and lower bounds of the structured singular value μΔP

(M) be denoted by βu and
βl , respectively. Then

• For all uncertainty matrices Δ with the given structure satisfying ‖Δ‖∞ < 1/βu,
the closed-loop system is stable and ‖Tzv(s)‖∞ ≤ βu.

• There exists a specific matrix Δ with the given structure satisfying ‖Δ‖∞ = 1/βl

for which either ‖Tzv(s)‖∞ ≥ βl or the system is unstable.

Customary, the weighting transfer functions, used to specify the performance
requirements, are chosen so that when the condition

∥∥Tzv(s)
∥∥∞ < 1 (10.3)

is fulfilled, the control system has the desired performance.
It is said that a given uncertain system achieves robust performance if for the

uncertainty allowed the system is stable and condition (10.3) is satisfied.
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Fig. 10.6 Robust performance margin

For a performance requirement (10.3) and normalized uncertainty

‖Δ‖∞ ≤ 1

the following conclusions hold.

• If βu < 1 the system achieves robust performance for the modeled uncertainty
(this includes also robust stability).

• If βl > 1 the robust performance is not achieved.

Clearly, if βl < 1 and βu > 1 it is not possible to draw a definite conclusion
whether the system achieves robust performance.

In the analysis of robust performance, similarly to robust stability margin, one
may introduce the notion of performance margin. It shows the uncertainty level,
up to which the system possesses specified performance. The performance margin
pm is equal to the reciprocal value of the maximum with respect to frequency of
the structured singular value μΔP

(M), i.e., pm = 1/β . The upper bound pmu and
lower bound pml of the stability margin are obtained by βl and βu, respectively:

pmu = 1

βl

, pml = 1

βu

Determination of performance margin is illustrated in Fig. 10.6. In the figure, an
exemplary performance degradation curve of uncertain control system is shown.
With increasing the size of uncertainty, the value of performance index increases
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monotonically and for a specific uncertainty level the system loses stability. Given
are also the upper bound and lower bound of the performance degradation curve
that are obtained by using the structured singular value. The points of intersection
of these curves with the hyperbole y = 1/x have abscissas equal to the performance
margin pm and its bounds pml and pmu, and ordinates β , βu and βl , respectively.

The robust performance analysis is done by the command robustperf. The
results of this command are obtained in terms of the upper and lower bounds of the
performance margin. The syntax of this command, the input and output arguments
are similar to the command robuststab for robust stability analysis.

[perfmarg,perfmargunc,report] = robustperf(sys,opt)
[perfmarg,perfmargunc,report,info] = robustperf(sys,opt)

Input arguments.

– sys: model of the uncertain system (extended by the weighting transfer functions
used to specify the performance requirements, i.e., Tzv(s)). If sys is of class
uss, the computations are done for frequency values appropriately chosen by the
function robustperf. If it is of class ufrd, the associated with sys frequency
vector is used. The system may be either continuous-time or discrete-time;

– opt: optional input argument created by command robopt in the same way as
for robuststab.

Output arguments.

– perfmarg: structure with the following fields.
• UpperBound: upper bound of performance margin;
• LowerBound: lower bound of performance margin;
• CriticalFrequency: frequency value corresponding to the upper bound

of performance margin;
– perfmargunc: a combination of uncertain element values corresponding to up-

per bound of performance margin;
– report: char array with text description of the results from robust performance

analysis;
– info: structure with several fields.

• Frequency: frequency vector used in the computations;
• MussvBnds: frd object containing the computed values of the upper bound

(MussvBnds(1,1)) and lower bound (MussvBnds(1,2)) of the struc-
tured singular value corresponding to the case of robust performance;

• Sensitivity: structure containing information for the influence of uncer-
tain elements on the performance margin.

The robust performance analysis by the command robustperf is based on
the calculation of the structured singular value bounds determined for normalized
uncertainty ‖Δ(s)‖∞ ≤ 1.

Let for instance the performance margin bounds are LowerBound = 1.25 and
UpperBound = 1.30. In this case it is guaranteed that for uncertainty level less
than 125 % of the given one (i.e., 1.25 normalized units), the closed-loop system is
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stable and the value of performance index (H∞-norm of sys) is less or equal to 0.8.
Also, there exists at least one combination of uncertainty values with level 130 %
of the given one, for which either the performance index is greater or equal to 0.769
(i.e., 1/1.30) or the closed-loop system is unstable. (One of these combinations is
included in the structure perfmargunc.)

For a performance requirement (10.3) one may derive the following conclu-
sions: if LowerBound > 1, the system achieves robust performance for the mod-
eled uncertainty; if UpperBound < 1 the robust performance is not achieved; if
LowerBound < 1 and UpperBound > 1 it is not possible to draw conclusions
with certainty.

In addition to robustperf, the robust performance analysis may be done com-
puting with the command mussv the upper and lower bound of the structured sin-
gular value μΔP

(M) as a function of frequency. This approach, however, is not
recommended.

Example 10.2 Consider the control system described in Example 10.1 and let G de-
notes the plant transfer function matrix and K—the controller transfer function ma-
trix. Let the requirements to system performance are to ensure reference (r) tracking
with admissible error (e) and limited control (u) magnitude in the presence of dis-
turbance d . According to the first requirement, the output sensitivity function So

connecting e with r and d should be sufficiently small in the low-frequency range
(r and d are low-frequency signals). According to the second requirement the trans-
fer function matrix KSo connecting u with r and d should be sufficiently small. To
take into account both requirements it is appropriate to use as a system performance
index the quantity ∥∥∥∥

[
WpSo

WuKSo

]∥∥∥∥∞
(10.4)

where Wp and Wu are weighting transfer function matrices. Let

Wp =
[
wp 0
0 wp

]
, wp = 0.04(s + 10)

(s + 0.005)

and

Wu =
[
wu 0
0 wu

]
, wu = 4.0.10−2(0.01s + 1)

(0.005s + 1)

are chosen so that when the condition∥∥∥∥
[

WpSo

WuKSo

]∥∥∥∥∞
< 1 (10.5)

is fulfilled, the control system has desired performance, i.e., desired accuracy of
reference tracking and limited magnitude of control action are achieved.

The problem is to analyze the system robust performance taking into account the
plant uncertainty.
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Fig. 10.7 Block-diagram of the closed-loop system with performance requirements

The block-diagram of the closed-loop system including the weighting functions
Wp and Wu is shown in Fig. 10.7. In the given case

Tzv =
[

WpSo

WuKSo

]

the output vector z containing the weighted “errors” and the input vector v being
the difference v = r − d .

The system model is built by the command sysic saving the transfer function
matrix Tzv(s) into the variable clp of class uss:

wp = 0.04*(s + 10)/(s + 0.005);
Wp = blkdiag(wp,wp);
wu = 4.0*10^(-2)*(0.01*s+1)/(0.005*s+1);
Wu = blkdiag(wu,wu);
systemnames = ’ G K Wp Wu ’;
inputvar = ’[ ref{2}; dist{2} ]’;
outputvar = ’[ Wp; Wu ]’;
input_to_G = ’[ K ]’;
input_to_K = ’[ ref-G-dist ]’;
input_to_Wp = ’[ ref-G-dist ]’;
input_to_Wu = ’[ K ]’;
clp = sysic;

For the system with nominal plant model

norm(clp.Nom,’inf’)
ans =

0.8081

condition (10.5) is satisfied and hence the closed-loop system achieves nominal per-
formance.
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The system robust performance is analyzed by the command robustperf set-
ting appropriate frequency vector:

omega = logspace(-1,2,200);
clp_g = ufrd(clp,omega);
opt = robopt(’Display’,’on’);
[perfmarg,perfmargunc,report,info] = robustperf(clp_g,opt)

As a result one obtains

perfmarg =

UpperBound: 1.007341638920202
LowerBound: 1.007047914437433

CriticalFrequency: 15.885651294280526

Since LowerBound > 1 the performance requirement (10.5) is satisfied for the
given uncertainty, i.e., the system achieves robust performance.

It follows from the result obtained that for uncertainty levels less than 100.70 %
of the given one the value of the performance index (10.4) is less than or equal to
1/1.0070 = 0.9930.

Also, the analysis gives a combination of uncertainties with level 100.73 % of
the given one for which the value of (10.4) is greater than or equal to 1/1.0073 =
0.9928.

Part of the conclusions drawn about the system robust performance are contained
in the variable report. It contains also information about the influence of the
uncertain elements on the performance margin. The influence of the uncertainty
Δ2 is stronger:

report =

Uncertain System achieves a robust performance margin of
1.007.
-- A model uncertainty exists of size 101% resulting in a

performance margin of 0.993 at 15.9 rad/s.
causing an instability at 15.9 rad/s.

-- Sensitivity with respect to uncertain element ...
’Delta1’ is 30%. Increasing ’Delta1’ by 25% leads to a

8% decrease in the margin.
’Delta2’ is 44%. Increasing ’Delta2’ by 25% leads to a

11% decrease in the margin.

In Fig. 10.8 we show the frequency responses of the upper and lower bounds of
μ obtained by the command lines

semilogx(info.MussvBnds(1,1),’r-’,info.MussvBnds(1,2),
’b--’)

grid
title(’Robust performance’)
xlabel(’Frequency (rad/s)’)
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Fig. 10.8 Upper and lower bounds of μ

ylabel(’mu’)
legend(’\mu-upper bound’,’\mu-lower bound’,2)

The maxima of upper and lower bounds of structured singular values with respect
to frequency are found by the lines

[pkl,pklidx] = max(info.MussvBnds(1,2).ResponseData(:));
[pku,pkuidx] = max(info.MussvBnds(1,1).ResponseData(:));
pkmu.UpperBound = pku;
pkmu.LowerBound = pkl;

and are equal to

pkmu =

UpperBound: 0.9930
LowerBound: 0.9927

The output variable perfmargunc contains a combination of uncertain ele-
ment values corresponding to the upper bound of performance margin. Substitution
of these values in the closed-loop transfer function matrix allows to find the worst-
case performance for the given level of uncertainty. In Fig. 10.9 we show the singular
value plots corresponding to closed-loop transfer function matrix Tzv(s) for random
value and worst-case uncertainties, obtained by the command lines
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Fig. 10.9 Worst-case performance

omega = logspace(-1,3,500);
sigma(clp,’b-’,usubs(clp,perfmargunc),’r-’,omega)

The worst-case performance does not exceed the value 0.9930, as expected.
To illustrate the influence of uncertainty on the closed-loop system, in Fig. 10.10

we show the singular value plots of output complementary sensitivity for random
value and worst-case uncertain elements.

In Fig. 10.11 we show the magnitude frequency response of the inverse weighting
function W−1

p and the singular value plot of the output sensitivity So for random
values of uncertainties. In order to satisfy condition (10.5), it is necessary that the
magnitude responses of So to lie below the magnitude response W−1

p in the whole
frequency range.

In Fig. 10.12 the inverse control action weighting function W−1
u and the singular

value plot of KSo, which shows the sensitivity of control action to references and
disturbances. As in the case of output sensitivity, condition (10.5) means that the
magnitude responses of KSo should lie below the response of W−1

u .
Finally, we obtain the transient responses with respect to the unit step first refer-

ence for 30 random values of uncertainties by using the command lines

tfin = 5;
nsample = 30;
[To30,samples] = usample(To,nsample);
time = 0:tfin/500:tfin;
nstep = size(time,2);
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Fig. 10.10 Singular values of output complementary sensitivity

Fig. 10.11 Singular value plot of output sensitivity
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Fig. 10.12 Sensitivity of control to disturbances

ref1(1:nstep) = 1.0;
ref2(1:nstep) = 0.0;
ref = [ref1’ ref2’];
nsample = 30;
[To30,samples] = usample(To,nsample);
figure(4)
subplot(2,2,1)
hold off
for i = 1:nsample

[y,t] = lsim(To30(1:2,1:2,i),ref,time);
plot(t,y(:,1),’r-’)
hold on

end
grid
title(’From inp 1 to outp 1’) xlabel(’Time (secs)’)
ylabel(’y_1’)
figure(4)
subplot(2,2,3)
hold off
for i = 1:nsample

[y,t] = lsim(To30(1:2,1:2,i),ref,time);
plot(t,y(:,2),’b-’)
hold on
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Fig. 10.13 Transient responses of the uncertain system

end
grid
title(’From inp 1 to outp 2’)
xlabel(’Time (secs)’)
ylabel(’y_2’)

In a similar way the transient responses are found with respect to the unit step
reference at the second input. The transient responses to references are shown in
Fig. 10.13.

10.3 Worst-Case Gain

The system performance may be assessed approximately by the maximum of the
frequency response of the largest singular value (H∞ norm) of the sensitivity or
complementary sensitivity transfer function matrix. For uncertain systems, it is of
interest to determine the largest value of this maximum for the allowed uncertainty.
This value, representing the largest possible gain in the frequency domain, is defined
as the “worst-case” gain.

In Robust Control Toolbox®3 the worst-case gain of uncertain systems may be
determined by the command wcgain. It calculates upper and lower bounds on the
worst gain and determines the uncertainty corresponding to this gain. The syntax,
input, and output arguments of wcgain are
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[maxgain,wcunc] = wcgain(sys)
[maxgain,wcunc,info] = wcgain(sys)

– sys: model of the uncertain system under investigation that may be of calss uss
or of class ufrd. If sys is of class uss the computations are done for appropri-
ately chosen by the function wcgain frequency values an if it is of class ufrd
the associated with sys frequency vector is used;

– maxgain: structure with following fields.
• LowerBound: lower bound on the worst-case gain;
• UpperBound: upper bound on the worst-case gain;
• CriticalFrequency: frequency value corresponding to LowerBound;

– wcunc: structure containing a combination of uncertain element values which
maximize the system gain—it corresponds to the lower bound of the worst-case
gain;

– info: structure with the following fields.
• Frequency: frequency vector for which the uncertain system analysis is

done;
• Sensitivity: structure containing information for the influence of the un-

certain elements on the worst-case gain. For instance, if in the given field is
stored the number 20, this means that if the uncertainty range of the corre-
sponding element is increased by 25 % then the value of the worst-case gain is
increased by 5 % (25 % of 20).

The command wcgain may be used for worst-case gain analysis of continuous-
time as well as discrete-time systems. The system type is not necessary to be indi-
cated by the user since this information is contained in uss and ufrd models.

Example 10.3 Consider the uncertain control system described in Example 10.1.
Our task is to determine the worst-case gain for the allowable plant uncertainty.

To determine the worst-case gain we shall make use of the function wcgain
with output argument the output complementary sensitivity To. This is done by the
command line

[maxgain,wcunc,info] = wcgain(To);

As a result one obtains

maxgain =

LowerBound: 4.6934
UpperBound: 4.6943

CriticalFrequency: 3.9226

wcunc =

Delta1: [1x1 ss]
Delta2: [1x1 ss]
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The peak of the maximum singular value of the output complementary sensitivity
is equal to 4.6934 (13.43 dB) and is obtained for the uncertain element transfer
functions

tf(wcunc.Delta1)

Transfer function:
-5.547 s^2 + 4.932 s + 1.095e-015
---------------------------------
s^3 + 6.436 s^2 + 20.32 s + 13.68

tf(wcunc.Delta2)

Transfer function:
-5.547 s^2 + 9.875 s - 8.77e-015
---------------------------------
s^3 + 7.327 s^2 + 25.26 s + 27.39

The second uncertainty has stronger influence on the worst-case gain;

info.Sensitivity

ans =

Delta1: 30.1655
Delta2: 80.2187

Consider the properties of the closed-loop system with nominal and worst-case
gain.

The nominal and worst-case gain of the output complementary sensitivity are
obtained by the commands

Twc = usubs(To,wcunc);
omega = logspace(-1,3,100);
sigma(Twc,’r-’,To.Nominal,’b--’,omega)
legend(’Worst-case gain’,’Nominal system’,3)

and are shown in Fig. 10.14.
The step responses of the nominal and worst-case gain systems are obtained by

the lines

step(Twc,’r-’,To.Nominal,’b--’), grid
legend(’Worst-case gain’,’Nominal system’,4)

The step responses are shown in Fig. 10.15. It is seen from the figure that the plant
uncertainty may lead to significant deterioration of system behavior. For the worst-
case gain the transient responses are very oscillatory with much larger settling time.
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Fig. 10.14 Closed-loop singular values for nominal and worst-case gain

Fig. 10.15 Step responses of the nominal and worst-case gain systems
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Fig. 10.16 Random and worst-case singular value plots

Consider now the properties of the closed-loop system with random uncertainty
values and system with worst-case gain.

The singular value plots of the output complementary sensitivity for systems with
random uncertainty values and with worst-case gain are obtained by the lines

sigma(Twc,’r-’,To,’b--’,omega), grid
title(’Worst-case gain’)
legend(’Worst-case gain’,’Uncertain system’,3)

These singular plots are shown in Fig. 10.16. The worst-case gain produces the
largest pick of the maximum singular value as expected.

The step responses of systems with random uncertainty values and with worst-
case gain are obtained by the command lines

step(Twc,’r-’,To,’b--’), grid
legend(’Worst-case gain’,’Uncertain system’,4)

and are shown in Fig. 10.17. The step responses determined for the worst-case gain
have the worst performance.

Similar results are obtained if instead of the complementary sensitivity function
one uses as an input argument to wcgain the sensitivity function of the closed-loop
system.
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Fig. 10.17 Random and worst-case gain step responses

10.4 Exercises

Exercise 10.1 Given is a two-input/two-output plant with transfer function matrix

G =
[

k1
T1s+1

k2
T2s+1

k3
T3s+1

k4
T4s−1

]

The nominal parameter values are k1 = 7.2, T1 = 0.9, k2 = −3, T2 = 1.2, k3 = 2,
T3 = 3, k4 = 5 and T4 = 0.7, the relative parameter uncertainty being 45 %.

The controller transfer matrix is

K =
[

10(s+1)
0.3s+1 0

0 15(s+2)
s+1

]

Analyze the robust stability of the closed-loop system using the function
robuststab.
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Exercise 10.2 Given is a two-input/two-output plant with nominal transfer function
matrix

G = 1

s2 + 2s + 4

[−s + 2 2s + 1
−3 −s + 2

]

and controller

K = 2(s + 2)(s2 + 2s + 4)

s(s + 1)(s2 + 2s + 7)

[−s + 2 −2s − 1
3 −s + 2

]

The plant has input uncertainties that do not exceed 2 % in the low frequency range,
increasing gradually to 100 % at frequency 10 rad/s and reaching 200 % in high
frequency range.

Construct a plant model with input multiplicative uncertainty and analyze the
robust stability of the closed-loop system.

Exercise 10.3 For the systems presented in Exercises 10.1 and 10.2, analyze the
closed-loop robust performance using the function robustperf.

Exercise 10.4 Given is a plant with uncertain parameters and input uncertainty
whose transfer function is

G = k

T s + 1

The gain k and time constant T have nominal values 1 and 2, respectively, and
relative uncertainty 25 %. The input plant uncertainty is 5 % in the low frequency
range, increasing gradually to 100 % at frequency 2.5 rad/s and reaching 500 % in
the high frequency range.

The controller transfer function is

K = kc(Tcs + 1)

Tcs

where kc = 0.15, Tc = 0.4.

(a) Construct a plant model representing the input uncertainty as a multiplicative
uncertainty.

(b) Determine the worst case gain of the closed-loop system by using the function
wcgain;

(c) Obtain the magnitude responses and transient responses of the closed-loop sys-
tem for the nominal gain and worst-case gain.

(d) Obtain the magnitude responses and transient responses of the closed-loop sys-
tem for certain number of random uncertainty values and compare them with
the corresponding responses for the worst-case gain.
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Exercise 10.5 For the system described in Exercise 10.2

(a) Determine the worst closed-loop performance using the command wcgain
with the output sensitivity as an input argument.

(b) Obtain the singular value plot of the output sensitivity and the transient re-
sponses of the closed-loop system in the nominal and worst case.



Chapter 11
H∞ Design

In this chapter we present two important techniques for H∞ design of linear con-
trol systems, namely the Loop Shaping Design and the mixed sensitivity design.
It is shown how to use the corresponding functions loopsyn and mixsyn from
Robust Control Toolbox®3 that allows the controller design to be done easily. We
describe also some more sophisticated design methods implemented by the func-
tion hinfsyn that may produce better nominal performance and robustness of the
closed-loop system. It is demonstrated in examples that the H∞ design does not
always ensure robust stability and robust performance of the closed-loop system
which is the main disadvantage of this important design method.

11.1 H∞ Loop-Shaping Design

Consider the block-diagram shown in Fig. 11.1. The connection of plant G and
controller K is driven by the references r , output disturbances d , and sensor noise n.
Here, y are the outputs that have to be manipulated and u are the control signals. In
terms of the sensitivity function S(s) = (I +L(s))−1 and complementary sensitivity
function T (s) = L(s)(I + L(s))−1 = I − S(s), where L(s) = G(s)K(s), we have
the following important relationships:

y(s) = T (s)r(s) + S(s)d(s) − T (s)n(s) (11.1)

u(s) = K(s)S(s)
[
r(s) − n(s) − d(s)

]
(11.2)

and these relationships determine the following goals with respect to the closed-loop
system, in addition to the requirement that K(s) should stabilize G(s).

1. For disturbance attenuation σ̄ (S(jω)) should be made small.
2. For noise suppression σ̄ (T (jω)) should be made small.
3. For good reference tracking we should have σ̄ (T (jω)) ≈ σ(T (jω)) ≈ 1.
4. For control energy saving σ̄ (R(jω)), where R(s) = K(s)S(s), should be made

small.

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_11,© Springer-Verlag London 2013
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Fig. 11.1 Closed-loop
system

If the unstructured uncertainty in the plant model G is represented by additive
perturbation, i.e., Gp(s) = G(s) + Δa(s) then the size of the smallest destabilizing
additive perturbation is

σ̄
(
Δa(jω)

) = 1

σ̄ (R(jω))

5. For robust stability in the presence of additive perturbation σ̄ (R(jω)) should be
made small.

If the uncertainty is modeled by output multiplicative perturbation such that
Gp(s) = (I + Δm(s))G(s) then the size of the smallest destabilizing multiplica-
tive perturbation is

σ̄
(
Δm(jω)

) = 1

σ̄ (T (jω))

That is why

6. For robust stability in presence of output multiplicative perturbation σ̄ (T (jω))

should be made small.

The requirements 1 to 6 cannot be satisfied simultaneously. For this reason the
design of feedback systems is a trade-off between conflicting goals in the frequency
domain. Fortunately, it is possible to find a compromise due to the different require-
ments in the different frequency ranges. For instance, the disturbance attenuation is
usually achieved in the low frequency range while the noise suppression is to be met
in the high frequency range.

Setting of desired attenuation in the requirement 1 above, for example, may be
specified as

σ̄
(
S(jω)

) ≤ ∣∣W−1
1 (jω)

∣∣ (11.3)

where |W−1
1 (jω)| is the desired factor of disturbance attenuation. Making W1(jω)

dependent on the frequency ω allows to set different attenuation for different fre-
quency ranges.

The stability margins of the closed-loop system are set by singular values in-
equalities as

σ̄
(
R(jω)

) ≤ ∣∣W−1
2 (jω)

∣∣ (11.4)

or

σ̄
(
T (jω)

) ≤ ∣∣W−1
3 (jω)

∣∣ (11.5)
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Fig. 11.2 Specifying the desired singular values of L, S, and T

where |W2(jω)| and |W3(jω)| are the largest additive and multiplicative plant per-
turbations, respectively.

Usually, the effect of all plant uncertainties is represented by a unique, fictitious,
multiplicative uncertainty Δm so that the design requirements are written as

1

σi(S(jω))
≤ ∣∣W1(jω)

∣∣; σi

(
T (jω)

) ≤ ∣∣W−1
3 (jω)

∣∣
These conditions are equivalent to

1

σ(S(jω))
≤ ∣∣W1(jω)

∣∣; σ̄
(
T (jω)

) ≤ ∣∣W−1
3 (jω)

∣∣
as is shown in Fig. 11.2. Note that above the axis 0 dB

σ
(
L(jω)

) ≈ 1

σ̄ (S(jω))

while below this axis it is fulfilled that

σ̄
(
L(jω)

) ≈ σ̄
(
T (jω)

)
It follows from Fig. 11.2 that the controller transfer function matrix K(s) should
be determined so that the frequency responses σ̄ (L(jω)) and σ(L(jω)) avoid the
hatched zones. For good performance σ(L(jω)) should lie above the performance
bound and for robust stability σ̄ (L(jω)) should lie below the robustness boundary.
The idea of Loop-Shaping Design is to shape the singular values of L(s) by suitable
choice of K(s) guaranteeing at the same time the stability of the closed-loop system.

In Robust Control Toolbox®3, the Loop-Shaping Design is done by the func-
tion loopsyn. This function allows to design a stabilizing controller for which the
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open-loop frequency responses are optimized so that to match closely the desired
frequency responses Gd (see Fig. 11.2). The basic syntax of the function loopsyn
for Loop-Shaping Design is

K = loopsyn(G,Gd)

where G is the plant transfer matrix, Gd corresponds to the desired frequency re-
sponses of the open-loop system L = GK and K is the optimal controller. The con-
troller K has the property that it shapes the open-loop L = GK in a such way that
it matches as close as possible the frequency responses of Gd under the constraint
that the controller should stabilize the closed-loop system.

The desired frequency responses Gd should satisfy the following conditions.

• Robust stability. The desired loop Gd should have low gain (as small as possi-
ble) in the high frequency range where the model is so inaccurate that its phase
responses are completely inaccurate with errors approaching ±180◦.

• Performance. The desired loop Gd should have high gain (as great as possible)
in the low-frequency range, where the model is adequate, in order to achieve high
accuracy in steady state and good disturbance attenuation.

• Crossover frequency and roll-off. The desired frequency responses Gd should
have crossover frequency ωc between the frequency ranges described above and
should have roll-off −20 or −40 dB/decade below the crossover frequency, which
allows the designer to keep the frequency delay less than −180◦ inside the band-
width (0 < ω < ωc).

Other considerations that may affect the choice of Gd are the poles and zeros of
the plant G which are located in the right-half of the complex plane. These poles and
zeros impose fundamental limitations on the crossover frequency ωc. For instance,
the crossover frequency ωc should be greater than the module of each unstable pole
and less than the module of each unstable zero, i.e.,

max
Re(pi)>0

|pi | < ωc < min
Re(zi )>0

|zi |

If these requirements are not fulfilled in the selection of Gd , the function loopsyn
will compute controller K , but the open loop L = GK will have a poor fit to Gd , so
that the performance requirements are not satisfied.

Example 11.1 Given a system of fourth order two-input, two-output plant with out-
put multiplicative uncertainty, the transfer function matrix is

G = (I2 + ΔW)Gnom

where

Gnom =
[ 12

0.2s+1 − 0.05
0.1s+1

0.1
0.3s+1

5
0.7s−1

]

Δ =
[
Δ1 0
0 Δ2

]
, |Δ1| < 1, |Δ2| < 1
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and

W =
[
w1 0
0 w2

]

is the matrix of weighting functions determined by the model errors in the two
channels. The uncertainty in the first output is 10 % in the low frequency range
increases to 100 % at ω = 20 rad/s and reaches 1000 % in the high frequency range.
The uncertainty in the second output is 20 % in the low frequency range, 100 % at
ω = 25 rad/s and 1000 % in the high frequency range.

The uncertain plant model is obtained by the command lines

s = tf(’s’);
g11 = 12/(0.2*s + 1);
g12 = -0.05/(0.1*s + 1);
g21 = 0.1/(0.3*s + 1);
g22 = 5/(0.7*s - 1);
Gnom = [g11 g12;g21 g22];
w1 = makeweight(0.1,20,10);
w2 = makeweight(0.2,25,10);
W = blkdiag(w1,w2);
Delta_1 = ultidyn(’Delta_1’,[1 1]);
Delta_2 = ultidyn(’Delta_2’,[1 1]);
Delta = blkdiag(Delta_1,Delta_2);
G = (eye(2) + Delta*W)*Gnom;

The plant singular values are shown in Fig. 11.3. It is seen that after the frequency of
20 rad/s there is a significant uncertainty in the plant which may reach up to 20 dB
at frequencies larger than 100 rad/s. Hence, the controller should be designed so that
the open-loop system has gain that is smaller than −20 dB for ω > 100 rad/s.

The requirements to the singular values of the open-loop transfer function matrix
are.

• Robustness requirements: Roll-off −20 dB/decade and a gain of −20 dB at
frequency 100 rad/s,

• Performance requirements: Maximize 1/σ(S) in the high frequency range.

Both requirements may be satisfied taking the desired open-loop transfer function
matrix as

Gd(s) = 10/s

(Note that the coefficient in the numerator of Gd(s) is exactly equal to the crossover
frequency ωc.)

The H∞ Loop-Shaping Design is done by the commands

Gd = 10/s;
[K,cls,gam] = loopsyn(Gnom,Gd);

The desired frequency responses and the obtained responses of the open-loop
system are shown in Fig. 11.4. They are produced by the command lines
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Fig. 11.3 Plant singular values

Fig. 11.4 Design results obtained by loopsyn
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looptransfer = loopsens(Gnom,K);
L = looptransfer.Lo;
sigma(L,’r-’,Gd,’b--’,Gd/gam,’k-.’,Gd*gam,’k-.’,omega)

It is seen that both singular values of L = GK are close to the desired frequency
response Gd . The number ±gam, dB (i.e., 20 log 10(gam)) shows the accuracy with
which the open-loop frequency responses match the desired frequency responses,

σ̄ (GK),dB ≥ |Gd | − gam,dB, ω < ωc

and

σ̄ (GK),dB ≤ |Gd | + gam,dB, ω > ωc

In the given case we have

gam =

1.6097

The quantities 1/σi(S), characterizing the performance, and the quantities σi(T ),
characterizing system robustness, are obtained by the command lines

omega = logspace(-1,3,100);
I = eye(size(L));
sigma(I+L,’r-’,T,’b--’,omega);
grid
legend(’1/\sigma(S) performance’,’\sigma(T) robustness’)

(Note that the quantities 1/σi(S) are the singular values of the matrix S−1 = I +L.)
The results are shown in Fig. 11.5.

The controller singular values are shown in Fig. 11.6. The controller is of 10th
order and has an integrating effect in the low frequency range.

The sensitivity function and complementary sensitivity function of the closed-
loop uncertain system are shown in Figs. 11.7 and 11.8, respectively.

The transient responses of the closed-loop uncertain system to unit step inputs
are shown in Fig. 11.9. Clearly, the mutual interaction between two channels is very
small (i.e., the channels are decoupled), which is due to the closeness of both sin-
gular values of L = GK to the desired frequency response Gd , which is a diagonal
matrix.

11.2 Mixed Sensitivity Design

Another opportunity for Loop-Shaping Design is the H∞ mixed sensitivity design,
which is done by the command

K = mixsyn(G,W1,[],W3)



180 11 H∞ Design

Fig. 11.5 Robustness and performance of the closed-loop system

Fig. 11.6 Controller singular value plot
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Fig. 11.7 Sensitivity of the uncertain system

Fig. 11.8 Complementary sensitivity of the uncertain system
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Fig. 11.9 Transient responses of the closed-loop system

In this design, the requirements for robust stability and performance, set by (11.3)
and (11.5), are combined in a single requirement with respect to the H∞ closed-loop
norm

‖Tzr‖∞ < 1

where (see Fig. 11.10)

Tzr
def=

[
W1S

W3T

]

The quantity ‖Tzr‖∞ is called mixed sensitivity cost function, since it “penalizes” si-
multaneously sensitivity S(s) and complementary sensitivity T (s). The mixed sen-
sitivity design is achieved when the function W1 has the desired shape for frequen-
cies ω < ωc and the function W−1

3 has the desired shape for frequencies ω > ωc.
In choosing the weighting functions W1 and W3 for a mixsyn design it is nec-
essary to ensure that the crossover frequency for the magnitude response of W1 at
0 dB is below the crossover frequency of the magnitude response of W−1

3 at 0 dB,
as is shown in Fig. 11.2. This allows to obtain a “gap” for the desired loop shape
Gd to pass between the performance bound W1 and robustness bound W−1

3 . In the
opposite case the performance and robustness requirements will not be satisfied.

The function mixsyn may be implemented in the more general form

[K,cl,gam] = mixsyn(G,W1,W2,W3)
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Fig. 11.10 Mixed sensitivity H∞ design

which makes it possible to find a controller K minimizing the H∞ norm of the
weighted mixed sensitivity ∥∥∥∥∥∥

⎡
⎣ W1S

W2R

W3T

⎤
⎦

∥∥∥∥∥∥∞
The inclusion of the term W2R allows to “penalize” the control action u(t) so that
to minimize the control energy. The weighting functions W1, W2, W3 may be scalar
variables, matrices with appropriate dimensions or empty variables.

The matrices S, R, and T obtained on the basis of the computed K satisfy the
inequalities

σ̄
(
S(jω)

) ≤ γ σ
(
W−1

1 (jω)
)

σ̄
(
R(jω)

) ≤ γ σ
(
W−1

2 (jω)
)

σ̄
(
T (jω)

) ≤ γ σ
(
W−1

3 (jω)
)

where γ = gam. If γ < 1 is fulfilled then ‖Tzr‖∞ < 1.
The weighting functions W1,W2, and W3 are used to “shape” the closed-

loop transfer functions S,R, and T , respectively, which is different from shap-
ing the open-loop frequency response in H∞ Loop-Shaping Design, discussed in
Sect. 11.1.

Example 11.2 Consider the system with multiplicative uncertainty given in Exam-
ple 11.1. The performance and robust stability bounds are specified by the weighting
functions

W1 = s + 10

2s + 0.3
, W3 = s + 10

0.05s + 20
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The design of H∞ mixed sensitivity optimal controller is done by the command
lines

W1 = (s + 10)/(2*s + 0.3);
W3 = (s + 10)/(0.05*s + 20);
[K_h,cl_h,gam] = mixsyn(Gnom,W1,[],W3);

The design results are analyzed with the aid of the command lines

looptransfer = loopsens(Gnom,K_h);
L = looptransfer.Lo;
T = looptransfer.To;
I = eye(size(L));
figure(1)
omega = logspace(-1,3,100);
sigma(I+L,’b-’,W1/gam,’r--’,T,’b-.’,gam/W3,’r.’,omega)
grid
legend(’1/\sigma(S) performance’, ...

’\sigma(W1) performance bound’, ...
’\sigma(T) robustness’, ...
’\sigma(1/W3) robustness bound’,3)

figure(2)
omega = logspace(-1,3,100);
sigma(L,’b-’,W1/gam,’r--’,gam/W3,’r.’,omega)
grid
legend(’\sigma(L)’,’\sigma(W1) performance bound’, ...

’\sigma(1/W3) robustness bound’,3)

In Fig. 11.11 we show the singular values of S and T and the performance and ro-
bustness bounds W1 and 1/W3, respectively. It is seen that the minimum singular
value of S−1 lies below the magnitude response of W1 and the maximum singular
value of T is below the magnitude response of 1/W3. This means that the perfor-
mance and robustness requirements specified by the weighting functions W1 and
W3, are satisfied. Actually, we have

gam =

0.7891

In Fig. 11.12 we show separately the singular values of the open-loop system L

with respect to performance bound W1 and robustness bound 1/W3. As a result of
satisfying performance and robustness requirements, the smallest singular value of
L lies above the bound W1 in the low frequency range and the largest singular value
of L is below the bound 1/W3 in the high frequency range.

The controller singular values are shown in Fig. 11.13. The controller is of eighth
order and has an integrating effect in the low frequency range.

The transient responses of the uncertain closed-loop system are shown in
Fig. 11.14. Obviously, with this design also the mutual influence between the chan-
nels is very small.
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Fig. 11.11 Design results obtained by mixsyn

Fig. 11.12 Singular values of the open-loop system



186 11 H∞ Design

Fig. 11.13 Controller singular value plot

Fig. 11.14 Transient responses of the closed-loop system
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Fig. 11.15 Closed-loop system with model

Fig. 11.16 Standard H∞
optimization problem

11.3 Other Versions of H∞ Design

11.3.1 H∞ Control with Models

H∞ control with models may be considered as an generalization of the mixed sen-
sitivity design. The usage of this method allows the robustness and performance
requirements to be fulfilled, including also performance requirements to specified
model M . The block-diagram of the closed-loop system is shown in Fig. 11.15.

The closed-loop system may be represented in the form of the standard H∞
optimization problem shown in Fig. 11.16. The open-loop system is described by⎡

⎣z1
z2

e

⎤
⎦ =

⎡
⎣−WpM Wp WpGnom

0 0 Wu

I −I −Gnom

⎤
⎦

⎡
⎣ r

d

u

⎤
⎦ , (11.6)

which defines the extended transfer matrix P . It may be shown that the closed-loop
system is described by

z = Tzww

where

z =
[
z1
z2

]
, w =

[
r

d

]
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Table 11.1 H∞ functions to be minimized

Function Description

Wp(To − M) Weighted difference between the real and ideal closed-loop system

WpSo Weighted output sensitivity

WuSiK Weighted control action due to reference

WuKSo Weighted control action due to disturbance

and

Tzw =
[

Wp(To − M) WpSo

WuSiK −WuKSo

]
(11.7)

In the given case we have

Si = (I − KGnom)−1, So = (I − GnomK)−1, To = SoGnomK

and

SiK = KSo

The goal is to determine a stabilizing controller K that minimizes the H∞ norm of
Tzw . The four functions that have to be minimized are described in Table 11.1.

In the table, Wp and Wu are frequency dependent weighting functions that will be
called weighting performance function and weighting control function, respectively.
The role of the function Wp is to ensure closeness between the closed-loop system
and the model in the desired low frequency range and the role of the function Wu is
to limit the magnitude of control actions.

The model M is usually set in the diagonal form

M =

⎡
⎢⎢⎢⎣

M1 0 . . . 0
0 M2 . . . 0
...

...
...

...

0 0 . . . Mr

⎤
⎥⎥⎥⎦

so that to achieve decoupling of the system outputs with the blocks Mi , i = 1, . . . , r

usually being set as second order lags with desired time constants and damping.

Example 11.3 Consider the design of mass–damper–spring system described in
Sect. 9.2. The system is of second order and has three uncertain parameters m, c,
and k, which vary in the ranges 1.8 ≤ m ≤ 4.2,0.8 ≤ c ≤ 1.2,1.4 ≤ k ≤ 2.6.

The design goal is to find H∞ control law u(s) = K(s)y(s) for the configuration
shown in Fig. 11.15, which fulfills the nominal performance condition

‖Tzw‖∞ < 1 (11.8)

where the matrix Tzw is given by (11.7). The desired closed-loop system model is
chosen as a second order lag

M = 1

T 2s2 + 2ξT s + 1
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where T = 1 s and ξ = 0.7. In the given case the weighting performance function is
a scalar function Wp(s) = wp(s) and is chosen as

wp(s) = 0.5
2s + 1

2s + tol

where tol = 0.001. This weighting function has the purpose to ensure the gain of
the loop from r and d to the error y − yM to be of order tol in the low frequency
range which will ensure closeness between the system and model and sufficient
disturbance attenuation at the system output. To limit the magnitude of the high
frequency components of control action, the weighting control function is chosen as

wu(s) = 0.5
0.05s + 1

0.0001s + 0.01

This weighted function ensures attenuation of components with frequency over
10 rad/s.

The specification of model and weighting functions is done by the command
lines

nuM = 1;
dnM = [1.0^2 2*0.7*1.0 1];
gainM = 1.0;
M = gainM*tf(nuM,dnM);
tol = 10^(-2);
nuWp = [2 1];
dnWp = [2 tol];
gainWp = 5*10^(-1);
Wp = gainWp*tf(nuWp,dnWp);
nuWu = [0.05 1];
dnWu = [0.0001 1];
gainWu = 5.0*10^(-2);
Wu = gainWu*tf(nuWu,dnWu);

The matrix P of the extended open-loop system may be found from (11.6). How-
ever, the expression obtained in this way contains two times the plant transfer func-
tion matrix G. As a consequence, the plant uncertainty will participate twice in
the closed-loop system transfer matrix which introduces unnecessary pessimism in
the robustness analysis. That is why it is better to determine the transfer matrix
of the extended system from the open-loop structure obtained by the commands
interconnect or sysic.

