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In  this  paper,  a model  for optimizing  bus  route  headway  is  presented  in  a given  network  configuration  and
demand  matrix,  which  aims  to find  an acceptable  balance  between  passenger  costs  and  operator  costs,
namely  the  maximization  of  service  quality  and  the minimization  of operational  costs.  An  integrated
approach  is  also  proposed  in  the  paper  to  determine  the  relative  weights  between  passenger  costs  and
vailable online 12 June 2011

eywords:
ransportation
us route headway
ptimization

operator  costs.  A parallel  genetic  algorithm  (PGA),  in which  a coarse-grained  strategy  and  a  local  search
algorithm based  on Tabu  search  are  applied  to improve  the  performance  of  genetic  algorithm,  is developed
to solve  the  headway  optimization  model.  Data  collected  in Dalian  City, China,  is used  to verify  the
feasibility  of  the  model  and  the  algorithm.  Results  show  that  the  reasonable  resource  assessment  can
increase  the  benefits  of  transit  system.
eight and PGA

. Introduction

With the increase in concern on the environment pollution and
raffic congestion, authorities of most cities in China have formed

any strategies on giving priority to the development of urban
ublic transportation system. During transit operation, there are
ome important tasks including network design, frequency design
headway design), setting timetables, scheduling vehicles to trips,
nd assignment of drivers [12]. Among these tasks, timetable (dis-
atching schedule) of bus vehicles is one of the most important
spects in transit operation. The determination of dispatching time
f each vehicle is based on the pre-planned time interval between
wo adjacent vehicles.

In this study, a bus headway (i.e., scheduled dispatching time
nterval of two successive buses) optimization model is proposed
o minimize the total costs of passengers and operators in a given
etwork configuration and demand matrix. At the same time, an

ntegrated approach is proposed to explore the trade-off between
assenger costs and operator costs, in which the relative impor-
ance and the difference between the two conflicting objectives
re considered.

Transit scheduling problems in the real world are often ineffi-

ient to be solved by classical optimization techniques because of
he large numbers of trips, bus routes and stations [13]. Recently,
he heuristics are considered as feasible tools to solve combinato-
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rial optimization problems [7].  Genetic algorithm [14], which is a
multipurpose optimization tool, has successfully been applied in a
wide range of optimization problems [5,10] including transporta-
tion fields [3,4,23,25].  For this reason, genetic algorithm (GA) is
used in this study to determine bus headways of routes. Since the
proposed model is to be applied in a real transit system, a local algo-
rithm based on Tabu search and a coarse grain parallel strategy are
introduced into GA to improve the performance of the algorithm.

This paper is organized as following: Section 2 is about the prob-
lems of basic notations and formulations; Section 3 contains the
solution methods of determining bus route headway; Numerical
analysis is carried out in Section 4; and lastly, the conclusions are
drawn in Section 5.

2. Optimization model

In this study, the maximized social benefits are defined as mini-
mizing the sum of passenger costs and operator costs [8].  In general,
it is reasonable to provide enough capacity for all transit passengers
on routes in planning stage. There are, however, the situations in
which it is not feasible to provide enough transit capacity to avoid
congestion, especially in the real transit system. In this study, the
problem of determining bus route headways can be formulated as
a nonlinear program subject to the vehicle fleet constraint. In the
optimization model, the decision variables are the headway of each

direction of bus routes (hl,� denotes the headway in the direction
� of the bus route l). Firstly, passenger costs (in money) and oper-
ator costs (in money) are described separately, and then the two
sub-problems are integrated into one single model.

dx.doi.org/10.1016/j.asoc.2011.05.051
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:ybzhyb@163.com
mailto:minlfish@yahoo.com.cn
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 (Vmax − vl,�,k−1→k + al,�,k)
(4)
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.1. Passenger costs

Passenger costs are defined as the passenger travel time-costs,
hich include waiting time-costs at stops, riding/dwelling time-

osts in vehicles and the boarding/alighting time-costs on/from
ehicles.

