International Journal of Systems Control (Vol. 1-2010/Iss.1)
Merzoug and Benalla / Nonlinear Backstepping Control of Permanent ... / pp. 30-34

Nonlinear Backstepping Control of Permanent
Magnet Synchronous Motor (PMSM)

M.S. Merzoug , H. Benalla”

" Department of Department of Electrical Engineeribigiversity of
Mentouri Constantine, B.P. 325ayenue An El Bey, Constantine
25017, Algérie
telffax: (213)31.81.87.11

e-mail: merzougmohamedsalah@yahoo.fr
” Department of Department of Electrical Engineeribigjversity of
Mentouri Constantine, B.P. 325ayenue An El Bey, Constantine
25017, Algérie
tel/fax: (213)31.81.87.11
e-mail: Hbenalla@yahoo.dz

Submitted: 08/01/2010

Accepted: 11/01/2010

Appeared: 16/01/2010
[MHyperSciences.Publisher

Abstract—This paper presents a novel speed control techrfimuan permanent magnets synchronous
(MSAP) drive based on newly Nonlinear backsteppéeunique. The most appealing point of it is to use
the virtual control variable to make the high-ordgstem simple, and thus the final control otstpu
can be derived step by step through appraptigapunov functions Backstepping control appraach
adapted to derive the control scheme, which is sblta parameter uncertainties and external load
disturbance. Simulation results clearly show ti&t proposed controller can track the speed referenc
signal successfully under parameter uncertaintidd@ad torque disturbance rejection

Keywords PMSM, Backstepping, Lyapunov, Stabilityonlinear

1. NOMENCLATURE of low-cost power electronic devices and the impraent of
PM characteristics enable the use of PM motors @avenme

VgV, Direct-and quadrature-axis stator voltages more demanding applications [4].

q

la.l g Direct-and quadrature-axis stator voltages

. . Advantages of PMSM include low inertia, high eféioty,
Ly,L,  Direct-and quadrature-axis inductance high power density and reliability. Because of thes
P Number of poles advantages, PMSM are indeed excellent for use gh-hi
Rs Stator resistance performanpe servo drives where a fast and acctioatgie
& rotor magnet flux linkage response is required.
$q.9q Fluxin (d,q) reference frame Usually, high—performapce motor drives requirg fastd
@ rotor speed in electrical Z(ri;j cmiJnrgéen Sri(;\s;ipt)onse, quick recovery fr_om any maumes

) y to parameter variations. The dyita
Q Mechanical rotor speed behavior of an ac motor can be significantly imgowsing
0 Electrical rotor position vector control theory where motor variables ar@edfarmed
Te Electromagnetic torque into an orthogonal set of d-q axes such thaedpand
T Friction torque torque can be controlled separately. This givesIEHdSM
machine the highly desirable dynamic performance

T Load torque capabilities of the separately excited dc machiwhjle
J Inertia retaining the general advantages of the ac ovemadiors.
F Damping coefficient Originally, vector control was applied to the indan motor

and a vast amount of research work has been detmtiis
area. The vector control method is relevant to [fPRISM
drive as the control is completely carried out tiglo the
stator, as the rotor excitation control is not |jass [6]

2. INTRODUCTION

Permanent magnet (PM) synchronous motors havectzttia
increasing interest in recent years for industrdive
application. The high efficiency, high steady stabeque
density and simple controller of the PM motor dsive
compared with the induction motor drives make treegood
alternative in certain applications. Moreover, thailability

The two major classes of controllers which are bépaf
dealing with nonlinear uncertain systems are adep#nd
robust controllers. Backstepping control is an apph to
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nonlinear control design which has attracted atgdeal of
research interest in recent years. It is mainlyliegple to
systems having a cascaded or triangular structure.

The central idea of the approach is to recursiwdgign
controllers for motor torque constant uncertainipsystems
in the structure and “step back” the feedbacknsig towards
the control input. This differs from the conventibfieedback
linearization in that it can avoid cancellation abeful
nonlinearities in pursuing the objectives of stahiion and
tracking. In addition, by utilizing the control Lganov
function, it also has the flexibility in introdugnappropriate
dynamics to make the system behave in a desirecheénan
The presentations of backstepping control in ttegdiure are
mostly in pure mathematical settings. [2]

The Backstepping control is a systematic and récurs
design methodology for nonlinear feedback contigipling
those design methods, control objectives such adtiquo,
velocity can be achieved. [1]

A nonlinear backstepping control design schemeigbped
for the speed tracking control of PMSM that hascéxaodel
knowledge. The asymptotic stability of the resugticiosed-
loop system is guaranteed according to Lyapunoliliia
theorem.

3. MATHEMATICAL MODEL OF THE PMSM

The electrical and mechanical equations of the PMSithe
rotor reference (d-q ) frame are as follows [5]:

d
Vg = Rs|d+a¢d_wr¢q

) 1)(
Vq = RSIq+E¢q+wr¢d
b =Lalgt o+ )
@q=Lqlq 3)
And the electromagnetic torque is given by:
3
Te =2 PULa=Lold o*1 4 ) 4

The equation for the motor dynamics, on the otlaerdhis

dQ
T,-T,-T, = J— 5
e r f dt ( )
Es Ld Es Ly
1d - Iy n
Vd oty Vg Wy
+ —

Fig. 1. PMSM equivalent circuit from dynamic eqoat

From (1), it is obvious that the dynamic model &AM is
highly nonlinear because of the coupling between gpeed
and the electrical currents. According to thectoe control
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principle, the direct axis curreif is always forced to

be zero in order to orient all the linkafax in the d-
axis and achieve maximum torque per amperéh e
state assignments, the dynamic 14, X, =« and X3 = |,.