The open-loop system structure is presented in Fig. 11.17. This structure is ob-
tained by using the command sysic implementing the following lines:

systemnames = ’ G M Wp Wu ’;
inputvar = ’[ ref; dist; control ]’;
outputvar = ’[ Wp; Wu; ref-G-dist ]’;
input_to_G = ’[ control ]’;
input_to_M = ’[ ref ]’;
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Fig. 11.17 Open-loop system structure

Fig. 11.18 Generalized
block-diagram of the
open-loop system

input_to_Wp = ’[ G+dist-M ]’;
input_to_Wu = ’[ control ]’;
sys_ic = sysic;

The open-loop system is obtained in the variable sys_ic and has three inputs and
three outputs (Fig. 11.18).

The design is done by the function hinfsyn that computes suboptimal H∞
controller based on the given open-loop structure. Since the uncertainty is neglected
in the H∞ design, the nominal value of the open-loop interconnection is used.

Below we give the commands used in the design of H∞ controller K followed
by the design results.

nmeas = 1;
ncont = 1;
gmin = 0.1;
gmax = 10;
tol = 0.001;
[K,clp] = hinfsyn(sys_ic.Nominal,nmeas,ncont,gmin,gmax,tol);
get(K)

Resetting value of Gamma min based on D_11, D_12, D_21 terms

Test bounds: 0.5000 < gamma <= 10.0000

gamma hamx_eig xinf_eig hamy_eig yinf_eig nrho_xy p/f
10.000 4.8e-001 2.7e-008 5.0e-003 0.0e+000 0.0001 p
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5.250 4.8e-001 2.7e-008 5.0e-003 0.0e+000 0.0003 p
2.875 4.8e-001 2.8e-008 5.0e-003 0.0e+000 0.0010 p
1.688 4.8e-001 3.0e-008 5.1e-003 0.0e+000 0.0033 p
1.094 4.8e-001 3.4e-008 5.1e-003 0.0e+000 0.0101 p
0.797 4.8e-001 4.3e-008 5.3e-003 0.0e+000 0.0324 p
0.648 4.8e-001 6.3e-008 5.4e-003 0.0e+000 0.1293 p
0.574 4.8e-001 -1.1e+001# 5.5e-003 0.0e+000 16.6897# f
0.611 4.8e-001 7.6e-008 5.5e-003 0.0e+000 0.2901 p
0.593 4.8e-001 8.6e-008 5.5e-003 0.0e+000 0.6308 p
0.583 4.8e-001 9.3e-008 5.5e-003 0.0e+000 1.3623# f
0.588 4.8e-001 9.0e-008 5.5e-003 0.0e+000 0.9129 p
0.587 4.8e-001 9.1e-008 5.5e-003 0.0e+000 0.9903 p
0.586 4.8e-001 9.1e-008 5.5e-003 0.0e+000 1.0480# f
0.586 4.8e-001 9.1e-008 5.5e-003 0.0e+000 1.0013# f

Gamma value achieved: 0.5866

The number of measurements and the number of controls are equal to 1. The range
for γ -iteration is chosen between the numbers 0.1 and 10 with tolerance tol = 0.001.
At each iteration, the program shows the current value of γ and the results from five
tests for existence of suboptimal controller. At the end of each iteration is shown
the symbol p or f which indicates whether the current value of γ is accepted or
dismissed. The symbol # is used to show which of the five conditions for existence of
H∞ suboptimal controller is violated for the γ used. When the iteration procedure
ends, the minimal achievable value of γ is given. The transfer function matrix of the
closed-loop system from dist to e is saved in the variable clp.

The minimal achievable value of γ is 0.586 with the suboptimal controller ob-
tained being of order six, the same as the order of the open-loop system. Since the
value of the H∞-norm of the closed-loop system is less than 1, the condition (11.8)
for nominal performance is satisfied.

The controller Bode plot is shown in Fig. 11.19.
The robust stability analysis of the closed-loop system is done by the command

lines

clp_ic = lft(sys_ic,K);
omega = logspace(-2,2,100);
clp_g = ufrd(clp_ic,omega);
opt = robopt(’Display’,’on’);
[stabmarg,destabu,report,info] = robuststab(clp_g,opt);
report
semilogx(info.MussvBnds(1,1),’r-’,info.MussvBnds(1,2),’b--’)

The closed-loop system does not achieve robust stability since the smallest value
of the structured singular value is about 1.05.

The robust performance analysis is done by the commands

opt = robopt(’Display’,’on’);
[perfmarg,perfmargunc,report,info] = robustperf(clp_g,opt);
report
semilogx(info.MussvBnds(1,1),’r-’,info.MussvBnds(1,2),’b--’)
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Fig. 11.19 Frequency responses of the H∞ controller

the closed-loop system does not achieve robust performance since the performance
margin is only 0.6015. This value shows that for uncertainty greater than 60.15 %
from the given one the robust performance is violated.

In this way, in the given case the H∞ controller designed does not ensure neither
robust stability nor robust performance of the closed-loop system. Since the smallest
value of γ is less than 1, the closed-loop system achieves only nominal performance.
This fact significantly limits the application of H∞ control laws in the design of
robust systems.

The frequency responses and transient responses of the uncertain system is done
for the system without weighting filters. This system is obtained in the variable cls
after implementing the commands

systemnames = ’ G ’;
inputvar = ’[ ref; dist; control ]’;
outputvar = ’[ G+dist; control; ref-G-dist ]’;
input_to_G = ’[ control ]’;
sim_ic = sysic;
cls = lft(sim_ic,K);

The transfer function matrices To, So, and KSo are obtained from the structure cls
by the commands

To = cls(1,1);
So = cls(1,2);
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Fig. 11.20 Frequency responses of the closed-loop uncertain system

KSo = -cls(2,2);

The frequency responses of the uncertain system is done setting by the command
gridureal four values to each of the three uncertain parameters, which allows to
obtain altogether 43 = 64 responses. The magnitude and phase frequency responses
of the closed-loop system under variation of the uncertain parameters are obtained
by the command lines

omega = logspace(-2,2,100);
T64 = gridureal(To,’c’,4,’k’,4,’m’,4);
bode(M,’r-’,T64,’b--’,omega)

and are shown together with model frequency responses in Fig. 11.20. It is seen that
the closed-loop responses differ significantly from the model responses around the
plant resonant frequency.

The comparison between the sensitivity function of the uncertain system and the
inverse performance weighting function is done by the command lines

omega = logspace(-3,2,100);
S64 = gridureal(So,’c’,4,’k’,4,’m’,4);
bodemag(1/Wp,’r-’,S64,’b--’,omega)

The result is shown in Fig. 11.21. It is seen that for certain values of the uncertain
parameters the magnitude of the sensitivity function around the resonant frequency
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Fig. 11.21 Sensitivity function of the uncertain system

exceeds significantly the limit determined by 1/Wp , which leads to the violation of
the robust performance condition.

The transient responses of the closed-loop system are obtained for the nominal
plant since for some values of the uncertain parameters this system becomes unsta-
ble.

The transient response with respect to the reference is shown in Fig. 11.22. The
process is aperiodic and is slow in comparison to the model.

The corresponding control action is shown in Fig. 11.23.

11.3.2 Two-Degree-of-Freedom H∞ Control

The technique of H∞ control with model, considered above, may be extended to
the design of 2-degree-of-freedom controllers. The block-diagram of the closed-
loop system with 2-degree-of-freedom controller is shown in Fig. 11.24. The system
has a reference (r), output disturbance (d) and two output errors (z1) and (z2). The
system M is the ideal model, to which the closed-loop system should match.

In the given case the controller K consists of a feedback controller Ky for distur-
bance attenuation and a pre-filter Ku to achieve the desired closed-loop performance
and is represented as

K = [Kr Ky]
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Fig. 11.22 Transient response of the nominal system with respect to reference

Fig. 11.23 Control action of the nominal system
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Fig. 11.24 Closed-loop system with 2-degree-of-freedom controller

Table 11.2 H∞ function to be minimized

Function Description

Wp(SoGKr − M) Weighted difference between the real and ideal closed-loop system

WpSo Weighted output sensitivity

WuSiKr Weighted control action due to reference

WuKySo Weighted control action due to disturbance

The transfer function matrices Kr and Ky may be obtained as follows.
The closed-loop system may be represented in the form of the standard problem

shown in Fig. 11.16. The system is described by
⎡
⎢⎢⎣

z1
z2

e1
e2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−WpM Wp WpG

0 0 Wu

I 0 0
0 I G

⎤
⎥⎥⎦

⎡
⎣ r

d

u

⎤
⎦

The closed-loop transfer function matrix is given by

Tzw =
[
Wp(SoGKr − M) WpSo

WuSiKr WuKySo

]

where the input and output sensitivities are equal to

Si = (I − KyG)−1, So = (I − GKy)
−1

respectively. Again, the goal is to obtain a stabilizing controller K that minimizes
the H∞ norm of Tzw . The four blocks of the matrix Tzw , whose magnitude should
be minimized, have the same meaning as shown in Table 11.1. The four function
that should be minimized are described in Table 11.2.

As previously, Wp and Wu are frequency dependent filters chosen as described
above.
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Fig. 11.25 Open-loop system structure

Fig. 11.26 Generalized
block-diagram of the
open-loop system

The design of 2-degree-of-freedom controller is done taking as input to the con-
troller the vector yc = [rT yT ]T instead of the vector yc = r − y as in the case of
one degree-of-freedom.

Example 11.4 Consider the mass-damper-spring system for which a one-degree-of-
freedom controller with model was designed in Example 11.3. The desired model
M and the weighting functions Wp and Wu are the same as the previously used. The
block-diagram of the open-loop system is given in Fig. 11.25. The system structure
is obtained by the command lines

systemnames = ’ G M Wp Wu ’;
inputvar = ’[ ref; dist; control ]’;
outputvar = ’[ Wp; Wu; ref; G+dist ]’;
input_to_G = ’[ control ]’;
input_to_M = ’[ ref ]’;
input_to_Wp = ’[ G+dist-M ]’;
input_to_Wu = ’[ control ]’;
sys_ic = sysic;

The open-loop system has three inputs and four outputs (Fig. 11.26). In this case the
H∞ design is done by the commands
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Fig. 11.27 Frequency responses of the H∞ 2-degree-of-freedom controller

nmeas = 2;
ncont = 1;
gmin = 0.1;
gmax = 10;
tol = 0.001;
[K,clp] = hinfsyn(sys_ic.Nominal,nmeas,ncont,gmin,gmax,tol);

The controller obtained is again of sixth order. The frequency responses of the
two parts of the controller are shown in Fig. 11.27.

The robust properties of the closed-loop system are close to the properties of
the system with one-degree-of-freedom controller. Again, in the given case the H∞
controller does not ensure robust stability and robust performance of the closed-loop
system.

The transient response of the closed-loop system is shown in Fig. 11.28. the tran-
sient response is significantly faster comparing to the previous example (compare
with Fig. 11.22).

The closed-loop control action has nearly 2 times smaller magnitude in compar-
ison with the control action of the system with one-degree-of-freedom controller
(compare Figs. 11.29 and 11.23).

In this way the 2-degree-of-freedom controller allows to achieve better nominal
performance of the closed-loop system for a smaller magnitude of the control action.
Both controllers, however, do not ensure robust stability and robust performance of
the closed-loop system.
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Fig. 11.28 Transient responses of the nominal system with respect to reference

Fig. 11.29 Control action of the nominal system
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11.4 Exercises

Exercise 11.1 Given a two-input, two-output system with transfer function matrix

G =
⎡
⎣

k1
T1s+1 − 0.05

0.1s+1

0.1
0.3s+1

k2
T2s−1

⎤
⎦

where the coefficients k1 and k2 have nominal values 12 and 5, respectively, and
relative uncertainty 15 %, and the time constants T1 and T2 have nominal values 0.2
and 0.7, respectively, and relative uncertainty 20 %.

(a) Build uncertainty model of the given system;
(b) design a loop shaping controller that fulfills the following requirements:

• robustness requirements: roll off −20 dB/decade and attenuation of −20 dB
for the frequency 100 rad/s,

• performance requirements: maximize 1/σ(S) in the low frequency range;

(c) obtain the singular value plot of the open-loop system and compare with the
desired frequency response;

(d) obtain the singular value plots of the sensitivity matrix and complementary sen-
sitivity function of the uncertain closed-loop system;

(e) obtain the transient response of the uncertain closed-loop system.

Exercise 11.2 For the system from Exercise 11.1 do the following.

(a) Design a mixed sensitivity H∞ controller with performance and robustness
bounds specified by

W1 = s + 10

2s + 0.3
, W3 = s + 10

0.05s + 20

(b) obtain the singular value plots of the sensitivity matrix and complementary sen-
sitivity matrix and compare them with the performance and robustness bounds;

(c) obtain the singular value plots of the sensitivity matrix and complementary sen-
sitivity matrix of the uncertain closed-loop system;

(d) obtain the transient responses of the uncertain closed-loop system.

Exercise 11.3 Given a plant with transfer function

G = s − 10

(s + 1)(s + 10)

design a H∞ 2-degree-of-freedom controller minimizing the performance index∥∥∥∥
[

WpSG

WuKSG

]∥∥∥∥∞
where

Wp = 1

s + 0.001
, Wu = s + 2

s + 10
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For this aim, build the extended system structure by using the command sysic and
implement the function hinfsyn for H∞ design.

Obtain the frequency responses of the sensitivity function and the transient re-
sponse of the closed-loop system.

Exercise 11.4 Given below is a system with plant transfer function matrix

G =
⎡
⎣

k1
T1s+1 − 0.05

0.1s+1

0.1
0.3s+1

k2
T2s−1

⎤
⎦

where the coefficients k1 and k2 have nominal values 12 and 5, respectively, and
relative uncertainty 15 % and the time constants T1 and T2 have nominal values 0.2
and 0.7, respectively, and relative uncertainty 20 %. (The plant is the same as in
Exercise 11.1.)

(a) Build uncertain model of the given system.
(b) Design an H∞ 2-degree-of-freedom controller minimizing the performance in-

dex ∥∥∥∥
[

WpS(Gnom)

WuKS(Gnom)

]∥∥∥∥∞
where

Wp =
[
wp 0
0 wp

]
, Wu =

[
wu 0
0 wu

]

and

wp = 0.95(s2 + 2000s + 4000)

s2 + 1900s + 10
, wu = 10−6(0.1s + 1)

0.001s + 1

(c) Analyze the robust stability of the closed-loop system.
(d) Analyze the robust performance of the closed-loop system.
(e) Obtain the singular value plots of the sensitivity function and complementary

sensitivity function of the uncertain closed-loop system.
(f) Obtain the transient response of the uncertain closed-loop system.
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Chapter 12
μ-Synthesis

This chapter is devoted to the implementation aspects of one of the most important
techniques in Robust Control Design, namely the μ-synthesis. For properly chosen
weighting functions this design method usually produces a controller that ensures
both robust stability and robust performance of the closed-loop system. After a short
statement of the μ-synthesis problem, we describe the usage of the function dksyn
from Robust Control Toolbox®3 that determines iteratively a controller which min-
imizes the closed-loop structured singular value. Some versions of the μ-synthesis
are considered next, including the design of 2-degree-of-freedom controller that usu-
ally produces the best results with respect to the closed-loop robust performance.
At the end of the chapter we discuss some practical aspects of the μ-analysis and
μ-synthesis.

12.1 The μ-Synthesis Problem

Consider a control problem in the Linear Fractional Transformation shown in
Fig. 12.1.

The system denoted by P is the open-loop connection and represents all known
elements including the nominal system model and the performance weighting func-
tions, as well as the uncertainty weighting functions. The block Δ is the uncertain
element from the set Δ, which parameterizes all supposed model uncertainty. The
controller is denoted by K . Inputs to P are three sets of signals: inputs uΔ due to
the uncertainty, references and disturbances w and controls u. Three sets of outputs
are generated: outputs yΔ due to the uncertainty, errors or controlled outputs z and
measurements y.

The set of systems to be controlled is described by the LFT
{
FU(P,Δ) : Δ ∈ Δ,max

ω
σ̄
[
Δ(jω)

] ≤ 1
}

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_12,© Springer-Verlag London 2013
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Fig. 12.1 Block-diagram of
the closed-loop system

Fig. 12.2 μ-Synthesis

The design goal is to determine a controller K , stabilizing the nominal system; also
for all Δ ∈ Δ,maxω σ̄ [Δ(jω)] ≤ 1, the closed-loop system is stable and satisfies∥∥FU

[
FL(P,K),Δ

]∥∥∞ < 1

For given arbitrary K this performance criterion may be tested by using the robust
performance test on the Linear Fractional Transformation FL(P,K). The robust
performance test should be performed with respect to the extended uncertain struc-
ture

ΔP
def=

{[
Δ 0
0 ΔF

]
: Δ ∈ Δ,ΔF ∈ Cnw×nz

}

where ΔF is a fictitious complex (unstructured) uncertainty. The system with con-
troller K achieves robust performance if and only if

μΔP

(
FL(P,K)(jω)

)
< 1

The aim of the μ-synthesis is to minimize the peak value of the structured singular
value μΔP (.) of the closed-loop transfer function matrix FL(P,K) over the set of
all stabilizing controllers K . This is written as

min
K stabilizing

max
ω

μΔP

(
FL(P,K)(jω)

)
(12.1)

and is shown in Fig. 12.2.
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12.2 μ-Synthesis by D–K Iterations

The μ-synthesis method by D–K iterations (Sect. 6.2) is realized in Robust Control
Toolbox®3 by the function dksyn. It is implemented by the command line

[K,clp,bnd] = dksyn(P,nmeas,ncont,opt)

Input arguments

– P is the uncertainty plant model (should be of class uss) obtained, for instance,
by the command sysic (different from the command for H∞ design hinfsyn
that may work with the nominal system only);

– nmeas: the number of plant measured outputs (corresponds to the last nmeas
measurement outputs);

– ncont: the number of plant control inputs (corresponds to the last ncont con-
trol inputs);

– opt: optional parameter. It is an object created by the command opt = dkit-
opt and has the following elements:
• opt.FrequencyVector: vector with frequency values used in the μ-

analysis; if not set, it is chosen automatically;
• opt.InitialController: controller used to initiate first iteration, de-

fault is an empty SS object;
• opt.AutoIter: automated mu-synthesis mode, default is ’on’;
• opt.DisplayWhileAutoIter: displays iteration progress in opt.
AutoIter mode, default is ’off’;

• opt.StartingIterationNumber: starting iteration number, default
is 1;

• opt.NumberOfAutoIterations: number of D–K iterations to perform,
default is 10;

• opt.AutoScalingOrder: maximum state order for fitting D-scaling data,
default is 5;

• opt.AutoIterSmartTerminate: automatic termination of iteration pro-
cedure based on progress of design iteration, default is ’on’;

• opt.AutoIterSmartTerminateTol: tolerance used by opt.Auto-
IterSmartTerminate, default is 0.005.

Output arguments

– K: controller designed (SS object);
– clp: closed-loop system model (USS object)—may be obtained also as clp =
lft(P,K);

– bnd: upper bound on the robust performance of the closed-loop system clp;
– dkinfo: N -by-1 cell array where N is the total number of iterations performed.

The ith cell contains a structure with several fields, most significant of which are:
• K: Controller at ith iteration, SS object.
• Bnds: Robust performance bound for the closed-loop system.
• MussvBnds: Upper and lower μ bounds, an FRD object computed by the

auxiliary function mussv.
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Fig. 12.3 Frequency responses of the uncertain plant

• MussvInfo: Structure returned from the function mussv at each iteration.

The information contained in these fields may be very important in some cases.
If, for instance, one wants to take the controller from the fourth iteration, this may
be done by the line

K_4 = dkinfo{4}.K;

The command dksyn works with continuous-time as well as discrete-time sys-
tems. It is not necessary to be indicated by the user since this information is con-
tained in the ss and uss objects.

Example 12.1 Consider a two-input, two-output system with transfer function ma-
trix

G =
⎡
⎣

k1
T1s+1 − 0.05

0.1s+1

0.1
0.3s+1

k2
T2s−1

⎤
⎦

where the coefficients k1 and k2 have nominal values 12 and 5, respectively, and
relative uncertainty 15 %, and the time constants T1 and T2 have nominal values 0.2
and 0.7, respectively, and relative uncertainty 20 %.

The frequency responses of the plant singular values are shown in Fig. 12.3.
The design goal is to achieve robust stability and robust performance of the

closed-loop system shown in Fig. 12.4, in the presence of plant uncertainty and
output disturbances.
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Fig. 12.4 Block-diagram of the closed-loop system

The closed-loop system is described by

z = Tzww

where

z =
[
z1
z2

]
, w =

[
r

d

]

and

Tzw =
[

WpSo −WpSo

WuKSo −WuKSo

]

where

So = (I − GK)−1

is the output sensitivity transfer function matrix.
To achieve closed-loop robust performance, i.e.

μΔP

(
Tzw(jω)

)
< 1

means that the condition

‖Tzw‖∞ < 1

will be fulfilled for each possible plant uncertainty. This, in turn, guarantees fulfill-
ment of the conditions

‖WpSo‖∞ < 1, ‖WuKSo‖∞ < 1

In the given case the performance weighting and control weighting functions are
taken in the form

Wp =
[
wp 0
0 wp

]
, Wu =

[
wu 0
0 wu

]

where

wp(s) = 0.5
s + 10

s + 0.3
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and

wu(s) = 0.1
0.001s + 1

0.0001s + 1

The open-loop transfer function matrix P is obtained by the command lines

systemnames = ’ G Wp Wu ’;
inputvar = ’[ ref{2}; dist{2}; control{2} ]’;
outputvar = ’[ Wp; Wu; ref-G-dist ]’;
input_to_G = ’[ control ]’;
input_to_Wp = ’[ ref-G-dist ]’;
input_to_Wu = ’[ control ]’;
sys_ic = sysic;

and is stored in the variable sys_ic. The open-loop system is of order 8.
The μ-synthesis is done by the commands

nmeas = 2;
ncont = 2;
fv = logspace(-3,3,100);
opt = dkitopt(’FrequencyVector’,fv, ...

’DisplayWhileAutoIter’,’on’, ...
’NumberOfAutoIterations’,3)

[K,cl_mu,bnd_mu,dkinfo] = dksyn(sys_ic,nmeas,ncont,opt);

setting three steps of the DK-iterations.
After performing three iterations one obtains the report

Iteration Summary
-------------------------------------------------
Iteration # 1 2 3
Controller Order 8 16 12
Total D-Scale Order 0 8 4
Gamma Achieved 1.990 1.046 1.218
Peak mu-Value 1.433 1.001 1.173

This report shows that at the second iteration the closed-loop system practically
achieves robust performance for a value of μ being close to 1. The controller order
at this iteration becomes equal to 16. (Different from H∞ design, the controller
order here may be obtained significantly higher than the order of the open-loop
system due to the use of scaling matrices.) Since at the third iteration the value of μ

is greater than the value at the second iteration, the program chooses automatically
the controller from the second step.

The singular value plot of the controller is shown in Fig. 12.5.
The robust stability and robust performance analysis are done by the command

lines

clp_ic = lft(sys_ic,K);
omega = logspace(-2,2,100);
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Fig. 12.5 Controller singular values

clp_g = ufrd(clp_ic,omega);
%
% Robust stability
opt = robopt(’Display’,’on’);
[stabmarg,destabu,report,info] = robuststab(clp_g,opt);
report
%
% Robust performance
opt = robopt(’Display’,’on’);
[perfmarg,perfmargunc,report,info] = robustperf(clp_g,opt);
report

As is seen from Fig. 12.6, the closed-loop system remains stable even for uncer-
tainties that are 4 times greater than the plant.

The frequency response of the structured singular value in case of robust perfor-
mance is shown in Fig. 12.7.

The frequency responses of the closed-loop system for random perturbations of
the uncertain parameters are shown in Fig. 12.8.

Since the closed-loop system achieves robust performance, the condition

‖WpSo‖∞ < 1

is satisfied for each uncertainty and the singular values of the output sensitivity So

lie below the singular values of W−1
p (Fig. 12.9). Similarly, the singular values of
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Fig. 12.6 Closed-loop robust stability

Fig. 12.7 Closed-loop robust performance
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Fig. 12.8 Frequency responses of the closed-loop system

Fig. 12.9 Sensitivity functions of the closed-loop system
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Fig. 12.10 Input sensitivity of the closed-loop system

the transfer matrix SiK = KSo lie below the singular values of W−1
u (Fig. 12.10),

i.e., the constraints on the control action are respected.
The transient responses of the closed-loop system due to the reference for 30

random values of the uncertain parameters are shown in Fig. 12.11.

12.3 Versions of μ-Synthesis

12.3.1 μ-Synthesis with Model

The μ-synthesis with a model corresponds to the block-diagram of the closed-loop
system shown in Fig. 12.12. This diagram is the same as the diagram shown in
Fig. 11.15, but in this case instead of H∞ norm of the closed-loop system one min-
imizes the structured singular value μ. The usage of μ-synthesis allows to suppress
the effect of the disturbances on the system output and to achieve closeness of the
closed-loop system behavior to the model for all possible plant uncertainties. The
open-loop and closed-loop transfer function matrices are the same as those shown
in Sect. 11.3, using instead of the plant nominal model Gnom the uncertain plant G.

Example 12.2 Consider the μ-synthesis of the mass–damper–spring system whose
H∞ design was presented in Example 11.3. For this aim we use the same model and
weighting functions as given in Example 11.3:
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Fig. 12.11 Transient responses of the closed-loop system

Fig. 12.12 Closed-loop system with model

M = 1

T 2s2 + 2ξT s + 1
, T = 1, ξ = 0.7

Wp(s) = 0.5
2s + 1

2s + 0.001

Wu(s) = 0.5
0.05s + 1

0.0001s + 0.01

In the given case, after three iterations one obtains a controller of 20th order, for
which the maximum value of μ decreases to 1.116, i.e., the performance margin
is 0.899. Despite the fact that the robust performance is not achieved the closed-
loop system is robustly stable with the maximum of the structured singular value
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Fig. 12.13 Closed-loop system with 2-degree-of-freedom controller

being equal to 0.578. In this way the μ-synthesis produces better results compared
to H∞ design in which the controller does not ensure even robust stability of the
closed-loop system. When the μ-synthesis does not lead to robust performance, as
in the case under consideration, it is necessary either to change the performance
requirements to the closed-loop system (i.e., the weighting functions) or to try
2-degree-of-freedom controller design.

12.3.2 μ-Synthesis of 2-Degree-of-Freedom Controller

The block-diagram of the closed-loop system in the given case is shown in
Fig. 12.13 and is the same as the block-diagram for H∞ design, shown in Fig. 11.24.
The usage of μ-synthesis allows to achieve better robustness of the closed-loop sys-
tem improving usually the nominal performance as well. The implementation of
2-degree-of-freedom controller usually lead to better design results in comparison
with the usage of 1-degree-of-freedom controller.

Example 12.3 Consider again the mass–damper–spring system for which an 1-
degree-of-freedom controller was design in the previous example. For the same sys-
tem, in Example 11.4 an H∞ design of 2-degree-of-freedom controller was obtained
but the robust stability and robust performance of the closed-loop system were not
achieved. In the given case, by aid of the μ-synthesis, an 18th order controller is
obtained for which the maximum value of μ is decreased to 0.984 thus achieving
closed-loop robust stability and robust performance.

The controller frequency responses are shown in Fig. 12.14.
The frequency response of μ in the case of robust stability analysis is shown in

Fig. 12.15 and in the case of robust performance analysis in Fig. 12.16. Obviously,
the system achieves both robust stability and robust performance.
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Fig. 12.14 Frequency responses of the controller

Fig. 12.15 Robust stability for 2-degree-of-freedom controller
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Fig. 12.16 Robust performance for 2-degree-of-freedom controller

The worst-case gain analysis of the closed-loop system is done by the command
line

[maxgain,maxgainunc] = wcgain(To);

where To is the closed-loop transfer function.
The magnitude response of the worst-case gain is shown in Fig. 12.17.
Transient responses to the reference of the uncertain closed-loop system are

shown in Fig. 12.18 and the corresponding control actions in Fig. 12.19. The tran-
sient responses are characterized by satisfactory performance for all possible plant
uncertainties.

The results of H∞ design and μ-synthesis of the mass–damper–spring system
obtained in Examples 11.3, 11.4, 12.2, and 12.3 show that the best closed-loop sys-
tem robustness is achieved for the controller in the form of 2-degrees-of-freedom
and is designed by the aid of μ-synthesis.

12.4 Practical Aspects of μ-Analysis and μ-Synthesis

In this section we give some recommendations about how to use in practice the
structured singular value μ.
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Fig. 12.17 Worst-case gain magnitude frequency response

Fig. 12.18 Transient responses of the closed-loop system
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Fig. 12.19 Closed-loop control actions

1. Due to the efforts necessary to derive the uncertain plant model and the almost
unavoidable complication of the controller designed it is appropriate to begin
with simplified uncertainty description in order to see whether the performance
requirements can be met. Only in the case when these requirements are satisfied,
it is appropriate to consider more complicated uncertainty descriptions including,
for instance, parametric uncertainties to “sharpen” the design with more accurate
uncertainty model.

2. The usage of μ means worst-case analysis, so one should be cautious when in-
troducing many sources of uncertainties, disturbances and noises. In such a case
it becomes less and less possible for the worst case to appear and the analysis
and design performed may become unnecessarily conservative.

3. There is always uncertainty with respect to inputs and outputs so that it is reason-
able in the general case to include diagonal input and output uncertainties. The
relative (multiplicative) uncertainty is very appropriate for this aim.

4. In the practical design it is customary to obtain values of μ that exceed 1.
This may result from very high requirements to the closed-loop performance
which are impossible to satisfy for the given plant. In such a case it is neces-
sary to loosen the requirements setting other performance and/or control action
weighting functions. Finding a controller that ensures value of μ less than one
means that the requirements set are possible to achieve. In other cases it may be
necessary to design controller with different structure, for instance 2-degree-of-
freedom controller, in order to fulfill the requirements posed.
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5. In case of a discrete-time system it is appropriate to perform the controller design
initially in the continuous-time case. This is due to the fact that the best possible
performance may be obtained in the continuous-time case which can then be
considered as a limit for discrete-time designs. Also, in the continuous-time case
it is easier to find appropriate performance weighting functions that again may
be implemented in the discrete-time design.

12.5 Exercises

Exercise 12.1 For the system from Example 12.1 do the following.

(a) Design a μ-controller minimizing the performance index∥∥∥∥
[

WpSG

WuKSG

]∥∥∥∥∞
where

Wp =
[
wp 0
0 wp

]
, Wu =

[
wu 0
0 wu

]

and

wp = 0.95(s2 + 2000s + 4000)

s2 + 1900s + 10
, wu = 10−6(0.1s + 1)

0.001s + 1

(b) Analyze the robust performance of the closed-loop system.
(c) Obtain the singular value plots of the sensitivity function and complementary

sensitivity function of the uncertain closed-loop system.
(d) Obtain the transient response of the uncertain closed-loop system.

Exercise 12.2 For the same plant and weighting functions as in Exercise 12.1 do
the following.

(a) Design a 2-degree-of-freedom μ-controller.
(b) Analyze the robust performance of the closed-loop system.
(c) Obtain the singular value plots of the sensitivity function and complementary

sensitivity function of the uncertain closed-loop system.
(d) Obtain the transient response of the uncertain closed-loop system.

Compare the results with the results from Exercise 12.1.
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Chapter 13
Analysis and Design of Parameter-Dependent
Systems

The structured uncertainty models presented in Chap. 9 are not the unique way to
represent systems with uncertain parameters. These models are usually appropriate
to describe systems whose uncertainties are relatively small in size and may not be
convenient to implement in the case of large parameter variations. In such cases
it might be better to use models in the form of the so called parameter-dependent
systems which are appropriate for use in the more general case of large uncertain-
ties. The linear parameter-dependent systems, called also Linear Parameter-Varying
Systems (LPV systems), arise in many applications, for instance in robotics and
aerospace systems. In this chapter we show how to build models of parameter-
dependent systems and how to use these models in robust stability analysis and con-
troller design. Especially important is the so called gain scheduling design which al-
lows to obtain satisfactory closed-loop performance in case of widely varying plant
parameters.

The presentation in this chapter follows closely the corresponding chapters
of [50].

13.1 Representation of Parameter-Dependent Systems

13.1.1 SYSTEM Matrix

In many cases the linear system models are obtained in the general form of the so
called descriptor systems which are described by state-space equations of the form

E
dx

dt
= Ax(t) + Bu(t) (13.1)

y(t) = Cx(t) + Du(t) (13.2)

In these equations the matrix E is a square matrix that may be singular in the gen-
eral case. If this matrix is invertible and well conditioned, (13.1), (13.2) are eas-
ily converted to the usual state-space description multiplying on the left both sides

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_13,© Springer-Verlag London 2013
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of (13.1) by the matrix E−1. However, if the matrix E is singular or poorly con-
ditioned this conversion is not possible and one has to use the descriptor system
model (13.1), (13.2). The descriptor system models arise naturally in the descrip-
tion of many physical systems and are especially appropriate to represent systems
with large parameter variations.

In the discrete-time case the descriptor systems are described by the state-space
equations

Exk+1 = Axk + Buk

yk = Cxk + Duk

Consider as an example the mass–damper–spring system introduced in Sect. 9.2
and depicted in Fig. 9.11. The dynamics of this system is described by the 2nd-order
differential equation

mẍs + cẋs + kxs = u (13.3)

where xs is the displacement of the mass block from the equilibrium position and u

is the force acting on the mass, with m the mass, c the damper constant and k the
spring constant. Denoting x1 = xs, x2 = dxs/dt , the system (13.3) may be described
by the two first order differential equations

ẋ1 = x2 (13.4)

mẋ2 = −kx1 − cx2 + u (13.5)

Taking the output as y = xs , (13.4), (13.5) are represented as a descriptor system in
the form (13.1), (13.2) with matrices

E =
[

1 0
0 m

]
, A =

[
0 1

−k −c

]
, B =

[
0
1

]
, C = [

1 0
]
, D = 0

In MATLAB®, a continuous-time or discrete-time descriptor system model is
stored for convenience as a single matrix called SYSTEM matrix. This matrix has
the form ⎡

⎢⎢⎢⎢⎢⎣

A + j (E − I ) B n

0

C D
...

0
0 0 −Inf

⎤
⎥⎥⎥⎥⎥⎦

where j = √−1, n is equal to the number of states of (13.1) and the entry Inf is
used to distinguish SYSTEM matrices from the regular matrices.

The SYSTEM matrices are created by the function ltisys. For given matrices
A,B,C,D,E of the descriptor system formulation (13.1), (13.2), the command line

sys = ltisys(A,B,C,D,E)
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produces the SYSTEM matrix sys. When omitted, D and E are set to the default
values D = 0 and E = I . The autonomous system Eẋ = Ax is thus specified by the
line

sys = ltisys(A,E)

Given a SYSTEM matrix sys created with ltisys, the function ltiss allows to
extract the corresponding state-space realization. This is done by the command line

(A,B,C,D,E) = ltiss(sys)

It is important to note that when the output argument E is not referenced, ltiss
returns the state-space realization (E−1A,E−1B,C,D) provided the matrix E is
nonsingular.

The number of states, inputs, and outputs of a linear system are extracted from
the SYSTEM matrix sys with the function sinfo,

sinfo(sys)

The time and frequency response plots of descriptor systems represented by
SYSTEM matrices may be obtained by the function splot.

Series and parallel interconnections of SYSTEM matrices are performed by the
functions sadd and smult and feedback interconnection can be done by the func-
tion sloop.

13.1.2 Affine Parameter-Dependent Models

Many physical systems may be described by linearized equations in descriptor form

E(p)ẋ = A(p)x + B(p)u (13.6)

y = C(p)x + D(p)u (13.7)

where A(.), . . . ,E(.) are known functions of some parameter vector p = (p1, . . . ,

ps). The parameters p1, . . . , ps may vary slowly with the time within some pre-
scribed boundaries. In the case of affine parameter-dependent systems the matrices
of the state-space description are affine functions of the parameters, which means
that these matrices may be represented as

A(p) = A0 + p1A1 + · · · + psAs, B(p) = B0 + p1B1 + · · · + psBs

C(p) = C0 + p1C1 + · · · + psCs, D(p) = D0 + p1D1 + · · · + psDs

E(p) = E0 + p1E1 + · · · + psEs

where A0, . . . ,As,B0, . . . ,Bs and so on are constant matrices that do not depend on
the parameters p1, . . . , ps . Note that for a particular system some of these matrices
may be zero matrices.
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Fig. 13.1 Parameter box

At first glance, the affine parameter-dependent systems constitute a very small
set of systems with varying parameters. However, many real world systems may be
approximated with sufficient accuracy as affine parameter-dependent systems. The
advantage of such a system model is the possibility to derive easily several results
concerning closed-loop stability and controller design.

Using the notation

S(p) =
[
A(p) + jE(p) B(p)

C(p) D(p)

]
, Si =

[
Ai + jEi Bi

Ci Di

]
, i = 0, . . . , s

the affine parameter-dependent system (13.6), (13.7) is written compactly in
SYSTEM matrix terms as

S(p) = S0 + p1S1 + · · · + psSs (13.8)

The constant matrices S0, . . . , Ss may be considered as system coefficients and may
have not physical meaning by themselves.

The parameter uncertainty range can be described as a box in the parameter
space. This corresponds to cases where each uncertain or slowly varying parameter
pi ranges between two known bounds pli and pui ,

pi ∈ [pli ,pui], i = 1, . . . , s (13.9)

If p = (p1, . . . , ps) is the vector of all uncertain parameters, (13.9) constitutes a
hyperrectangle in the parameter space called the parameter box. The parameter box
is set by the function pvec. For instance, in case of three parameters (s = 3), the
parameter box is specified by the command lines

range = [pl_1 pu_1,pl_2 pu_2,pl_3 pu_3]
p = pvec(’box’,range)

The parameter box for the case of three parameters is shown in Fig. 13.1.
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The function pvec allows also to specify bounds on the rates of variation ṗi

of the parameter vector components pi(t). For instance, if the rates of the three
parameters p1(t),p2(t),p3(t) vary in the ranges [vl1 vu1], [vl2 vu2], [vl3 vu3],
respectively, these rates may be specified by adding a third argument rate to the
calling list of pvec as shown below

rate = [vl_1 vu_1, vl_2 vu_2, vl_3 vu_3]
p = pvec(’box’,range,rate)

When the argument rate is omitted, all parameters are assumed to be time-
invariant.