.1.1. Waiting time-costs
Basic notations

�–�,  which is a binary sign, denotes that the first direction or
the return direction of route l. Here, � = 1 denotes the direction
with more vehicles and � = −1 denotes the other directions.
Tw

l,�
, passenger waiting time-costs in the direction � of the bus

route l.
Cw

p , coefficients of waiting time-costs.
ul,�,k, the number of passengers waiting for buses in the direc-
tion � of the bus route l at the stop k.
hl,�, headway in the direction � in the bus route l. It is the
decision variable in the model. Since there are several vehicles
but not infinity vehicles for a route, it is reasonable that the
headway of a route has a lower limit. In addition, over many
vehicles will induce a larger demand for parking and storing
vehicles. Here, the headway of a route is bigger than 60 s.
te
l,�

, expected waiting times for the direction � of the bus
route l. Since passenger arrivals follow a uniform process, the
expected waiting times of a passenger is the half of the head-
way, i.e., te

l,�
= hl,�/2.

ql,�,k, alighting proportion of the stop k in the direction � of the
bus route l. It means that the alighting passengers are divided
by the alighting passengers in all stops between current stops
and the stops to the destination. For example, there are three
stops k, k1, k2 (destinations), the alighting passengers are 2, 4,
4, respectively, thus ql,�,k = 20% (2/(2 + 4 + 4) = 20%), ql,�,k1 = 50%,
ql,�,k2 = 100%.
al,�,k, the number of passengers alighting from buses in the
direction � of the bus route l at the stop k.

al,�,k = vl,�,k−1→k × ql,�,k (1)

Vmax, maximum capacity of a standard vehicle.
nl,�,k, the number of buses going through the stop k in the direc-
tion � of the bus route l during the researched period. Assume
that the first bus of all routes starts from its origin stop at the
same time during the researched period and the times is set
to zero. The number of buses going through the stop k can be
formulated as follow.

nl,�,k =
⌊

H − t̄l,�,k−1→k

hl,�

⌋
(2)

where �y� is the floor integer symbol, which returns the largest
integer less than or equal to y. For example, if y = 5.2, �y� = 5.
vl,�,k→k+1, the number of passengers in buses in the direction �
of the bus route l from the stops k to k + 1.

vl,�,k→k+1 = vl,�,k−1→k + bl,�,k − al,�,k (3)

bl,�,k, the number of passengers boarding on buses in the direc-
tion � of the bus route l at the stop k.

bl,�,k =
{

ul,�,k ul,�,k ≤ nl,�,k ×
nl,�,k × (Vmax − vl,�,k−1→k + al,�,k) otherwise
ıl,�,k→k+1, the number of non-served passengers at the stop k in
the direction � of the bus route l. Since the provision of capac-
ity on one route cannot always carry all passengers, ın,l,k→k+1 is
ing 11 (2011) 5081–5091

introduced, which denotes the number of non-served passen-
gers at the stop k in the direction � of the bus route l.

ıl,�,k→k+1 = ul,�,k − bl,�,k (5)

ϕ, penalty coefficient for additional waiting times of non-served
passengers.

• Formulation
The time-costs Tw

l,�
of passengers waiting for buses in the direc-

tion � of the bus route l are formulated as follow:

Tw
l,� = Cw

p

∑
k

[ul,�,k × te
l,� + ϕ × ıl,�,k × hl,�] (6)

If the bus capacity can satisfy the passenger demand at the
segment k→k + 1, the non-served passengers is 0, i.e., all the pas-
sengers can catch the first bus arriving at stop k in the direction of
the route l after their arrival. Otherwise, the non-served passen-
gers, besides the waiting times for the first bus, yet have to wait
for the following buses. We  assume that passengers are sequen-
tially (on a first come, first served basis). Thus, the additional
waiting times of non-served passengers equal to the headway
in the direction � of the route. Generally, the additional waiting
times of passengers are more costly. ϕ is a constant, which is used
to reflect the influence of additional waiting times of passengers.
It can increase with the increment of the missed vehicles or it
may  be a constant integer bigger than 1.

2.1.2. Riding/dwelling time-costs
• Basic notations

Cr
p, coefficients of the riding/dwelling time-costs.