Model of PMSM can be rewritten as follows:

__K Ly 1
=S 3+ Pt —
X L, X1+Ld %Xt L "
Pg f
Xzz_Jf Xs_j o—— Tr (6)
_ R Ly P 1
=Sy _Hdpyx— el
X3 L, X3 L %X L P %t o \

4. NONLINEAR BACKSTEPPING DESIGN

The schematic diagram of the speed control systeden
study is shown in Fig. 2. The parameters of the
synchronous machine are given in the Appendix. thns
section, we employ the nonlinear backsteppgicizemes
to design the controllers for PMSM systemghwngular
velocity measurement.
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Fig. 2. System configuration of Backstepping coint

With the choice of appropriate regulated variablédse
backstepping design procedure consists of theviiig three
steps : [7]

Step 1: First of all, since the direct axis curreijtmust be
forced to be zero, the first regulated variabletsoduced by

zZ=% (7
The derivative of (7) is computed as
4=%
L 1
:_&)(1+L—QP>(2>§+L—\6 ®)
d d d
The first Lyapunov candidaté, is chosen as:
1
W=33 (9)

So the derivative of (9) is computed as:
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v =Z: . P
1= 44 23——%%‘% P’&%‘L—be %
|-‘\>S Lq 1 q q q
=z|- - 21+L Px% )§+L Y (20) 1 3 (. )
d d d +—V,———| —Q ref Q ref (20)
L, * Pg, (J
At this point, the direct axis voltage control inpey can be
selected by With the selection of the complete Lyapunov function
L - 1
Vy =‘|-d[0121+:? Px )g] (11) V‘V1+V2+2% (21)

_ N ) From (13), (19) and (20) and the derivative of (21) is
Wherec, is a positive design constant, so (8) becomes: computed as follows:

, R V=V+V+z
a=~(a+ )3 (12) 1TVt 33
d
f
Therefore, (10) can be rewritten as: =—(c, +L—d) zZ e Z
; R
Vi=-(q+—)% 13 ¢f P
1 (Cl Ld) 1 ( ) +Z[ szz_& )g_i P )E_Tq)f % (22)
<k :
Step 2: The purpose of this control design is to achiéee t +iv _ ( f o 1
reference speed tracking, so the second regulaedble is Ly a pq,f ret ¥ Qe
chosen as
Z) = % = Qe (14) At last, in order to make the derivative of the complete

Lyapunov function (21) be negative definite, tleaxis
Where Q. is the speed reference, hence the derivative of Voltage control input is chosen as follows:

i : ¢f
(14) is calculated as: = L[~ G2+ R %+—3 Ly Py X+— ¢f %
q
23
z =mx3)—i xz—iTr—Q (15) +—( Q )—CyZ] )
2 J J J ref P¢f ref ref 3
By defining the error variable, = x; —a wherea is the Therefore, substituting (23) into (22), we are able to obtain
stabilizing function chosen as follows: .
e o1 V(g )zl2 czé 6 4 (24)
a :—(—Qref +=Tr +Qrefj (16)
Pd: \ J J
Clearly, in (24) is negative definite, so it implies that the
(15) can be rewritten as resulting closed-loop system is asymptotically stable and,
; P hence, all the error variables, z, and z will converge to
z,= "7 + Jf z (17) zero asymptotically

5. VOLTAGE SOURCE PWM INVERTER

With the choice of the second Lyapunov candidate .
A typical voltage-source PWM converter performs the ac to

1 ,
v, :Eozzg 1 Tverter iable

m |

. . . - L Thl Th3 ThS
where ¢, is a positive design constant, the derivative s _@ _@
(18) is computed as : @_ E |
V=622 ‘T

. PO The Thé Th?
—_— —_ — [
=-—GZ+—G2%3 (1¢ ﬁ% ﬁ}
J J
[~

Step 3 The derivative of the given error variableig
computed as

Fig. 3. Basic three-phase voltage-source convertetitcircu
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5.1. Sinusoidal pulse width modulation 6. CONCLUSION

Three-phase reference voltages of variable amglitadd A nonlinear backstepping control method has beepgsed

frequency are compared in three separate companaitr a and used for the control of a permanent magnethspnous

common triangular carrier wave of fixed amplitudada machine. Simulation Results show good performances

frequency Fig. 4. Each comparator output forms thebtained with proposed control, with a good choiue

switching-state of the corresponding inverter [8(. parameters of control. The speed control operatéh w
enough stability.

and robust performance to parametric variation and
disturbances in all the system

Swibching
m . - .
va | 4a ,Ij_:l — In this approach the componeritsand |, is regulated using
% = o> backstepping control, so thdltyis zero, the controller is
—ﬁ@i 'E o> designed in the total system including switchingices.
Yy I—b . X .
> ab.c H% E 0> The simulation results show, Fast response witbwatshoot
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Appendix

Three phases PMSM parameters: Rated output pow@d 15

W, Rated phase voltage 220/380V,
Rs=1.4Q, ¢=0.154wb, Ld =6.6mH, Lq =5.8mH
F=0.00038N.m.s/rad, J=0.00176, k§.m
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Fig. 5. Response under load disturbance
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Fig. 6. Stator current under load disturbance
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Fig. 7. Speed reversion (+100 rad/s, -100rad/s)
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Fig. 8. Response under inertia variation (J=2.Jn)