Provided the coefficient matrices S0, . . . , Ss are known and the domains where
the parameters and their rates vary are specified, the affine parameter-dependent
model (13.8) may be obtained by the function psys. For instance, the system

S(p) = S0 + p1S1 + p2S2 + p3S3

depending on three parameters, is defined by

S0 = ltisys(A0,B0,C0,D0,E0)
S1 = ltisys(A1,B1,C1,D1,E1)
S2 = ltisys(A2,B2,C2,D2,E2)
S3 = ltisys(A3,B3,C3,D3,E3)
pds = psys(pv, [S0 S1 S2 S3])

where pv is the parameter description returned by the function pvec.
It is necessary to stress that, by default, the function ltisys sets the E(p)

matrix to the identity matrix I . That is why if the arguments E0, E1, E2, E3
in the above lines are omitted then the matrix E(p) will be set to E(p) =
I + (p1 + p2 + p3)I . To specify an affine parameter-dependent system with a
parameter-independent E matrix (e.g., E(p) = I ), it is necessary to explicitly set
E1 = E2 = E3 = 0 by entering

S0 = ltisys(A0,B0,C0,D0)
S1 = ltisys(A1,B1,C1,D1,0)
S2 = ltisys(A2,B2,C2,D2,0)
S3 = ltisys(A3,B3,C3,D3,0)

Example 13.1 Consider the mass–damper–spring system whose state-space equa-
tions (13.4), (13.5) were obtained earlier in this section in descriptor form. The
three uncertain parameters m,k, c of the system vary in the intervals

m ∈ [1.8,4.2], k ∈ [1.4,2.6], c ∈ [0.8,1.2]
The parameter-dependent matrices of the mass–damper–spring system may be rep-
resented as affine functions of the uncertain parameters m,k, c as

A(m,k, c) =
[

0 1
−k −c

]
=

[
0 1
0 0

]
+ m

[
0 0
0 0

]
+ k

[
0 0

−1 0

]
+ c

[
0 0
0 −1

]



226 13 Analysis and Design of Parameter-Dependent Systems

E(m,k, c) =
[

1 0
0 m

]
=

[
1 0
0 0

]
+ m

[
0 0
0 1

]
+ k

[
0 0
0 0

]
+ c

[
0 0
0 0

]

The affine model of the mass–damper–spring system is specified by the following
command lines:

A_0 = [0 1;0 0]; B_0 = [0 1]’; C_0 = [1 0]; D_0 = 0;
E_0 = [1 0;0 0];
S_0 = ltisys(A_0,B_0,C_0,D_0,E_0);
%
A_m = [0 0;0 0]; B_m = [0 0]’; C_m = [0 0]; D_m = 0;
E_m = [0 0;0 1];
S_m = ltisys(A_m,B_m,C_m,D_m,E_m);
%
A_k = [0 0;-1 0]; B_k = [0 0]’; C_k = [0 0]; D_k = 0;
E_k = [0 0;0 0];
S_k = ltisys(A_k,B_k,C_k,D_k,0);
%
A_c = [0 0;0 -1]; B_c = [0 0]’; C_c = [0 0]; D_c = 0;
E_c = [0 0;0 0];
S_c = ltisys(A_c,B_c,C_c,D_c,0);
%
pv = pvec(’box’,[1.8 4.2;1.4 2.6;0.8 1.2]);
pds_mds = psys(pv,[S_0 S_m S_k S_c]);

The first SYSTEMmatrix S_0 contains the state-space data for m = k = c = 0 while
S_m, S_k, S_c define the coefficient matrices of m,k, c. The range of param-
eter values in the parameter box is specified by the pvec command. The results
obtained can be checked with the commands psinfo and pvinfo:

psinfo(pds_mds)

Affine parameter-dependent model with 3 parameters
(4 systems)
Each system has 2 state(s), 1 input(s), and
1 output(s)

pvinfo(pv_mds)

Vector of 3 parameters ranging in a box

The command line

nom_sys = psinfo(pds_mds,’eval’,[3.0 2.0 1.0])

allows to evaluate the parameter-dependent model for the nominal values m =
3.0, k = 2.0, c = 1.0.
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Fig. 13.2 Polytopic
parameter range

Apart from the possibility to describe the parameter uncertainty range as a box,
uncertain parameter vectors can be specified as ranging in a polytope of the param-
eter space. This possibility is illustrated in Fig. 13.2 for the simple case of s = 2.
The polytope is characterized by the four vertices

Π1 = (1,3), Π2 = (7,7), Π3 = (8,2), Π4 = (2,1)

An uncertain parameter vector p with this range of values is defined by

pi1=[1,3], pi2=[7,7], pi3=[8,2], pi4=[2,1]
p = pvec(’pol’,[pi1,pi2,pi3,pi4])

The string ’pol’ indicates that the parameter range is defined as a polytope.

13.1.3 Polytopic Models

Polytopic system is a linear time-varying system

E(t)ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u

whose SYSTEM matrix

S(t) =
[
A(t) + jE(t) B(t)

C(t) D(t)

]

varies within a fixed polytope of matrices

P =
{

q∑
i=1

αiSi : αi ≥ 0,

q∑
i=1

αi = 1

}

In the above expression S1, S2, . . . , Sq are given vertex systems

Si =
[
Ai + jEi Bi

Ci Di

]
, i = 1, . . . , q
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corresponding to the vertices of S(t).
In this way the polytopic system S(t) is a convex combination (linear com-

bination with nonnegative coefficients) of the SYSTEM matrices S1, . . . , Sq , i.e.
S(t) = α1S1 +· · ·+αqSq . The nonnegative numbers α1, . . . , αq are called the poly-
topic coordinates of S(t).

Polytopic models are fully specified by the list of their vertex systems, i.e., by
the SYSTEM matrices S1, . . . , Sq and may be created by the function psys. For
instance, a polytopic model taking values in the convex combination of the three
linear time-invariant systems S1, S2, S3 is created by the line

polsys = psys([S1 S2 S3])

Affine parameter-dependent systems

S(p) =
[
A(p) + jE(p) B(p)

C(p) D(p)

]

may be converted easily to polytopic systems. If each parameter pi varies in some
interval [pli ,pui], i = 1, . . . , s, then the parameter vector p = (p1, . . . , ps) takes
values in a parameter box with q = 2s corners Π1,Π2, . . . ,Πq . According to the
results of functional analysis, if the function S(p) is affine in p, then it maps this
parameter box to some polytope of SYSTEM matrices. Specifically, this polytope
is the convex linear combination of the images S1 = S(Π1), S2 = S(Π2), . . . , Sq =
S(Πq) of the parameter box corners Π1,Π2, . . . ,Πq . These images are the vertex
systems of the polytopic model.

An affine parameter-dependent system is converted to an equivalent polytopic
model using the function aff2pol. The syntax is of this function is

polsys = aff2pol(affsys)

where affsys is the affine model and polsys is the resulting polytopic model.
The polytopic model consists of the instances of affsys at the vertices of the
parameter box.

For illustration, if the function aff2pol is applied to the mass–damper–spring
system, considered in Example 13.1, one obtains

pols_mds = aff2pol(pds_mds);
psinfo(pols_mds)

Polytopic model with 8 vertex systems
Each system has 2 state(s), 1 input(s), and
1 output(s)

In the given case the affine model depends on three parameters, which results in
q = 23 = 8 vertex systems of the polytopic model.
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13.2 Analysis of Parameter-Dependent Systems

In this section we consider the implementation of MATLAB® functions for stability
analysis of parameter-dependent systems and evaluation of the transient response of
such systems.

Stability analysis of parameter-dependent systems is done by the second method
of Lyapunov. According to this method a linear time-varying system

E(t)ẋ = A(t)x (13.10)

is asymptotically stable if there exists a positive definite quadratic Lyapunov func-
tion

V (x) = xT Px

such that its derivative with respect to time is negative definite, i.e.

dV (x(t))

dt
< 0

along all state trajectories. If it is possible to find such a Lyapunov function we
say that the system (13.10) is quadratically stable .The existence of quadratic Lya-
punov function guarantees stability for arbitrarily fast time variations of the system
parameters which is a very stringent condition in practice.

The quadratic stability of affine or polytopic parameter-dependent system may
be tested by the MATLAB® function quadstabwhich involves solution of several
Linear Matrix Inequalities (LMI) in an attempt to find a suitable Lyapunov function
V (x). However, quadstab may produce pessimistic results due to the allowance
of arbitrarily fast parameter variations. Less conservative results in case of constant
or slowly varying parameters may be obtained by the function pdlstab which is
considered next.

For a parameter-dependent system the function pdlstab seeks a parameter-
dependent Lyapunov function to establish the stability of uncertain state-space mod-
els over some parameter range or polytope of systems. Specifically, for an affine
parameter-dependent system

E(p)ẋ = A(p)x + B(p)u

y = C(p)x + D(p)u

with p = (p1,p2, . . . , ps) pdlstab seeks a Lyapunov function of the form

V (x,p) = xT Q−1x, Q(p) = Q0 + p1Q1 + · · · + psQs

with symmetric matrices Q0,Q1, . . . ,Qs such that dV (x,p)/dt < 0 along all ad-
missible trajectories.

For a time-invariant polytopic system

Eẋ = Ax + Bu
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y = Cx + Du

with

[
A + jE B

C D

]
=

q∑
i=1

αi

[
Ai + jEi Bi

Ci Di

]
, αi ≥ 0,

q∑
i=1

αi = 1 (13.11)

pdlstab seeks a single Lyapunov function of the form

V (x,α) = xT Q(α)−1x, Q(α) = α1Q1 + · · · + αqQq

such that dV (x,α)/dt < 0 for all polytopic decompositions (13.11). Note that for
this type of models one of the matrices A,E should be constant and the other un-
certain.

Similarly to quadstab, the function pdlstab determines whether the suffi-
cient LMI stability conditions are feasible.

The syntax of the function pdlstab is

[tau,Q0,Q1,...,Qs] = pdlstab(affsys,options)

for the case of affine parameter-dependent systems and

[tau,Q1,Q2,...,Qq] = pdlstab(polsys,options)

for the case of polytopic parameter-dependent systems.

Input arguments

– affsys is the affine system description specified with the function psys, which
contains information about the range of values and rate of variation of each pa-
rameter pi ;

– polsys is the polytopic system description specified with the function psys or
obtained by the function aff2pol from an affine model;

– options: optional parameter.
• Setting options(1) = 0 tests robust stability (default).
• When options(2) = 0, pdlstab uses simplified sufficient conditions

for faster execution. Set options(2) = 1 to use the least conservative con-
ditions.

Output arguments

– tau: a scalar parameter which shows whether the LMI stability conditions are
feasible. If tau is negative then the system is stable;

– Q0,Q1,...,Qs: contain the coefficient matrices Q0,Q1, . . . ,Qs of the matrix
Q(p) associated with the Lyapunov function V (x,p) in case of affine model;

– Q1,Q2,...,Qq: contain the coefficient matrices Q1,Q2, . . . ,Qq of the matrix
Q(α) associated with the Lyapunov function V (x,α) in case of polytopic model.
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Example 13.2 Consider the mass–damper–spring system whose affine parameter-
dependent model pds_mds was created in Example 13.1. For this model the com-
mand line

[tmin,Q0,Q1,Q2,Q3] = pdlstab(pds_mds)

produces

Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + t*I
The best value of t should be negative
for feasibility

Iteration : Best value of t so far

1 -0.024610

Result: best value of t: -0.024610
f-radius saturation: 0.000% of R = 1.00e+007

This system is stable for the specified parameter
trajectories

tmin =

-0.0246

Q0 =

1.6750 -0.3994
-0.3994 1.1642

Q1 =

0.8456 -0.0451
-0.0451 -0.0271

Q2 =

0.0543 -0.0989
-0.0989 0.9498

Q3 =

0.6545 -0.7452
-0.7452 -0.0235
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The results shows that the mass–damper–spring system remains stable for all param-
eter values that belong to the specified parameter box. Note that although the matri-
ces Q1 and Q3 are not positive definite, the matrix Q(p) = Q0 +mQ1 +kQ2 +cQ3
remains positive definite for the whole parameter range.

The time response of an affine parameter-dependent system

E(p)ẋ = A(p)x + B(p)u

y = C(p)x + D(p)u

along a given parameter trajectory p(t) and for an input signal u(t) is simulated
by the function pdsimul. The parameter vector p(t) is required to range in a
box (type ’box’ of the function pvec). The function pdsimul also accepts
the polytopic representation of affine parameter-dependent systems as returned by
aff2pol(pds).

The syntax of the function pdsimul is

pdsimul(pds,’traj’,tf,’ut’,xi,options)

or

[t,x,y] = pdsimul(pds,pv,’traj’,tf,’ut’,xi,options)

When invoked without output arguments, pdsimul plots the output response y(t)

of the affine parameter-dependent system pds. Otherwise, it returns the vector of
integration time points t as well as the state and output responses x, y. The parame-
ter trajectory and input signals are specified by two time functions p = traj(t)
and u = ut(t). If ’ut’ is omitted, the response to a step input is computed by
default. The final time and initial state vector can be reset through tf and xi (their
respective default values are 5 seconds and zero vector). Finally, the input argument
options gives access to the parameters controlling the integration of the system
differential equations.

Example 13.3 Consider the simulation of the step response of mass–damper–spring
system for a period of 30 seconds. The parameter trajectory is chosen as

m(t) = 3 + 1.2e−0.3t cos(10t)

k(t) = 2 + 0.6e−0.3t sin(10t)

c(t) = 0.8 + 0.01t

and is specified in the file traj_mds.m.

function p = traj_mds(t)
%
p = [3.0 + 1.2*exp(-0.3*t)*cos(10*t); ...

2.0 + 0.6*exp(-0.3*t)*sin(10*t); ...
0.8 + 0.01*t];
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Fig. 13.3 Parameter trajectory for system simulation

The parameter trajectory is shown in Fig. 13.3.
The time response of the mass–damper–spring system for the given parameter

trajectory along the time response of the nominal system are obtained by the lines

[t,x,y] = pdsimul(pds_mds,’traj_mds’,30);
mds_nom = psinfo(pds_mds,’eval’,[3 2 1]);
[a,b,c,d] = ltiss(mds_nom); mds_ss = ss(a,b,c,d);
tt = 0:0.01:30;
y_nom = step(mds_ss,tt);
figure(1)
plot(t,y(:,1),’b-’,tt,y_nom,’r--’), grid
xlabel(’Time (secs)’)
ylabel(’y’)
title(’System transient response’)
legend(’Parameter-dependent system’,’Nominal system’)

Both time responses are shown in Fig. 13.4. Comparing with the step responses
of the mass–damper–spring system for 20 random values of the uncertain elements,
shown in Fig. 9.14, we see that the response of the parameter-dependent system is
slightly different from the response of the nominal system. This is explained by the
fact that in the latter case the parameters m,k, c correspond to a given trajectory in
the parameter space and do not vary independently.
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Fig. 13.4 Time response of the parameter-dependent system

13.3 Gain Scheduling Design for Parameter-Dependent Systems

When the system parameters undergo large variations it is often impossible to
achieve high performance and even closed-loop stability over the entire operating
range with a single time-invariant controller. In this case it is appropriate to apply a
technique called gain scheduling, which is successfully used in the control of uncer-
tain or time-varying systems. This technique involves implementation of a family of
controllers designed for different regions of the parameter space so as to guarantee
stability and performance in that region. During the system operation the controllers
are changed according to a physical parameter measured in real time which detects
in what region the system is working in the corresponding moment of the time.
The change of controllers is done either by interpolation of certain parameters or by
switching. Such controllers are said to be scheduled by the parameter measurements.
In this section we consider implementation of gain-scheduled H∞ controllers which
ensures higher performance in the face of large variations in operating conditions
and provides smooth changes between controllers.

The synthesis technique presented in this section is applicable to affine parameter-
dependent plants with state-space description

P(.,p)

⎧⎪⎨
⎪⎩

ẋ = A(p)x + B1(p)w + B2u,

z = C1(p)x + D11(p)w + D12u

y = C2x + D21w + D22u

(13.12)
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where

p(t) = (
p1(t), . . . , ps(t)

)
, pi ∈ [pli ,pui], i = 1, . . . , s

is a time-varying vector of physical parameters and A(.),B1(.),C1(.),D11(.) are
affine functions of p(t). Note that p(t) may include part of the state vector x itself
provided that the corresponding states are accessible to measurement. Although this
description is not valid in the general case when all matrices are functions of p(t),
it may be used for many systems arising in practice.

If the parameter vector p(t) takes values in a box with corners Πi , i = 1, . . . , q

(q = 2s) then the plant SYSTEM matrix

S(p) =
⎡
⎣ A(p) B1(p) B2

C1(p) D11(p) D12
C2 D21 D22

⎤
⎦

ranges in a matrix polytope with vertices S(Πi). Decomposing the parameter vector

p(t) = α1Π1 + · · · + αqΠq, αi ≥ 0,

q∑
i=1

αi = 1 (13.13)

over the corners Πi of the parameter box, the system matrix S(p) is represented as

S(p) = α1S(Π1) + · · · + αqS(Πq)

This representation suggests to seek a parameter-dependent controller

K(.,p)

{
ζ̇ = AK(p)ζ + BK(p)y,

u = CK(p)ζ + DK(p)y

whose SYSTEM matrix has the polytopic representation

[
AK(p) BK(p)

CK(p) DK(p)

]
=

q∑
i=1

αi

[
AK(Πi) BK(Πi)

CK(Πi) DK(Πi)

]
(13.14)

In this way, for a given convex decomposition (13.13) of the current parameter vec-
tor p(t), the controller state-space matrices at the operating point p(t) are obtained
by convex interpolation of the linear time-invariant vertex controllers

Ki =
[
AK(Πi) BK(Πi)

CK(Πi) DK(Πi)

]

The values of controller matrices AK(p),BK(p),CK(p),DK(p) are derived from
the values AK(Π),BK(Π),CK(Π),DK(Π) at the corners of the parameter box
according to

AK(p) = α1AK(Π1) + · · · + αqAK(Πq)
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Fig. 13.5 Gain-scheduled
H∞ problem

BK(p) = α1BK(Π1) + · · · + αqBK(Πq)

CK(p) = α1CK(Π1) + · · · + αqCK(Πq)

DK(p) = α1DK(Π1) + · · · + αqDK(Πq)

This interpolation yields a smooth scheduling of the controller matrices by the pa-
rameter measurements p(t).

The closed-loop interconnection involving the parameter-dependent plant P(.,p)

and parameter-dependent controller K(.,p) is shown in Fig. 13.5 where w is the
vector of external input signals and z is the vector characterizing the closed-loop
system behavior. The design goal is to determine a gain-scheduled controller with
the vertex representation (13.14) that stabilizes the closed-loop system for all ad-
missible parameter trajectories p(t) and such the worst-case closed-loop gain from
w to z does not exceed some prescribed level γ > 0. Controllers that satisfy this
aim are called H∞ gain scheduled controllers.

The design of H∞ gain-scheduled controllers is done by the function hinfgs
which finds the desired controller by solving 2s LMIs (see for details [9, 50,
Chap. 7]). The syntax of this function is

[gopt,pdK] = hinfgs(pdP,r)

The input of the function consists of the affine or polytopic model pdP of the plant
13.12 and the vector r=[p2 m2] specifying the dimensions of the output y and
control u, respectively. On output, gopt is the best achievable with respect to pa-
rameter variations closed-loop H∞ norm and pdK is a polytopic system consisting
of the vertex controllers

Ki =
[
AK(Πi) BK(Πi)

CK(Πi) DK(Πi)

]

For a given value p of the parameter vector p(t), the corresponding gain-scheduled
controller

K(p) =
[
AK(p) BK(p)

CK(p) DK(p)

]

is determined by entering the command lines
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alpha = polydec(pv,p)
Kp = psinfo(pdK,’eval’,alpha)

Here, the function polydec computes the convex decomposition p(t) = ∑q

i=1 αiΠi

producing as an output the vector alpha = (alpha_1, ..., alpha_q).
The controller K(p) = ∑q

i=1 αiKi corresponding to the vector p is obtained as a
SYSTEM matrix by the function psinfo.

A polytopic model of the closed-loop system may be found by the function slft
using the command line

pcl = slft(pdP,pdK)

For a given parameter value p of p(t) the closed-loop system is evaluated by the
line

pcl_t = psinfo(pcl,’eval’,polydec(pv,p))

The closed-loop time response is obtained by

pdsimul(pcl,’trajfun’,tf,’inputfun’)

where pcl is the polytopic representation of the closed-loop system and tf is the
desired duration of the simulation. The functions trajfun inputfun define the
desired parameter trajectory and input signals, respectively, as function of the time.
If the parameter ’inputfun’ is omitted, the pdsimul plots the step response by
default.

Example 13.4 This example presents the design of an H∞ gain-scheduled con-
troller for a hydro turbine power unit in the case of wide range power variation.

Assuming a rigid conduit and incompressible flow, the turbine and penstock char-
acteristics are determined by three basic equations relating to the velocity of the
water in the penstock, the turbine mechanical power, and the acceleration of water
column [88]. We have

U = kuG
√

H

Pm = kpHU (13.15)

(ρLAp)
dU

dt
= −Ap(ρag)(H − H0)

where U is the water velocity; G gate opening, H hydraulic head at gate, ku a
proportionality coefficient, Pm turbine mechanical power, kp turbine efficiency, H0
initial steady-state value of H , Ap pipe area, L length of the penstock, ρ mass
density, ag acceleration due to gravity, ρag(H − H0) static pressure deviation at
turbine gate.

To describe the dynamics of the hydro turbine in wide range of operational condi-
tions, it is convenient to represent (13.15) in normalized form, based on steady-state
operating values of the corresponding variables. Setting

Ū = U

U0
, Ḡ = G

G0
, H̄ = H

H0
, P̄m = Pm

Pm0
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where the subscript 0 refers to initial steady-state values, (13.15) are written as

H̄ = (
Ū/Ḡ

)2

P̄m = ŪH̄ (13.16)

Tw

dŪ

dt
= −(

H̄ − 1
)

where

Tw = LU0

agH0
(13.17)

is the water starting time at any load. It represents the time required for a head H0
to accelerate the water in the penstock from standstill to the velocity U0. The value
of Tw at rated load is called water starting time at rated load and is denoted by TW .
This time constant has a fixed value for a given turbine-penstock unit and can be
obtained from

TW = LQr

agApHr

where Qr = ApUr is the water-flow rate at rated load and Ur,Hr are the water
velocity and hydraulic head at rated load, respectively.

In case of small signal deviations about the operation point, the linearized repre-
sentation of (13.16) is

ΔŪ = ΔḠ + 0.5ΔH̄

ΔP̄m = ΔH̄ + ΔŪ (13.18)

Tw

dΔŪ

dt
= −ΔH̄

After some algebraic manipulations of (13.18) the transfer function between the
gate opening position and the turbine mechanical power is obtained as

ΔP̄m = −Tws + 1

0.5Tws + 1
ΔḠ (13.19)

It can be seen that the linearized model transfer function depends on the time con-
stant Tw , which varies with load, i.e., it has to be considered as a varying system
parameter.

Denoting the power reference value as P0 = kpH0U0, it is possible to obtain
from (13.17) a relationship between the time constant Tw and the normalized power
reference P̄0 = P0/Pr , where Pr = kpHrUr is the turbine power at rated load. As a
result we have

Tw(P̄0) = k
P̄0

H̄ 2
0

, k = LPr

agkpH 2
r

(13.20)
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where H̄0 = H0/Hr . Equation (13.20) shows that the time constant Tw is a function
of the power reference value P̄0 which changes during the hydro turbine operation.
The variation of this time constant leads to variations of turbine model which should
be considered as a parameter-dependent model. Taking into account (13.20) the fol-
lowing plant model is obtained:

ΔP̄m = −Tw(P̄0)s + 1

0.5Tw(P̄0) + 1
ΔḠ (13.21)

Further on we shall make use of the following data related to the turbine, penstock
and generator of the hydro generating unit: penstock length 900 m; rated hydraulic
head 150 m; initial hydraulic head 1 m; piping area 8.5 m2; water velocity at rated
load 7.65 m/s; water flow rate at rated load 65 m3/s; gate opening at rated load 0.96;
gate opening at no load 0.02.

The servo system opening the turbine gate is assumed to have the description

ΔḠ(s) = 1

Tss + 1
Δū(s)

where ū is the normalized servo system reference signal and Ts = 3 s. Incorporating
this dynamics in the plant equations we obtain

P̄m(s) = W
(
s, P̄o

)
ū(s)

where the transfer function W(s, P̄o) relating the control signal and the hydro tur-
bine power is obtained as

W
(
s, P̄o

) = 1

(Tss + 1)

(−Tw(P̄0)s + 1)

(0.5Tw(P̄0)s + 1)
(13.22)

Introducing the state and output vectors

x(t) = [
ΔḠ(t) ΔP̄m(t)

]T
, y(t) = P̄m(t)

one obtains the state space description

ẋ(t) = A
(
P̄0

)
x(t) + Bu(t) (13.23)

y(t) = Cx(t) (13.24)

where

A
(
P̄0

) =
[ − 1

Ts
0

2
Ts

+ 2
Tw

− 2
Tw

]
, B =

[ 1
Ts

− 2
Ts

]
, C = [

0 1
]

The system (13.23),(13.24) may be represented as the parameter-dependent system

ẋ = A(p)x + B(p)u (13.25)
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y = C(p)x + D(p)u (13.26)

which is affine in the uncertain parameter

p = 2

Tw

(13.27)

In fact, using the setting (13.27), the system matrices may be written as

A(p) = A0 + pA1, B(p) = B0 + pB1

C(p) = C0 + pC1, D(p) = D0 + pD1

where

A0 =
[ 1

Ts
0

1
Ts

0

]
, A1 =

[
0 0
1 −1

]

B0 =
[ 1

Ts

2
Ts

]
, B1 =

[
0
0

]

C0 = [
0 1

]
, C1 = [

0 0
]

D0 = 0, D1 = 0

Assuming that the normalized power reference varies in the interval [0.1,1.0], the
time constant Tw varies in the range [0.46771,4.6771]. Hence the uncertain param-
eter p varies between the values 2/4.6771 and 2/0.46771.

The affine parameter-dependent system model is obtained in the variable pds by
the lines

A_0 = [-1/Ts 0;2/Ts 0]; B_0 = [1/Ts -2/Ts]’;
C_0 = [0 1]; D_0 = 0;
S_0 = ltisys(A_0,B_0,C_0,D_0,1);
%
A_p = [0 0;1 -1]; B_p = [0 0]’;
C_p = [0 0]; D_p = 0;
S_p = ltisys(A_p,B_p,C_p,D_p,0);
%
% determine the range of time constant Tw
P0 = 1.0;
Tw1 = L*P0*Pr/(ag*kp*Hr^2);
P0 = 0.1;
Tw2 = L*P0*Pr/(ag*kp*Hr^2);
%
pv = pvec(’box’,[2.0/Tw1 2.0/Tw2]);
pds = psys(pv,[S_0 S_p]);
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Fig. 13.6 Closed-loop
system

The design of gain-scheduled controller of the hydro turbine system is done ac-
cording to the block diagram shown in Fig. 13.6 and resembles the mixed-sensitivity
H∞ design. A 2-degree-of-freedom controller is used to achieve better performance.
The open-loop plant interconnection is obtained by the command line

[pdP,nmc] = sconnect(’r’,’e=r-G(1);K’,’K:[r;G]’,
’G:K’,pds);

The arguments of the function sconnect have the following meaning.

– The first input argument ’r’ is the scalar reference signal r .
– The second argument ’e=r-G(1);K’ specifies two output signals separated by

a semicolon. These signals are the difference r − y between reference and plant
output, and the control action u.

– The third argument ’K:[r;G]’ names the controller and specifies its inputs. In
the given case a 2-degrees-of-freedom controller is used with inputs r and y.

– The remaining arguments come in pairs and specify, for each system in the loop,
its input list and its SYSTEM matrix. Here ’G:K’ means that the input of G is
the output of K , and tt pds is the SYSTEM matrix of G(s).

The design aim is to fulfill the mixed-sensitivity requirement
∥∥∥∥
[

WpS

WuKS

]∥∥∥∥∞
< 1

The performance and control weighting functions are chosen as

Wp(s) = 1.6
4s + 1

60s + 0.01
, Wu(s) = 0.4

1.2s + 1

0.0024s + 1

respectively, in order to achieve good transient response respecting the constraint
on the control action. These weighting functions are appended to the plant intercon-
nection by the line

Paug = smult(pdP,sdiag(Wp,Wu,eye(2)));

where the function sdiag forms a block-diagonal matrix with Wp , Wu and the unit
2 × 2 matrix on the diagonal and smult multiplies the parameter-dependent plant
pdP with this matrix. Now the polytopic gain-scheduled controller with two fourth
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Fig. 13.7 Variation of the system parameter

order vertex systems K1 and K2 is obtained in the variable pdK by the line

[gopt,pdK] = hinfgs(Paug,nmc)

and the corresponding closed-loop system is

pCL = slft(pdP,pdK)

The simulation of the closed-loop system is done by the function pdsimul. In or-
der to set difficult conditions for controller work, the parameter trajectory is chosen
to vary as shown in Fig. 13.7. The trajectory is set in the file traj_ht. The tran-
sient response of the closed-loop system for this parameter trajectory is computed
for a time period of 100 s by the lines

tf = 100;
[t,x,y] = pdsimul(pCL,’traj_ht’,tf);

The step response of the closed-loop system is shown in Fig. 13.8. Although the pa-
rameter Tw varies rapidly which leads to quick variations of the controller, the tran-
sient response is satisfactory. The corresponding control action is shown in Fig. 13.9.
The Simulink® model Hinf_GS_Control of the closed-loop system involving
the nonlinear plant model and the gain-scheduled controller is shown in Fig. 13.10.
The model of the gain-scheduled controller

K(p) = α1K1 + α2K2

including the two vertex time-invariant controllers K1 and K2, is shown in
Fig. 13.11. For given value of the scheduling parameter Tw , computed from the
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Fig. 13.8 Step response of the closed-loop system

Fig. 13.9 Closed-loop control action
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Fig. 13.10 Simulink model of the closed-loop system

Fig. 13.11 Simulink model of the gain-scheduled controller
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Fig. 13.12 Transient response of the closed-loop system

Fig. 13.13 Closed-loop control action
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desired power reference P0, the polytopic coordinates α1 and α2 are evaluated in
the function alpha_eval by the line

alpha = polydec(pv,2.0/Tw);

The closed-loop system simulation is done for different values of the power refer-
ence in the range 0.3–0.9 and for a period of time equal to 450 s. The simulation
results are plotted by the function plot_simul_results. The variation of the
reference signal and the corresponding closed-loop transient response are shown in
Fig. 13.12. It is seen that the behavior of the nonlinear closed-loop system is close
to the behavior of the linear system whose step response was shown in Fig. 13.8.
The closed-loop control action, shown in Fig. 13.13, varies in the interval [0, 0.9].

13.4 Exercises

Exercise 13.1 Analyze the quadratic stability of the mass–damper–spring system
using the function quadstab.

Exercise 13.2 For the plant described in Example 13.4 try to find a μ-controller
that ensures robust stability and robust performance of the closed-loop system for
the same range of variation of the time constant Tw .
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Chapter 14
Robust Control of a Hard Disk Drive

This chapter considers the design of a robust servo system of a hard disk drive
(HDD). Three robust design methods are applied, namely, the μ-synthesis, H∞ op-
timal design and the H∞ loop-shaping design procedure (LSDP). After a descrip-
tion of the HDD servo-system dynamics in Sect. 14.1, it is shown (in Sect. 14.2)
how to derive the plant model that involves several uncertain parameters. Then we
consider the synthesis of continuous-time controllers using the available methods
for robust control design. These controllers are compared in aspects of robustness
of closed-loop system stability and of performance in the frequency domain and in
the time-domain. The design of discrete-time controller is also included, for two
sampling frequencies. Finally, we present the simulation results of the nonlinear
continuous-time and discrete-time closed-loop systems, followed by conclusions at
the end of the chapter.

The prevalent trend in hard-disk design is towards smaller disks with increasingly
larger capacities. This implies that the track width has to be smaller leading to lower
error tolerance in the positioning of the read/write heads. The controller for track
following has to achieve tighter regulation in the presence of parameter variations,
nonlinearities and noises. Hence, it is appropriate to use advanced design methods
like μ-synthesis and H∞ optimization in order to achieve robust stability and robust
performance of the closed-loop servo system.

14.1 Hard Disk Drive Servo System

The schematic diagram of a typical hard disk drive is shown in Fig. 14.1. The
disk assembly consists of several flat disks called platters coated on both sides
with very thin layers of magnetic material (thin-film media). The magnetic mate-
rial is used to store the data in the form of magnetic patterns. The platters rotate
at high speed, driven by a spindle motor. Recently, the spindle speed has become
5400 r.p.m., 7200 r.p.m. or even 10,000 and 15,000 r.p.m. The data are retrieved
from, or recorded onto, the platters by electromagnetic read/write (R/W) heads that

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_14,© Springer-Verlag London 2013
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Fig. 14.1 Schematic diagram of a hard disk drive

are mounted at the bottom of sliders. Today’s hard disks read data using giant-
magneto-resistive (GMR) heads and write data with thin-film inductive heads. The
sliders with read/write heads are mounted onto head arms. The arms are lightweight
rigid constructions allowing them to be moved rapidly on the platter surface. There
is one arm per read/write head and all arms are mounted in a stack assembly that
moves over multiple disk surfaces simultaneously. The heads are suspended less
than 1 microinch above the disk surface. The appropriate flying height of the heads
is achieved thanks to the air flow generated by the spinning disk.

The data recorded on the platters are in concentric circles called tracks. Modern
hard disks have tens of thousands of tracks resulting in track density 35,000 tracks
per inch (TPI) or more. Thus, the distance between adjacent tracks is less than a
microinch. Each track is divided into smaller pieces called sectors that contain 512
bytes of information. There may be several hundreds or even thousands of sectors
in a track. The drive density may reach several hundreds GB per platter (1 GB =
109 bytes).

The head arms are moved on the surface of the platter by a rotary voice coil ac-
tuator frequently called the Voice Coil Motor (VCM). The VCM consists of a voice
coil, mounted at the end of the head arm assembly, and permanent electromagnets.
By controlling the current in the coil, the heads can move in one direction or the
other in order to follow precisely the data track.
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The goal of the hard disk drive servo control system is to achieve a precise po-
sitioning of the read/write heads on the desired track (track-following mode) while
data are being written or read, and a quick transition from one track to another
target track (seeking mode). As the drive initiates a seek command, it switches to
a seek control algorithm that is a type of time-optimal (bang-bang) control algo-
rithm. When the head is positioned over the desired track, the drive switches into
track-following mode. In the present work we consider the servo controller of the
track-following mode.

All modern hard disk drives read the relative position of the head to track directly
from the disk media by using a method called embedded servo or sector servo. For
this method the servo information is interleaved with user data across the entire
surface of all platters. Position information is placed on the disk surfaces in servo
frames during the manufacturing of the disk and cannot be rewritten. This is why
the disk heads are locked out by the drive controller from writing to the areas where
servo information is written. Because of the interleaving of servo information with
data, the embedded servo system is a sampled-data system. Increasing the number
of servo frames within a track improves the performance of the servo system due to
the higher sample rate but limits the maximum data storage. The servo information
is read by the same head that reads the data. The position information usually con-
sists of two parts: coarse position giving track number and fine position information
relative to each track. The position error, representing the difference between the
reference track position and the head position, is measured by making use of posi-
tion bursts that are part of the servo information. The position bursts are patterns of
alternating magnetic polarity written on the disk surface with a particular frequency.
The periodic signal, obtained from the read head passing over a burst pattern, has an
amplitude that is proportional to how much the read head is directly over the burst
pattern. The signals corresponding to two or four bursts of position information are
demodulated by a servo demodulator in order to compose the position error signal
(PES). This signal is used by the servo controller to change the voice coil current
appropriately and hence the read/write heads position. It should be pointed out that
the absolute head position is not generally known from the servo information that
is read off of the disk. Only a signal proportional to the position error is available,
which means that for track following the reference signal is ideally equal to zero.

The failure of the head to follow the track on a platter surface faithfully as the
disk spins is referred to as runout. The runout could have serious consequences,
especially during writing where data in adjacent tracks might be overwritten. There
are two types of runout, namely the repeatable runout (RRO) and nonrepeatable
runout (NRRO). Repeatable runout is caused by both imbalance in the spindle and
imperfections in the servowriting process that result in noncircular position infor-
mation. This information is encoded at the spindle frequency, yielding a repeatable
noncircular track for the disk servo to follow. The nonrepeatable runout is caused by
a windage induced actuator arm, slider motion and mechanical vibrations that can
arise from various sources such as ball bearing defects, spindle motor vibrations and
slider vibrations. The RRO may be reduced through feedforward compensation at
the corresponding frequency by using harmonic correctors.
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Fig. 14.2 Block-diagram of the hard disk drive servo system

The block-diagram of the HDD servo system is shown in Fig. 14.2. The R/W
heads are moved by a VCM that is driven by the output current ic of a power am-
plifier (PA). The actual position signal y is compared with the signal yref, which
represents the desired head position. For the track following, the reference input
yref is theoretically equal to zero and y(t) appears as an error signal. In practice,
yref must be set equal to the signal representing both RRO and NRRO. The digital
signal yr is a reference for the desired track and is used during the seeking mode.
The error signal is sampled by an analogue-to-digital (A/D) converter and serves as
part of an input to the digital servo controller Kd that is typically implemented on a
digital signal processor (DSP) chip. The output of the controller is converted to ana-
logue form by a digital-to-analog (D/A) converter and amplified by the PA. Since
the motor torque is proportional to the voice coil current, the amplifier is configured
as a current source. The exogenous signal td is the torque disturbance due to exter-
nal shock and vibrations, power amplifier noise, digital-to-analogue converter noise,
pivot bearing friction and flex cable bias. The increase of the spindle speed increases
the air flow inside the disk (windage) that in turn increases the disturbance torque
on the actuator. The disturbance is a low-frequency signal with spectral content usu-
ally below 500 Hz. The position noise signal η includes quantization errors due to
servo demodulator noise, finite resolution of the analogue-to-digital converter, me-
dia noise and preamplifier noise. The position noise is a high-frequency signal with
spectral content usually above 1 kHz. Since the measured PES is contaminated with
noise, the true PES, yref − y, is not available.

One of the limitations inherent in the design of servo controllers for high track
density HDD is the influence of actuator mechanical resonant modes on the head-
positioning servo. If the actuator input contains a periodic component with fre-
quency equal to a resonance frequency, this component may be amplified greatly
that results in large off-track deviation of the read/write heads. Usually, the actuator
is mechanically designed in such a way that the resonant modes occur at frequencies
that will be attenuated by the servo system. However, as servo bandwidth increases
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Table 14.1 Rigid body model parameters and tolerances

Parameter Description Value Units Tolerance

J arm moment of inertia 6.3857 × 10−6 kg m2 ±10.0 %

R arm length 5.08 × 10−2 m ±0.1 %

kPA amplifier gain 10.0 V/V ±0.0 %

kt VCM torque constant 9.183 × 10−2 N m/A ±10.0 %

kb back e.m.f. constant 9.183 × 10−2 N m/A ±10.0 %

tpm tracks per meter 106 tracks –

ky position measurement gain 1.2 V/track ±5.0 %

Rcoil coil resistance 8.00 � ±20.0 %

Rs sense resistance in the power
amplifier feedback

0.2 � ±1.0 %

Lcoil coil inductance 0.001 H +0, −15 %

emax saturated power amplifier voltage 12.0 V −0, +5 %

RPM disk rotation rate 7200 rev/min ±1.0 %

tw track width 1 µm ±1.0 %

to meet higher performance requirements, this attenuation may not be achieved due
to mechanical design constraints. It is also important to note that the presence of res-
onant modes may limit the servo bandwidth via stability margin constraints. With a
reduced bandwidth, the servo system may not be able to achieve the desired perfor-
mance.

The rotary actuators of hard disks may have tens of resonances that may lead to
a high order model. However, in practice only 3 to four main resonances are taken
into account. Usually, these are the first and second torsion modes (in the range
1500–2500 Hz) as well as the first sway mode (in the range 8000–12 000 Hz).

A common approach to reduce the effect of resonance modes is to put notch
filters in the servoloop that attenuates or filters out vibrations at selected major res-
onant frequencies. However, each notch filter introduces phase margin loss at low
frequencies thus reducing the system robustness. Also, the presence of uncertainty
in the resonant modes may decrease significantly the efficiency of those filters.

Our goal in this chapter is to design a robust track-following servo control sys-
tem for a 3.5-inch HDD with track density 25,400 TPI. The desired settling time is
about 1 ms in the presence of four resonances, several uncertain parameters, position
sensing noise and disturbances. The parameters of the rigid-body model and their
tolerances are given in Table 14.1. For dimensional compatibility, the track density
is given in tracks per meter, instead of in TPI.

We now first consider the derivation of a HDD servo system model.
The dynamics of the rotary arm is described by the equation

J
d2Θ

dt2
= tm + td
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Fig. 14.3 Block diagram of the power amplifier with voice coil

where J is the arm moment of inertia, Θ is the angle of arm rotation, tm is the VCM
torque, and td is the disturbance torque.

The VCM torque is given by

tm = kt ic

where kt is the motor torque constant and ic is the current through the VCM coil.
The voice coil has a resistance Rcoil and an inductance Lcoil. An additional cur-

rent sense resistance Rs is connected in serial with the voice coil to implement a
feedback from the power amplifier output. Hence the voice coil admittance is de-
scribed by the transfer function

Gvca(s) = ic(s)

ec(s)
= 1/Rc

τs + 1

where ec is the input voltage to the voice coil, τ = Lcoil/Rc and Rc = Rcoil + Rs .
The block diagram of the power amplifier with voice coil is shown in Fig. 14.3.