ωl,�,k→k+1, comfortable level [11,25] of passengers from the
stops k to k + 1 in the direction � of the bus route l. Here, the
comfort index is approximated by crowded level, which is used
to tune with the weight of bus crowding.

ωl,�,k→k+1 = vl,�,k→k+1

nl,�,k × V
(7)

t̄l,�,k→k+1, average running times from the stops k to k + 1 in
the direction � of the bus route l. In most existing researches,
average running times in the two directions of a route are set as
the same. However, considering inappropriate layout of living
area and working area in most large cities in China, tide traf-
fic phenomenon usually occurs in some main roads, especially
during the rush hours. Thus the traffic in two directions of the
main roads is imbalanced. Therefore, average running times of
two directions of one route are computed, respectively.
td
l,�,k

, bus dwelling times at the stop k in the direction � of the
bus route l.
td
0, constant times for vehicle acceleration, deceleration and

door opening/closing.
H, researched period (e.g. a rush hour).
�l,�,k, crowded coefficient for boarding and alighting at the stop
k in the direction � of the bus route l. Zolfaghari et al. [28]
pointed out dwelling times of buses at stops are related to
the bus load, besides the number of passengers boarding and
alighting. This indicated that the boarding and alighting times
of passengers would increase in the crowded conditions. Here,
the crowded coefficient is used to reflect the influence of the
bus load to the boarding and alighting times of passengers.
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V, rated capacity of a standard vehicle.

�l,�,k =
{

1 vl,�,k→k+1 ≥ (nl,�,k × V)
(vl,�,k→k+1/(nl,�,k × V))2 otherwise

(8)

b̄, ā, average boarding and alighting times of a passenger.

td
l,�,k = td

0 + max(bl,�,k × �l,�,k × b̄, al,�,k × �l,�,k × ā) (9)

Formulation
Riding/dwelling time-costs of the passengers Tr

l,�
in the direc-

tion � of the bus route l are defined below:

Tr
l,� = Cr

p

∑
k

[(ωl,�,k→k+1 × t̄l,�,k→k+1 × vl,�,k→k+1)

+ ((vl,�,k→k+1 − bl,�,k) × td
l,�,k)] (10)

Riding times of passengers on the segment k→k + 1 are the prod-
ucts of the bus running times on the segment k→k + 1 (t̄l,�,k→k+1)
and the number of the passengers (vl,�,k→k+1) that can be carried
by the direction � of the bus route l.

Although some buses could go through their current stops
(e.g. stop k) and not arrive at their following stops (e.g. the stop
k + 1) at the end of the researched period, for simplification, we
assume that these buses would have reached their following
stops and computed the riding time of the passengers in these
buses. Dwelling times of passengers are the waiting times of on-
board passengers at the stop.

.1.3. Boarding/alighting time-costs
Basic notations

Tba
l,�

, passenger boarding/alighting time-costs in the direction
� of the bus route l.
Cba

p , coefficients of boarding/alighting time-costs.
Formulation

Passenger boarding/alighting time-costs Tba
l,�

in the direction �

of the bus route l are defined below:

Tba
l,� = Cba

p

∑
k

[
bl,�,k × �l,�,k × b̄ + al,�,k × �l,�,k × ā

]
(11)

.2. Operator costs

Basic notations
rl,�,k, average arrival rate at the stop k in the direction � of the
route l. Assume passenger arrivals follow an uniform process
during the researched period [6,27].  The average arrival rate
equals to the boarding passengers at the stop during the period
divided by H.
Cf

o, Cv
o , coefficients of fixed operational costs and variable

operational costs, respectively.

T = wpassenger(Tw
l,�

+ Tr
l,�

+ Tba
l,�

) + woperator × To
l,�

= wpassenger

[
Cw

p

∑
k

(ul,�,k × te
l,� + ϕ × ıl,�,k × hl,�) + Cr

p

∑
k

[(ω

×td
l,�,k

] + Cba
p

∑
k

[bl,�,k × �l,�,k × b̄ + al,�,k × �l,�,k × ā]

]
+ w
To
l,�

, operator time-costs in the direction � of the bus route l.
Formulation

Generally, operators and transit agencies all expect to provide
the transit service in an economic efficiently way. Operator costs
ing 11 (2011) 5081–5091 5083

To
l,�

are consisting by fixed operational costs and variable opera-
tional costs.

To
l,� = Cf

o

⌈
H

hl,�

⌉
+ Cv

o

∑
k

nl,�,k × t̄l,�,k→k+1 (12)

where �y	 is the ceiling integer symbol, which returns the small-
est integer more than or equal to y. For example, if y = 5.2, �y	 = 6.

The fixed costs Cf
o ×
⌈

H/hl,�

⌉
are consisting by capital discount

costs, maintenance costs, salaries of the drivers, etc. The variable
costs mainly concern about fuel consumptions. Like calculating
passenger riding time-costs, we  also assume that all the buses
can arrive at following stops at the end of the researched period.

2.3. Model integration

Bus route headway optimization should find the trade-off
between passenger costs and operator costs. Generally, if headways
are excessively small (too many buses are dispatched), operators
have to suffer excessively operational costs. However, if headways
are excessively large, some service criteria may  not be met which
resulted in unsatisfied passengers who may  choose the alternative
means of transportation. One of the most widely used methods
for solving multi-objective optimization problems [16,17] is the
weighted sum method, which can transform the multiple objec-
tive optimization into a single objective function by weight factors.
For simplification, a convex combination of the two objective func-
tions is used in this study and combined the model of passenger
costs (in money) and operator costs (in money) for total costs (T)
of passengers and operators can be expressed as:

• Basic notations
gl, approximate fleet size of the bus route l. Omitting dwelling

times of buses at terminal, the needed fleet size of the more one
of two directions is viewed as approximate fleet size of the route.

gl = max

(⌈∑
�

∑
k

t̄l,�,k→k+1/hl,1

⌉
,

⌈∑
�

∑
k

t̄l,�,k→k+1/hl,2

⌉)

(13)

G, the total number of bus vehicles.
• Formulation

→k+1 × t̄l,�,k→k+1 × vl,�,k→k+1) + (vl,�,k→k+1 − bl,�,k)

ator

[
Cf

o

⌈
H

hl,�

⌉
+ Cv

o

∑
k

nl,�,k × t̄l,�,k→k+1

] (14)

s.t.

hl,� ≥ 60 (15)∑
l

gl ≤ G (16)

ωl,�,k→k+1 > 0 (17)

wpassenger, woperator ≥ 0 (18)

wpassenger + woperator = 1 (19)

where wpassenger and woperator are the factors controlling the
weights of passenger costs and operator costs. In practice, the

proper selection of the weight factor for each objective is diffi-
cult to be determined, because the definition of weights is not
precise, nor are the values given by a decision-maker [19]. In fact,
wpassenger and woperator can be determined by decision-makers, e.g.
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wpassenger = woperator, which reflect the subjective judgment or
intuition of decision-makers. However, analysis results are based
on the weights can be influenced by the decision-makers due to
their lack of knowledge or experience. Therefore, it is an essen-
tial and challenging task to develop an objective method to assess
the relative weight of the alternatives. An example of bus head-
way optimization weight factor determination is described in the
following section.

. Parallel genetic algorithm

Genetic algorithm is a search algorithm based on the con-
epts of natural selection and genetic operations. Many researchers
ttempted to improve the performance of GA by some methods
22]. Recently, parallel genetic algorithms (PGAs) have become one
f the most effective strategies. Actually, PGA basically consists of
arious GAs, each processing a part of the population or indepen-
ent populations, with or without communication between them.
herefore, PGA can increase the diversity of population and reduce
omputation time. Generally, it can be divided into three types
1], namely master-slave type, coarse-grained type and fine-rained
ype. Here, coarse-grained PGA is used since it costs less and can
btain a near-line acceleration ratio. Moreover, coarse-grained par-
llelization schemes run several subpopulations in parallel. So it is
specially suitable for the cluster system with lower communica-
ion bandwidth.