The input of the voice coil is the difference ec = ep − eb, where ep is the output
voltage of the amplifier and eb = kbω is the back electromotive force (e.m.f.) that is
generated during the moving of the coil in the magnetic field. Since the saturation
voltage of the amplifier is emax, in the absence of back e.m.f., the amplifier will
saturate for an input voltage greater than emax/kPA. In the study limited to linear
systems, the amplifier saturation is neglected.

The length of the arc, corresponding to the arm rotation angle Θ , is equal to RΘ .
For small values of Θ the number of tracks contained in the arc is R · Θ · tpm. This
gives an output signal y = R · tpm · ky · Θ .

If we neglect the dynamics of the voice coil, the transfer function of the servoac-
tuator considered as a rigid body is obtained in the form of a double integrator. Such
a model oversimplifies the system dynamics and cannot produce reliable results if
used in the design.
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Fig. 14.4 Transfer functions
of resonant modes

The next step is to take into account the high-frequency resonant modes of the
head disk assembly represented by the transfer function Hd(s). In the given case
Hd(s) consists of four resonant modes and is obtained as

Hd(s) =
4∑

j=1

b2jωj s + b2j−1ω
2
j

s2 + 2ξjωj s + ω2
j

(see Fig. 14.4).
Here ωj , ξj and b2j , b2j−1 are, respectively, the resonance frequency, the damp-

ing coefficient and the coupling coefficients of the j th mode, for j = 1, . . . ,4. The
resonance parameters are usually determined experimentally and for the servo sys-
tem under consideration their values are shown in Table 14.2.

It is important to note that all model parameters are known with some tolerances
and may vary with the changing of working conditions as well as with time. Also,
the closed-loop system can be very sensitive to the external disturbance td and the
position-sensing noise η. Both factors would lead to an actual system dynamics far
away from the dynamics of the nominal closed-loop system. Thus, it is necessary to
use control-system design methods that ensure the desired closed-loop stability and
performance in the presence of uncertain parameters, noises, and disturbances.

14.2 Derivation of Uncertainty Model

In order to implement robust control design methods we must have a plant model
that incorporates uncertain parameters. As is seen from Tables 14.1 and 14.2, the
total number of uncertain parameters is greater than 25, which complicates the anal-
ysis and design of a HDD servo system. In this study, we shall concentrate on those
uncertainty parameters that influence the closed-loop system behavior most. By us-
ing the function ureal we define the real uncertain parameters

J,Kt ,Ky,ω1,ω2,ω3,ω4, ξ1, ξ2, ξ3, ξ4

The block-diagram of the plant is shown in Fig. 14.5.



256 14 Robust Control of a Hard Disk Drive

Table 14.2 Resonance parameters and tolerances

Parameter Description Value Units Tolerance

ω1 pivot bearing resonance 2π50 rad/s ±5.0 %

ω2 first torsional resonance 2π2200 rad/s ±12.0 %

ω3 second torsional resonance 2π6400 rad/s ± 8.0 %

ω4 first sway resonance 2π8800 rad/s ±15.0 %

b1 first resonance coupling 0.006 – ± 7.0 %

b2 first resonance coupling 0 1/s ±7.0 %

b3 second resonance coupling 0.013 – ±10.0 %

b4 second resonance coupling −0.0018 1/s ±7.0 %

b5 third resonance coupling 0.723 – ± 5.0 %

b6 third resonance coupling −0.0015 1/s ±10.0 %

b7 fourth resonance coupling 0.235 – ± 5.0 %

b8 fourth resonance coupling −0.0263 1/s ±10.0 %

ξ1 first resonance damping 0.05 – ± 5.0 %

ξ2 second resonance damping 0.024 – ± 8.0 %

ξ3 third resonance damping 0.129 – ±10.0 %

ξ4 fourth resonance damping 0.173 – ±10.0 %

Fig. 14.5 Block-diagram of the plant

Consider first the derivation of the uncertainty model for the resonant modes.
All four modes have similar transfer functions. The uncertainty model may be ob-
tained in a different way. For instance, on the basis of the representation, shown in
Fig. 14.5, one may implement the function tf in order to obtain uncertain transfer
function for each of the resonant modes. In this case, however, the uncertain param-
eter ω is repeated five times, which leads to a large number of the model uncertain
parameters. This complicates very much the analysis and especially the synthesis
of the system. That is why in the given case we use a state space representation in
which ω is repeated only twice.

The model of a resonant mode in the state space is

ẋ1 = ωx2



14.2 Derivation of Uncertainty Model 257

Fig. 14.6 Block-diagram of a resonant mode

Fig. 14.7 Parallel connection
of the four resonant modes

Fig. 14.8 Block-diagram of
the hard disk considered as a
control plant

ẋ2 = ω(−x1 − 2ξx2 + ta)

ya = b1x1 + b2x2

The block-diagram corresponding to the state equations of a resonant mode is
shown in Fig. 14.6. The uncertain model of the resonant mode in the given case is
obtained by using the function iconnect. In this model the uncertain parameter
ω is repeated twice.

The parallel connection of the four resonant modes, which has transfer function
Hd(s), is shown in Fig. 14.7.

After obtaining the transfer function of the resonant modes, the derivation of the
uncertain plant model is done by the function iconnect, using the block diagram,
shown in Fig. 14.5. The model obtained is of 11th order and has 11 independent
uncertain parameters, four of them (ω1, ω2, ω3 and ω4) being repeated twice, such
that the total number of the uncertain parameters becomes equal to 15. The uncertain
model of the hard disk servo system is obtained by the M-file mod_hdd.m and is
saved in the variable G.

The hard disk model has two inputs and one output (Fig. 14.8).
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Fig. 14.9 Bode plot of the hard disk with uncertain parameters

Let us introduce the representation

G = [Gd Gu]
such that

y = Gdtd + Guu

where Gd and Gu are the plant scalar transfer functions with respect to the distur-
bance and control action, respectively.

In Fig. 14.9 we show the Bode plot of the hard disk, obtained from the transfer
function Gu for random values of the uncertain parameters.

14.3 Closed-Loop System Design Specifications

The design of the HDD servo controller will be first conducted in the continuous-
time case. In general, it may obtain best possible performance in the continuous-
time case that can then be considered as a limit for discrete-time designs. Also,
in the continuous-time case it is easier to find appropriate performance weighting
functions that again may be implemented in the discrete-time design.

The block-diagram of the closed-loop system, which includes the feedback struc-
ture and the controller as well as the elements representing the model uncertainty
and the performance objectives, is shown in Fig. 14.10.
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Fig. 14.10 Block-diagram of the closed-loop system with performance specifications

The system has a reference input (r), an input disturbance (d), a noise (n) and
two output costs (ey and eu). The system M is an ideal model of performance,
to which the designed closed-loop system tries to match. The transfer function of
the uncertain plant is denoted by G. The performance objective requires the transfer
matrix from r , d , and n to ey and eu to be small in the sense of ‖·‖∞, for all possible
values of the uncertain parameters. The position noise signal is obtained by passing
the unit-bounded signal n through the weighting transfer matrix Wn. The transfer
matrices Wp and Wu are used to reflect the relative significance of the different
frequency ranges for which the performance is required. Hence, the performance
objective can be recast, with possible slight conservativeness, as that the ‖ · ‖∞ of
the transfer function matrix from r , d , and n to ey and eu is less than 1.

It is straightforward to show that

[
ey

eu

]
=

[
Wp(SoGuK − M) WpSoGd −WpSoGuKWn

WuSiK −WuKSoGd −WuKSoWn

]⎡
⎣r

d

n

⎤
⎦ (14.1)

where Si = (I + KG)−1, So = (I + GK)−1 are the input and output sensitivities,
respectively. In (14.1) we make use of the fact that SiK = KSo. Note that SoGd is
the transfer function between d and y.

This objective is similar to the usual mixed S/KS sensitivity optimization and it
would meet both robust stability and performance criteria by incorporating perfor-
mance specifications in the matching model M . The six functions to be minimized
are described in Table 14.3.

The controller synthesis problem of the Hard Disk Drive Servo System is to find
a linear, output feedback controller K(s) that has to ensure the following properties
of the closed-loop system.



260 14 Robust Control of a Hard Disk Drive

Table 14.3 H∞ functions to
be minimized Function Description

Wp(SoGuK − M) Weighted difference between the ideal and
actual closed-loop systems

WpSoGd Weighted disturbance sensitivity

WpSoGuKWn Weighted noise sensitivity

WuSiK Weighted control effort due to reference

WuKSoGd Weighted control effort due to disturbance

WuKSoWn Weighted control effort due to noise

14.3.1 Nominal Performance

The closed-loop system achieves nominal performance if the performance objective
is satisfied for the nominal plant model.

The nominal performance objective is to satisfy the inequality
∥∥∥∥
[
Wp(SoGunomK − M) WpSoGd nom −WpSoGunomKWn

WuSiK −WuKSoGd nom −WuKSoWn

]∥∥∥∥∞
< 1

(14.2)
where the transfer functions Gd nom, Gunom are obtained for the nominal plant pa-
rameters.

14.3.2 Robust Stability

The closed-loop system achieves robust stability if the closed-loop system is inter-
nally stable for each possible plant dynamics G.

14.3.3 Robust Performance

The closed-loop system must remain internally stable for each G and in addition the
performance criterion

∥∥∥∥
[
Wp(SoGuK − M) WpSoGd −WpSoGuKWn

WuSiK −WuKSoGd −WuKSoWn

]∥∥∥∥∞
< 1 (14.3)

has to be satisfied for each G. This means that the structured singular value cor-

responding to the transfer function matrix from

[
r
d
n

]
to

[ ey

eu

]
(Fig. 14.10) should

be less than 1, with regard to the parametric uncertainty and the complex fictitious
uncertainty, connecting the inputs and outputs in the robust performance analysis.
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Fig. 14.11 Block-diagram of the open-loop system with performance specifications

Fig. 14.12 Schematic
diagram of the open-loop
connection

In addition to these requirements it is desirable that the controller designed would
have acceptable complexity, i.e. it is of reasonably low order.

According to the above considerations, the aim of the design is to determine a
controller K , such that for all stable perturbations, the perturbed closed-loop system
remains stable and the performance objective is satisfied for all such perturbations.

14.4 System Interconnections

The internal structure of the four-input, three-output system, which is saved in the
variable sys_ic, is shown in Fig. 14.11. The reference, the disturbance and the
noise are saved in the variables ref, dist, and noise, respectively, and the con-
trol signal—in the variable control.

The variables ref, dist, noise, y, y_c, e_y, and e_u are scalar variables.
The open-loop connection is obtained by the M-file olp_hdd. The schematic

diagram, showing the specific input/output ordering for the variable sys_ic, is
given in Fig. 14.12.

The block-diagram used in the simulation of the closed-loop system is shown in
Fig. 14.13. The corresponding closed-loop interconnection, which is saved in the
variable sim_ic, is obtained by the M-file sim_hdd.

The schematic diagram showing the specific input/output ordering for the vari-
able sim_ic is shown in Fig. 14.14.
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Fig. 14.13 Block-diagram of
the closed-loop system

Fig. 14.14 Schematic
diagram of the closed-loop
connection

14.5 Controller Design in Continuous-Time

There are a few further “hard” constraints for the controller design, as listed below.

Peak closed-loop gain <4 dB
Open-loop gain >20 dB at 100 Hz
Steady-state error <0.1 µm
Settling time <1.5 ms
Closed-loop bandwidth >1000 Hz
Gain margin >5 dB
Phase margin >40 deg

The designed control system must achieve good disturbance rejection and noise
attenuation. In addition, it is necessary to have control action smaller than 1.2 V in
order to avoid power-amplifier saturation.

To design the controller we shall use μ-synthesis, H∞ optimization and the H∞
loop shaping design procedure (LSDP) in this exercise.

In the case of μ-synthesis and H∞ optimization design, we have to specify the
model transfer function M and the weighting transfer functions Wn, Wp , and Wu.

The model transfer function is chosen so that the time response to the reference
signal would have an overshoot less than 20 % and a settling time less than 1 ms.
A possible model satisfying the requirements is

M = 1

3.75 × 10−9s2 + 1.2 × 10−4s + 1



14.5 Controller Design in Continuous-Time 263

Fig. 14.15 Block-diagram of
the closed-loop system with
μ-controller

The noise shaping function Wn is determined on the basis of the spectral density
of the position noise signal. In the given case it is taken as the high-pass filter

Wn = 6 × 10−4 0.1s + 1

0.001s + 1

whose output has a significant spectral content above 500 Hz. For this shaping filter,
the position noise signal is only 0.6 mV in the low-frequency range but it is 60 mV
in the high-frequency range that corresponds to a position error of 5 % of the track
width.

The weighting functions Wp and Wu have to be chosen so as to ensure an ac-
ceptable trade-off between the nominal performance and the robust performance of
the closed-loop system. They are selected in the course of the μ-synthesis, since
this particular design method allows us to achieve maximum performance of the
perturbed, closed-loop system.

14.5.1 μ-Design

In the μ-synthesis we shall take into account only the uncertainty in the rigid-body
model (i.e. only the uncertainty in the parameters kt , J , and ky ) will be consid-
ered. The inclusion of the uncertainties of resonant modes would make the D–K

iterations difficult to converge which is the reason to ignore these uncertainties.
This confirms that the resonant modes may create difficulties in the controller de-
sign. However, these resonant modes (with nominal values) are included in the plant
dynamics and will be considered, with parametric variations, in the assessment of
designed controllers in Sect. 14.6.

The block-diagram of the closed-loop system used in the μ-synthesis is shown
in Fig. 14.15. Denote by P(s) the transfer function matrix of the four-input, three-
output, open-loop system. This matrix is obtained from the open-loop connection
sys_ic by the command line

mu_ic = usubs(sys_ic,’w1’,’nom’,’w2’,’nom’,’w3’,’nom’, ...
’w4’,’nom’,’z1’,’nom’,’z2’,’nom’, ...
’z3’,’nom’,’z4’,’nom’)
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and is saved in the variable mu_ic. During the execution of this command the
parameters ω1, ω2, ω3, ω4, ξ1, ξ2, ξ3, and ξ4 are substituted by their nominal values.
The transfer function matrix P(s) may be represented as the upper Linear Fractional
Transformation

P = Fu(Pnom,Δr)

where the matrix Pnom is the nominal transfer matrix and Δr contains the three
uncertainties in the rigid body model. The robust performance of the closed-loop
system is considered with regard to the block uncertainty

ΔP :=
{[

Δr 0
0 ΔF

]
: Δr ∈ R3×3, ΔF ∈ C3×2

}

where the second block ΔF is a fictitious uncertainty block that connects the inputs
and outputs of the closed-loop system. In order to satisfy the robust performance
requirements it is necessary to find a stabilizing controller K(s), such that for each
frequency ω ∈ [0,∞] the structured singular value satisfies the condition

μΔP

[
FL(Pnom,K)(jω)

]
< 1

The fulfillment of this condition guarantees robust performance of the closed-loop
system, i.e.

∥∥∥∥
[
Wp(SoGuK − M) WpSoGd −WpSoGuKWn

WuSiK −WuKSoGd −WuKSoWn

]∥∥∥∥∞
< 1 (14.4)

The μ-synthesis is conducted by using the M-file ms_hdd. It should be noted
that the robust performance achieved during the D–K iteration is only with respect
to the uncertainties in the rigid-body model, since only these uncertainties are taken
into account in the design. Hence it is necessary to make an additional robust stabil-
ity and robust performance analysis that takes into account the other uncertainties.

The closed-loop system performance specifications are reflected by the weight-
ing performance function Wp(s). Three performance weighting functions are con-
sidered in the design. They are

Wp1(s) = 10−4 s2 + 8 × 104s + 108

s2 + 7 × 104s + 2.5 × 104

Wp2(s) = 10−4 s2 + 4 × 105s + 2.5 × 109

s2 + 3.9 × 105s + 6.25 × 105

and

Wp3(s) = 10−4 s2 + 1.15 × 106s + 3.6 × 1010

s2 + 1.05 × 106s + 9 × 106

In Fig. 14.16 we show the magnitude responses of the inverses of these three
weighting functions, i.e. W−1

p1 , W−1
p2 , and W−1

p3 . It is seen that in all three selections,
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Fig. 14.16 Magnitude responses of the inverse of Wp

the aim is to achieve a small difference between the system and model outputs, and a
small effect of the disturbance on the system outputs. This will ensure good tracking
of the reference input and small error due to low-frequency disturbances. Changing
the performance weighting function from Wp1 to Wp3 moves the inverse weighting
frequency response to the right (to higher frequencies) which forces the system to
match the model in over a larger frequency range.

The control weighting function is usually chosen as high-pass filters in order to
ensure that the control action will not exceed 1.2 V. Again, three such weighting
functions are considered in the design and are listed below:

Wu1(s) = 10−6 0.385s2 + s + 1

10−4s2 + 2 × 10−3s + 1

Wu2(s) = 10−6 0.55s2 + s + 1

10−4s2 + 2.1 × 10−3s + 1

and

Wu3(s) = 3 × 10−6 4.05s2 + s + 1

10−4s2 + 2 × 10−3s + 1

These three control weighting functions are paired with the three performance
weighting functions, in the given order, in the μ-synthesis.
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Table 14.4 Robust stability
and robust performance for
three controllers

Controller Order Robust stability
stabmarg

Robust performance
perfmarg

1 26 2.82 2.33

2 34 2.19 1.94

3 26 1.94 1.19

Table 14.5 Gain and phase
margins for three controllers Controller Gain margin dB Phase margin deg

1 15.1 50.9

2 11.1 44.1

3 10.9 36.6

The final choice of the appropriate performance and control weighting functions
is obtained by comparing the results from the corresponding μ-designs. (Three
D–K iterations are used in the first version and four in the second and third ver-
sion.) The robust stability and robust performance analysis are conducted by the file
mu_hdd, using the functions robuststab and robustperf. The results are
shown in Table 14.4.

It is seen from the table that the closed-loop system achieves robust stability and
robust performance for all three controllers; however, the best results, in terms of
stability and performance margins, come from the first controller.

The gain and phase margins for all three design cases are found from the trans-
fer function GunomK of the nominal open-loop system by the function margin.
The results are listed in Table 14.5 and confirm the rule that higher gain and phase
margins mean better robustness.

The closed-loop transient responses are shown in Fig. 14.17, for a simulated
runout of one track width (1 µm) and a torque disturbance td = 0.0005 N m.

It is seen from Fig. 14.17 that the first controller yields a transient response with
the smallest undershoot (less than 30 %), but this response is the slowest one. The
third controller yields the fastest response but the undershoot in this case is the
largest one (greater than 50 %).

Figure 14.18 shows that as a result of the appropriate tuning of the control
weighting functions all three controllers produce a control action whose amplitude
is slightly less than 1.2 V.

The comparison of the transient responses to disturbance, shown in Fig. 14.19,
reveals that the worst disturbance rejection is found in the first controller case and
the best in the third controller case. This is a result of the tightest closed-loop band-
width of 9 × 103 rad/s (measured at −3 dB) in the first controller case compared
with the bandwidth of 15.5 × 103 rad/s in the third controller case (see Fig. 14.20).
Note that the largest peak of the magnitude is found in the third controller case,
which results in the largest undershoot of the transient response.
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Fig. 14.17 Transient responses for three μ-controllers

Fig. 14.18 Control actions of three μ-controllers
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Fig. 14.19 Transient responses to disturbance of three μ-controllers

Fig. 14.20 Closed-loop magnitude plots of three μ-controllers
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Fig. 14.21 Closed-loop
system with H∞ controller

The results obtained from different weighting functions show that moving the
frequency response of the inverse performance weighting function to the right
would lead to larger closed-loop system bandwidth, and consequently, faster time-
responses of the closed-loop system, though may introduce larger over(under)shoot.
However, at the same time, this may reduce the robustness of the closed-loop sys-
tem. Hence, one has to compromise between the different objectives in the design.
In the present design case, it seems that the second controller leads to a good trade-
off between the requirements in terms of transient response, disturbance rejection,
and robustness. Hence, we will use the weighting functions Wp2 and Wu2 in both
the μ-synthesis and H∞ design.

14.5.2 H∞ Design

The aim of the design in this case is to find an H∞ (sub)optimal, output controller
for the interconnection shown in Fig. 14.21 in which we ignore the plant uncertainty.

The variable hin_ic that corresponds to the transfer function Pnom of the nom-
inal open-loop system is obtained by the command line

hin_ic = sys_ic.Nom

The H∞ optimal control minimizes the ∞-norm of FL(Pnom,K) with respect to the
transfer function K of the controller. In the given case FL(Pnom,K) (as the transfer
function matrix in (14.2)) is the nominal closed-loop transfer function matrix from
the reference, disturbance and noise signals (the variables ref, dist and noise)
to the weighted outputs e_y and e_u. The design is conducted using the M-file
hinf_hdd.m, which computes a (sub)optimal H∞ control law for a given open-
loop system. The value of γ is chosen 10 % higher than the minimum possible
value. The controller such obtained is of 18th order.

14.5.3 H∞ Loop-Shaping Design

The design of a robust control for the Disk Drive System can be successfully accom-
plished using the H∞ loop-shaping design procedure (LSDP) as well, as described
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in this subsection. Note that in the case of H∞ LSDP, we do not use the performance
weighting function implemented in the cases of μ and H∞ designs. Instead, we use
a prefilter W1 and a postfilter W2 in order to shape appropriately the frequency re-
sponse of the augmented, open-loop transfer function W2GW1 (see Chap. 5).

In the present case we choose a prefilter with transfer function

W1 = 4
0.05s + 1

s

The gain of 4 is chosen to ensure a steady-state error, due to the disturbance, of less
than 10 % of the track width. Larger gain leads to smaller steady-state errors but
possibly worse transient response. The postfilter is taken simply as W2 = 1.

The magnitude plots of the original and shaped systems are shown in Fig. 14.22.
The design of the H∞ LSDP controller uses the M-file lsh_hdd that implements
the function ncfsyn. The controller obtained is of order 12.

14.6 Comparison of Designed Controllers

The comparison of the closed-loop system with μ, H∞, and H∞ LSDP controllers
begins with the robust stability and performance analysis.

The robust stability is tested on the closed-loop transfer function matrix, the com-
putation of the structured singular value μΔ(.) being done by the command mussv.
The uncertainty matrix Δ, which is necessary in the computation of μΔ(.), is pulled
out from the closed-loop transfer matrix by the command lftdata and has dimen-
sion 15 × 15 (the uncertainties in the resonant modes participate twice). To achieve
robust stability it is necessary that the μ-values are less than 1 over the frequency
range. The robust stability test is done by the file rbs_hdd.

In Fig. 14.23 we compare the upper bounds of the structured singular values, for
the robust stability analysis, of the closed-loop systems with the three controllers
(μ, H∞, and H∞ LSDP).

It is seen from the figure that all three closed-loop systems achieve the robust
stability. The best robustness is obtained by the μ-controller.

The comparison of the nominal performance for the three controllers, in
Fig. 14.24, shows that the performance in the H∞ LSDP controller case over the
low-frequency range is much worse than that in the other two cases. This is a con-
sequence of the fact that the performance specifications used in the μ-design and
H∞ design are not explicitly adopted in the design of the H∞ LSDP controller.
The larger magnitude over the low frequencies leads to an expectation of larger
steady-state errors.

The robust performance of the closed-loop system is studied also with the aid
of the μ-analysis using the function mussv. In this case the uncertainty block ΔP ,
which is used in the computation of the structured singular value, has dimension
18 × 17 and consists of the matrix Δ plus 3 × 2 complex block that corresponds
to a fictitious uncertainty and connects the inputs and outputs of the closed-loop
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Fig. 14.22 Magnitudes plots of the original and shaped systems

Fig. 14.23 Robust stability of the closed-loop systems
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Fig. 14.24 Nominal performance of the closed-loop systems

Fig. 14.25 Robust performance of the closed-loop systems
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system (see Fig. 14.15). The robust performance (with respect to the uncertainty
and performance weighting functions) is achieved if and only if for each frequency
μΔP

(.), computed for the closed-loop frequency response, is less than 1. The robust
performance test is done by the file rbp_hdd.

The robust performance test for all controllers is shown in Fig. 14.25. Again, the
H∞ LSDP controller shows large μ-values over the low-frequency range.

The robust stability and robust performance analysis also shows that the worse
results may possibly occur over frequencies around the resonant frequencies.

The Bode plots of the closed-loop systems with three controllers are shown in
Fig. 14.26. It is seen that the system with the H∞ LSDP controller has the largest
bandwidth, which may lead to the fast transient response. A larger bandwidth, how-
ever, may also lead to a larger effect of noises and resonances.

The plot of the output sensitivity to disturbances (Fig. 14.27) shows that in the
low-frequency range the influence of the disturbance on the system output in the
case of the H∞ LSDP controller is the largest. Better disturbance attenuation for
this controller may be achieved by choosing higher gain in the prefilter. This will
lead, however, to greater overshoot in the transient response. The sensitivity to dis-
turbance in the cases of μ and H∞ controllers reaches a maximum value in the
frequency range from 103 rad/s to 104 rad/s, which is inside of the closed-loop
bandwidth. This means that the closed-loop system will be susceptible to distur-
bances over that frequency range. It is interesting to notice that the sensitivity of the
H∞ LSDP controller over the same range is 8 dB lower.

The output sensitivity to noise is shown in Fig. 14.28. (Note that the sensitivity
is with respect to the unit-bounded noise, the input of the noise shaping filter.) The
lowest sensitivity to noise has been achieved by the system with the μ-controller
and the largest sensitivity by the system with the H∞ LSDP controller.

The Bode plots of the three controllers are compared in Fig. 14.29. It is seen
that the H∞ LSDP controller has a very low gain in the range from 40 rad/s to
2000 rad/s, which is the reason for the weak attenuation of the disturbances over
that range.

The transient responses of the closed-loop systems for the nominal parameter
values are obtained by using the file clp_hdd. In Fig. 14.30 we show the transient
responses of the closed-loop systems to a reference signal, equivalent to one track.
While for the H∞ and H∞ LSDP controllers the undershoot is about 60 %, it is
about 38 % for the μ-controller. The settling time for the H∞ LSDP, μ and H∞
controllers is 0.8 ms, 1 ms and 1.5 ms, respectively.

The control actions of the three controllers are shown in Fig. 14.31. For all con-
trollers the control signal amplitude does not exceed 1.2 V, as required.

In Fig. 14.32 we show the system response to a step torque disturbance td =
0.0005 N m (equivalent to a force of 9.8 × 10−3 N applied to the disk head assem-
bly). The transient error for the H∞ LSDP controller has the smallest undershoot
(10.5 %) but has a nonzero steady-state error. This reveals that in the given case the
LSDP controller does not have integrating action with respect to the disturbance.
The transient error for μ and H∞ controllers is less than 18 % of the track width
and the steady-state error is practically equal to zero.



274 14 Robust Control of a Hard Disk Drive

Fig. 14.26 Bode plots of the closed-loop systems

Fig. 14.27 Output sensitivity to disturbance
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Fig. 14.28 Output sensitivity to noise

Fig. 14.29 Bode plots of three controllers
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Fig. 14.30 Transient responses with three controllers

Fig. 14.31 Control actions of three controllers
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Fig. 14.32 Transient disturbance responses of three controllers

The output response to the position-sensing noise is simulated for a noise signal
with an amplitude that does not exceed 60 mV (5 % of the track width). This signal is
obtained at the output of the noise shaping filter whose input is chosen as a sequence
of uniformly distributed random numbers in the interval [−1, 1]. In the case of the
μ-controller the output due to noise is less than 0.6 % of the track width. The largest
output to the noise (1 % of the track width) is seen in the H∞ LSDP controller case
due to the largest closed-loop bandwidth of this controller.

The comparison of the robust stability and robust performance for the three con-
trollers, as well as the comparison of the corresponding frequency and transient
responses shows that it is reasonable to conclude that the μ controller is preferable.

Consider now the properties of the closed-loop system with μ-controller for vari-
ations of the plant parameters.

In Fig. 14.33 we show the magnitude closed-loop plots for random plant param-
eters. The magnitude plot given with continuous line corresponds to the worse gain
when the parameter change (this gain is determined by the function wcgain).

In Fig. 14.34 we show the output sensitivity and in Fig. 14.35 the sensitivity to
noise for 20 random combinations of the uncertain plant parameters.

14.7 Controller-Order Reduction

The controller obtained by the μ-synthesis is initially of 34th order. It is useful to
reduce as much as possible the controller order, which will simplify the implemen-
tation and increase the reliability. To do this we use the function reduce. The
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Fig. 14.33 Magnitude closed-loop plots for random plant parameters

Fig. 14.34 Output disturbance sensitivity for random plant parameters
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Fig. 14.35 Output sensitivity to noise for random plant parameters

experience with different controllers shows that the order may be reduced to 12.
Further reduction of the controller order leads to deterioration of the closed-loop
performance.

In Fig. 14.36 we compare the Bode plots of the full order and reduced-order con-
trollers. The corresponding plots practically coincide with each other, which implies
similar performances of the closed-loop systems.

In Fig. 14.37 we show the transient responses of the closed-loop system with the
reduced order μ-controller for 30 random combinations of the uncertain parameters
and in Figs. 14.38 and 14.39 we show the control action and the transient distur-
bance responses, respectively, for the same values of the uncertain parameters. The
transient responses are obtained by the M-file mcs_hdd.

14.8 Design of Discrete-Time Controller

In general, there are two approaches to designing a discrete-time servo controller.
The first approach is to sample the already designed continuous-time controller

at a given sampling frequency fs = 1/Ts . This may be accomplished by the M-file
dcl_hdd.m that utilizes the function c2d. The resultant sampled-data, closed-
loop system is simulated by using the function sdlsim. This approach gives satis-
factory results for a sufficiently high sampling frequency (say, 100 kHz in the given
case).
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Fig. 14.36 Bode plots of full- and reduced-order μ-controllers

Fig. 14.37 Transient responses with μ-controller for random plant parameters
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Fig. 14.38 Control action of the μ-controller for random plant parameters

Fig. 14.39 Transient disturbance responses with μ-controller for random plant parameters
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The second method is to sample the continuous-time, open-loop system (includ-
ing the weighting filters) and to design directly a discrete-time controller by using
H∞ optimization (implementing the function hinfsyn) or μ-synthesis (imple-
menting the function dksyn).

The choice of the sampling frequency in the discrete-time case has a strong influ-
ence on the closed-loop system performance. A low sampling frequency limits the
system bandwidth and would deteriorate the transient performance such as the dis-
turbance rejection. On the other hand, the increase of the sampling frequency would
complicate the controller implementation and raise the cost of the HDD.

Later we consider the μ-synthesis of the discrete-time controller for two sam-
pling rates: 24 kHz and 36 kHz. In both cases we use the same performance weight-
ing function

Wp2(s) = 10−4 s2 + 4 × 105s + 2.5 × 109

s2 + 3.9 × 105s + 6.25 × 105

utilized already in the continuous-time design. Depending on the sample rate we use
two different control weighting functions

Wu1(s) = 10−7 4s2 + 2s + 1

2 × 10−3s2 + 2 × 10−3s + 1

(for fs = 24 kHz) and

Wu2(s) = 10−7 1.04s2 + 2s + 1

7.5−5s2 + 2 × 10−3s + 1

(for fs = 36 kHz). This allows, in both cases, to obtain control signals that do not
exceed 1.2 V.

The noise shaping filter is the same as in the continuous-time case.
The sampling of the extended open-loop system for the given sampling rate is

conducted by the M-file dlp_hdd.m.
In Fig. 14.40 we show the Bode plots of the continuous time plant and the sam-

pled with fs = 36 kHz plant.
The discrete-time μ-synthesis is accomplished by the file dms_hdd.m. As in

the continuous-time μ-synthesis, only the rigid-body uncertain parameters are taken
into account.

The results from the μ-synthesis for fs = 24 kHz show that for the chosen
weighting functions the closed-loop system almost achieves robust performance at
the sixth D–K iteration (μmax = 1.125) but the closed-loop response is relatively
slow and the undershoot is large (60 %). To obtain better results it is necessary to
increase the sampling frequency.

We now present in more detail the results from the μ-synthesis at fs = 36 kHz.
In this case an appropriate controller is obtained after six D–K iterations and the
maximum robust performance μmax achieved is almost equal to 1. In Figs. 14.41
and 14.42, we show the μ-plots, obtained by the M-file dmu_hdd.m, for robust
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Fig. 14.40 Bode plots of the continuous time plant and the sampled with fs = 36 kHz plant

Fig. 14.41 Robust stability of fs = 36 kHz design
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Fig. 14.42 Robust performance of fs = 36 kHz design

stability analysis and robust performance analysis, respectively. In both plots the
worst results are seen around the second resonant frequency of 2.2 kHz.

The transient responses of the closed-loop system for 30 random combinations
of the uncertain parameters are obtained by the file dsl_hdd.m, which imple-
ments the function sdlsim. The function sdlsim also computes the control ac-
tion signal obtained at the output of the digital-to-analog converter. The closed-loop
transient response is shown in Fig. 14.43 and the corresponding control action in
Fig. 14.44. The undershoot for all parameter values is less than 50 % and the maxi-
mum magnitude of the control signal is 1 V.

The transient response to disturbance is shown in Fig. 14.45. Overall, the results
obtained are almost as good as the results obtained with the continuous-time, μ-
controller.

14.9 Nonlinear System Simulation

In order to obtain a realistic idea about the behavior of the designed system, the
nonlinear, closed-loop servo system is simulated by using Simulink®. For this aim,
two models are developed, namely c_hdd.mdl for the continuous-time system and
d_hdd.mdl for the sampled-data system. In the simulation we take into account
the amplifier saturation, which was neglected in the design so far. Both models allow
us to simulate the closed-loop system for different reference, disturbance and noise
signals and for different values of the uncertain parameters.



14.9 Nonlinear System Simulation 285

Fig. 14.43 Transient response of fs = 36 kHz design

Fig. 14.44 Control action of fs = 36 kHz design
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Fig. 14.45 Transient response to disturbance of fs = 36 kHz design

Before simulating the continuous-time system it is necessary to assign the model
parameters by using the M-file init_c_hdd.m.

The sampled-data model involves the discrete-time controller, 16-bit analogue-
to-digital converter with maximum input voltage 2.5 V and 16-bit digital-to-
analogue converter with maximum output voltage 10 V. It is assumed that the
discrete-time controller is implemented on a DSP with word length of 64 bits. These
parameters are set prior to the simulation by using the M-file init_d_hdd.m. It
is assumed that the control action calculation requires one sampling period Ts .

In Fig. 14.46 we show the Simulink® model d_hdd.mdl of the nonlinear,
sampled-data, closed-loop system.

As in the linear case, the transient responses of the nonlinear closed-loop system
are obtained for a simulated runout of one track width (1 µm) and torque disturbance
td = 0.0005 N m.

In Fig. 14.47 and in Fig. 14.48 we compare the results from the simulation of
the continuous-time and discrete-time nonlinear systems. The continuous-time con-
troller is the reduced-order μ-controller in Sect. 14.7 and the discrete-time controller
is the controller designed at the sampling frequency of 36 kHz.

The transient responses of the nonlinear system are close to the corresponding
responses of the linear system due to the small input signals (amplitude less than
1.2 V).

It should be mentioned that the controllers designed are appropriate for small ref-
erence signals (equivalent to one track). For larger references the amplifier saturates
and it is necessary to implement an appropriate seeking algorithm.
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Fig. 14.47 Transient responses of the nonlinear systems

Fig. 14.48 Disturbance responses of the nonlinear systems
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14.10 Conclusions

The experience gained in the design of the HDD servo controllers makes it possible
to derive the following conclusions:

• The implementation of designed μ, H∞, and H∞ LSDP controllers in the HDD
servo system gives satisfactory results with respect to robustness and perfor-
mance. All three controllers ensure robust stability of the closed-loop system.
The best robust performance is achieved by using the μ and H∞ controllers. The
implementation of the H∞ LSDP controller gives the fastest transient response
and the corresponding design is less complicated. This controller, however, leads
to the worst performance in the low-frequency range, which results in a large
steady-state error. In the given case the best trade-off between the robustness and
transient response requirements is achieved by using the μ-controller that is, to
some extent, due to the specially chosen weighting functions.

• The number of original uncertain parameters is very large (more than 25 in the
given case). This complicates the design and produces heavy computation de-
mands. This is why it is necessary to investigate the parameter importance with
respect to the robustness and performance in order to reduce their number to an
acceptable value. However, in the evaluation of the design, it is better to take into
account all the possible uncertainties to ensure a satisfactory design in a real case.

• In the μ-synthesis, the order of the resultant controller depends on the order of the
plant, of the weighting functions, and of the scaling diagonal elements approxi-
mations. The designed controllers are usually of high orders, which complicates
the implementation of the controller. Hence, an order reduction should usually
be considered right after the controller design. Most controllers used in the HDD
designs are of order between 8 and 15.

• Good disturbance attenuation requires sufficiently large closed-loop bandwidth.
This may, however, lead to difficulties in achieving robust stability and robust
performance in the presence of resonant modes. Some resonances whose frequen-
cies are much higher than the closed-loop bandwidth and thus seem innocent may
even actually destroy the robust stability of the system. In such cases, it is neces-
sary to increase the damping of these modes by using techniques of passive/active
damping.

• The presence of resonant modes may require sufficiently high sampling rates in
the case of using a discrete-time controller.

• It is important to stress that better results, with respect to the transient response
(overshoot and settling time), are difficult to obtain for the current plant param-
eters. If higher performance demands are required, it is necessary to change the
HDD parameters, for instance to increase the VCM torque constant.

14.11 Notes and References

The history of the Hard Disk Drive control is presented in the fascinating papers of
Abramovitch and Franklin [2, 3]. An excellent survey on similarities and contrasts
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in the magnetic and optical disk controls is given in [1]. In [87] one may find an
attractive description of the HDD construction and functioning.

The book of Chen et al. [20] is entirely devoted to HDD servo systems and con-
tains rich information related to the design of such systems. A tutorial on HDD
control can be found in [117].

A detailed model of the HDD servo system, which has very much influenced the
model used in this chapter, is presented in the book of Franklin et al. [46, Chap. 14].
Below 100 Hz the rotary actuator dynamics is affected by pivot bearing nonlinearity,
which is known under the name “stick–slip”. It has a strong effect particularly in the
case of small disk drives with lower actuator inertia. Analysis and simulation of this
phenomenon are presented in [4, 174].

An important step in the design of HDD servo systems is the reliable estima-
tion of the various disturbances and noises acting on the system. Methods for such
estimations are described in [5, 35, 69].

The harmonic compensation used to reduce RRO is considered in [21, 83, 163].
The track-seeking and track-following modes require different control algo-

rithms. Track-seeking algorithms are described in [46, 135]. The switching of con-
trol mode from track seeking to track following should be smooth so that the residual
vibration of the read/write head suspension is minimal. There are several control al-
gorithms that work for both track-seeking and following, see for instance [71, 79].
Such algorithms utilize 2-degree-of-freedom (2DOF) controllers in which case the
track seeking is accomplished by using a feedforward controller along with a refer-
ence trajectory.

Apart from the track seeking and track following the HDD also contains a spindle
velocity control loop. The purpose of this loop is to control the air flow over the disk
in order to guarantee the appropriate flying height of the read/write head. This is a
low-frequency control loop and its design does not represent a serious difficulty.

Further expansion of the closed-loop bandwith of the HDD control system may
be achieved by using the so-called dual-stage servos that consist of a low-bandwidth
coarse actuator (the usual VCM) and a high bandwidth fine actuator. The fine actua-
tor has a small stroke and may be implemented as a piezoelectric transducer (PZT)
[40]. The design of dual-stage servos is considered in [29, 74, 86].

Other important aspects of the analysis and design of HDD servo systems are
presented in [59, 77, 94, 95, 110, 183], to name a few.



Chapter 15
A Triple Inverted Pendulum Control System
Design

Robust design of a triple inverted pendulum control system is discussed in this chap-
ter.

The triple inverted pendulum is an interesting control system that resembles
many features found in, for instance, walking robots and flexible space structures,
and other industrial applications. This kind of pendulum system is difficult to con-
trol due to the inherent instability and nonlinear behavior. Some of the pendulum
parameters may not be known exactly in practice, which influences significantly the
system dynamics.