.1. Encoding

In this research, decision variables of the algorithm are the head-
ays of two directions of each route. Here, an integer encoding

cheme is selected to represent bus headways and then a typical
hromosome is as follows:

e1,1, e1,2, e2,1, e2,2, . . . , el,1, el,2, . . . , eN,1, eN,2} (20)

he bus departure interval for a route is rarely less than 1 min
for example, the shortest departure interval for Dalian in China
s 1 min), and thus we assume that each gene cannot be less than

 min  (i.e., 60 s). The initial population of chromosomes are gener-
ted by a probabilistic methodology, Firstly, temporary headways
genes), e′

l,�
(60 ≤ e′

l,�
≤ 3600),  are obtained by producing some

andom numbers. Thus, some temporary chromosomes that con-
ist of the temporary genes are constructed. Headways of routes
re generally limited by the fleet size of bus vehicles. The tempo-
ary chromosomes need to be checked whether to satisfy the fleet
onstraint. The approximate fleet size gl of each temporary chro-
osome is firstly calculated. Then, a scaled coefficient � is gained

ccording as the approximate fleet size and the total fleet size. The
enes of the initial chromosomes are computed as formula (23).

e′
1,1, e′

1,2, e′
2,1, e′

2,2, . . . , e′
l,1, e′

l,2, . . . , e′
N,1, e′

N,2} (21)

 =
∑

lgl

G
(22)

0
l,� =

{⌈
� × e′

l,�

⌉  ⌈
� × e′

l,�

⌉
> 60

60 otherwise
(23)

f a gene el,1 is smaller than 0, the value of the gene is set as zero
nd the scaled coefficient is re-calculated. For example, if e0 < 60,
l,�

hen set e0
l,�

= 60. An initial chromosome is as follows.

e(0)
1,1, e(0)

1,2, e(0)
2,1, e(0)

2,2, . . . , e(0)
l,1 , e(0)

l,2 , . . . , e(0)
N,1, e(0)

N,2} (24)
ing 11 (2011) 5081–5091

3.2. Fitness function

GA is an optimal searching method to find the maximum fit-
ness of the individual chromosome, so it is necessary to transform
the minimal objective of the problem to a maximum fitness func-
tion [10,14]. Here, a constant Q is introduced to transform the
fitness function from the total cost function. Generally, the genetic
operations may  violate total fleet size constraint. There are two
approaches to deal with this situation. The first one is to assign
a very high penalty cost for such candidate solutions and accord-
ingly reduce their probability of being selected in the forthcoming
search. The second approach is to try to fix the resultant violations
by adjusting the headways. The advantage of the first approach over
the second one is that it is more suitable in according with natu-
ral selection and evolution, and it enables GA to investigate further
points in the search space. Therefore, the first approach is adopted
to deal with the violation situation. Then, the chromosomes are
evaluated as follows.

F = Q

T + ˚(�)
(∑

lgl − G
) (25)

˚(�) =
{

ˇ1�ˇ2 if
∑

lgl > G
0 otherwise

(26)

where F is the fitness function. Q is a constant. Ф (�) is the penalty
coefficient at the generation �. ˇ1, ˇ2 are control coefficients, which
can determine the penalty extent for the invalid individuals. They
can usually be estimated through simulation.

3.3. Selection operation

The basic part of the selection process is to select from one gen-
eration to create the basis of the next generation stochastically. The
fittest individuals have a greater chance of survival than weaker
ones is required. Here, the Roulette wheel selection method is used
to select the chromosomes. Besides that, the Elitism is also used for
the selection. Elitism is a selection method where the best chro-
mosomes in the population are automatically copied into the next
generation. That is, if the elitism parameter was set to � then the top
� chromosomes in the population are copied to the next generation.

3.4. Crossover operation

The crossover operator is associated with a crossover rate pc.
An arithmetic crossover [26] is designed. Here, a random multi-
stratum crossover method is adopted. For example, for a particular
crossover process, at the generation � − 1, the two  selected parent
chromosomes E�

1 and E�
2 are as Eq. (27). If the random ı′′

l
> 0.5,

that mean two  genes will be crossed, otherwise, the genes of par-
ent chromosome would remain to the new chromosome directly.
The crossover of two  parent chromosomes is as Eq. (28).

E�
1 = {e(�)

1 1,1, e(�)
1 1,2, e(�)

1 2,1, e(�)
1 2,2, . . . , e(�)

1 l,1, e(�)
1 l,2, . . . , e(�)

1 N,1, e(�)
1 N,2}

E�
2 = {e(�)

2 1,1, e(�)
2 1,2, e(�)

2 2,1, e(�)
2 2,2, . . . , e(�)

2 l,1, e(�)
2 l,2, . . . , e(�)

2 N,1, e(�)
2 N,2}

(27)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪

e(�)
1 l,� =

⌈
ı′

l
e(�−1)

1 l,� + (1 − ı′
l
)e(�−1)

2 l,�

⌉
e(�)

2 l,� =
⌈

ı′
l
e(�−1)

2 l,� + (1 − ı′
l
)e(�−1)

1 l,�

⌉ if ı′′
l

> 0.5

e(�)
l,� = e(�−1)

l,�

(28)
⎪⎪⎩ 1 1

e(�)
2 l,� = e(�−1)

2 l,�

otherwise

where ı′
l
, ı′′

l
are random numbers between (0, 1).
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.5. Mutation operation

Like the crossover operator, the mutation operator is also associ-
ted with a mutation rate (pm) to determine whether the mutation
perator is to be applied to the chromosome or not. Since there are
wo directions in each bus route, both the headways (genes) of two
irections of each route need to be mutated in each mutation. If
�−1 denotes a parent chromosome in the generation � − 1 and the
enes e(�−1)

l,1 , e(�−1)
l,2 are selected for the mutation, the result of the

utation of E�−1 and the mutated chromosome in the generation
 are shown in (29).

e(�)
l,1 =

⌈
e(�−1)

l,1 (1 + ı′′′
l

)
⌉

if ı′′ ′′
l > 0.5

e(�)
l,2 =

⌈
e(�−1)

l,2 (1 − ı′′′
l

)
⌉

otherwise

(29)

here ı′′′
l

, ı′′ ′′
l are random numbers between (0, 1).

.6. Local search algorithm based on TABU search

GA is a suitable method for global optimization problems. To
mprove the local optimization performance of the GA, a local
earch algorithm based on TABU search [9] is introduced to find the
ocal optimum in a well-defined local region. Since, the frequent
ocal searches can increase the computation time, the method is
mplemented with parallel strategy of GA (Section 3.6) in this study.

Tabu search is an iterative procedure that proceeds by trans-
orming one solution into another by making moves. It has
uccessfully been applied in solving the optimization problems in
ransportation fields [2,15,18,20,21]. The heuristics requires an ini-
ial solution and a neighborhood structure. In this study, the initial
olution in the local search is to use the current optimal solution in
he GA proposed in the previous subsection. Then, the neighbors of
he initial solution are examined and the best non-forbidden move
s selected. The neighborhood structure in the local search can be
escribed as follows. For example, the chromosomes E� denotes the

nitial solution (Eq. (30)). Firstly, randomly select two  genes, e.g.
(�)

l,1, e(�)
l,2 and e(�)

l′,1, e(�)
l′,2. A neighbor of the initial solution is

s Eq. (31).

� = {e(�)
1,1, e(�)

1,2, e(�)
2,1, e(�)

2,2, . . . , e(�)
l,1, e(�)

l,2, . . . ,

e(�)
l′,1, e(�)

l′,2, . . . , e(�)
N,1, e(�)

N,2} (30)

e(�)
l,� =

⌈
ı′′ ′′′

l e(�)
l,� + (1 − ı′′ ′′′

l )e(�)
l′,�
⌉

e(�)
l′,� =

⌈
ı′′ ′′′

l e(�)
l′,� + (1 − ı′′ ′′′

l )e(�)
l′,�
⌉ (31)

here ı′′ ′′′
l is the random number between (0, 1).

In the local search, a Tabu list is used to prevent generating the
egradation solution that has already tested in previous iterations.
he size of the Tabu list can influence the search quality, and in our
ocal search the large and fixed Tabu list is used, i.e., the size of the
abu list is set to 20. The local search algorithm continues until the
aximum total number of the iterations or the maximum number

f the iterations without improvement of the best solution.