In the design of a robust control system for triple inverted pendulums it is con-
ventionally assumed that the system is affected by unstructured uncertainties and
thus the robust properties of the closed-loop system could be achieved by using an
H∞ controller. In real cases, however, the uncertainties of such a pendulum sys-
tem would be more reasonably considered to have some structures. For instance,
because the moments of inertia and the friction coefficients are difficult to estimate
precisely, it makes sense to assume unknown deviations in those parameters. Also,
we would like to design the closed-loop control system to be more “robust” against
those parameters that have a “larger” or more serious influence upon the system be-
havior. For instance, the viscous friction in the joints may destroy the controllability
of the linearized model. Hence, it would be important to treat uncertainties in such
parameters individually rather than aggregate them in an overall, unstructured un-
certainty of the system dynamics. Consequently, it may be more suitable to apply
the μ-synthesis technique that may lead to a less-conservative design to meet tighter
design specifications.

In the pendulum control-system design we first model the uncertainties as
a mixed type that consists of complex uncertainties in the actuators, real un-
certainties in the moments of inertia and in the viscous friction coefficients.
A 2-degree-of-freedom (2DOF) design framework is adopted. Both H∞ subopti-
mal and μ-controllers are designed. The H∞ controller shows better transient and
disturbance responses but does not ensure robust stability nor robust performance.
The μ-controller achieves both robust stability and robust performance, however, at
the price of poorer time responses. The μ-controller designed is initially of quite

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_15,© Springer-Verlag London 2013

291



292 15 A Triple Inverted Pendulum Control System Design

Fig. 15.1 Triple inverted pendulum

high order, which makes it unsuitable for implementation in practice. A model re-
duction is then conducted that leads to a reduced-order controller maintaining the
required robust stability and robust performance of the closed-loop system.

15.1 System Description

The triple inverted pendulum considered is the experimental setup realized by Fu-
ruta et al. [48] (Fig. 15.1). The pendulum consists of three arms that are hinged
by ball bearings and can rotate in the vertical plane. The torques of the two upper
hinges are controlled by motors, with the lowest hinge made free for rotation. By
controlling the angles of the two upper arms around specified values, the pendulum
can be stabilized inversely with the desired angle attitudes. A horizontal bar is fixed
to each of the arms to ease the control by increasing the moment of inertia. Two
dc motors, M1 and M2, are mounted on the first and third arm, respectively, acting
as actuators that provide torques to the two upper hinges through timing belts. The
potentiometers P1, P2, and P3 are fixed to the hinges to measure the corresponding
angles.
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Fig. 15.2 Geometric
relationship of potentiometers

Let Θi denote the angle of the ith arm. The first potentiometer measures the
angle Θ1, and the second and third potentiometers measure the angles Θ2 −Θ1 and
Θ3 − Θ2, respectively (Fig. 15.2).

The mathematical description of the triple inverted pendulum is derived under
the following assumptions:

(a) each arm is a rigid body;
(b) the lengths of the belts remain constant during the operation of the system;
(c) the friction force in the bottom hinge is proportional to the velocity of the bottom

arm and the friction forces in the upper hinges are proportional to the differences
of the respective velocities of two neighboring arms.

We shall first consider the mathematical model of the pendulum itself, without
the actuators. The pendulum model is constructed using the Lagrange differential
equations [48], which yield the following nonlinear vector–matrix differential equa-
tion:

M(Θ)

⎡
⎣ Θ̈1

Θ̈2

Θ̈3

⎤
⎦ + N

⎡
⎣ Θ̇1

Θ̇2

Θ̇3

⎤
⎦ +

⎡
⎣q1

q2
q3

⎤
⎦ + G

[
tm1

tm2

]
= T

⎡
⎣τ1

τ2
τ3

⎤
⎦ where Θ =

⎡
⎣Θ1

Θ2
Θ3

⎤
⎦

(15.1)

and we have
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Table 15.1 System nomenclature

Symbol Description

uj input voltage to the j th motor

tmj
control torque of the j th motor

τi disturbance torque to the ith arm

li length of the ith arm

hi the distance from the bottom to the center of gravity of the ith arm

mi mass of the ith arm

Ii moment of inertia of the ith arm around the center of gravity

Ci coefficient of viscous friction of the ith hinge

Θi angle of the ith arm from vertical line

Cmi
viscous friction coefficient of the ith motor

Imi
moment of inertia of the ith motor

Ki ratio of teeth of belt–pulley system of the ith hinge

Cp′
i

viscous friction coefficient of the belt–pulley system of the ith hinge

Ip′
i

moment of inertia of the belt–pulley system of the ith hinge

αi gain of the ith potentiometer

g acceleration of gravity

M(Θ)

=
⎡
⎣ J1 + Ip1 l1M2 cos(Θ1 − Θ2) − Ip1 l1M3 cos(Θ1 − Θ3)

l1M2 cos(Θ1 − Θ2) − Ip1 J2 + Ip1 + Ip2 l2M3 cos(Θ2 − Θ3) − Ip2
l1M3 cos(Θ1 − Θ3) l2M3 cos(Θ2 − Θ3) − Ip2 J3 + Ip2

⎤
⎦

N =
⎡
⎣C1 + C2 + Cp1 −C2 − Cp1 0

−C2 − Cp1 Cp1 + Cp2 + C2 + C3 −C3 − Cp2

0 −C3 − Cp2 C3 + Cp2

⎤
⎦

q1 = l1M2 sin(Θ1 − Θ2)Θ̇
2
2 + l1M3 sin(Θ1 − Θ3)Θ̇

2
3 − M1g sin(Θ1)

q2 = l1M2 sin(Θ1 − Θ2)Θ̇
2
1 + l2M3 sin(Θ2 − Θ3)Θ̇

2
3 − M2g sin(Θ2)

q3 = l1M3 sin(Θ1 − Θ3)
(
Θ̇2

1 − 2Θ̇1Θ̇3
) + l2M3 sin(Θ2 − Θ3)

(
Θ̇2

2 − 2Θ̇2Θ̇3
)

− M3g sin(Θ3)

G =
⎡
⎣ K1 0

−K1 K2
0 −K2

⎤
⎦ , T =

⎡
⎣1 −1 0

0 1 −1
0 0 1

⎤
⎦

Cpi
= Cp′

i
+ K2

i Cmi
, Ipi

= Ip′
i
+ K2

i Imi

M1 = m1h1 + m2l1 + m3l1, M2 = m2h2 + m3l2, M3 = m3h3

J1 = I1 + m1h
2
1 + m2l

2
1 + m3l

2
1 , J2 = I2 + m2h

2
2 + m3l

2
2

J3 = I3 + m3h
2
3

and all other parameters and variables are defined in Table 15.1.
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After linearization of (15.1) under the assumptions of small deviations of the pen-
dulum from the vertical position and of small velocities, one obtains the following
equation:

M

⎡
⎣ Θ̈1

Θ̈2

Θ̈3

⎤
⎦ + N

⎡
⎣ Θ̇1

Θ̇2

Θ̇3

⎤
⎦ + P

⎡
⎣Θ1

Θ2
Θ3

⎤
⎦ + G

[
tm1

tm2

]
= T

⎡
⎣τ1

τ2
τ3

⎤
⎦ (15.2)

where

M =
⎡
⎣ J1 + Ip1 l1M2 − Ip1 l1M3

l1M2 − Ip1 J2 + Ip1 + Ip2 l2M3 − Ip2

l1M3 l2M3 − Ip2 J3 + Ip2

⎤
⎦

P =
⎡
⎣M1g 0 0

0 −M2g 0
0 0 −M3g

⎤
⎦

By introducing the control torques vector tm = [tm1 tm2]T and the vector of dis-
turbance torques d = [τ1, τ2, τ3]T , (15.2) can be rewritten in the form

MΘ̈ + NΘ̇ + PΘ + Gtm = T d

i.e.,

Θ̈ = M−1(−NΘ̇ − PΘ − Gtm + T d)

As for the output vector, we define

y = [Θ1 Θ2 Θ3]T
The outputs are measured by linear potentiometers, whose voltages are given by

yp1 = α1Θ1, yp2 = α2(Θ2 − Θ1), yp3 = α3(Θ3 − Θ2)

By introducing the vector of the measured outputs

yp = [yp1 yp2 yp3 ]T
we obtain

yp = CpΘ, Cp =
⎡
⎣ α1 0 0

−α2 α2 0
0 −α3 α3

⎤
⎦

The block-diagram of the pendulum system is shown in Fig. 15.3 and the nominal
values of the parameters are given in Table 15.2.

15.2 Modeling of Uncertainties

Based on practical considerations, we in particular consider the variations of the
moments of inertia I1, I2, and I3 of the three arms and the variations of the viscous
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Fig. 15.3 Block-diagram of the triple inverted pendulum system

Table 15.2 Nominal values
of the parameters Symbol (unit) Value

l1 (m) 0.5

l2 (m) 0.4

h1 (m) 0.35

h2 (m) 0.181

h3 (m) 0.245

m1 (kg) 3.25

m2 (kg) 1.90

m3 (kg) 2.23

I1 (kg m2) 0.654

I2 (kg m2) 0.117

I3 (kg m2) 0.535

C1 (N m s) 6.54 × 10−2

C2 (N m s) 2.32 × 10−2

C3 (N m s) 8.80 × 10−3

Symbol (unit) Value

α1 (V/rad) 1.146

α2 (V/rad) 1.146

α3 (V/rad) 0.9964

Cm1 (N m s) 2.19 × 10−3

Cm2 (N m s) 7.17 × 10−4

Im1 (kg m2) 2.40 × 10−5

Im2 (kg m2) 4.90 × 10−6

Cp′
1

(N m s) 0

Cp′
2

(N m s) 0

Ip′
1

(kg m2) 7.95 × 10−3

Ip′
2

(kg m2) 3.97 × 10−3

K1 30.72

K2 27.00

friction coefficients C1, C2, C3, and Cm1 , Cm2 . It is assumed that the moments of
inertia are constants but with possible relative error of 10 % around the nominal
values; similarly, the friction coefficients may have with 15 % relative errors.

The eight real uncertain parameters I1, I2, I3, C1, C2, C3, Cm1 , Cm2 are set by
using the following command lines:

i1 = ureal(’i1’,0.654,’Percentage’,10);
i2 = ureal(’i2’,0.117,’Percentage’,10);
i3 = ureal(’i3’,0.535,’Percentage’,10);
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Fig. 15.4 Uncertain model of
the triple inverted pendulum

c1 = ureal(’c1’,0.0654,’Percentage’,15);
c2 = ureal(’c2’,0.0232,’Percentage’,15);
c3 = ureal(’c3’,0.0088,’Percentage’,15);
cd1 = ureal(’cd1’,0.00219,’Percentage’,15);
cd2 = ureal(’cd2’,0.000717,’Percentage’,15);

Then it is possible to compute the uncertain matrices M , N , Q which appear in the
linearized pendulum model.

The uncertain pendulum model is obtained on the basis of the block-diagram
shown in Fig. 15.3 by using the function sysic. This pendulum model is imple-
mented by the M-file mod_pend.m.

The input/output relation of the uncertain pendulum model is described by[
y

yp

]
= Gpend

[
d

tm

]

and is depicted in Fig. 15.4.
The singular value plot of the uncertain parameters triple, inverted pendulum is

shown in Fig. 15.5.
It should be pointed out that the uncertain pendulum model can be obtained in

several ways. For instance, it is possible to use the state space representation, derived
on the basis of (15.2),

Gpend =
[

A B

C D

]

where

A =
[

03×3 I3×3

−M−1P −M−1N

]
, B =

[
03×3 03×2

M−1T −M−1G

]

C =
[
I3×3 03×3
Cp 03×3

]
, D = 06×5

In such a case, however, the uncertain parameters I1, I2, and I3 are repeated at
least twice in the model Gpend such that the total number of uncertain parameters
increase to 11. In the derivation, based on the block-diagram shown in Fig. 15.3,
the parameters I1, I2, and I3 appear only once thus keeping the total number of
uncertain parameters equal to eight.

We now consider the models of the actuators. The nominal transfer functions of
the actuators are taken as first-order, phase-lag models of

Gm1 = Km1

T m1s + 1
, Gm2 = Km2

T m2s + 1
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Fig. 15.5 Singular values of the pendulum system

with parameters

Km1 = 1.08, T m1 = 0.005, Km2 = 0.335, T m2 = 0.002

It is assumed that the actual gain coefficients (Km1,Km2 ) are constants with rela-
tive error 10 % around their nominal values and the time constants (Tm1, Tm2 ) with
relative error 20 %.

The uncertain frequency responses of the actuators are shown in Fig. 15.6.
In order to account for unmodeled dynamics and nonlinear effects, the uncertain-

ties in the actuator models are approximated by input multiplicative uncertainties
that give rise to the perturbed transfer functions

Gm1 = (1 + Wm1δm1)Gm1, Gm2 = (1 + Wm2δm2)Gm2

where

|δm1 | ≤ 1, |δm2 | ≤ 1

and the uncertainty weights Wm1 , Wm2 are so chosen that

|Gm1(jω) − Gm1(jω)|
|Gm1(jω)| <

∣∣Wm1(jω)
∣∣, |Gm2(jω) − Gm2(jω)|

|Gm2(jω)| <
∣∣Wm2(jω)

∣∣.
Note that δm1, δm2 are complex uncertain parameters corresponding to uncertain LTI
dynamics.

The frequency responses of Wm1 , Wm2 are found graphically as shown in
Fig. 15.7 and then approximated by first-order transfer functions using the file
wfit.m. As a result, we obtain
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Fig. 15.6 Uncertain frequency responses of the actuators
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Fig. 15.7 Actuators uncertainty approximations
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Fig. 15.8 Block-diagram of
the uncertain actuators model

Fig. 15.9 Triple inverted
pendulum system with
uncertainties

Wm1 = 0.3877s + 25.6011

1.0000s + 246.3606
, Wm2 = 0.3803s + 60.8973

1.0000s + 599.5829

By introducing the vector u = [u1, u2]T , the equations of the actuators are rewritten
as

tm = Gactu

where

Gact = Gm(I2 + WmΔm),

Gm =
[
Gm1 0

0 Gm2

]
, Wm =

[
Wm1 0

0 Wm2

]
, Δm =

[
δm1 0
0 δm2

]

The block-diagram of the actuators with the input multiplicative uncertainty is
shown in Fig. 15.8.

The uncertain actuators model is obtained by using the file act_pend.m that
contains the following command lines:

% First actuator
gd1 = 1.080; Td1 = 0.005;
G1 = tf([gd1],[Td1 1]);
Wm1 = tf([0.3877 25.6011],[1.0000 246.3606]);
Delta_act1 = ultidyn(’Delta_act1’,[1 1]);
Act1 = G1*(1 + Wm1*Delta_act1);
%
% Second actuator
gd2 = 0.335; Td2 = 0.002;
G2 = tf([gd2],[Td2 1]);
Wm2 = tf([0.3803 60.8973],[1.0000 599.5829]);
Delta_act2 = ultidyn(’Delta_act2’,[1 1]);
Act2 = G2*(1 + Wm2*Delta_act2);

Note that the uncertain LTI dynamics δ1, δ2 are set implementing the function
ultidyn.

Having modeled both the pendulum and the actuators with consideration of pos-
sible perturbations, the block-diagram of the whole system is seen as in Fig. 15.9.
Note that we have a case of a mixed, real, and complex, uncertainty configuration.
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Fig. 15.10 Uncertain model
of the triple inverted
pendulum system

Fig. 15.11 Interconnection
structure of the closed-loop
system

The whole, perturbed, triple inverted pendulum system can be described by the
equation [

y

yp

]
= Gsys

[
d

u

]

where the uncertain state-space system Gsys can be easily obtained by using the
function sysic. The system is shown in Fig. 15.10 and contains 10 uncertain pa-
rameters (eight real and two LTI dynamics).

15.3 Design Specifications

The block-diagram of the closed-loop system, which includes the triple inverted
pendulum model, the feedback structure and the controller, as well as the ele-
ments reflecting the model uncertainty and the performance objectives, is depicted
in Fig. 15.11. In order to achieve better performance, we shall make use of the con-
figuration of a 2-degree-of-freedom (2DOF) controller.

The system has a reference input (r), an input disturbance (d), a measurement
noise (η) and two output costs (ey and eu). The system Wm is an ideal dynamics
model to which the designed closed-loop system has to match. The model of the
triple inverted pendulum system is the uncertain state-space system Gsys. The feed-
back signal is generated on the basis of the potentiometers output yp = Cpy, which
requires the reference r to be multiplied by the matrix Cp (the other way to deal
with the situation is to multiply yp by C−1

p ). The measurement of the arm angles
is accompanied by introduction of frequency-dependent noises that are inevitable in
practice and are thus added to the corresponding measurements. This is why at the
outputs of the potentiometers one obtains the signal yc = −(yp +Wnη), where Wn is
a weighting function (shaping filter on the measurement noise) and η = [η1 η2 η3]T
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Fig. 15.12 Measurement noise weighting function

is an arbitrary noise signal satisfying ‖η‖2 ≤ 1. By choosing an appropriate Wn it is
possible to form the desired spectral contents of the actual noise signal (in the form
of Wnη).

In the given case the matrix Wn is chosen as

Wn(s) =
⎡
⎣wn(s) 0 0

0 wn(s) 0
0 0 wn(s)

⎤
⎦

where the weighting transfer function wn = 2 × 10−5 10s+1
0.1s+1 is a high pass filter that

shapes the noise spectral density for the type of potentiometers under consideration.
The magnitude plot of this filter is shown in Fig. 15.12. This transfer function means
that in the low-frequency range the magnitude of the measurement error is about
2 × 10−5 V, and in the high-frequency range, about 2 × 10−3 V.

As for feedback signals, we shall use yc = −(yp + Wnη) and Cpr .
The weighted closed-loop outputs ey and eu satisfy the equation

[
ey

eu

]
= Φ(s)

⎡
⎣ r

d

η

⎤
⎦

where the matrix Φ = Φ(Gsys) is the uncertain closed-loop transfer function matrix.
The performance objective requires the transfer function matrix Φ(s) from r ,

d and η to ey and eu to be small in the sense of ‖ · ‖∞, for all possible (stable)
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uncertainties. The appropriately chosen weighting functions matrices Wp and Wu

are used to reflect the relative significance over different frequency ranges for which
the performance is required.

The design problem for the triple inverted pendulum system is to find a linear,
output controller K(s) to generate the output feedback

u(s) = K(s)

[
yc(s)

Cpr(s)

]

to ensure the following properties of the closed-loop system.

15.3.1 Robust Stability

The closed-loop system achieves robust stability if the closed-loop system is inter-
nally stable for each possible, perturbed plant dynamics Gsys.

15.3.2 Nominal Performance

The closed-loop system achieves nominal performance if the following performance
objective is satisfied for the nominal plant model Gsys nom:∥∥Φ(Gsys nom)

∥∥∞ < 1 (15.3)

This objective is similar to the mixed S/KS sensitivity optimization.

15.3.3 Robust Performance

The closed-loop system must maintain, for each Gsys, the performance objective∥∥Φ(Gsys)
∥∥∞ < 1 (15.4)

In addition to the above requirements, it is desirable that the controller designed
would have acceptable complexity, i.e. it is of reasonably low order.

The ideal system model to be matched with, is chosen as

Wm(s) =
⎡
⎣wm1(s) 0 0

0 wm2(s) 0
0 0 wm3(s)

⎤
⎦

where

wm1(s) = 1

100s2 + 14s + 1

wm2(s) = 1

25s2 + 7s + 1

wm3(s) = 1

9s2 + 4.2s + 1
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Fig. 15.13 Model frequency responses

This model takes into account that the first arm has the slowest dynamics and the
third arm—the fastest one.

The magnitude responses of the model are shown in Fig. 15.13.
In the given case the weighting performance functions are chosen in the forms of

Wp(s) =
⎡
⎣wp1(s) 0 0

0 wp2(s) 0
0 0 wp3(s)

⎤
⎦ , Wu(s) =

[
wu(s) 0

0 wu(s)

]

where

wp1(s) = 1 × 10−2 s2 + 2s + 4

s2 + 1.5s + 0.1

wp2(s) = 2 × 10−2 s2 + 2s + 4

s2 + 1.5s + 0.01

wp3(s) = 4 × 10−2 s2 + 2s + 4

s2 + 1.5s + 0.01

and wu(s) = 10−6 s+1
0.001s+1 .

The weighting functions are set in the M-file wts_pend.m.
The magnitude responses of the inverse weighting function W−1

p are shown in
Fig. 15.14. It is seen from the figure that ey1 is the least penalized output, while ey3

is the most penalized one. Such a choice of the weighting functions is justified by
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Fig. 15.14 Frequency responses of the inverse weighting function

the fact that the variable y1 = Θ1 is not controlled directly and that y3 has the fastest
dynamics.

15.4 System Interconnections

The internal structure of the 11-input, 11-output 30th order open-loop system, which
is saved as the variable pend_ic, is shown in Fig. 15.15. The reference, the dis-
turbance and the noise are saved in the variables ref, dist, noise, respectively.
The control signal is saved in the variable control.

The variables ref, dist, noise, y, y_p, y_c, e_y have all three elements
and the variables control, e_u have two elements. The open-loop connection
is assigned by the M-file olp_pend using the function sysic.

The schematic diagram showing the specific input/output ordering for the vari-
able pend_ic is shown in Fig. 15.16.

The block-diagram used in the closed-loop system simulation is shown in
Fig. 15.17. The corresponding closed-loop interconnection, which is saved in the
variable pend_sm, is obtained by the M-file sim_pend.

Figure 15.18 shows the schematic diagram of the specific input/output ordering
for the variable pend_sm.
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Fig. 15.15 Open-loop interconnection of the triple inverted pendulum system

Fig. 15.16 Schematic diagram of the open-loop system

Fig. 15.17 Closed-loop
interconnection structure of
the pendulum system
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Fig. 15.18 Schematic diagram of the closed-loop system

Fig. 15.19 Block diagram
for H∞ design

15.5 H∞ Design

The design goal in this case is to find an H∞ (sub)optimal control law for the in-
terconnection shown in Fig. 15.19, in which we make use of the nominal system
model. The variable hin_ic, which corresponds to the nominal transfer function
matrix Pnom of the augmented system, is obtained by the command line

hin_ic = pvget(pend_ic,’NominalValue’);

The H∞ optimal control minimizes the ‖ · ‖∞ norm of FL(Pnom,K) over the sta-
bilizing controller transfer matrix K . In the given case FL(Pnom,K) is the nominal
closed-loop system transfer matrix from the references, disturbances and noises (the
signals r , d , and η) to the weighted outputs ey and eu (Fig. 15.19).

The H∞ design is conducted by using the M-file hinf_pend.m. It utilizes the
function hinfsyn, which determines a (sub)optimal H∞ control law, based on the
prescribed open-loop interconnection. The interval for γ iteration is chosen between
0 and 10 with a tolerance tol = 0.001. The controller obtained is of 30th order and
for this controller the closed-loop system achieves H∞ norm equal to 0.4346. An
undesired property of the controller is that it has a pole at 68.71, i.e. this controller
is unstable, which makes it less favorable in practice.

The singular value plot of the H∞ controller transfer matrix is shown in
Fig. 15.20.
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Fig. 15.20 Singular values of the H∞ controller

Since the closed-loop system does not achieve robust stability, it is meaningful to
obtain the system transient responses only for the nominal parameters. The closed-
loop, transient responses (reference tracking) for the nominal model are obtained
by using the file clp_pend. The transient response of the closed-loop system with
H∞ controller for the reference vector

r =
⎡
⎣ 0

−0.1
0.2

⎤
⎦

(the references are measured in radians) is shown in Fig. 15.21. The response is
characterized by small overshoots of the output variables. The steady-state errors
are small, except for a small error on the position of the first arm.

The disturbance rejection of the closed-loop system with the H∞ controller is
shown in Fig. 15.22. The disturbance vector is set to

d =
⎡
⎣0.1

0.1
0.1

⎤
⎦

and measured in N m.
In Fig. 15.23 we show the singular values plot of the uncertain closed-loop trans-

fer matrix with the H∞ controller. It is seen from the figure that for some values
of the uncertain parameters the magnitude responses have very high picks that may
indicate potential instability of the closed loop system.
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Fig. 15.21 Closed-loop transient response of H∞ controller

Fig. 15.22 Disturbance rejection of H∞ controller
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Fig. 15.23 Closed-loop singular values with H∞ controller

The robust stability analysis of the closed-loop system is done by the file
mu_pend implementing the function robuststab. A a result one obtains the
following report:

report =

Uncertain System is NOT robustly stable to modeled
uncertainty.
-- It can tolerate up to 38.2% of the modeled uncertainty.
-- A destabilizing combination of 38.3% of the modeled

uncertainty exists, causing an instability
at 10.5 rad/s.

-- Sensitivity with respect to uncertain element ...
’Delta_act1’ is 54%. Increasing ’Delta_act1’ by 25%

leads to a 14% decrease in the margin.
’Delta_act2’ is 21%. Increasing ’Delta_act2’ by 25%

leads to a 5% decrease in the margin.
’c1’ is 0%. Increasing ’c1’ by 25% leads

to a 0% decrease in the margin.
’c2’ is 0%. Increasing ’c2’ by 25% leads

to a 0% decrease in the margin.
’c3’ is 0%. Increasing ’c3’ by 25% leads

to a 0% decrease in the margin.
’cm1’ is 15%. Increasing ’cm1’ by 25% leads

to a 4% decrease in the margin.
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Fig. 15.24 Robust stability test of H∞ controller

’cm2’ is 0%. Increasing ’cm2’ by 25% leads
to a 0% decrease in the margin.

’i1’ is 23%. Increasing ’i1’ by 25% leads
to a 6% decrease in the margin.

’i2’ is 7%. Increasing ’i2’ by 25% leads
to a 2% decrease in the margin.

’i3’ is 31%. Increasing ’i3’ by 25% leads
to a 8% decrease in the margin.

The upper and lower bounds of the structured singular value μ (over the fre-
quency range) are shown in Fig. 15.24. The closed-loop system with H∞ controller
does not achieve robust stability, the maximum value of μ exceeding 2.6. It follows
from the report that the uncertain parameters C1, C2, C3, and Cm2 practically do not
affect the robust stability.

The robust performance of the closed-loop system with H∞ controller is checked
with the function robustperf. As a result we obtain the following report:

report =

Uncertain System achieves a robust performance margin
of 0.3822.
-- A model uncertainty exists of size 38.1% resulting

in a performance margin of 2.62 at 10.5 rad/s.
-- Sensitivity with respect to uncertain element ...
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Fig. 15.25 Robust performance of H∞ controller

The μ values corresponding to the case of robust performance analysis are shown
in Fig. 15.25. Again, the closed-loop system does not achieve robust performance
either.

Hence, it is concluded that the designed H∞ controller leads to good closed-loop
transient responses, but does not ensure the necessary robustness of the closed-loop
system as required.

15.6 μ-Synthesis

Let us denote by P(s) the transfer function matrix of the 11-input, 11-output, open-
loop system consisting of the pendulum system model plus the weighting functions,
and let the block structure ΔP of uncertainties be defined by

ΔP :=
{[

Δ 0
0 ΔF

]
: Δ ∈R10×10, ΔF ∈ C9×5

}

The first block of the matrix ΔP , the uncertainty block Δ, corresponds to the para-
metric and LTI uncertainties modeled in the triple inverted pendulum system. The
second block, ΔF , is a fictitious uncertainty block, introduced to include the perfor-
mance objectives in the framework of the μ-approach. The inputs to this block are
the weighted error signals ey and eu the outputs being the exogenous inputs r , d ,
and η.
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Table 15.3 D–K iterations
results in μ-synthesis Iteration Controller order Maximum value of μ

1 30 2.400

2 68 0.810

3 82 0.525

3 80 0.458

To meet the design objectives a stabilizing controller K is to be found such that,
at each frequency ω ∈ [0,∞], the structured singular value μ satisfies the condition

μΔP

[
FL(P,K)(jω)

]
< 1

The fulfillment of this condition guarantees robust performance of the closed-loop
system, i.e., ∥∥Φ(Gsys)

∥∥∞ < 1

for all stable perturbations Δ with ‖Δ‖∞ < 1.
The μ-synthesis is conducted by using the M-file ms_pend.m implementing

the function dksyn.
The μ-synthesis is done for the same performance and control action weight-

ing functions as the H∞ design. The progress of the D–K iteration is shown in
Table 15.3.

Four iterations are done reducing the maximum value of μ to 0.458. The final
controller obtained is of 80th order. Note that this controller is stable.

The singular value plot of the μ-controller is shown in Fig. 15.26.
The robust stability and robust performance analysis of the closed-loop system

with μ-controller yields the following results:

report =

Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 266% of the modeled uncertainty.
-- A destabilizing combination of 273% of the modeled

uncertainty exists, causing an instability
at 3.43 rad/s.

-- Sensitivity with respect to uncertain element ...

report =

Uncertain System achieves a robust performance margin
of 2.238.
-- A model uncertainty exists of size 223% resulting in a

performance margin of 0.448 at 0.1 rad/s.
-- Sensitivity with respect to uncertain element ...

The structured singular values for the robust stability study (over the frequency
range) are shown in Fig. 15.27.



15.6 μ-Synthesis 315

Fig. 15.26 Singular values of the μ-controller

Fig. 15.27 Robust stability of μ controller
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Fig. 15.28 Robust performance of μ controller

The μ values over the frequency range for the case of robust performance analy-
sis are shown in Fig. 15.28.

Consider now the closed-loop transient responses. Since the closed-loop system
achieves robust stability and performance, it is possible to obtain the transient re-
sponses for different values of the uncertain parameters. This is done by using the
M-file mcs_pend.m. The same reference signal as used in the H∞ simulation is
used here. That is,

r =
⎡
⎣ 0

−0.1
0.2

⎤
⎦

The transient response of the uncertain closed-loop system is shown in Fig. 15.29.
The response is slightly slower than in the case of H∞ controller.

The control action in the case of a μ-controller is shown in Fig. 15.30. The motor
voltages are kept within 0.14 V for all possible perturbations.

The disturbance rejection of the uncertain closed-loop system with the μ-
controller is shown in Fig. 15.31. We see that the overshoot of the third output is
almost 5 times larger than in the case of the H∞ controller.

Hence, it is clear that the (nominal) transient responses in terms of reference
tracking and disturbance attenuation are worse in the case of the μ-controller. This
is the price that has to be paid to ensure the robust stability and robust performance
of the closed-loop system.
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Fig. 15.29 Closed-loop transient response of μ-controller

Fig. 15.30 Control action of μ-controller

In Fig. 15.32, we show the noise wnη3, which acts at the output of the third po-
tentiometer, and the corresponding response of the output y3. From the magnitudes
of wnη3 and y3, one may conclude that the closed-loop system is susceptible to
noises.
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Fig. 15.31 Disturbance rejection of μ-controller

The closed-loop frequency responses of the uncertain closed-loop system are ob-
tained by the M-file frs_pend.m. The singular values of the closed-loop transfer
matrix with the μ-controller are plotted in Fig. 15.33. The comparison with the
plot shown in Fig. 15.23 reveals that the closed-loop bandwidth in the case of a μ-
controller is slightly smaller, which leads to a slower response and worse disturbance
attenuation. In contrast to the case of H∞ controller, the closed-loop frequency re-
sponses do not have peaks.

The singular values of the transfer function matrix concerning disturbance rejec-
tion are shown in Fig. 15.34. We see that the disturbance attenuation is worst for
frequencies around 1 rad/s.

From the singular values plot of the transfer function matrix concerning noise
attenuation, shown in Fig. 15.35, we see that the influence of noises on the system
output would be maximal for frequencies between 1 rad/s and 10 rad/s.

As mentioned earlier, the controller obtained by μ-synthesis is initially of 80th
order, which makes its implementation in practice very difficult. Therefore, it is
necessary to reduce the controller order. For this purpose, we implements the M-
file red_pend.m implementing the function reduce. This function allows us to
reduce the controller order to 25. Further reduction of the controller order leads
to deterioration of the closed-loop transient responses and would even cause the
instability of the closed-loop system.

In Fig. 15.36 we compare the singular values frequency responses of the full-
order and reduced-order μ-controllers. Up to the frequency 104 rad/s the frequency
plots of both controllers coincide with each other, which implies very similar perfor-
mance of the closed-loop systems. In fact, the closed-loop transient responses with
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Fig. 15.32 Sensor noise and closed-loop noise response

the full-order controller and those with the reduced-order controller (not included in
the book) are practically undistinguishable.

A discrete-time controller may be obtained by sampling the already designed
continuous-time controller for a sampling frequency fs = 1/Ts . This can be con-
ducted by the M-file dcl_pend.m, which utilizes the function c2d. The resulting,
sampled-data closed-loop system can be simulated by using the function sdlsim.
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Fig. 15.33 Closed-loop singular value plot

Fig. 15.34 Singular values of the disturbance rejection transfer function matrix
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Fig. 15.35 Singular values of the noise-attenuation transfer function matrix

Fig. 15.36 Frequency responses of the full- and reduced-order controllers
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Since the inverted pendulum is a relatively slow system, the sampling frequency
may be chosen to be small. For instance, if this frequency is 100 Hz then the tran-
sient responses of the sampled-data system are close to the corresponding responses
of the continuous-time system.

15.7 Nonlinear System Simulation

The nonlinear, closed-loop system of the triple inverted pendulum is simulated by
using the Simulink® models c_pend.mdl (for the continuous-time system) and
d_pend.mdl (for the sampled-data system). Both models allow us to simulate the
closed-loop system for different references, disturbances and noise signals. Both
models utilize the M-file S-function s_pend.m that includes the nonlinear differ-
ential equations (15.1) of the triple inverted pendulum. The initial conditions of the
pendulum are assigned in the M-file inc_pend.m.

The sampled-data model consists of the discretized controller, a 14-bit analogue-
to-digital converter with maximum input voltage 5 V, and a 14-bit digital-to-
analogue converter with maximum output voltage 5 V. It is assumed that the cal-
culation of the control action requires no longer than one sampling period Ts .

Before simulating the system it is necessary to set the model parameters by
using the M-file init_c_pend.m (in the continuous-time case) or the M-file
init_d_pend.m (in the discrete-time case).

The simulation of the nonlinear system for small references and disturbances
produces results that are very close to the results obtained for the linearized model.

The Simulink® model c_pend.mdl of the continuous-time, nonlinear, pendu-
lum system is shown in Fig. 15.37.

In Fig. 15.38 we show the transient response of the continuous-time, nonlinear
system for a reference r = [0 −0.1 0.2]T . The transient response is close to that of
the linear system (Fig. 15.29).

Since the triple inverted pendulum is essentially nonlinear, the simulation results
may differ in the case of large references and disturbances. To illustrate this point, in
Fig. 15.39 we show the transient response of the continuous-time, nonlinear system
for a reference r = [0 0 0.6]T .

15.8 Conclusions

The experience gained in the design of the triple inverted pendulum control system
makes it possible to make the following comments.

• The uncertainty model of the triple inverted pendulum system involves structured
(parametric) as well as unstructured uncertainty. Some care is necessary in de-
riving the pendulum uncertainty model in order to minimize the number of the
uncertain parameters.
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Fig. 15.38 Transient response of the nonlinear system—small reference

Fig. 15.39 Transient response of the nonlinear system—large reference



15.9 Notes and References 325

• The use of a 2-degree-of-freedom control structure allows us to obtain acceptable
performance as well as robustness of the closed-loop system.

• The necessity to achieve robust stability and robust performance of the closed-
loop system leads to decrease of the closed-loop bandwidth that in turn leads
to slower response and worse disturbance attenuation. Thus, there is a trade-off
between nominal performance and robustness of the closed-loop system. In the
given case an acceptable trade-off is achieved by using a μ-controller.

• The order of the μ-controller is very high that thus requires controller order re-
duction to preserve the closed-loop performance and robustness while making
implementation of the controller easier and more reliable.

• The triple inverted pendulum is an essentially nonlinear system and the results
obtained by using the linearized model are valid only for sufficiently small arm
angles and arm velocities.

15.9 Notes and References

The inverted pendulum is introduced into Control Engineering by the Japanese sci-
entist Katsuhisa Furuta and his colleagues from Tokyo Institute of Technology [47]
and is frequently called Furuta pendulum. As noted in [187] the inverted pendu-
lum is frequently used as a good example to show the power of modern control
theory. The design of inverted pendulum control systems is initially done by using
state-space methods [122].

The single and double inverted pendulums are relatively easy to stabilize by using
linear controllers [47, 91, 182]. The triple inverted pendulum is more difficult to con-
trol and it is very sensitive to torque disturbances, joint frictions and measurement
noises [164]. The design of analogue and digital controllers for triple inverted pen-
dulum systems has been considered in several papers (see, for instance, [48, 115]).
References [37, 113] address the challenging problem of stabilizing a triple inverted
pendulum, a cart system that uses only one actuator.

The robust control of different types of inverted pendulum is considered in sev-
eral publications, see, for instance, [81, 114, 164, 167].
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Chapter 16
Robust Control of a Distillation Column

In this chapter we present the design of a robust control system for a high-purity
distillation column. The original nonlinear model of the column is of high order
and it includes parametric gain and time-delay uncertainty. A low-order linearized
distillation column model is used in the design of a 1-degree-of-freedom H∞ loop-
shaping controller and a 2-degree-of-freedom (2DOF) μ-controller. Both controllers
ensure robust stability of the closed-loop system and fulfillment of a mixture of
time-domain and frequency-domain specifications. A reduced order μ-controller is
then found that preserves the robust stability and robust performance of the closed-
loop system. The simulation of the closed-loop system with the nonlinear distillation
column model shows very good performance for different reference and disturbance
signals as well as for different values of the uncertain parameters.

16.1 Introduction

Distillation is an important process in the separation and purification of chemicals.
The process exploits the difference at boiling points of multicomponent liquids. The
control of distillation columns is difficult, because the distillation process is highly
nonlinear and the corresponding linearized models are often ill-conditioned around
the operating point.

The aim of the design, presented in this chapter, is to find a controller that
achieves robust stability and robust performance of the closed-loop control system
of a high-purity distillation column. The original nonlinear model of the column
is of 82nd order and it includes uncertainties in the form of parametric gains and
time delay. The uncertainty model is considered in the form of an input multiplica-
tive complex uncertainty. In our design exercises we try to achieve the desired per-
formance of the closed-loop system using 1-degree-of-freedom H∞ loop-shaping
design procedure and 2-degree-of-freedom μ-synthesis/analysis method. The de-
signs are based on a sixth-order linearized distillation column model. Both designed
controllers ensure robust stability of the closed-loop system and achieve a mixed

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_16,© Springer-Verlag London 2013
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Fig. 16.1 The distillation column system

set of time-domain and frequency-domain specifications. We present several time-
domain and frequency-domain characteristics of the corresponding closed-loop sys-
tems that makes possible the comparison of controllers efficiency. A 12th-order
reduced-order μ-controller is found that preserves the stability and performance
of the closed-loop system in the presence of uncertainties. The simulation of the
closed-loop system with this μ-controller and with the nonlinear distillation col-
umn model is conducted in Simulink® and shows very good performance for differ-
ent reference and disturbance signals as well as for different values of the uncertain
parameters.

16.2 Dynamic Model of the Distillation Column

A typical two-product distillation column is shown in Fig. 16.1. The objective of the
distillation column is to split the feed F , which is a mixture of a light and a heavy
component with composition zF , into a distillate product D with composition yD ,
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Table 16.1 Column nomenclature

Symbol Description

F Feed rate [kmol/min]

zF feed composition [mole fraction]

qF fraction of liquid in feed

D and B distillate (top) and bottom product flowrate [kmol/min]

yD and xB distillate and bottom product composition (usually of light component)
[mole fraction]

L reflux flow [kmol/min]

V boilup flow [kmol/min]

N number of stages (including reboiler)

Ntot = N + 1 total number of stages (including condensor)

i stage number (1—bottom, NF —feed stage, NT —total condensor)

Li and Vi liquid and vapor flow from stage i [kmol/min]

xi and yi liquid and vapor composition of light component on stage i

Mi liquid holdup on stage i [kmol] (MB—reboiler, MD—condensor holdup)

α relative volatility between light and heavy component

τL time constant for liquid flow dynamics on each stage [min]

Table 16.2 Column data

N Ntot NF F zF qF D B L V yD xB Mi τL

40 41 21 1 0.5 1 0.5 0.5 2.706 29 3.206 29 0.99 0.01 0.5 0.063

which contains most of the light component, and a bottom product B with compo-
sition zB , which contains most of the heavy component. For this aim, the column
contains a series of trays that are located along its height. The liquid in the column
flows through the trays from top to bottom, while the vapor in the column rises from
bottom to top. The constant contact between the vapor and liquid leads to increasing
concentration of the more-volatile component in the vapor, while simultaneously in-
creasing concentration of the less volatile component in the liquid. The operation of
the column requires that some of the bottom product is reboiled at a rate V to ensure
the continuity of the vapor flow and some of the distillate is refluxed to the top tray
at a rate L to ensure the continuity of the liquid flow.

The notations used in the derivation of the column model are summarized in
Table 16.1 and the column data are given in Table 16.2.

The index i denotes the stages numbered from the bottom (i = 1) to the top
(i = Ntot) of the column. Index B denotes the bottom product and D the distillate
product. A particular high-purity distillation column with 40 stages (39 trays and a
reboiler) plus a total condensor is considered.
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The nonlinear model equations are:

1. Total material balance on stage i

dMi/dt = Li+1 − Li + Vi−1 − Vi

2. Material balance for the light component on each stage i

d(Mixi)/dt = Li+1xi+1 + Vi−1yi−1 − Lixi − Viyi

This equation leads to the following expression for the derivative of the liquid
mole fraction:

dxi/dt = (
d(Mixi)/dt − xi(dMi/dt)

)/
Mi

3. Algebraic equations
The vapor composition yi is related to the liquid composition xi on the same
stage through the algebraic vapor–liquid equilibrium

yi = αxi

/(
1 + (α − 1)xi

)
From the assumption of constant molar flows and no vapor dynamics, one obtains
the following expression for the vapor flows:

Vi = Vi−1

The liquid flows depend on the liquid holdup on the stage above and the vapor
flow as follows:

Li = L0i + (Mi − M0i )/τL + λ(Vi−1 − V 0i−1)

where L0i [kmol/min] and M0i [kmol] are the nominal values for the liquid flow
and holdup on stage i and V 0i is the nominal boilup flow. If the vapor flow into
the stage effects the holdup then the parameter λ is different from zero. For the
column under investigation λ = 0.

The above equations apply at all stages except in the top (condensor), feed stage
and bottom (reboiler).

1. For the feed stage, i = NF (it is assumed that the feed is mixed directly into the
liquid at this stage)

dMi/dt = Li+1 − Li + Vi−1 − Vi + F

d(Mixi)/dt = Li+1xi+1 + Vi−1yi−1 − Lixi − Viyi + FzF

2. For the total condensor, i = Ntot (MNtot = MD,LNtot = LT )

dMi/dt = Vi−1 − Li − D

d(Mixi)/dt = Vi−1 − Lixi − Dxi

3. For the reboiler, i = 1 (Mi = MB,Vi = VB = V )

d(Mixi)/dt = Li+1xi+1 − Viyi − Bxi
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As a result, we obtain a nonlinear model of the distillation column of 82nd order.
There are two states per tray, one representing the liquid composition and the other
representing the liquid holdup. The model has four manipulated inputs (LT , VB , D

and B) and three disturbances (F , zF and qF ).
In order to find a linear model of the distillation column it is necessary to have a

steady-state operating point around which the column dynamics is to be linearized.
However, the model contains two integrators, because the condensor and reboiler
levels are not under control. To stabilize the column, we make use of the so called
LV-configuration of the distillation column where we use D to control MD and B

to control MB . This is done by two proportional controllers with both gains equal
to 10.

The nonlinear model is linearized at the operating point given in Table 16.2 (the
values of F , L, V , D, B , yD , xB and zF ). These steady-state values correspond to
an initial state where all liquid compositions are equal to 0.5 and the tray holdups
are also equal to 0.5 [kmol]. The steady-state vector is obtained for t = 5000 min
by numerical integration of the nonlinear model equations of the LV-configuration
given in the M-file cola_lv.m. The linearization is carried out by implement-
ing the M-file cola_lin, which makes use of the equations given in the file
cola_lv_lin.m. The 82nd-order, linear model is stored in the variable G4u and
has four inputs (the latter two are actually disturbances),

[LT VB F zF ]
and two outputs,

[yD xB ]
Before reducing the model order, the model G4u is scaled in order to make all
inputs/disturbances and all outputs at about the same magnitude. This is done by
dividing each variable by its maximum change, i.e.

u = U/Umax; y = Y/Ymax

where U , Y are the input and output of the model G4u in original units, Umax, Ymax
are the corresponding maximum values allowed, and u, y are the scaled variables.
The scaling is achieved by using the input scaling matrix

Si =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0.2 0
0 0 0 0.1

⎤
⎥⎥⎦

and output scaling matrix

So =
[

100 0
0 100

]

The scaled model is then found as G4 = SoG4uSi .
The final stage in selecting the column model is the order reduction of the scaled

model G4. This is done by using the function reduce. As a result, we obtain a
sixth-order model saved in the variable G.
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Fig. 16.2 Singular values of G and G4

All commands for finding the sixth-order linear model of the distillation column
are contained in the file mod_col.m.

The frequency responses of the singular values of G are compared with the sin-
gular values of the 82nd order linearized model G4 in Fig. 16.2. It is seen that the
behavior of both models is close until the frequency becomes 2 rad/min.

16.3 Uncertainty Modeling

The uncertainties considered in the distillation column control systems are a gain
uncertainty of ±20 % and a time delay of up to 1 min in each input channel. Thus,
the uncertainty may be represented by the transfer matrix

Wu =
[
k1e−Θ1s 0

0 k2e−Θ2s

]

where ki ∈ [0.8 1.2]; Θi ∈ [0.0 1.0]; i = 1,2. It is convenient to represent this un-
certainty by an input multiplicative uncertainty, as shown in Fig. 16.3, with

Δ =
[
Δ1 0
0 Δ2

]

where |Δ1| ≤ 1, |Δ2| ≤ 1. The uncertainty weighting function

WΔ =
[
WΔ1 0

0 WΔ2

]
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Fig. 16.3 Distillation column with input multiplicative uncertainty

is determined in the following way.
Denote by Wui

= 1 the nominal transfer function in the ith channel for ki = 1
and Θi = 0; i = 1,2.

According to Fig. 16.3 we have

Wui
= (1 + WΔi

Δi)Wui
, i = 1,2

Taking into account that |Δi | ≤ 1 it follows that the relative uncertainty should sat-
isfy

|Wui
(jω) − Wui

(jω)|
|Wui

(jω)| ≤ ∣∣WΔi
(jω)

∣∣, i = 1,2

where Wui
(jω) = kie−jωΘi = ki(cos(−ωΘi) + j sin(−ωΘi)). In this way, to

choose the uncertainty weight WΔi
is equivalent to determining an upper bound

of the frequency response of the relative uncertainty

|Wui
(jω) − Wui

(jω)|
|Wui

(jω)| =
√(

ki cos(ωΘi) − 1
)2 + (

ki sin(ωΘi)
)2

.

The frequency responses of the relative uncertainty

|Wui
(jω) − Wui

(jω)|
|Wui

(jω)|
are computed by the file unc_col.m and shown in Fig. 16.4. These responses are
then approximated by third-order transfer functions using the file wfit.m. As a
result, one obtains

WΔi
= 2.2138s3 + 15.9537s2 + 27.6702s + 4.9050

1.0000s3 + 8.3412s2 + 21.2393s + 22.6705
, i = 1,2
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Fig. 16.4 Approximation of the uncertain time delay

16.4 Closed-Loop System Performance Specifications

The aim of the distillation column control-system design is to determine a controller
that meets robust stability and robust performance specifications for the LV config-
uration. We try to satisfy these requirements by using a 1-degree-of-freedom H∞
loop-shaping controller and a 2-degree-of-freedom μ-controller. In the given case,
the robust stability means guaranteed closed-loop stability for all 0.8 ≤ k1, k2 ≤ 1.2
and 0 ≤ Θ1,Θ2 ≤ 1 min. The time-domain specifications are given in terms of step-
response requirements, which must be met for all values of k1, k2, Θ1 and Θ2.
Specifically, for a unit step command to the first input channel at t = 0, the scaled
plant outputs y1 (tracking) and y2 (interaction) should satisfy:

• y1(t) ≥ 0.9 for all t ≥ 30 min;
• y1(t) ≤ 1.1 for all t ;
• 0.99 ≤ y1(∞) ≤ 1.01;
• y2(t) ≤ 0.5 for all t ;
• −0.01 ≤ y2(∞) ≤ 0.01.

Correspondingly, similar requirements should be met for a unit step command at the
second input channel.

In addition, the following frequency-domain specification should be met:

• σ(K̂yŜ)(jω) < 316, for each ω, where K̂y denotes the feedback part of the un-
scaled controller. (Here and latter, a variable with a hat refers to the case of un-
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Fig. 16.5 Closed-loop interconnection structure of the distillation column system with 1DOF con-
troller

scaled plant.) This specification is included mainly to avoid saturation of the plant
inputs.

• σ(ĜK̂y)(jω) < 1, for ω ≥ 150; or σ(K̂yŜ)(jω) ≤ 1, for ω ≥ 150.

In the above, σ denotes the largest singular value, and Ŝ = (I + ĜK̂y) < 1 is the
sensitivity function for Ĝ.

The block diagrams of the closed-loop systems with 1-degree-of-freedom and 2-
degree-of-freedom controllers, incorporating the design requirements consideration
represented by weights, are shown in Figs. 16.5 and 16.6, respectively. The plant
G̃, enclosed by the dashed rectangle, consists of the nominal scaled model G plus
the input multiplicative uncertainty. The controller K implements a feedback from
outputs yD and xB and a feedforward from the reference signal r . The measurement
of the distillate and bottom products composition is corrupted by the noise n. The
desired dynamics of the closed-loop system is sought by implementation of a suit-
ably chosen model M . The model M represents the desired dynamic behavior of the
closed-loop system from the reference signal to the outputs. The usage of a model of
the desired dynamics allows us to take easily into account the design specifications.

The transfer function matrix of the model M is selected as

M =
[

1
T s2+2ξT s+1

0

0 1
T s2+2ξT s+1

]

The coefficients of the transfer functions (T = 6, ξ = 0.8) in both channels of the
model are chosen such as to ensure an overdamped response with a settling time of
about 30 min. The off-diagonal elements of the transfer matrix are set as zeros in
order to minimize the interaction between the channels.
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Fig. 16.6 Closed-loop interconnection structure of the distillation column system with 2DOF con-
troller

Fig. 16.7 Model frequency response
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The frequency response of the model M is shown in Fig. 16.7.
Consider first the closed-loop system with 1-degree-of-freedom controller. It is

easy to show that [
ep

eu

]
=

[
Wp(T − M) −WpT Wn

WuKS −WuKSWn

][
r

n

]

where S = (I + G̃K)−1 is the sensitivity function for the scaled plant, T = (I +
G̃K)−1G̃K is the complementary sensitivity function and G̃ = G(I + WΔΔ) is the
uncertain, scaled plant model.

The performance objective is to satisfy∥∥∥∥
[
Wp(T − M) −WpT Wn

WuKS −WuKSWn

]∥∥∥∥∞
< 1 (16.1)

for each uncertain G̃.
Let the scaled, 2-degree-of-freedom controller be partitioned as

K(s) = [
Ky(s) Kr(s)

]
where Ky is the feedback part of the controller and Kr is the pre-filter part. Then it
is possible to show that[

ep

eu

]
=

[
Wp(SG̃Kr − M) −WpT Wn

Wu(I + KyG̃)−1Kr −WuKySWn

][
r

n

]

where S = (I + G̃Ky)
−1 is the sensitivity function and T = (I + G̃Ky)

−1G̃Ky is
the complementary sensitivity function.

The performance objective in the given case is to satisfy∥∥∥∥
[

Wp(SG̃Kr − M) −WpT Wn

Wu(I + KyG̃)−1Kr −WuKySWn

]∥∥∥∥
∞

< 1 (16.2)

for each uncertain G̃.
The performance and control action weighting functions for both type of the

controller are chosen as

Wp =
[

0.55 9.5s+3
9.5s+10−4 0.3

0.3 0.55 9.5s+3
9.5s+10−4

]
, Wu =

[
0.87 s+1

0.01s+1 0
0 0.87 s+1

0.01s+1

]

The implementation of the performance weighting function Wp aims to ensure
closeness of the system dynamics to the model over the low-frequency range. Note
that this function contains nonzero off-diagonal elements, which make it easier to
meet the time-domain specifications. A small constant equal to 10−4 is added in the
denominator in each channel to make the design problem regular.

The usage of the control weighting function Wu allows us to limit the magnitude
of control actions over the specified frequency range (ω ≥ 150).

The magnitude plot of the inverse of the performance weighting function Wp

is shown in Fig. 16.8 and the magnitude plot of the control weighting function is
shown in Fig. 16.9.
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Fig. 16.8 Inverse of performance weighting function

Fig. 16.9 Control-action weighting function
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Fig. 16.10 Noise weighting function

The noise shaping filter

Wn =
[

10−2 s
s+1 0

0 10−2 s
s+1

]

is determined according to the spectral contents of the sensor noises accompanying
the measurement of the distillate and bottom product composition.

The magnitude plot of the noise shaping filter is shown in Fig. 16.10.
The model transfer function, the performance and control weighting functions as

well as the noise shaping filter are all set in the file wts_col.m.

16.5 Open-Loop and Closed-Loop System Interconnections

The open-loop system interconnections for both types of controller are obtained by
the M-file olp_col.

The internal structure of the six-input, six-output 22nd-order open-loop system
with 1-degree-of-freedom controller, which is saved as the variable sys_ic_1dof,
is shown in Fig. 16.11. The references and the noises are saved as the variables ref
and noise, respectively, and the controls as the variable control.

All variables have two elements (i.e. they are 2-dimensional vectors).
The schematic diagram showing the specific input/output ordering for the vari-

able sys_ic_1dof is given in Fig. 16.12.
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Fig. 16.11 Open-loop interconnection structure of the distillation column system for 1DOF con-
troller

Fig. 16.12 Schematic diagram of the open-loop interconnection for 1DOF controller

Fig. 16.13 Open-loop interconnection structure of the distillation column system for 2DOF con-
troller

The internal structure of the six-input, eight-output 22nd-order open-loop system
with 2-degree-of-freedom controller, which is saved as the variable sys_ic_2dof,
is shown in Fig. 16.13.

The schematic diagram showing the specific input/output ordering for the vari-
able sys_ic_2dof is given in Fig. 16.14.
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Fig. 16.14 Schematic diagram of the open-loop interconnection for 2DOF controller

Fig. 16.15 Closed-loop interconnection structure of the distillation column system for 1DOF con-
troller

The block-diagram used in the simulation of the closed-loop system with
1-degree-of-freedom controller is shown in Fig. 16.15. The corresponding closed-
loop interconnection is saved in the variable clp_ic. The uncertain delays are
represented by the transfer function matrix

Wdel =
[
k1del1 0

0 k2del2

]

where ki ∈ [0.8 1.2] i = 1,2 and deli is a six order Padé approximation of the time
delay e−Θis , Θi ∈ [0.0 1.0]; i = 1,2.

The schematic diagram showing the specific input/output ordering for the vari-
able clp_ic is shown in Fig. 16.16.

The block-diagram used in the simulation of the closed-loop system with
2-degree-of-freedom controller, is shown in Fig. 16.17, and the schematic diagram
showing the specific input/output ordering for the variable clp_ic is shown in
Fig. 16.18.
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Fig. 16.16 Schematic diagram of the closed-loop interconnection for 1DOF controller

Fig. 16.17 Closed-loop interconnection structure of the distillation column system for 2DOF con-
troller

Fig. 16.18 Schematic diagram of the closed-loop interconnection for 2DOF controller

16.6 Controller Design

Successful design of the distillation column control system may be obtained by
using the H∞ loop-shaping design procedure (LSDP) and the μ-synthesis. Note
that in the case of LSDP we do not use the performance specifications implemented
in the case of μ-synthesis. Instead of these specifications we use a pre-filter W1
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Fig. 16.19 Singular values of the original system and shaped system

and a post-filter W2 in order to shape appropriately the open-loop transfer function
W1GW2.

16.6.1 Loop-Shaping Design

In the present case, we choose a pre-filter with transfer function

W1 =
[

1.7 1.1s+1
10s

0
0 1.7 1.1s+1

10s

]
.

The choice of the gain equal to 1.7 is done to ensure a sufficiently small steady-state
error. Larger gain leads to smaller steady-state errors but worse transient response.

The post-filter is taken simply as W2 = I2.
The singular value plots of the original and shaped systems are shown in

Fig. 16.19.
The design of 1-degree-of-freedom LSDP controller is done by using the M-file

lsh_col.m, which implements the function ncfsyn. The controller obtained is
of order nine.

The robust stability analysis of the closed-loop system is done by the file
mu_col. As a result one obtains the following report:
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Fig. 16.20 Robust stability for loop-shaping controller

report =

Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 154% of the modeled uncertainty.
-- A destabilizing combination of 154% of the modeled

uncertainty exists,
causing an instability at 0.534 rad/s.

-- Sensitivity with respect to uncertain element ...
’Delta_1’ is 42%. Increasing ’Delta_1’ by 25% leads

to a 11% decrease in the margin.
’Delta_2’ is 67%. Increasing ’Delta_2’ by 25% leads

to a 17% decrease in the margin.

The frequency response plot of the structured value μ with respect to the ro-
bust stability is shown in Fig. 16.20. The closed-loop system preserves stability for
all perturbations with norm less than 1.54. As usual, the requirements for nominal
performance and robust performance are not fulfilled with this controller.

The closed-loop frequency responses are obtained by using the file frs_col.m.
The singular value plot of the unscaled closed-loop system transfer function is

shown in Fig. 16.21. Both low-frequency gains are equal to 1 that ensures zero
steady-state errors in both channels.

In Fig. 16.22 we show the singular-value plot of the unscaled sensitivity func-
tion Ŝ.
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Fig. 16.21 Frequency response of the closed-loop system with loop-shaping controller

Fig. 16.22 Frequency responses of the sensitivity function
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Fig. 16.23 Frequency response to the noises

The singular value plots of the transfer function matrix with respect to the noises
(Fig. 16.23) show that the noises are attenuated by at least a factor of 104 times at
the system output.

The singular-value plots of the transfer function matrices ĜK̂y and K̂yŜ are
shown in Figs. 16.24 and 16.25, respectively. The maximum of the largest singu-
lar value of ĜK̂y is far less than 1 for ω ≥ 150 and the maximum of the largest
singular value of K̂yŜ is less than 200 so that the corresponding frequency-domain
specification is met.

In Figs. 16.26, 16.27, 16.28 and 16.29 we show the transient responses of the
scaled closed-loop system obtained by the file mcs_col.m for different values of
the uncertain gain and time delay. The time-domain specification is met and the
closed-loop system transient response has a small settling time.

The control action in the closed-loop system for the same variations of the un-
certain parameters is shown in Figs. 16.30, 16.31, 16.32 and 16.33.

16.6.2 μ-Synthesis

Let us denote by P(s) the transfer function matrix of the six-input, eight-output
open-loop system consisting of the distillation column model plus the weighting
functions and let the block structure ΔP is defined as

ΔP :=
{[

Δ 0
0 ΔF

]
: Δ ∈ C2×2,ΔF ∈ C4×4

}
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Fig. 16.24 Singular-value plot of ĜK̂y

Fig. 16.25 Singular-value plot of K̂y Ŝ
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Fig. 16.26 Perturbed transient response y11 for loop-shaping controller

Fig. 16.27 Perturbed transient response y12 for loop-shaping controller
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Fig. 16.28 Perturbed transient response y21 for loop-shaping controller

Fig. 16.29 Perturbed transient response y22 for loop-shaping controller
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Fig. 16.30 Perturbed control action u11 for loop-shaping controller

Fig. 16.31 Perturbed control action u12 for loop-shaping controller
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Fig. 16.32 Perturbed control action u21 for loop-shaping controller

Fig. 16.33 Perturbed control action u22 for loop-shaping controller
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Table 16.3 Results of the
μ-synthesis Iteration Controller order Maximum value of μ

1 22 1.091

2 28 0.991

3 28 0.978

The first block of this matrix corresponds to the uncertainty block Δ, used in mod-
eling the uncertainty of the distillation column. The second block ΔF is a fictitious
uncertainty 4 × 4 block, introduced to include the performance objectives in the
framework of the μ-approach. The inputs to this block are the weighted error sig-
nals ep and eu, the outputs being the exogenous inputs r and n.

To meet the design objectives a 2-degree-of-freedom stabilizing controller
K(s) = [Ky(s) Kr(s)] is to be found such that, at each frequency ω ∈ [0,∞], the
structured singular value satisfies the condition

μΔP

[
FL(P,K)(jω)

]
< 1.

The fulfillment of this condition guarantees robust performance of the closed-loop
system, i.e., ∥∥∥∥

[
Wp(SG̃Kr − M) −WpT Wn

Wu(I + KyG̃)−1Kr −WuKySWn

]∥∥∥∥
∞

< 1 (16.3)

The μ-synthesis is done by using the M-file ms_col.m, which implements the
function dkitopt.

The progress of the D–K iteration is shown in Table 16.3.
In the given case an appropriate controller is obtained after the third D–K itera-

tion. The controller is stable and its order is equal to 28.
It can be seen from Table 16.3 that after the third iteration the maximum value of

μ is equal to 0.978.
The μ-analysis of the closed-loop system is done by the file mu_col. According

to the reports, given below, the system achieve robust stability and robust perfor-
mance.

report =

Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 145% of the modeled uncertainty.
-- A destabilizing combination of 145% of the modeled

uncertainty exists,
causing an instability at 0.614 rad/s.

-- Sensitivity with respect to uncertain element ...
’Delta_1’ is 54%. Increasing ’Delta_1’ by 25% leads

to a 14% decrease in the margin.
’Delta_2’ is 68%. Increasing ’Delta_2’ by 25% leads

to a 17% decrease in the margin.
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Fig. 16.34 Robust stability for μ-controller

report =

Uncertain System achieves a robust performance margin
of 1.023.
-- A model uncertainty exists of size 102% resulting

in a performance margin
of 0.978 at 0.0433 rad/s.

-- Sensitivity with respect to uncertain element ...
’Delta_1’ is 52%. Increasing ’Delta_1’ by 25% leads

to a 13% decrease in the margin.
’Delta_2’ is 46%. Increasing ’Delta_2’ by 25% leads

to a 12% decrease in the margin.

The frequency-response plot of the structured singular value for the case of ro-
bust stability is shown in Fig. 16.34. The stability of the system is preserved under
perturbations that satisfy ‖Δ‖∞ < 1.45.

The frequency response of μ for the case of robust performance analysis is shown
in Fig. 16.35. The closed-loop system achieves robust performance, the maximum
value of μ being equal to 0.978.

The unscaled closed-loop system singular-value plot is shown in Fig. 16.36. The
closed-loop bandwidth is about 0.1 rad/min.

In Fig. 16.37 we show the singular-value plot of the unscaled sensitivity func-
tion Ŝ.
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Fig. 16.35 Robust performance for μ-controller

Fig. 16.36 Closed-loop singular-value plots
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Fig. 16.37 Frequency responses of the sensitivity function

The frequency responses with respect to the noise are shown in Fig. 16.38. It is
seen from the figure that the noises in measuring the distillate and bottom-product
composition have a very small effect on the system output.

The singular-value plots of the unscaled μ-controller are shown in Fig. 16.39.
The singular-value plots of ĜK̂y and K̂yŜ are shown in Figs. 16.40 and 16.41,

respectively. The maximum of the largest singular value of ĜK̂y is less than 1 for
ω ≥ 150 and the maximum of the largest singular value of K̂yŜ is less than 300,
thus the frequency-domain specification is met.

The perturbed transient responses of the scaled closed-loop system with a μ-
controller are shown in Figs. 16.42, 16.43, 16.44 and 16.45. The responses to the
corresponding references have no overshoots and the interaction of channels is
weaker than in the case of using loop-shaping controller.

The control action in the case of perturbed system with the μ-controller is shown
in Figs. 16.46, 16.47, 16.48 and 16.49.

Consider now the reduction of controller order. For this aim we implement the
M-file red_col.m. Using the function reduce the controller order is reduced
to 12.

In Fig. 16.50 we compare the frequency responses of the maximum singular val-
ues of the scaled full-order and reduced-order controllers. The frequency responses
of both full-order and reduced-order controllers coincide up to 23 rad/min, which
is much more than the closed-loop bandwidth of the system. This is why the tran-
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Fig. 16.38 Frequency responses with respect to noises

Fig. 16.39 Singular values of the controller
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Fig. 16.40 Frequency responses of ĜK̂y

Fig. 16.41 Frequency responses of K̂y Ŝ
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Fig. 16.42 Perturbed transient response y11 for μ-controller

Fig. 16.43 Perturbed transient response y12 for μ-controller
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Fig. 16.44 Perturbed transient response y21 for μ-controller

Fig. 16.45 Perturbed transient response y22 for μ-controller
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Fig. 16.46 Perturbed control action u11 for μ-controller

Fig. 16.47 Perturbed control action u12 for μ-controller
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Fig. 16.48 Perturbed control action u21 for μ-controller

Fig. 16.49 Perturbed control action u22 for μ-controller
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Fig. 16.50 Frequency responses of the full-order and reduced-order controllers

sient responses of the closed-loop system with full-order and with reduced-order
controllers are practically undistinguishable.

16.7 Nonlinear System Simulation

The μ-controller designed is investigated by simulation of the corresponding non-
linear closed-loop system. The simulation is carried out by the Simulink® model
nls_col.mdl, which implements the nonlinear plant model given in Sect. 16.2.
To simulate the nonlinear plant we use the M-files colamod and colas by kind
permission of the author, Sigurd Skogestad.

The Simulink® model of the distillation column control system shown in
Fig. 16.51 allows us to carry out a number of simulations for different set points
and disturbances. Note that the inputs to the controller are formed as differences be-
tween the values of the corresponding variables and their nominal (steady-state) val-
ues used in the linearization. In contrast, the controller outputs are added to the cor-
responding nominal inputs in order to obtain the full inputs to the nonlinear model
of the column.

Before simulation of the system it is necessary to set the model parameters by
using the M-file init_col.m. Also, the controller is rescaled so as to implement
the unscaled input/output variables.

The nonlinear system simulation is done for the following reference and distur-
bance signals. At t = 10 min the feed rate F increases from 1 to 1.2, at t = 100 min
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Fig. 16.52 Transient response of the nonlinear system—yD

the feed composition zF increases from 0.5 to 0.6 and at t = 200 min the set point
in yD increases from 0.99 to 0.995.

The time response of the distillate yD for the case of the reduced-order μ-
controller is given in Fig. 16.52. It is seen from the figure that the disturbances
are attenuated well and the desired set point is achieved exactly.

The time response of the bottom-product composition xB for the same controller
is given in Fig. 16.53.

The simulation results show that the robust design method is appropriately cho-
sen and confirms the validity of the uncertain model used.

16.8 Conclusions

The results from the analysis and design of a distillation column control system may
be summarized as follows.

• It is possible to use a sufficiently low-order linearized model of the given nonlin-
ear plant, so that the designed linear controllers allow to be achieved satisfactory
dynamics of the nonlinear closed-loop system. The linearized model is scaled in
order to avoid very small or very large signals.

• Two controllers are designed—one by using a 1-degree-of-freedom H∞ loop-
shaping design method and the other by using a 2-degree-of-freedom μ-synthesis
method. Both controllers satisfy the time-domain and frequency-domain specifi-
cations and ensure robust stability of the corresponding closed-loop systems. It
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Fig. 16.53 Transient response of the nonlinear system—xB

is impressive how the low-order, easily designed loop-shaping controller allows
us to obtain practically the same characteristics of the closed-loop systems as
the μ-controller, while the latter requires much more experiments for tuning the
weighting functions.

• The nonlinear system simulation results confirm the ability of the controller to
achieve disturbance attenuation and good responses to reference signals. The sim-
ulation confirms the validity of the uncertain model used.

16.9 Notes and References

The distillation column control problem presented in this chapter was introduced
by Limebeer [97] as a benchmark problem at the 1991 Conference on Decision and
Control. In [97] the uncertainty is defined in terms of parametric gain and delay
uncertainty and the control objectives are a mixture of time-domain and frequency-
domain specifications. The problem originates from Skogestad et al. [156] where
a simple model of a high-purity distillation column was used and uncertainty and
performance specifications were given as frequency-dependent weighting functions.
A tutorial introduction to the dynamics of the distillation column is presented in
[154].

A design of a 2-degree-of-freedom loop-shaping controller for the distillation
column is presented in [62] where an eighth-order model of the column is used.
A 2-degree-of-freedom controller for the distillation column system is proposed in
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[106] with a reference model and using μ-synthesis. In that paper, one may find
a selection procedure for the weighting functions described in detail. Our design
differs from the design in [106] in several respects. First, instead of a second-order
model with time delay we use a sixth-order model that is justified by the results
from nonlinear system simulation. Second, we use modified weighting functions in
order to obtain better results. In particular, we use a performance weighting trans-
fer function matrix with nonzero off-diagonal elements that meets the time-domain
specifications much better. Also, the control weighting functions are taken as first-
order, low-pass filters.

Various design methods have been reported, in addition to the above, to tackle
this distillation column problem [126, 139, 155, 160, 178]. In [178], the design prob-
lem is formulated as a mixed optimization problem. It is well known that control-
system design problems can be formulated as constrained optimization problems.
Design specifications in both the time and frequency domains as well as stability
can be naturally formulated as constraints. Numerical optimization approaches can
be used directly and a solution obtained, if there is one, will characterize an accept-
able design. However, the optimization problems so derived are usually very com-
plicated with many unknowns, many nonlinearities, many constraints, and in most
cases, they are multiobjective with several conflicting design aims that need to be si-
multaneously achieved. Furthermore, a direct parameterization of the controller will
increase the complexity of the optimization problem. In [178], the H∞ loop-shaping
design procedure is followed. Instead of direct parameterization of controllers, the
pre- and post-weighting functions used to shape the open-loop, augmented system
are chosen as design (optimization) parameters. The low order and simple structure
of such weighting functions make the numerical optimization much more efficient.
The H∞ norm requirement is also included in the cost/constraint set. The stability
of the closed-loop system is naturally met by such designed controllers. Satisfactory
designs are reported in that paper. Reference [160] further extends the optimization
approach in [178] by using a Genetic Algorithm to choose the weighting function
parameters.



Chapter 17
Robust Control of a Flexible-Link Manipulator

In this chapter we discuss the robust control system design of a flexible-link manip-
ulator that moves in the horizontal plane.

Lightweight manipulators possess many advantages over the traditional bulky
manipulators. The most important benefits include high payload-to-arm weight ra-
tio, faster motion, safer operation, improved mobility, low cost, longer reach and
better energy efficiency, etc. However, the reduction of weight leads to the increase
of the link elasticity that significantly complicates the control of the manipulator.
The difficulty in control is caused by the fact that the link model is a distributed pa-
rameter plant. In this case, several elastic modes are required to achieve sufficiently
high accuracy. Also, the plant has several uncertain parameters (payload mass, hub
and structural damping factors, etc.) that influence significantly the system perfor-
mance. The inherent, non-minimum phase behavior of the flexible manipulator is
another obstacle to achieving simultaneously a high-level performance as well as
good robustness.

The aim of the present case study is to design a control system for a single-link
flexible manipulator. A two-mode dynamic model of the manipulator is first ob-
tained by using the Lagrangian-assumed modes method. This is followed by the
modeling of uncertainties involved in the manipulator. The uncertainties include the
real parametric uncertainties in the payload mass as well as in the hub and structural
damping factors. These parameters are the basic uncertainty source in the dynamic
behaviors of the flexible-link manipulators. The μ-synthesis method is then applied
to design a robust, noncollocated controller on the feedback signals of joint angle
and tip acceleration. In the design, in order to obtain a feasible solution, a simplified
uncertainty description is considered in the D–K iterations. Appropriate weighting
functions are chosen in the design to ensure robust stability and robust performance.
It is shown in this chapter that good robust performance has been achieved in the de-
sign. The closed-loop system exhibits excellent tip-motion performance for a wide
range of payload mass and the system efficiently suppresses the elastic vibrations
during the fast motion of the manipulator tip. For the sake of implementation and
reliability in practice, a reduced-order controller is found that maintains the robust

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_17,© Springer-Verlag London 2013
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Fig. 17.1 Schematic diagram
of the flexible-link
manipulator

stability and robust performance of the closed-loop system. Finally, the advantages
of the μ-controller over a conventional, collocated PD controller are demonstrated.

17.1 Dynamic Model of the Flexible Manipulator

Figure 17.1 shows the schematic model used to derive the equations of motion for
the flexible-link manipulator. The manipulator moves in the horizontal plane. Frame
x0–O0–y0 is the fixed-base frame. Frame x–O–y is the local frame rotating with the
hub. The x-axis coincides with the undeformed longitudinal axis of the link. The
rotating inertia of the servomotor, the gear box, and the clamping hub are modeled
as a single hub inertia Jh. The distance between the hub center and the root of the
link is denoted by R. The flexible link is assumed to be a homogeneous rod with
a constant cross-sectional area. L is the length of the link, m is the mass per unit
length of the link, I is the link cross-sectional moment of inertia and E is Young’s
modulus of elasticity for the material of the link. The payload is modeled as a point
mass mL. The variables τ(t) and θ(t) are the driving torque and the joint angle,
respectively. The elastic deflection of a point located at a distance x from O along
the link is denoted by w(x, t). It is assumed that the elastic deflections of the link lie
in the horizontal plane, and are perpendicular to the x-axis and small in magnitude
compared to the link length.

The motion equations of the flexible manipulator are to be derived by using the
Lagrangian approach combined with the assumed-modes method [25]. The flexi-
ble link is modeled as an Euler–Bernoulli beam. The free vibration of the link is
described by the partial differential equation [116]

EI
∂4w(x, t)

∂x4
+ m

∂2w(x, t)

∂t2
= 0

with boundary conditions

w(0, t) = 0,
∂w(0, t)

∂x
= 0



17.1 Dynamic Model of the Flexible Manipulator 369

∂2w(L, t)

∂x2
= 0

∂3w(L, t)

∂x3
− mL

EI

∂2w(L, t)

∂t2
= 0

According to the assumed-modes method the elastic deflection can be expressed
as

w(x, t) =
n∑

i=1

ϕi(x)ηi(t) (17.1)

where ηi(t) is the generalized coordinate of the ith mode, ϕi(x) is the space eigen-
function of the ith mode, and n is the number of the modes that describe the link
deflection. The mode angular frequencies ωi , i = 1, . . . , n, of the flexible link are
given by

ωi = β2
i

√
EI

m
(17.2)

where βi , i = 1, . . . , n, are the first n positive roots of the transcendental equation

1 + cosh(βL) cos(βL) + mL

mL
(βL)

[
sinh(βL) cos(βL) − cosh(βL) sin(βL)

] = 0

(17.3)
The shape functions ϕi(x), i = 1, . . . , n, satisfy the orthogonality condition

m

∫ L

0
ϕi(x)ϕj (x)dx + mLϕi(L)ϕj (L) = 0, i �= j

and can be written in the form

ϕi(x) = λi

{[
cosh(βix) − cos(βix)

]

− cosh(βiL) + cos(βiL)

sinh(βiL) + sin(βiL)

[
sinh(βix) − sin(βix)

]}
(17.4)

A normalization of the shape functions convenient for the uncertainty modeling is
accomplished by determining the coefficients λi , i = 1, . . . , n, in (17.4) on the basis
of the relation

m

∫ L

0
ϕ2

i (x)dx + mLϕ2
i (L) = 1

The joint angle θ and the deflection variables ηi , i = 1, . . . , n, are used as gener-
alized coordinates in the derivation of the equation of motion. As a result of applying
the Lagrangian procedure, the following nonlinear dynamic model of the flexible
manipulator is obtained:

[
mr(η) mT

rf

mrf In

][
θ̈

η̈

]
+

[
dr 0T

n

0n Df

][
θ̇

η̇

]
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+
[

0 0T
n

0n Cf

][
θ

η

]
+

[
hr(θ̇ , η, η̇)

hf (θ̇ , η)

]
=

[
1
0n

]
τ (17.5)

where

η = [η1 . . . ηn]T

mr(η) = a0 +
n∑

i=1

η2
i

a0 = Ja + 1

3
m

[
(L + R)3 − R3] + mL(L + R)2

mrf = [a1 . . . an]T

ai = m

∫ L

0
(x + R)ϕi(x)dx + mL(L + R)ϕi(L), i = 1, . . . , n (17.6)

Cf = diag
(
ω2

1, . . . ,ω
2
n

)
Df = diag(d1, . . . , dn)

hr(θ̇ , η, η̇) =
n∑

i=1

2θ̇ η̇iηi

hf (θ̇ , η) = [−θ̇2η1 . . . − θ̇2ηn

]T
In denotes the n × n identity matrix, 0n is the n-dimensional null vector, and
dr, d1, . . . , dn are damping coefficients. The terms dr θ̇ and Df η̇ have been included
to account for the viscous friction at the hub and for the structural damping of the
flexible link, respectively.

The angle

α = θ + arctan
w(L, t)

L + R
(17.7)

is chosen as the coordinate that determines the position of the manipulator tip.
The following numerical values of the manipulator parameters are used: L = 1 m,

R = 0.4 m, Jh = 0.1 kg m2, m = 0.54 kg/m, flexural rigidity of the flexible link
EI = 18.4 N m2. The values of m and EI correspond to an aluminum link with
E = 6.9×1010 N m2, density ρ = 2700 kg/m3, and a rectangular cross-section with
dimensions s1 = 0.05 m and s2 = 0.004 m, s2 being in the motion plane.

It is assumed that in performing a given motion the payload mass has a constant
but unknown value in the range from 0.15 kg to 0.35 kg.

The first two natural frequencies of the flexible link, calculated for the average
value of the payload according to (17.2) and (17.3), are ω1 = 12.1 rad/s and ω2 =
99.2 rad/s. Since the rest natural frequencies are very large (ω3 = 302.5 rad/s and so
on), a two-mode model of the flexible manipulator is used in the controller design.

Usually, the friction coefficients cannot be determined exactly and also changes
in their values are possible with the time. It is assumed that the coefficient of the
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friction at the hub has a nominal value dr = 0.15 kg m2/s and a relative uncer-
tainty 20 %, and the coefficients of the structural damping of the first two gener-
alized coordinates of the flexible link have nominal values d1 = 0.4 kg m2/s and
d2 = 10 kg m2/s and a relative uncertainty 40 %.

After neglecting in (17.5) the nonlinear terms
∑n

i=1 η2
i , hr(θ̇ , η, η̇), and hf (θ̇ , η),

whose effect is relatively small, and after setting arctan(z) = z in (17.7), since
w(L, t) � L, one obtains a linear model of the manipulator. The transfer functions
of the manipulator with input the driving torque τ and outputs the joint angle θ and
the coordinate angle α, determined for n = 2, mL = 0.25 kg, dr = 0.12 kg m2/s,
d1 = 0.24 kg m2/s and d2 = 6 kg m2/s, may be written, respectively, in the form

Wθτ = 9.793(s2 + 0.24s + 145.8)(s2 + 6s + 9839)

s(s + 0.2095)(s2 + 2.067s + 741.9)(s2 + 6.799s + 10 850)

and

Wατ = 0.1239(s − 172.1)(s − 66.2)(s + 173.1)(s + 57.5)

s(s + 0.2095)(s2 + 2.067s + 741.9)(s2 + 6.799s + 10 850)

The transfer function Wατ has positive zeros and hence the manipulator, consid-
ered with the tip position as output, represents a non-minimum phase plant. It is
known that to ensure high performance for such plants is a difficult problem.

The second order polynomials in the transfer functions Wθτ and Wατ have very
small damping factors (between 0.01 and 0.04), which causes intensive vibrations
of the flexible link when performing fast motions. The undamped frequencies of
the numerator polynomial of Wθτ are equal to the natural frequencies ω1 and ω2 of
the flexible link. The nonzero natural frequencies of the manipulator (including the
flexible link and the driving part) are determined from the second order polynomial
in the denominators of the transfer functions and for the given numerical values of
the parameters are equal to 27.2 rad/s and 104.2 rad/s.

To illustrate the effect of uncertainty, in Figs. 17.2 and 17.3 we show the Bode
plots of the flexible manipulator with input the driving torque τ and outputs the joint
angle θ and the coordinate angle α, respectively, determined for several values of
the payload mass in the interval from 0.15 kg to 0.35 kg.

17.2 A Linear Model of the Uncertain System

In this section we first consider how to model the uncertainties of the flexible-link
manipulator and then develop a linear dynamic model of the uncertain system. As
mentioned earlier, the uncertainties considered are related to the payload mass, hub
damping factors and the damping levels of the first two modes. It is important to
note that these parameters are the basic source of uncertainty dynamic behavior of
flexible-link manipulators.

The plant input is the driving torque τ . The controlled variable is the tip position
α and the measured variables are the joint angle θ and the tip acceleration α̈.
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Fig. 17.2 Bode plot of the flexible-link manipulator with input τ and output Θ

Fig. 17.3 Bode plot of the flexible-link manipulator with input τ and output α
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The building of the uncertainty model is done on the basis of the linear model of
the flexible manipulator, obtained after neglecting the nonlinear terms in (17.5) and
after setting arctan(z) = z in (17.7). In this way one obtains the equations

a0θ̈ + dr θ̇ + a1η̈1 + a2η̈2 = τ

η̈i + di η̇i + ciηi + ai θ̈ = 0, i = 1,2

α = θ + b1η1 + b2η2 (17.8)

α̈ = θ̈ + b1η̈1 + b2η̈2

wL = (L + R)b1η1 + (L + R)b2η2

where the following notation is used:

wL = w(L, t)

bi = ϕi(L)

L + R
, i = 1,2

In the given case the coefficients a0, a1, a2, b1, b2, c1, and c2 in (17.8) are func-
tions of the uncertain real parameter mL. According to (17.6), the coefficient a0
depends in an affine way on mL and in building the model it may be represented as

a0 = a01 + a02mL (17.9)

with

a01 = Ja + 1

3
m

[
(L + R)3 − R3], a02 = (L + R)2

In contrast to a0, the rest coefficients depend nonlinearly and implicitly on mL ac-
cording to complicated relationships that cannot be used to obtain the uncertainty
model. However, the investigation of these relationships shows that with sufficient
accuracy the coefficients a1, a2, b1, b2, c1, and c2 are approximated by the following
rational functions of mL:

ai ≈ ai1 + ai2mL,

bi ≈ 1

bi1 + bi2mL

(17.10)

ci ≈ 1

ci1 + ci2mL

, i = 1,2

The constants ai1, ai2, bi1, bi2, ci1, ci2, i = 1,2, in (17.10) are determined by least
squares approximation, done so that for mL = 0.25 kg the corresponding relation-
ships are fulfilled exactly. Hence, for the nominal value of the payload mass the
manipulator model will be exact. The plots of the exact and the determined in this
way approximate dependencies of the coefficients a1, b1, and c1 on the payload
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Fig. 17.4 Approximation of a1

mass are shown in Figs. 17.4, 17.5, and 17.6. Similar results are obtained also for
a2, b2, and c2. The relative error in approximating each dependence is biggest for
mL = 0.15 kg.

In the expressions (17.9) and (17.10) the uncertain parameter mL appears once.
Since in (17.8) the coefficients a1 and a2 are repeated twice, and b1 and b2 three
times, it appears that as a whole the parameter mL is repeated in (17.8) 13 times.
However, in the manipulator model, built on the basis of the state space represen-
tation of (17.8), the uncertain parameter mL is repeated 32 times, which makes the
robust analysis and design of the system difficult. This number may be reduced
significantly, building the manipulator model by using the function sysic repre-
senting appropriately (17.8).

For this aim the manipulator equations (17.8) are written in the form

Mÿ + N1ẏ + N2y = T τ,

z = P1y, (17.11)

α̈ = P2ÿ

where

y = [
θ η1 η2

]T
, z = [

α wL

]T
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Fig. 17.5 Approximation of b1

Fig. 17.6 Approximation of c1
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Fig. 17.7 Block diagram of
the manipulator model

Fig. 17.8 Input–output
representation of the
manipulator model

M =
⎡
⎣a0 a1 a2

a1 1 0
a2 0 1

⎤
⎦ , N1 =

⎡
⎣dr 0 0

0 d1 0
0 0 d2

⎤
⎦ , N2 =

⎡
⎣0 0 0

0 c1 0
0 0 c2

⎤
⎦ ,

T =
⎡
⎣1

0
0

⎤
⎦ , P1 =

[
1 b1 b2
0 (L + R)b1 (L + R)b2

]
, P2 = [

1 b1 b2
]

A block diagram corresponding to the matrix–vector equations (17.11) is shown
in Fig. 17.7.

The model with uncertain parameters is obtained on the basis of the given block
diagram by using the M-file mod_flm.m and is saved in the variable G. The con-
stants a01, a02, ai1, ai2, bi1, bi2, ci1, ci2, i = 1,2, are determined by the M-file
par_flm.m.

A schematic diagram for the output ordering is shown in Fig. 17.8.
As a result from the execution of the file mod_flm.m one obtains

G
USS: 6 States, 4 Outputs, 1 Input, Continuous System

d_1: real, nominal = 0.4, variability = [-40 40]%,
1 occurrence

d_2: real, nominal = 10, variability = [-40 40]%,
1 occurrence

d_r: real, nominal = 0.15, variability = [-20 20]%,
1 occurrence
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Fig. 17.9 Bode plots of exact and approximated manipulator models with input τ and output Θ

for mL = 0.125 kg

m_L: real, nominal = 0.25, variability = [-40 40]%,
10 occurrences

G is an uncertain system of the class uss, depending on four uncertain real pa-
rameters, m_L being repeated ten times. The accuracy of the model derived is con-
firmed by the closeness of the “exact” and “approximated” Bode plots of the manip-
ulator with input the driving torque τ and output the joint angle θ and angle position
α shown in Figs. 17.9 and 17.10, respectively. These plots are obtained for the most
unfavorable case mL = 0.15 kg. The exact plots are computed from (17.8) using the
exact values of the coefficients and the approximated—from the derived uncertainty
model. It can be seen that the match between those two models is very good.

In the design and analysis of the noncollocated controller, presented latter on,
we take three of the five outputs of the derived manipulator model. That is why the
parameter m_L will occur 8 times instead of 10 times as in the full model. Thus, the
total number of the uncertain parameters is equal to 11.

It is interesting to note that in using the option ’full’ instead of ’basic’ in
ureal or in using the command simplify it is not possible to achieve positive
result in building the model. For some versions of the model the multiplicity of
the uncertain parameter mL is reduced but the behavior of the model is completely
changed.
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Fig. 17.10 Bode plots of exact and approximated manipulator models with input τ and output α

for mL = 0.125 kg

17.3 System Performance Specifications

In this flexible-link manipulator control-system design exercise, the purpose is to
find a controller that suppresses efficiently the elastic vibrations of the flexible link
in fast motions and moves the tip to a desired position in the presence of uncertain-
ties in the payload mass, hub and structural damping factors. Since the uncertain-
ties considered are real and structured, the most appropriate robust control design
method to be applied in the present case is μ-synthesis.

The block diagram of the closed-loop system incorporating the design require-
ments is shown in Fig. 17.11. The controlled variable is the angular position α of the
manipulator tip. The reference variable, the control variable, and the motor torque
are denoted, respectively, by r , u, and τa . The controller K works on the reference
r and feedback signals of the joint angle Θ and the tip acceleration α̈. The inclusion
of the tip acceleration in the control scheme aims to achieve better tip-motion per-
formance and leads to a noncollocated controller structure. Input disturbance is the
resistant torque d . By the use of the signals n1 and n2 and the shaping filters Wn1

and Wn2 it is possible to take into account the influence of the noise, accompanying
the measurement of θ and α̈, respectively. Furthermore, in the given design case, we
select a suitable dynamic model and target the dynamics of the designed closed-loop
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Fig. 17.11 Closed-loop interconnection structure of the flexible-link manipulator system

system to be close to that model. The use of such a model to represent the desired
dynamics allows us to take into account the requirements on system performance
more easily and directly. In other words, such a model (named M in Fig. 17.11) pre-
scribes the desired dynamic behavior of the closed-loop system from the reference
signal to the tip position. The uncertainty plant is denoted by G in Fig. 17.11. The
internal, current control loop of the servo drive Wa is modeled as a first order lag
with the time constant 0.004 s and gain equal to 1.

Let the 3 × 1 transfer matrix G be partitioned as

G(s) =
⎡
⎣Gατ (s)

Gθτ (s)

Gα̈τ (s)

⎤
⎦

where Gατ , Gθτ , Gα̈τ are the transfer functions from the control torque τ to the
outputs α, θ , and α̈, respectively, and let the controller is represented as

K(s) = [
Kr(s) KΘ(s) Kα̈(s)

]

where Kr(s), KΘ(s), and Kα̈(s) are the transfer functions of the controller with
respect to the corresponding inputs. It can be shown by direct manipulations that

[
ep

eu

]
= Φ

⎡
⎢⎢⎣

r

d

n1
n2

⎤
⎥⎥⎦
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where

Φ =
[
Wp(SGατWaKr − M) −WpSGατ

WuSKr −WuS(GθτKθ + Gα̈τKα̈)

WpSGατWaKθWn1 WpSGατWaKα̈Wn2

WuSKθWn1 WuSKα̈Wn2

]

(17.12)

and

S = 1

1 − GθτWaKθ − Gα̈τWaKα̈

The design objective for the controller K is thus to be set as

‖Φ‖∞ < 1 for all perturbed

⎡
⎣Gατ (s)

Gθτ (s)

Gα̈τ (s)

⎤
⎦ (17.13)

It is clear that, with appropriately chosen weighting functions, a controller K

satisfying the above equation (17.13) makes the closed-loop system robustly stable,
robustly achieving good matching to the dynamic model M (in terms of ep), and
with restricted control effort (in terms of eu).

The model transfer function to be matched is taken in this design as

M = 625

s2 + 50s + 625

The coefficients of this transfer function are chosen to ensure overdamped response
with a settling time of about 0.19 s. The performance weighting functions are chosen
as

Wp = s2 + 25s + 150

s2 + 22s + 0.15
, Wu = 0.001

The criterion for the performance weighting function Wp aims to ensure the close-
ness of the system dynamics to that of the model M over the low-frequency range.
The use of the control weighting function Wu allows us to bound the magnitude
of the control action in the frequency range containing the natural frequencies of
the flexible link. The magnitude plot of the inverse of the performance weighting
function is shown in Fig. 17.12.

The noise shaping filters

Wn1 = 10−5 0.5s + 1

0.005s + 1
, Wn2 = 10−3 s + 1

0.01s + 1
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Fig. 17.12 Inverse of performance weighting function

are determined according to the spectral contents of the sensor noises n1 and n2 at
the measurements of joint angle and the tip acceleration signals, respectively. The
magnitude plots of the noise shaping filters are shown in Fig. 17.13.

The model transfer function, the performance and control weighting functions as
well as the noise shaping filters are assigned in the file wts_flm.m.

17.4 System Interconnections

The open-loop interconnection is obtained by the M-file olp_flm. The internal
structure of the 13 states, five-input/five-output open-loop system, which is saved
in the variable sys_ic, is shown in Fig. 17.14. The reference and the noises are
saved in the variables ref, noise1, and noise2, the disturbance is saved in the
variable dist and the control signal in the variable control.

A schematic diagram of the specific input/output ordering for the variable
sys_ic is shown in Fig. 17.15.

The block-diagram used in the simulation of the closed-loop system is shown in
Fig. 17.16. The corresponding closed-loop interconnection, which is saved in the
variable sim_ic, is obtained by the M-file sim_flm.

A schematic diagram of the specific input/output ordering for the variable
sim_ic is shown in Fig. 17.17.
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Fig. 17.13 Noise weighting functions
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Fig. 17.14 Open-loop interconnection structure of the flexible-link manipulator system

Fig. 17.15 Schematic
diagram of the open-loop
interconnection

17.5 Controller Design and Analysis

Let us denote by P(s) the transfer function matrix of the five-input, five-output
open-loop system consisting of the flexible-link manipulator model and the actuator
and weighting functions (Fig. 17.14). We may represent this transfer function as

P(s) = FU(Pnom,ΔP )

where Pnom is the nominal transfer function and the uncertainty ΔP is given by

ΔP :=
{[

Δ 0
0 ΔF

]
: Δ ∈R11×11, ΔF ∈ C3×2

}

The first part of this matrix corresponds to the 11 × 11 uncertain block Δ that con-
sists of the uncertainties in the flexible manipulator. The second block ΔF is a ficti-
tious uncertainty 3 × 2 block and is introduced to represent the robust performance
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Fig. 17.16 Closed-loop
interconnection structure of
the flexible-link manipulator
system

Fig. 17.17 Schematic
diagram of the closed-loop
interconnection

objective in the framework of the μ-approach. The inputs to the block ΔF are the
weighted error signals ep and eu and the outputs from ΔF are the exogenous signals
r , n1, and n2 (inputs to the manipulator closed-loop system).

As discussed in previous sections, in order to meet the design objectives a sta-
bilizing controller K = [Kr(s) Kθ (s) Kα̈(s)] is to be found such that, at each fre-
quency ω ∈ [0,∞], the structured singular value satisfies the condition

μΔP

[
FL(P,K)(jω)

]
< 1

The fulfillment of the above condition guarantees the robust performance of the
closed-loop system, i.e.

‖Φ‖∞ < 1 (17.14)

In the computation of a μ-controller, there is, however, a numerical problem.
That is, with the inclusion of the multiple 8 × 8 real uncertainty block (correspond-
ing to the uncertainty in mL) the D–K iteration algorithm does not converge. In
particular, it is difficult to obtain the approximation of a 8 × 8 scaling function ma-
trix in the D-step. Hence, in our computation that multiple 8 × 8 real uncertainty
block was removed in the uncertainty matrix during the D–K iteration. It should be
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Table 17.1 Results of the
μ-synthesis Iteration Controller order Maximum value of μ

1 13 2.035

2 15 0.970

3 17 0.585

stressed that the robust stability and robust performance analysis of the closed-loop
system of the designed controller, which will be presented next, is tested with regard
to the whole uncertainty structure, i.e. with the inclusion of that multiple 8 × 8 real
uncertainty block.

The μ-synthesis is carried out by using the M-file ms_flm.m implementing the
function dksyn. In the synthesis, the uncertainty parameter mL is replaced by its
nominal value, as described above.

The progress of the D–K iteration is shown in Table 17.1.
In the design exercise, an appropriate controller is obtained after the third D–K

iteration. The controller is stable and has an order of 17. The Bode plots of the
μ-controller are shown in Fig. 17.18.

It can be seen from Table 17.1 that after the third iteration the maximum value
of μ is equal to 0.585. Note that this, however, does not necessarily mean that the
robust performance has been achieved since we neglected the multiple 8 × 8 real
uncertainty block in the computation. Hence, additional robust performance analysis
is needed as below.

The robust stability analysis of the closed-loop system is conducted by the file
rbs_flm, which takes into account all uncertainty blocks discussed in Sect. 17.2.
The result from the execution of this file is

stabmarg =

UpperBound: 3.4178
LowerBound: 1.9081

DestabilizingFrequency: 6.2803e+003

report =

Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 191% of the modeled uncertainty.
-- A destabilizing combination of 342% of the modeled

uncertainty exists, causing an instability at
6.28e+003 rad/s.

This result confirms that the closed-loop system achieves robust stability.
The frequency response plot of the structured singular value corresponding to

robust stability analysis is shown in Fig. 17.19.
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Fig. 17.18 Controller Bode plots

Fig. 17.19 Robust stability for μ-controller
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Fig. 17.20 Robust performance for μ-controller

The robust performance analysis is done by using the file rbp_flm. As a result
one obtains

perfmarg =

UpperBound: 1.2612
LowerBound: 1.2456

CriticalFrequency: 51.7092

report =

Uncertain System achieves a robust performance margin of 1.261.
- A model uncertainty exists of size 125% resulting in a

performance margin of 0.803 at 51.7 rad/s.

The frequency response of μ for the robust performance analysis is shown in
Fig. 17.20.

Consider now the closed-loop transient responses that are computed by using the
M-file mcs_flm.

The reference trajectory for the manipulator tip movement in the simulation is
chosen in the form

r =
{

at − (a/ψ) sin(ψt) + r0, 0 ≤ t ≤ tm

r(tm), tm < t ≤ tf
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Fig. 17.21 Reference signal r(t), velocity and acceleration

This trajectory allows the tip to be moved smoothly from an arbitrary initial position
r0 to a desired final position r(tm) = atm, with an appropriate ψ .

In the simulation, the following numerical values of the parameters are taken:
ar = 0.1π rad/s; ωr = 2.5π s−1; r0 = 0 rad; tm = 0.8 s; tf = 3 s. They are chosen
such that to obtain a fast changing reference, that is, settling in the desired final
position π/12.5 rad for 0.8 s.

The plots of the reference r(t), velocity, and acceleration for 30 random combi-
nations of the uncertain parameters are shown in Fig. 17.21.

In Fig. 17.22 we show the transient response of the tip position α along with
the joint angle θ and the reference r , computed for 30 random combinations of the
uncertain plant parameters.

The transient response corresponding to the tip deflection w(L, t) is shown in
Fig. 17.23.

The control action generated by the designed μ-controller is shown in Fig. 17.24.
The closed-loop frequency responses of the uncertain closed-loop system are

obtained by the M-file frs_flm.m.
The Bode plot of the closed-loop system is shown in Fig. 17.25. The closed-

loop bandwidth is about 10 rad/s. Note that a good match in magnitude between
the closed-loop system and the dynamic model M is achieved for frequencies up to
100 rad/s.

The Bode plots of the tip-deflection transfer function are shown in Fig. 17.26.
The maximum amplitude of the tip deflection is observed for the input signal with
frequency 50 rad/s.
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Fig. 17.22 Closed-loop transient response for μ-controller

Fig. 17.23 Tip-deflection transient response for μ-controller
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Fig. 17.24 Control action for μ-controller

Fig. 17.25 Bode plot of the uncertain system
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Fig. 17.26 Bode plots for the tip deflection

Fig. 17.27 Bode plots for the disturbance
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Fig. 17.28 Magnitude plots for the first and second noise
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Fig. 17.29 Frequency responses of the full-order and reduced-order controllers

In Fig. 17.27 we show the Bode plots of the uncertain system obtained from the
transfer function with respect to the disturbance.

Finally, in Fig. 17.28 we show the magnitude plots with respect to the first and
second noise. It is seen from the figure that the noise in measuring the joint angle
has a negligible effect on the system output.

We consider now the order reduction of the designed controller. As indicated in
Table 17.1, the order of the μ-controller is 17. It would be good for implementation
if the order could be reduced while essentially keeping the achieved performance.
For this aim, we use the M-file red_flm.m. After the balanced realization trans-
formation of the controller and by neglecting the small Hankel singular values, the
order of the controller can be reduced to 12 without losing too much performance.

In Fig. 17.29 we compare the frequency responses of the maximum singular
values of the full-order and reduced-order controllers. The frequency responses of
both full-order and reduced-order controllers practically coincide. The transient re-
sponses of the closed-loop system with full-order and with reduced-order controller
are also practically indistinguishable. (Figures are not included here.)

It is interesting to compare the results obtained with the μ-controller with those
from the conventional collocated PD controller in the form of

u = kP (r − θ) − kDθ̈

The proportional and derivative coefficients are chosen as kP = 358 N m/rad and
kD = 28.5 N m/(rad/s). The values of kP and kD are selected such that after neglect-
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Fig. 17.30 Closed-loop transient response for the PD controller

ing the link flexibility the closed-loop transfer function coincides with the transfer
function of the model. The results by using the μ-analysis method in this case (i.e.
with the PD controller) are 3.4212 and 0.1398 for the stability margin and perfor-
mance margin, respectively. Therefore, the PD controller leads to poor robust perfor-
mance in comparison to the μ-controller designed. This can be seen by comparing
Figs. 17.30 and 17.31 with Figs. 17.22 and 17.23, respectively.

It has to be noticed that good results in the design may also be obtained by using
a collocated controller on the feedback from the joint angle θ and the velocity θ̇ .
The use of the tip acceleration α̈, however, allows better results with respect to the
robust performance to be obtained.

17.6 Nonlinear System Simulations

The performance of the μ-controller designed in the previous section is further in-
vestigated by simulations of the nonlinear closed-loop system with this controller.
The simulation is carried out by the Simulink® model nls_flm.mdl using the
nonlinear plant model (17.5). A number of simulations may be performed for sev-
eral values of the payload mass and of the damping coefficients. The Simulink®

model nls_flm.mdl is shown in Fig. 17.32.
Before running the simulation, it is necessary to set the model parameters by

using the M-file init_flm.m. The values of the damping coefficients correspond
to the case of light damping of the mechanical structure. In particular, the value of
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Fig. 17.31 Tip-deflection transient response for the PD controller

the hub damping coefficient dr corresponds to a relative uncertainty of −20 %. The
damping coefficients d1 and d2 are taken so that the respective relative perturbations
in d1 and d2 for the nominal payload are equal to −40 %.

The time response of the tip position α(t), along with the joint angle θ and the
reference r , for the case of the reduced-order μ-controller and nominal payload
mass is given in Fig. 17.33.

Apart from the Simulink® model, in this section we also present the M-files
s3d_flm and p3d_flm, which allow to animate the motion of the flexible manip-
ulator with μ-controller and PD controller, respectively. These files also utilize the
nonlinear manipulator model.

In Figs. 17.34 and 17.35 we show the elastic deflection w(x, t) as a function of
x and t , obtained for the μ-controller and PD controller by the files s3d_flm and
p3d_flm, respectively.

In the nonlinear system simulations, it is shown that the μ-controller efficiently
suppresses the elastic vibrations during the fast motion of the manipulator tip. It thus
justifies that the μ-synthesis is an appropriate robust design method in this exercise.
It also confirms the validity of the uncertain model derived.

17.7 Conclusions

A few conclusions may be drawn as the following, based on the analysis and design
of the flexible manipulator control system:
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Fig. 17.33 Transient response of the nonlinear system

• In applying linear robust control system design techniques for a nonlinear plant it
is usually unavoidable to derive a complicated uncertainty model, because of the
requirement of a sufficiently accurate linear approximation. That would, however,
adversely affect the controller design and analysis. It is important, therefore, to
simplify the model of uncertainty. Methods such as the numerical approximation
used in this study can be considered.

• The uncertainty model derived in this study for the flexible manipulator system
contains real parametric uncertainties in a highly structured form. Such a model
appeals naturally to the application of μ-synthesis and analysis method, which
greatly reduces the conservativeness in the controller design.

• A robust noncollocated controller on the feedback signals of joint angle and tip
acceleration is designed in this study on the basis of the uncertainty model de-
rived and by using the μ-synthesis. The μ-controller shows very good robust
performance on the tip motion for a wide range of payload mass. The controller
efficiently suppresses the elastic vibrations during the fast motion of the manipu-
lator tip.

• The nonlinear system simulation results confirm the high performance of the con-
troller designed and also verify the validity of the uncertain model used.

• It is also possible to investigate various noncollocated and collocated controller
structures on different output feedback signals, with the uncertainty model and
linearized plant derived in this study.
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Fig. 17.34 Elastic deflection w(x, t) for the case of μ-controller

Fig. 17.35 Elastic deflection w(x, t) for the case of PD-controller
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17.8 Notes and References

The control of flexible manipulators has been an area of intensive research in recent
years. An efficient approach to improve the manipulator performance is to use a
feedback from the manipulator tip position [53], tip acceleration [51] or base-strain
[52]. The usage of such feedbacks leads to a noncollocated control scheme that
may increase the closed-loop system sensitivity to modeling errors or to parameter
uncertainties [137].

The necessity to achieve robustness of the manipulator control system in the
presence of uncertainties makes it appropriate to apply the robust control design
methods. In a few recent papers the authors develop different H∞ controllers [54,
96, 159] and μ-synthesis controllers [82] for flexible-link manipulators. A common
disadvantage in the previous robust designs for flexible manipulators is the use of an
unstructured uncertainty model that leads to potentially very conservative results.
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Chapter 18
Robust Control of a Twin-Rotor Aerodynamic
System

This chapter presents the design and experimental evaluation of a 2-degree-of-
freedom, discrete-time, μ-controller for a laboratory Twin-Rotor Aerodynamic Sys-
tem with ten uncertain parameters. The controller implemented is of 24th order and
ensures robust stability and robust performance of the closed-loop, sampled-data
system. This controller is realized on a PC by using Simulink Coder® with sampling
frequency of 100 Hz. The experimental results are close to the results predicted by
using the linearized model of the system and highlight some of the difficulties asso-
ciated with implementation of robust control laws.

18.1 Twin-Rotor Aerodynamic System

The Twin-Rotor Aerodynamic System (TRAS) is a laboratory set-up designed for
control experiments whose behavior resembles that of helicopters. The set-up is
shown in Fig. 18.1. There are two propellers at either end of a beam, driven by DC
motors, joined to the base with an articulation. The articulation allows the beam
to be rotated such that its ends move on a spherical surface.The main propeller
(the propeller with larger diameter) controls the beam position in the vertical plane,
while the tail propeller controls the beam position in the horizontal plane. There
are two counter-weights fixed to the beam that determine the stable equilibrium
position. The system is balanced in such a way that, when the motors are switched
off, the main rotor end of beam is lowered. The control actions are the motor supply
voltages. The measured system outputs are the two angles of beam deviation in the
horizontal plane (azimuth angle) and in the vertical plane (pitch angle). The motor
control is realized in Pulse-Width Modulation (PWM) mode.

The TRAS control aims at stabilization of the beam in an arbitrary (within practi-
cal limits) desired position (pitch and azimuth) or tracking of a desired trajectory. In
the given case we consider as measurable outputs the pitch and azimuth angles only.
In the general case it is possible also to use the information of propeller angular
velocities.

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_18,© Springer-Verlag London 2013
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Fig. 18.1 Twin-Rotor Aerodynamic System

18.2 Nonlinear System Model

The mathematical model of TRAS is derived under some simplifying assumptions.
First of all, it is supposed that the dynamics of the propeller subsystem may be
described by first order differential equations. Next, it is assumed that the friction in
the system is of viscous type (i.e., proportional to the angular velocity). Furthermore,
it is supposed that the “propeller–air” subsystem may be described according to the
principles of flow theory.

Consider first the rotation of the beam in the vertical plane, i.e., around the hor-
izontal axis. Taking into account that the control torques are produced by the pro-
pellers, the beam rotation motion is described as

Jv

d2αv

dt2
= Mv (18.1)

where Mv is the total moment of forces in the vertical plane, Jv is the sum of mo-
ments of inertia relative to the horizontal axis, and αv is the pitch angle of the beam
(the beam rotation angle in the vertical plane).

The total moment of forces may be represented as the sum Mv = Mv1 + Mv2 +
Mv3 + Mv4 + Mv5 + Mvd , in which the individual terms are described as follows.

1. Return torque corresponding to the gravitational forces

Mv1 = −k1 cos(αv) − k2 sin(αv)

where the coefficients k1 and k2 are determined by the mass and geometrical
sizes of the beam and the devices mounted on it.
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2. Moment of the propulsive force produced by the main propeller

Mv2 = lmFv(ωv)

where lm is the length of the main part of the beam, ωv is the angular velocity of
the main propeller, and Fv(ωv) is the dependence of the propulsive force on the
angular velocity of the main rotor.

3. Moment of centrifugal forces corresponding to the beam motion around the ver-
tical axis

Mv3 = −k3Ω
2
h sin(αv) cos(αv)

where Ωh = dαh/dt is the angular velocity of the beam around the vertical axis,
αh is the beam azimuth angle (the beam rotation angle in the horizontal plane),
and k3 is a coefficient, dependent on the mass and geometrical sizes of the beam
and devices mounted on it.

4. Friction moment depending on the angular velocity of the beam around the hor-
izontal axis

Mv4 = −kfvΩv

where Ωv = dαv/dt is the angular velocity around the horizontal axis and kfv is
a constant.

5. Cross moment from the control force in the horizontal plane

Mv5 = khvuh

where uh is the azimuth control action and khv is a constant.
6. Disturbance torque Mvd in the vertical plane.

The dependence of the main propeller propulsive force Fv(ωv) on the rotor an-
gular velocity, obtained experimentally, is shown in Fig. 18.2. This dependence is
approximated using the M-file approx_char.m by the fifth order polynomial

F̃v = −7.31 × 10−19ω5
v − 3.79 × 10−16ω4

v + 2.41 × 10−11ω3
v

+ 1.87 × 10−8ω2
v + 2.89 × 10−5ωv − 0.0142

In the same way, it is possible to describe the beam rotation around the vertical
axis. Taking into account that the control torque is produced by the tail rotor and
that the moment of inertia depends on the pitch angle, the rotation in the horizontal
plane is described by

Jh

d2αh

dt2
= Mh (18.2)

where Mh is the total moment of forces in the horizontal plane, Jh is the sum of
moment of inertia around the vertical axis, Jh = k4 cos2(αv) + k5, where the coeffi-
cients k4 and k5 are determined by the mass and geometrical sizes of the beam and
devices mounted on it.

The total moment of forces may be represented by the sum Mh = Mh1 + Mh2 +
Mh3 + Mhd , in which the individual terms are described in the following way.
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Fig. 18.2 Main propeller thrust

1. Moment of the propulsive force produced by the tail rotor

Mh1 = ltFh(ωh) cos(αv)

where lt is the length of the tail part of the beam, ωh is the angular velocity of
the tail rotor, and Fh(ωh) is the dependence of the tail propulsive force on the
rotor angular velocity.

2. Friction moment, depending on the beam angular velocity around the vertical
axis

Mh2 = −kfh
Ωh

where kfh
is a constant.

3. Cross moment from the control action in the horizontal plane

Mh3 = kvh cos(αv)uv

where uv is the pitch control action and kvh is a constant.
4. Disturbance torque in the horizontal plane Mhd .

The dependence of the propulsive force Fh(ωh) of the tail propeller on the rotor
angular velocity, obtained experimentally, is shown in Fig. 18.3. This dependence is
approximated by the fifth order polynomial

F̃h = −2.56 × 10−20ω5
h − 4.10 × 10−17ω4

h + 3.17 × 10−12ω3
h

− 7.34 × 10−9ω2
h + 2.13 × 10−5ωh − 9.14
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Fig. 18.3 Tail propeller thrust

Consider now the propeller motion equations. Since the drive motors are controlled
by Pulse Width Modulation, the control actions are normalized so that they vary in
the range [−1,+1], which corresponds to the variation of the input voltage in the
interval [−24 V,+24 V]. The equation describing the motion of the main propeller
is written in the form

Iv

dωv

dt
= uv − H−1

v (ωv) (18.3)

where Iv is the moment of inertia of the main propeller and ωv = Hv(uv) is the
static velocity characteristic of this propeller.

The experimentally obtained characteristic ωv = Hv(uv) is shown in Fig. 18.4.
This dependence is approximated by the seventh order polynomial

ω̃v = −6.17 × 103u7
v − 1.30 × 102u6

v + 1.37 × 104u5
v + 1.50 × 102u4

v

− 1.10 × 104u3
v − 3.76 × 101u2

v + 7.33 × 103uv − 5.36

Similarly, the equation describing the motion of the tail propeller is written as

Ih

dωh

dt
= uh − H−1

h (ωh) (18.4)

where Ih is the moment of inertia of tail rotor and ωh = Hh(uh) is the static velocity
characteristic of this propeller.

The experimentally obtained characteristic ωh = Hh(uh) is shown in Fig. 18.5.
This characteristic is approximated by the fifth order polynomial
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Fig. 18.4 Main rotor velocity characteristic

Fig. 18.5 Tail rotor velocity characteristic
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Table 18.1 Parameters of the
nonlinear model Parameter Value Units

Ih 1/37000 kg m2

Iv 1/6100 kg m2

Jv 3.00581 × 10−2 kg m2

k1 5.00576 × 10−2 Nm

k2 9.36008 × 10−2 Nm

k3 2.12485 × 10−2 Nm s2/rad2

k4 2.37904 × 10−2 kg m2

k5 3.00962 × 10−3 kg m2

kfh
5.88996 × 10−3 Nm s/rad

kfv 1.27095 × 10−2 Nm s/rad

khv 4.17495 × 10−3 Nm

kvh −1.78200 × 10−2 Nm

lm 0.202 m

lt 0.216 m

ω̃h = −6.17 × 103u5
h − 1.30 × 102u4

h + 1.37 × 104u3
h

+ 1.50 × 102u2
h − 1.10 × 104uh − 37.6

Equations (18.1)–(18.4) together with the equations

dαv

dt
= Ωv (18.5)

dαh

dt
= Ωh (18.6)

constitute the sixth order nonlinear model of the Twin-Rotor Aerodynamic System.
The input variables are the voltages uh and uv of the tail rotor and main rotor mo-
tors, respectively, and output variables are the azimuth angle αh and pitch angle αv .
The plant is two-channel and there is an interaction between the two channels. In
order to reveal in full the dynamic behavior of the plant it should be considered as
multivariable, i.e., the two channels cannot be considered as independent.

The nominal values of the coefficients participating in the model are given in
Table 18.1.

18.3 Linearized System Model

The model of the Twin-Rotor Aerodynamic System is linearized analytically under
the usual assumption for small deviations of the variables, describing the system be-
havior, around their trim values. The variables describing the beam angular position
are represented in the form
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Table 18.2 Propeller
coefficients Parameter Value Units

kHh
9.83891 × 103 rad/s

kFh
2.12932 × 10−5 Ns/rad

kHv 4.87457 × 103 rad/s

kFv 3.07723 × 10−4 Ns/rad

αv = αv,nom + δαv, ωv = ωv,nom + δωv, Ωv = Ωv,nom + δΩv

αh = αh,nom + δαh, ωh = ωh,nom + δωh, Ωh = Ωh,nom + δΩh

where αv,nom, ωv,nom, Ωv,nom, αh,nom, ωh,nom, Ωh,nom denote the nominal values
of the corresponding parameters and δαv , δωv , δΩv , δαh, δωh, δΩh denote the
deviations from their nominal values. In a similar way the motor control voltages
are represented as

uv = uv,nom + δuv, uh = uh,nom + δuh

The linearization is done around steady operation point assuming that

Ωv,nom = 0, Ωh,nom = 0

It is supposed that the position of the counter-weights is chosen so that for an input
signal uv,nom = 0.3 the beam is in strictly horizontal position. In this equilibrium
position of the beam the main rotor thrust is balanced by the gravitational forces
acting on the beam and the devices mounted on it.

Consider first the linearization of the static characteristics of two propellers. It is
done by using the M-file approx_char.m.

The operation point of the main propeller is determined for motor voltage
uv,nom = 0.3. The velocity characteristic of this propeller is approximated by the
linear relationship ωv = kHvuv . The coefficient kHv is found by differentiating the
approximating polynomial ω̃v in uv and substituting the motor voltage by the value
uv,nom = 0.3 in the result obtained. Since the linear relationship obtained may be
written as uv = 1

kHv
ωv , then it follows that the inverse function H−1

v is approxi-
mated by the coefficient 1/kHv .

From the polynomial ω̃v , approximating the velocity characteristic of the main
propeller, it is found that for uv = 0.3 one has ωv = 1926.4 r.p.m. The static charac-
teristic Fv(ωv) of the main thrust is approximated by the linear relationship kHvωv .
The coefficient kHv is determined differentiating the approximating polynomial F̃v

in ωv and substituting the rotor angular velocity by the value ωv = 1926.4 in the
result obtained.

The static characteristics of the tail rotor are linearized in a similar way deter-
mining the propeller operation point for uh = 0.

The coefficients obtained from the linearization of the propeller static character-
istics are shown in Table 18.2.
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Consider next the linearization of plant differential equations. There are some
trigonometric functions of the pitch angle in these equations that have to be approx-
imated by linear relationships. We have

sin(αv,nom + δαv) ≈ sin(αv,nom) + cos(αv,nom)δαv

and

cos(αv,nom + δαv) ≈ cos(αv,nom) − sin(αv,nom)δαv

Replacing these approximations in the expression for the torque Mv1, participating
in (18.1), one obtains

Mv1 = Mv1,nom + Rvδαv

where Mv1,nom = −k1 cos(αv,nom) − k2 sin(αv,nom), Rv = k1 sin(αv,nom) −
k2 cos(αv,nom).

The torque Mv2 is represented in the form

Mv2 = Mv2,nom + lmkFv δωv

where Mv2,nom = lmkFv (ωv,nom).
The torque Mv3 is represented as

Mv3 = Mv3,nom − 2k3Ωh,nom sin(αv,nom) cos(αv,nom)δΩh

− k3Ω
2
h,nom

(
cos2(αv,nom) − sin2(αv,nom)

)
δαv

where Mv3,nom = k3Ωh,nom sin(αv,nom) cos(αv,nom). Taking into account that
Ωh,nom = 0, further on the dependence of the torque Mv3 on δΩh and on δαv is
neglected.

The torques Mv4 and Mv5 are given in the form of linear relationships and their
linearization is obvious.

Consider now the linearization of (18.2). The torque Mh1 is represented as

Mh1 = Mh1,nom + lt kFh
cos(αv,nom)δωh − lt kFh

sin(αv,nom)δαv

where Mh1,nom = lt kFh
ωh,nom cos(αv,nom).

The torque Mh3 is represented as

Mh3 = Mh3,nom − kvh sin(αv,nom)uv,nomδαv + kvh cos(αv,nom)δuv

where Mh3,nom = kvh cos(αv,nom)uv,nom.
Equations (18.3) and (18.4) are linearized, respectively, as

Iv

dδωv

dt
= δuv − (1/kHv )δωv

Ih

dδωh

dt
= δuh − (1/kHh

)δωh

The obtained linearized model of the Twin-Rotor Aerodynamic System is shown
in Fig. 18.6. (Here and next the variable deviations are denoted by the same names as
the corresponding variables.) The plant has two channels and there is an interaction
between these channels. In order to reveal in full the plant behavior the system
should be considered as multivariable, i.e., the two channels cannot be considered
independently.
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Fig. 18.6 Block-diagram of the linearized model

18.4 Uncertainty Modeling

For uncertain parameters in the mathematical description of the aerodynamical sys-
tem we consider the moment of inertia Jh with respect to the vertical axis, thrust co-
efficients kFh

, kFv of both rotors, velocity gains kHh
, kHv of the two rotors, friction

coefficients kfh
, kfv , cross moment coefficients kvh, khv , as well as the coefficient

Rv of the return torque, altogether 10 parameters. The uncertainties in the moment
of inertia Jh and in the coefficient Rv are due to their dependence on the pitch angle
αv , the uncertainties in the coefficients kFh

, kFv , kHh
, and kHv are introduced as a

result of the measuring and approximation of the static characteristics of the rotors,
the uncertainties in the coefficients kfh

and kfv are due to the errors in determina-
tion of the friction moments, and the uncertainties in the coefficients kvh and khv

result from simplification of the aerodynamic interaction between the two channels.
Furthermore we assume that the moment of inertia Jh and the coefficients kFh

, kFv ,
kHh

, and kHv are known with errors up to 10 % while the rest coefficients come with
errors up to 5 %.

The ten real uncertain parameters Jh, kHh
, kHv , kFh

, kFv , kfh
, kfv , khv , kvh, and

Rv are set by using the following command lines:

J_h_nom = 0.023790*(cos(alpha_v))^2 + 0.0030096;
J_h = ureal(’J_h’,J_h_nom,’Percentage’,10);
k_H_h = ureal(’k_H_h’,9.8389*10^3,’Percentage’,10);
k_F_h = ureal(’k_F_h’,2.1293*10^(-5),’Percentage’,10);
k_f_h = ureal(’k_f_h’,0.00589,’Percentage’,5);
k_v_h = ureal(’k_v_h’,-0.01782,’Percentage’,5);
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Fig. 18.7 Uncertain model
of the twin-rotor aerodynamic
system

Fig. 18.8 Schematic diagram
of the model input–output
connection

k_H_v = ureal(’k_H_v’,4.8746*10^3,’Percentage’,10);
k_F_v = ureal(’k_F_v’,3.07726*10^(-4),’Percentage’,10);
k_f_v = ureal(’k_f_v’,0.01271,’Percentage’,5);
k_h_v = ureal(’k_h_v’,0.004175,’Percentage’,5);
R_v_nom = 0.050058*sin(alpha_v) - 0.093601*cos(alpha_v);
R_v = ureal(’R_v’,R_v_nom,’Percentage’,5);

The uncertain TRAS model is obtained on the basis of the block-diagram, shown
in Fig. 18.6, implementing the function sysic. This system model is created by
the M-file mod_tras.m.

The uncertain TRAS system is described as a control plant by the equation

y = G

[
Md

u

]

where

y =
[

αh

αv

]
, u =

[
uh

uv

]
, Md =

[
Mhd

Mvd

]

The uncertain model of the Twin-Rotor Aerodynamic System is shown in
Fig. 18.7.

The schematic diagram of the model input–output connection is shown in
Fig. 18.8.

Let us introduce the representation

G = [Gd Gu]
such that

y = GdMd + Guu

In the last expression Gd is the plant transfer function matrix with respect to distur-
bances and Gu is the transfer function matrix with respect to the control signals.

The frequency response plot of the uncertain plant singular values, obtained from
the transfer function Gu, is shown in Fig. 18.9.
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Fig. 18.9 Frequency responses of the uncertain plant

Fig. 18.10 Closed-loop system with 2-degree-of-freedom controller

18.5 Closed-Loop System Performance Requirements

The block-diagram of the closed-loop system with 2-degree-of-freedom controller
is shown in Fig. 18.10.
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Fig. 18.11 Block-diagram of the closed-loop system with performance requirements

To obtain good performance of the system response we shall implement a
2-degree-of-freedom controller. The control actions are generated according to the
expression

u = [Kr Ky]
[

r

−yc

]
= Krr − Kyyc

where Ky is the output feedback transfer function matrix and Kr is the pre-filter
transfer function matrix.

The block-diagram of the closed-loop system that includes the uncertain TRAS
model, the feedback and the controller, as well as the elements reflecting the perfor-
mance requirements, is shown in Fig. 18.11. The system has reference inputs (r),
input disturbances (d) and noise (n) introduced in measurement of the angles αh

and αv . (Here and further on the disturbance vector is denoted for brevity by d .)
The TRAS uncertain model is the state space object G.

The system has two output signals (ey and eu). The block M is the ideal dynamics
model that the designed closed-loop system should match to. The feedback of the
system is realized by the vector yc = y + Wnn, where the measurement noise n is a
random vector with unit 2-norm and Wn is the transfer matrix of the noise shaping
filters.

The weighted closed-loop system outputs ey and eu satisfy the equation

[
ey

eu

]
=

[
Wp(SoGuKr − M) WpSoGd −WpSoGuKyWn

WuSiKr −WuSiKyGd −WuSiKyWn

]⎡
⎣ r

d

n

⎤
⎦ (18.7)

where the matrix Si = (I +KyGu)
−1 is the input sensitivity transfer function matrix

and So = (I + GuKy)
−1 is the output sensitivity transfer function matrix.
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Table 18.3 H∞ functions to
be minimized Function Description

Wp(SoGuKr − M) Weighted difference between ideal and real
closed-loop system

WpSoGd Weighted sensitivity to disturbance

WpSoGuKyWn Weighted sensitivity to noise

WuSiKr Weighted control action due to reference

WuSiKyGd Weighted control action due to disturbance

WuSiKyWn Weighted control action due to noise

The performance criterion requires the transfer function matrix from the exoge-
nous input signals r , d , and n to the output signals ey and eu to be small in the sense
of ‖ · ‖∞, for all possible uncertain plant models G. The transfer function matrices
Wp and Wu are used to reflect the relative importance of the different frequency
ranges for which the performance requirements should be fulfilled. The six transfer
function matrices which constitute the transfer function matrix between the inputs
and outputs of the extended system are described in Table 18.3.

The design problem for the Twin-Rotor Aerodynamic System is to find a linear
controller K(s) in the reference and measurable output

K = [Kr Ky]
that has to ensure the following properties of the closed-loop system:

18.5.1 Robust Stability

The closed-loop system achieves robust stability if this system is internally stable
for all possible plant models G.

18.5.2 Nominal Performance

The closed-loop system achieves nominal performance if the performance criterion
is satisfied for the nominal plant model∥∥∥∥

[
Wp(So,nomGu,nomKr − M) WpSo,nomGd,nom −WpSo,nomGu,nomKyWn

WuSi,nomKr −WuSi,nomKyGd,nom −WuSi,nomKyWn

]∥∥∥∥∞
< 1

18.5.3 Robust Performance

The closed-loop system should remain internally stable for all G and in addition the
performance criterion
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Fig. 18.12 Open-loop system structure

∥∥∥∥
[
Wp(SoGuKr − M) WpSoGd −WpSoGuKyWn

WuSiKr −WuSiKyGd −WuSiKyWn

]∥∥∥∥∞
< 1 (18.8)

should be satisfied for each G.

18.6 System Interconnections

The internal structure of the eight-input, eight-output open-loop system of 16th or-
der, which is saved as the variable sys_ic, is shown in Fig. 18.12. The reference,
disturbance, and noise are saved as the variables ref, dist and noise, respec-
tively. The control action is saved as the variable control. All variables shown
in the figure have two elements. The open-loop system interconnection is set by the
M-file dlp_tras implementing the function sysic.

The schematic diagram showing the specific input/output arrangement of the
variable sys_ic, is shown in Fig. 18.13.

The block-diagram used in the closed-loop system simulation is shown in
Fig. 18.14. The corresponding closed-loop interconnection that is saved in the vari-
able sim_ic is obtained by the M-file sim_tras.

Figure 18.15 shows the schematic diagram of the input/output arrangement of
the variable sim_ic.

18.7 μ-Synthesis

It is possible to implement different methods in the TRAS controller design includ-
ing several versions of H∞-optimization and μ-synthesis. According to the exper-
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Fig. 18.13 Schematic input–output diagram of the open-loop system structure

Fig. 18.14 Closed-loop system structure

Fig. 18.15 Schematic input–output diagram of the closed-loop system structure
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Fig. 18.16 Block-diagram of
μ-synthesis

iments performed best results are obtained by using μ-synthesis of a 2-degree-of-
freedom controller. For this reason we represent in this section only the design of
such a type of controller.

The closed-loop system block-diagram corresponding to the μ-synthesis prob-
lem is shown in Fig. 18.16. The matrix P is the transfer function matrix of the
extended open-loop system shown in Fig. 18.12.

The control actions to the plant are realized by a computer in real time with
sampling frequency fs = 100 Hz. For this reason the μ-synthesis is implemented to
design a discrete-time controller at this sampling frequency.

Let us denote by Pd(z) = FU(Nd,Δ) the transfer function matrix of the dis-
cretized eight-input eight-output open-loop system sys_ic, which consists of the
uncertain plant model plus the weighting functions, and let the block-structure ΔPd

is defined as

ΔPd
:=

{[
Δ 0
0 ΔF

]
: Δ ∈R10×10,ΔF ∈ C6×4

}

The first block of the matrix ΔPd
, the block Δ, corresponds to the parametric un-

certainties, included in the model of the aerodynamic system. The second block ΔF

is a fictitious uncertainty block, used to include the performance requirements into
the framework of the μ-approach. The inputs of this block are the weighted error
signals ey and eu, and the outputs are the exogenous signals r , d , and n.

The aim of the μ-synthesis is to find a discrete stabilizing controller Kd , such
that for each frequency ω ∈ [0,π/Ts], where Ts = 2π/fs , the structured singular
value μ satisfies the condition

μΔPd

[
FL(Nd,Kd)(jω)

]
< 1

where FL(Nd,Kd) is the closed-loop transfer function matrix. The fulfillment of
this condition guarantees the robust performance of the closed-loop system, i.e.∥∥FU

[
FL(Nd,Kd),ΔPd

]∥∥∞ < 1

for all uncertainties ΔPd
with ‖ΔPd

‖∞ < 1.
The transfer function matrix M of the ideal matching model is chosen as diagonal

in order to suppress the interaction between the two channels and is taken as

M(s) =
[
wm1 0

0 wm2

]
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Fig. 18.17 Model frequency responses

where

wm1 = 1

1.5s2 + 1.2s + 1

wm2 = 1

2.0s2 + 1.6s + 1

In the choice of this model it was assumed that the azimuth dynamics is faster than
the pitch dynamics.

The model magnitude responses are shown in Fig. 18.17.
The μ-synthesis is done for several performance weighting functions that ensure

a good balance between system performance and robustness. On the basis of the
experimental results, we choose the performance weighting function

Wp(s) =
[

8.7 × 10−2 80s+1
80s+10−3 −0.01

0.03 7.0 × 10−1 500s+1
500s+10−3

]

and the control weighting function

Wu(s) =
[

4.0 × 10−5 0.05s+1
10−4s+1

0

0 2.304 × 10−4 0.1s+1
10−4s+1

]

The control weighting functions are chosen so that the azimuth control action to
be in the range [−0.8,0.8] and the pitch control action in the range [−0.5,1]. The
weighting functions are set in the M-file wts_tras_mu.m.
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Fig. 18.18 Inverse performance weighting functions

The frequency responses of the inverse performance weighting function are given
in Fig. 18.18.

The frequency responses of the inverse control weighting function are given in
Fig. 18.19. The control weighting functions are chosen as high pass filters with
appropriate bandwidth in order to impose constraints on the spectrum of the control
actions.

The experiments with the control laws designed shows that the behavior of the
real closed-loop system is very sensitive to the weighting functions used. That is
why the precise tuning of the weighting functions requires a large volume of exper-
iments.

The noise transfer function matrix is taken as

Wn(s) =
[
wn(s) 0

0 wn(s)

]

where the transfer function wn = 10−2 s
s+1 is a high pass filter whose output is

significant above 10 rad/s.
The magnitude frequency response obtained from the transfer function wn is

shown in Fig. 18.20. This weighting function corresponds to measurement error in
the high frequency range about 1 × 10−2 rad.

The μ-synthesis is performed by using the M-file dms_tras.m, implementing
the function dksyn.

The D–K iteration run is shown in Table 18.4.
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Fig. 18.19 Inverse control action weighting functions

Fig. 18.20 Noise weighting function
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Table 18.4 Results from
μ-synthesis D–K iteration Iteration Controller order μ

1 16 235.419

2 16 4.535

3 20 1.226

4 22 0.980

5 24 0.968

Fig. 18.21 Frequency responses of the μ-controller

Five iterations are performed that decrease the maximum value of μ to 0.971.
The final controller obtained is of 24th order.

The singular value frequency response plot of the μ-controller singular values
are shown in Fig. 18.21.

The robust stability and robust performance analysis of the closed-loop system
with μ-controller, done by using the file dmu_tras.m, produces the following
results.

report =

Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 521% of the modeled uncertainty.
-- No modeled uncertainty exists to cause an instability

at 0.001 rad/s.
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Fig. 18.22 Robust stability of the closed-loop system

report =

Uncertain System achieves a robust performance margin
of 1.041.
-- A model uncertainty exists of size 103% resulting in a

performance margin of 0.968 at 21.4 rad/s.

The frequency responses of the structured singular value that corresponds to ro-
bust stability analysis are shown in Fig. 18.22.

The frequency response of μ, corresponding to the robust performance analysis
of the closed-loop sampled-data system, is shown in Fig. 18.23.

The frequency responses of the uncertain closed-loop system are obtained by
the M-file dfrs_tras.m. The frequency responses of the singular values of the
closed-loop transfer function matrix for random values of the plant uncertain pa-
rameters are shown in Fig. 18.24. It is seen that as a result of achieving robust
performance, the closed-loop system frequency responses are close to these of the
model (shown with dashed lines).

The frequency response plot of the singular values of disturbance transfer func-
tion matrix (output sensitivity function So) is shown in Fig. 18.25. (The inverse
performance functions are shown with dashed lines.) The disturbance attenuation is
more than 100 times (40 dB).

The frequency response plot of the singular values of the transfer function ma-
trix from noises to outputs for the controller Kdmu are shown in Fig. 18.26. The
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Fig. 18.23 Robust performance of the closed-loop system

Fig. 18.24 Frequency responses of the closed-loop system (–) and model (- -, -.)
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Fig. 18.25 Singular value plot of the sensitivity function (–) and the inverse performance weight-
ing function (- -, -.)

Fig. 18.26 Singular value plot of the noise transfer function
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Fig. 18.27 Frequency responses of the input sensitivity function (–) and inverse control weighting
function (- -, -.)

strongest influence have the noises with frequency between 5 rad/s and 10 rad/s, but
their effect on the closed-loop system output is negligible.

In Fig. 18.27 we show the frequency responses of the input sensitivity. The maxi-
mum influence of the disturbances on the plant input is in the range around 10 rad/s.

The frequency response of the noise-to-control loop (Fig. 18.28) shows that one
may expect high level of the noises at the actuator inputs. In Fig. 18.28 we show
the frequency response plot of the singular values of the transfer function matrix
from noise to control actions. The maximum of the larger singular value is equal to
20 dB, which shows that the magnitude of the noises at the plant input is 10 times
larger than the magnitude of the noises at the sensor outputs. These large noises are
due to the relatively high gains in the controller (up to 104).

The singular values of the open-loop system with μ-controller are shown in
Fig. 18.29.

Consider now the transient responses of the closed-loop system. These responses
are obtained for 30 different values of the uncertain parameters implementing the
M-file dsl_tras.m.

The transient responses of the sampled-data closed-loop system, obtained for
different random values of the uncertain parameters, are shown in Fig. 18.30. These
processes have acceptable performance.

The control actions for different values of the uncertain parameters are shown
in Fig. 18.31. The motor input signals are less than 1 for all possible values of the
uncertain parameters.
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Fig. 18.28 Frequency response of the noise-to-control loop (–) and inverse control weighting
function (- -, -.)

Fig. 18.29 Singular value plot of the open-loop system
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Fig. 18.30 Transient responses of the uncertain linearized closed-loop system

Fig. 18.31 Control actions of the uncertain linearized closed-loop system

18.8 Nonlinear System Simulation

The nonlinear sampled-data closed-loop control system is simulated using the
Simulink® model TRAS_2dof_model.mdl. This model allows to simulate the



428 18 Robust Control of a Twin-Rotor Aerodynamic System

closed-loop system behavior for different references and disturbance setting noises
equal to zero. The model utilizes the nonlinear differential equations (18.1)–(18.6)
describing the Twin-Rotor Aerodynamic System.

The Simulink® model TRAS_2dof_model.mdl is shown in Fig. 18.32. The
azimuth control actions are bounded in the range [−0.8,0.8] and the pitch control
actions—in the range [−0.5,1].

The simulation of the nonlinear system for several references and disturbances
produces results that are close to the results obtained for the nominal linearized
model.

In Fig. 18.33 we show the transient responses to the reference of the nonlinear
system with μ-controller.

In Fig. 18.34 we show the control actions of the nonlinear system with μ-
controller.

18.9 Experimental Results

The experiments with the controller designed are done by using the laboratory set-
up, shown in Fig. 18.1 along with a PC with MATLAB®, ver. R2007b. The genera-
tion of the C driving program is done by using the Simulink Coder®. For this aim a
Simulink® model of the closed-loop system is used with built-in driver for interface
with the plant.

The Simulink® model TRAS_2dof_exper.mdl of the twin-rotor aerody-
namic system that is used to generate the control actions is shown in Fig. 18.35. As
in the simulation of the nonlinear system the azimuth control actions are bounded
in the interval [−0.8,0.8] and the pitch control actions in the interval [−0.5,1].

The experimentally obtained transient responses of the closed-loop system, con-
trolled in real time with the μ-controller designed, are shown in Fig. 18.36. The
comparison with the transient responses of the linearized closed-loop system given
in Fig. 18.31 shows a good coincidence between the theoretical and experimental
results.

The experimentally obtained control actions are shown in Fig. 18.37. Due to
the high level of the noises at the actuator inputs, the control actions are severely
contaminated by errors.

To extract the true actuator inputs, the control signals are filtrated by using
appropriate first order Butterworth filter. The corresponding results are shown in
Fig. 18.38 and are close to the theoretical results shown in Fig. 18.11.

18.10 Conclusions

The experience gained in the design and experimental implementation of the Twin-
Rotor Aerodynamic System controller allows one to derive the following conclu-
sions.
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Fig. 18.33 Transient responses of the nonlinear system

Fig. 18.34 Control actions in the nonlinear system
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Fig. 18.36 Experimental transient responses

Fig. 18.37 Experimental control actions (noisy data)
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Fig. 18.38 Experimental control actions (after filtration)

• The modern technologies for real-time control allow implementation of high-
order controllers (in the given case n = 24), which help to achieve better perfor-
mance and robustness of the closed-loop system.

• Rapid tuning of the controller is possible as well as prototyping of a large number
of controllers.

• The strong contamination of the input signals by noises leads to the necessity to
suppress the high-frequency components of the control actions.

• Due to the high level of noises in the control inputs the actuators may saturate,
which may lead to generation of auto-oscillations in the closed-loop system.

18.10.1 Notes and References

The derivation of the Twin-Rotor Aerodynamic System nonlinear model presented
in this chapter follows [165].

The Twin-Rotor Aerodynamic System presents a simplified model of a helicopter
in which the main rotor thrust and tail rotor thrust are controlled by changing the
corresponding propeller speed. (In the real helicopter this is done by changing the
collective and cyclic pitch angles of the propeller blades.) The behavior of this sys-
tem illustrates well the difficulties arising in control of strongly coupled two-channel
nonlinear systems. Good disturbance attenuation and channel decoupling is possi-
ble to achieve by using H∞-design or μ-synthesis based on the linearized plant
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model. A nonlinear H∞ disturbance rejection controller for the Twin-Rotor Aero-
dynamic System, showing a good performance for a range of operating conditions,
is proposed in [104].

The control of unmanned rotorcraft vehicles is an area attracting intensive re-
search in the recent years. The reader interested in this subject may consult the
books [19, 105, 118, 166].



Chapter 19
Robust Control of Self-balancing Two-Wheeled
Robot

This chapter presents the design and experimentation of a 2-degree-of-freedom ro-
bust controller for a self-balancing two-wheeled LEGO® Mindstorms NXT robot.
A 12th order discrete-time controller is designed by using the techniques of
μ-synthesis. The closed-loop control system achieves robust stability and robust
performance in the presence of two uncertain friction coefficients. The experimen-
tal results show that the robot preserves stability in the vertical plane for deviations
greater than 16◦.

19.1 Introduction

In recent years, there has been a growing interest in research and education in im-
plementation of miniature robots, build on the basis of LEGO® Mindstorms NXT
developer kit (see for instance [10, 13, 144]). The control of such robots is done
by 32-bit ATMEL ARM 7 (AT91SAM7S256) microcontroller with 48 MHz speed.
This microcontroller works under the operational system nxtOSEK and has 64 KB
RAM, which makes it suitable for implementation of sufficiently complex control
laws.

The LEGO® Mindstorms NXT kit is used by Yorihisa Yamamoto to build the
self-balancing two-wheeled robot NXTway-GS [188], which implements a linear
quadratic regulator for robot digital control (stabilization of vertical body position
and achieving a reference position in the horizontal plane). The software product
Embedded Coder Robot NXT developed by Takashi Chikamasa [22] is used to im-
plement additional tasks related to the robot control (system initialization, avoiding
obstacles and battery voltage checking).

The general view of the NXTway-GS robot in self-balancing mode is shown in
Fig. 19.1.

The robot balancing is achieved by rotating the wheels in the appropriate di-
rection. The computation of control actions to both DC drive motors is realized in
single precision on the basis of signals from the micro-electromechanical (MEM)

D.-W. Gu et al., Robust Control Design with MATLAB®,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-1-4471-4682-7_19,© Springer-Verlag London 2013

435



436 19 Robust Control of Self-balancing Two-Wheeled Robot

Fig. 19.1 NXTway-GS robot
in self-balancing mode

gyroscopic sensor which measures the angular rate (and, after integration, the tilt an-
gle) of the robot body in the vertical plane and signals from rotary encoders which
measure the wheels rotation angles. The control of the DC motors is executed by
Pulse Width Modulated (PWM) signals. To avoid obstacles the robot is equipped
with an ultrasonic sensor.

In this chapter we present the design of a robust controller for NXTway-GS robot
with the aim to implement in maximum degree the available software for real-time
control presented in [188]. Since the robust controllers are of higher order the basic
problem is to check the possibility to implement such controllers on the available
microcontroller working with sampling frequency fs = 250 Hz in the stabilization
loop. The results obtained show that the microcontroller under consideration im-
plements without difficulties a robust discrete controller of 12th order that allows
to improve the closed-loop system performance. Results from the simulation of the
closed-loop system as well as experimental results obtained during the real imple-
mentation of the controller designed are given.

19.2 Uncertain Model of the Two-Wheeled Robot

The nonlinear differential equations describing the robot motion are derived in detail
in [188] by using the Lagrange method. These equations are linearized analytically
around the balance point (equilibrium position) resulting in a state space description
of fourth order for the vertical plane motion and a second order description for the
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rotation around vertical axis. In the first case, the average angle θ of left and right
wheel rotations and the body tilt angle ψ (measured from the vertical position), as
well as their derivatives (the corresponding angular rates), are used as components
of the state vector. In the second case, state variables are the body yaw angle φ and
its derivative. Introducing the state and control action vectors as

x1 =

⎡
⎢⎢⎣

θ

ψ

θ̇

ψ̇

⎤
⎥⎥⎦ , x2 =

[
φ

φ̇

]
, u =

[
ul

ur

]
(19.1)

where ul , ur are the control actions to the left and right wheel motors, respectively,
the equations of the linearized system are obtained in the form

ẋ1 = A1x1 + B1u (19.2)

ẋ2 = A2x2 + B2u (19.3)

where the expressions for the elements of matrices A1, B1, A2, B2, as well as the
values of corresponding parameters, are given in [188]. We present only the ex-
pressions for matrices A1 and B1, which are used later on in the design of a robust
controller:

A1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 a32 a33 a34
0 a42 a43 a44

⎤
⎥⎥⎦ (19.4)

B1 =

⎡
⎢⎢⎣

0 0
0 0
b3 b3
b4 b4

⎤
⎥⎥⎦ (19.5)

where

a32 = −gMLe12/detE

a42 = gMLe11/detE

a33 = −2(σe22 + βe12)/detE

a43 = 2(σe12 + βe11)/detE

a34 = 2β(e22 + e12)/detE

a44 = −2β(e11 + e12)/detE

b3 = α(e22 + e12)/detE

b4 = −α(e11 + e12)/detE (19.6)

e11 = (2m + M)R2 + 2Jw + 2n2Jm

e12 = MLR − 2n2Jm

e22 = ML2 + Jψ + 2n2Jm
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Table 19.1 Nominal parameters of the robot model

Parameter Description Value Units

g gravity acceleration 9.81 m/s2

m wheel mass 0.03 kg

R wheel radius 0.04 m

Jw wheel inertia moment mR2/2 kg m2

M body mass 0.6 kg

W body width 0.14 m

D body depth 0.04 m

H body height 0.144 m

L distance of the center of the mass from the wheel axle H/2 m

Jψ body pitch inertia moment ML2/3 kg m2

Jφ body yaw inertia moment M(W 2 + D2)/12 kg m2

Jm DC motor inertia moment 1.0 × 10−5 kg m2

Rm DC motor resistance 6.69 �

Kb DC motor back e.m.f. constant 0.468 m

Kt DC motor torque constant 0.317 Nm/A

n gear ratio 1

fm friction coefficient between body and DC motor 0.0022

fw friction coefficient between body and motion surface 0.468
0.0001

detE = e11e22 − e2
12

α = nKt/Rm

β = nKtKb/Rm + fm

σ = β + fw

and the nominal values of the robot model parameters, in (19.6), are given in Ta-
ble 19.1.

It should be noted that the robot model parameters are not determined with suf-
ficient accuracy which may cause difficulties in controller designs, and thus robust
controllers are required.

According to (19.6), the basic parameter of robot model is the body mass M ,
which determines almost all model parameters. Since this mass depends on the pay-
load it is reasonable to assume it as an uncertain parameter of the robot model. In this
case, however, the matrix Δ in the M–Δ model of the uncertain plant is a 52 × 52
matrix, in which the uncertainty of M occurs 52 times. This makes the synthesis of
robust controller under such an assumption almost impossible in practice.

In the given case as uncertain parameters we consider the friction coefficient fm

between the robot body and DC motor and the friction coefficient fw between the
robot wheels and motion surface. The introduction of these sample uncertainties
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Fig. 19.2 Uncertain model
of the two-wheeled robot

allows to design easily a robust controller that ensures robust stability and robust
performance of the closed-loop system with respect to the given uncertainty. In par-
ticular, we assume that the coefficient fm is known with 20 % uncertainty and the
coefficient fw with 100 % uncertainty. The analysis performed later on shows that
the coefficient fm has more significant influence on the system dynamics.

The two real uncertain parameters fm and fw are defined in the program by using
the following command lines:

fm = ureal(’fm’,0.0022,’Mode’,’Range’,’Percentage’,20);
fw = ureal(’fw’,0.0001,’Mode’,’Range’,’Percentage’,100);

As a result, for the subsystem (19.2) one obtains an uncertain plant Gunc with
two inputs and four outputs (Fig. 19.2).

The uncertain system model is created by the M-file mod_robot.m.
The frequency response (in magnitude) of the nominal and uncertain plants (for

random parameter values in the ranges assumed) are shown in Fig. 19.3. Obviously,

Fig. 19.3 Magnitude responses of the nominal and uncertain plant
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the variation of the frequency response due to the variations in friction coefficients
is relatively small.

19.3 Design of Robust Controller

The robot stabilization in upright position is a difficult task since the robot itself
presents an inverted pendulum whose control requires a sufficiently accurate model.
The design of a discrete-time controller for the subsystem (19.2) was done initially
for the nominal plant model by using the H∞-design. However, due to the inaccurate
plant model the controller obtained was unable to stabilize the robot, although the
simulation results were positive. That is why the final design is done by using the
μ-synthesis, which allows to stabilize efficiently the robot in spite of the model
inaccuracy. For better results it is appropriate to implement a 2-degree-of-freedom
controller. The design is done for 250 Hz sampling frequency, which corresponds
to the frequency of the signal at the output of gyro sensor. However, the following
problem appears during the design. The experiments with different standard design
configurations show that they cannot ensure good tracking of the reference angle θ ,
and hence the desired position in the motion plane. That is why apart from the
constraints on the sensitivity function we add also a constraint on the integral of the
error in wheels rotation angle. This allows to ensure sufficient accuracy in tracking
the angle θ . The integral component is added also in the system feedback.

The subsystem (19.3) is controlled by a PID regulator as described in [188].
The closed-loop structure with the sensitivity function requirement on the output

variables as well as the requirement on the control actions is shown in Fig. 19.4. The
transfer function matrix Wp reflects the requirements on the system performance,
the matrix Wu reflects the requirements on control actions and the transfer functions
Wn11 and Wn22 reflects the influence of noises on the encoder and gyro measure-
ments, respectively. The block Intg integrates the difference between the reference
value and the output value of the angle θ and its output is used in the system feed-
back as well as an input to weighting function Wp .

The internal structure of the eight-input, 16-output open-loop system of 12th or-
der, which is saved as the variable sys_ic, is shown in Fig. 19.5. The reference and
noise are saved as the variables ref and noise, respectively. The control action is
saved as the variable control. The input to the controller consists of the reference
values of variables θ , ψ , θ̇ , ψ̇ as well as of four plant outputs and integrator output.
The open-loop system interconnection is set by the M-file olp_robot_2dof.m
implementing the function sysic.

The schematic diagram showing the specific input/output arrangement of the
variable sys_ic, is shown in Fig. 19.6.

The closed-loop system block-diagram corresponding to the μ-synthesis prob-
lem is shown in Fig. 19.7. The matrix P is the transfer function matrix of the ex-
tended open-loop system shown in Fig. 19.5.
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Fig. 19.4 Block-diagram of the closed-loop system with performance requirements

Fig. 19.5 Open-loop system interconnection
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Fig. 19.6 Schematic diagram of the open-loop system interconnection

Fig. 19.7 Block diagram of
the closed-loop system

In the given case the following weighting functions are found as appropriate in
the controller design.

Performance weighting functions:

Wp = diag(Wp11,Wp22,Wp33,Wp44,Wp55)

Wp11 = 0.95
0.4s + 1

5s + 0.06
Wp22 = 0.93

Wp33 = 0.15

Wp44 = 0.22
1.1s + 1

1.0s + 1

Wp11 = 1.8
0.4s + 1

5s + 0.06

(19.7)
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Fig. 19.8 Singular value plot of μ-controller

Control action weighting functions:

Wu = diag(Wu11,Wu22)

Wu11 = 0.02
1.2s + 1

0.0024s + 1
(19.8)

Wu22 = 0.02
1.2s + 1

0.0024s + 1

Noise shaping filters:

Wn = diag(Wn11,Wn22)

Wu11 = 0.1
1.0s + 2

0.01s + 1
(19.9)

Wu22 = 1.0
1.0s + 2

0.01s + 1

The design of 2-degree-of-freedom controller for the subsystem (19.2) is done
by the M-file dms_robot_2dof.m that implements the function dksyn from
Robust Control Toolbox®3. As a result after three iterations one obtains a 12th order
controller, which ensures a minimum value of the structured singular value μ equal
to 0.930. This shows that the closed-loop system achieves robust performance in
respect to the variation of both uncertain coefficients.

The singular value plot (the magnitude response) of the controller obtained is
shown in Fig. 19.8. The maximum controller gain is 41 dB, which ensures accept-
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Fig. 19.9 Magnitude response of the uncertain closed-loop system

able control actions. The experiments show that larger controller gains lead to actu-
ators saturation and instability of the real system.

19.4 Closed-Loop System Properties

After determining the controller, it is possible to compute several frequency re-
sponses and time responses of the closed-loop system that give profound infor-
mation about its properties. The frequency responses are obtained by the M-file
dfrs_robot_2dof.m.

In Fig. 19.9 we show a family of frequency response characteristics of the closed-
loop with input and output the desired and actual angle θ , respectively, for different
random values of the uncertain parameters in the prescribed range. It is seen that
the responses have acceptable peaks, the frequency band width (at level −3 dB)
being about 2.13 rad/s. For this band width it is possible to achieve good tracking of
typical for the system under consideration reference signals.

The magnitude responses of the output sensitivity function of the closed-loop
system along with the inverse performance function are shown in Fig. 19.10. It is
seen that the disturbance attenuation in the low frequency range is better than this
required by the performance weighting function.

In Fig. 19.11 we show the magnitude response of the loop from reference angle
θ to the integral of the tracking error of this angle. Clearly, the prescribed frequency
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Fig. 19.10 Output sensitivity function of the closed-loop system

Fig. 19.11 Magnitude response of the integral component
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Fig. 19.12 Sensitivity of control action to references and noises

domain constraints on the integral error are fulfilled, the error attenuation in the low
frequency range (where the reference spectrum lies) being 30 dB (i.e., more than
30 times). It is possible to achieve even better suppression of this error but in such
a case the requirement for robust performance cannot be fulfilled (the value of μ

increases).
In Fig. 19.12 we show the magnitude response of the loop from references and

noises to the control actions (motor controls). It is seen that this response is lying
below the frequency response of the inverse control weighting filter, i.e., the pre-
scribed constraints on the controls are fulfilled. These constraints are chosen so that
to avoid saturation of the actuators which generate the PWM signals to the motors.

The robust stability and robust performance analysis of the closed-loop sys-
tem with discrete-time μ-controller is done by the file dmu_robot_2dof.m.
The robust stability analysis of the uncertain closed-loop system shows that the
upper bound on the structured singular value does not exceed the value of 0.063
(see Fig. 19.13). This means that the system may remain stable for much larger than
the prescribed uncertainty in the corresponding parameters.

This is not the case in respect to the robust performance. It is seen from the fre-
quency response characteristic of the structured singular value, shown in Fig. 19.14,
that its maximum value is almost equal to 0.9304. This shows that there exists an
uncertainty which is only 1.075 times larger than the existing one, for which the
closed-loop system loses robust performance.

In Fig. 19.15 we show the worst case magnitude response of the closed-loop
system obtained by the file wcp_robot_2dof.m implementing the function wc-
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Fig. 19.13 Robust stability of the closed-loop system

Fig. 19.14 Robust performance of the closed-loop system
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Fig. 19.15 Worst-case magnitude response of the closed-loop system

gain from Robust Control Toolbox®3. Due to the robust performance achieved,
the worst case response is slightly different from the nominal one.

The transient responses of the uncertain closed-loop system with discrete-time
μ-controller is done by the file mcs_robot_2dof.m.

In Fig. 19.16 we show the reference angle θ , which is input to the controller
as well as the transient response of the output angle θ . Multiplying these variables
by the wheel radius R = 0.04 m it is possible to determine the accuracy of robot
positioning in horizontal plane motion.

The body tilt angle, corresponding to the reference plane trajectory given in
Fig. 19.16, is shown in Fig. 19.17. Obviously, this angle is in the range of ±2 de-
grees.

The control action to the right motor, corresponding to the reference trajectory
given in Fig. 19.16, is shown in Fig. 19.18.

The simulation of the nonlinear closed-loop system in the time domain is done
by the program nxtway_gs_vr.mdl from [188], in which the controller, as im-
plemented by the file nxtway_gs_controller.mdl, is modified such that to
use the μ-regulator designed (see for details the next section). The simulation of
the closed-loop system for zero reference and initial deviation of robot body from
the vertical plane shows that the robot successfully and quickly returns to the bal-
ance point. Since the simulation program nxtway_gs_vr.mdl implements the
linearized plant model, it is not possible to establish the maximum value of the ver-
tical deviation for which the robot preserves stability. This is done experimentally
as described in the next section.
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Fig. 19.16 Transient response of the closed-loop system

Fig. 19.17 Transient response of the closed-loop system: body tilt angle
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Fig. 19.18 Right motor control action

19.5 Experimental Results

The designed robust regulator of the two-wheeled robot motion is experimented in
practice using the available software for automatic generation of C control code and
its loading in the digital robot controller, as presented in [188].

For this aim we use the modified block-diagram of the controller model in
Simulink®, shown in Fig. 19.19 and saved in the file robust_controller. The
12th order μ-regulator is represented by the state space block “Discrete Controller”
and the integration of the tracking error is done by the block “Discrete Integra-
tor”. This controller replaces the original linear quadratic state controller used in
the Simulink® file nxtway_gs_vr.mdl adopted from [188]. The generation of
the control code is done by using the Simulink Coder®. During the experiments one
measures the control signals to both motors, the pitch angle ψ , the battery voltage
and so on. The data transfer from robot to the personal computer is done by us-
ing the bluetooth-protocol. The file containing the results is loaded to MATLAB®

which allows to visualize the experimental data. Since the angular rate ψ̇ measured
by the gyroscope and its integral are contaminated by noises there is some bias in
the computed value of ψ , which is removed by the MATLAB® function dtrend.

In Fig. 19.20 we show the results from one of the experiments performed. The
robot is subject to two different disturbance forces causing deviations from the ver-
tical position at approximately t = 54 s and t = 90 s. For the bigger deviation of
16.5◦ at t = 54 s the regulator succeeds to stabilize the system and to return the
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Fig. 19.20 Transient responses to disturbance forces

robot to the balance point. There are some oscillations in the steady-state mode of
order ±2◦ that are due to the dead-zone in motor gears.

The control signal to the right wheel for the same experiment is shown in
Fig. 19.21. In stabilization mode the control magnitude is between 40 % and
60 % from the maximum one which guarantees that the actuator saturation will
be avoided. Since the control at t = 54 s reaches 100 % it is justified to assume that
the deviation of 16.5◦ is the maximum allowable one for which the robot is kept
stable.

19.6 Conclusions

The experience gained in the design and experimental evaluation of the Two-
Wheeled Robot System controller allows to derive the following conclusions.

• The inclusion of all possible uncertainties in the plant model may lead to a very
complicated model that makes robust controller design impossible in practice. In
many cases it is sufficient to take a small number of uncertain parameters in order
to find a robust controller that ensures acceptable performance in practice.

• The LEGO® Mindstorms NXT microcontroller is capable to realize complicated
high-order control laws that may ensure stability of the closed-loop system for
sufficiently large deviations from the equilibrium state.
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Fig. 19.21 Control action to the right wheel motor

• The presence of nonlinearities in the system, like dead-zone or backlash, may de-
teriorate significantly the closed-loop performance since the design of the robust
controller is based on the assumption of a linearized plant model.

• The presence of bias and noises in the gyroscope signal may require inclusion of
appropriate filters to determine sufficiently accurately estimates of the tilt angle
and its derivative.

19.7 Notes and References

Different types of wheeled robot and their properties are described in [18]. The two-
wheeled NXTway-GS robot, presented in this chapter, is an inverted-pendulum-type
robot which should be stabilized around the vertical position by a control system.
Usually, such robots are equipped with two servo drives for actuation, a gyroscope
for measuring angle and angular velocity of pendulum body, encoders for measuring
the position of the wheels and a microcontroller implementing a discrete real-time
stabilization algorithm. Since the gyroscope measurements are subject to bias, ran-
dom walk and noise, the body tilt angle is frequently estimated by using a Kalman
filter. In some implementations it is appropriate to add an accelerometer or to use
Inertial Measurement Unit with MEM sensors in order to eliminate the drift.

The most popular commercial product, built on the idea of self balancing two-
wheeled robot, is the Segway® Personal Transporter (PT), produced by Segway Inc.,
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USA [152]. Some of the Segway® PTs have maximum speed of 20 km/h and can
travel as far as 38 km on a single battery charge.

Different dynamic models and methods for real-time control of two-wheeled
robots may be found in [30, 85, 128], including self-tuning PID controllers [142],
robust [170] and fuzzy controllers [186]. When the size of the robots gets bigger and
mass gets smaller it is necessary to take into account the flexibility of robot body
[143]. Many issues connected to the development of real-time systems for mobile
robot control are considered in depth in the excellent book of Bräunl [16].
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feedback, 125
Feedback system, 4
Feedforward compensator, 54
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Fictitious output vector, 17
Finsler’s Lemma, 102
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Approximation method, 82
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Frequency-Weighted approximation methods,
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Method, 89
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Approximation, 89
Full uncertainty blocks, 21
Furuta pendulum, 325

G
Gain scheduling, 234
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LTI models, 107
ltiss, 223
ltisys, 222
LV-configuration of the distillation column,
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Lyapunov equations, 75
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Method of inequalities, 61
MIMO system, 4
Minimal system, 5
Mixed optimization loop-shaping design

method, 60
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Nominal performance, 67
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Observability Gramian, 75
Open-loop system, 4
Order reduction, 74
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Output loop transfer matrix, 116
Output multiplicative perturbation, 14
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Parametric uncertainty, 18
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Performance specifications, 26
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Projection Lemma, 101
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Quadratically stable system, 229
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R
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Reboiler, 329
Reference input, 26
Relative-error approximation methods, 84
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Right coprime factor perturbations, 15
Robust control system, 23
Robust performance, 67
Robust stability, 67
Robust stabilization conditions, 25
Robustly stable system, 23
robustperf, 157
robuststab, 146
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S-procedure, 102
Scalar uncertainty blocks, 21
Scaled model, 331
Scaling matrix
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output, 331

Schur Complement Formula, 98
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Segway® Personal Transporter, 453
Sensitivity function, 26
sigma, 113
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Singular perturbation approximation, 76
Singular value decomposition, 40
SISO system, 4
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Sliders, 250
Slow part, 16
Small-Gain Theorem, 23
Space eigenfunction, 369
Spectral radius of a matrix, 28
splot, 223
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Stability, 5
Stability margin, 28
Stabilizing controller, 23
step, 127
Structured singular value, 27
Structured uncertainty, 18
Suboptimal discrete-time loop-shaping

controller, 56
sysic, 133
SYSTEM matrix, 222
System norms, 10

T
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Time-invariant system, 5
Track following mode, 251
Trade-off between nominal performance and
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Transfer function matrix, 5
Triple inverted pendulum, 292
Twin-Rotor Aerodynamic System (TRAS),

401
Two-Wheeled Self-Balancing Robot, 435

U
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Vertex controllers, 235
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Youla Parameterization Theorem, 8
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