.7. Coarse-grained strategy

The coarse-grain strategy runs several subpopulations in par-
llel. The information exchange among these subsets is done at
ertain the intervals (epoch) of iterations. By exchanging the “out-

tanding chromosomes” between subsets, the search spaces of the
ubsets are diversified to effectively prevent the premature con-
ergence. Let � and P� represent the amount of subsets and their
cale, respectively, thus the total population Psize = � × P�.
ing 11 (2011) 5081–5091 5085

The common migrating strategy [1,26] is adopted, in which one
best individual to migrate, and then to replace the worse individual
in a subset with the migrated ones from nearby subset. Here a ring
topology is used, which means that subsets x exchange individually
with subset x + 1 during migration.

3.8. Stopping criterion

When the average of the fitness values of all the individuals is
greater than 90% of the fitness values of the best individual or when
the algorithm repeats the prepared maximum number of genera-
tions, the PGA is considered to have converged and therefore is
stopped.

The process of the PGA proposed in this study is described as
Fig. 1.

4. Numerical test

The model and the algorithm are tested with the data of Dalian
City in China. Dalian’s population is about 2 million, the build-up
area is about 180 km2, and the road network consists of 3200 links
and 2300 nodes. There are totally 89 bus lines (Fig. 2) and 3004 bus
stops, which extend 1130 km,  and with 4130 vehicles in it. Passen-
ger origin-destination (OD) stop matrix is obtained from our former
research [24].

4.1. Weight identification

Before optimizing the headways of routes, the weights of pas-
senger costs and operator costs should be determined. It is often
difficult for decision-makers to determine the weights because the
definition of weights itself is not precise. This paper proposed an
integration approach to determine the weights which considers
both the relative importance and the difference of operator costs
and passenger costs. The sample data consisted of the passenger
costs and operator costs of the 89 bus routes (I = 89) of transit sys-
tem in Dalian City. The passenger costs and operator costs between
the 89 routes are different due to the different numbers of pas-
sengers and vehicles. Thus, the costs of the 89 routes need to be
normalized. Firstly, the maximum passenger costs and operator
costs among the 89 bus routes were used to scale the sample data.
Here, the two  attributes were scaled to the range between 0 and 1.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T̂passenger
l

= Tpassenger,max
l

− Tpassenger
l

Tpassenger,max
l

− Tpassenger,min
l

T̂ operator
l

= Toperator,max
l

− Toperator
l

Toperator,max
l

− Toperator,min
l

(32)

{
Tpassenger,max

l
= max

l
(Tpassenger

l
)

Toperator,max
l

= max
l

(Toperator
l

)
(33)

{
Tpassenger,min

l
= min

l
(Tpassenger

l
)

Toperator,min
l

= min
l

(Toperator
l

)
(34)

where Tpassenger
l

and Toperator
l

denote the origin passenger costs and
operator costs of the existing routes, respectively. Tpassenger,max

l
and

passenger,min
T
l

indicate the maximum and minimum passenger costs.

Similarly, Toperator,max
l

and Toperator,min
l

indicate the maximum and

minimum operator costs. T̂passenger
l

and T̂ operator
l

indicate the scaled
passenger costs and operator costs of the existing routes.
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Fig. 1. The flo

Then, the passenger weight and operator weight can be com-
uted.

wpassenger = 1
2

(wpassenger,G + wpassenger,C )

woperator = 1
2

(woperator,G + woperator,C )
(35)
wpassenger,G = x̄passenger

x̄passenger + x̄operator

woperator,G = 1 − wpassenger,G

(36)
rt of the PGA.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̄passenger = 1
L

L∑
l=1

T̂passenger
l

x̄operator = 1
L

L∑
l=1

T̂ operator
l

(37)
⎧⎨
⎩wpassenger,C = soperator

spassenger + soperator

woperator,C = 1 − woperator,C

(38)
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Table  1
Parameters in headway optimization model.

Parameter H V Vmax b̄, ā ϕ td
0 Cw

p Cr
p Cba

p Cf
o Cv

o

2.7 RM

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
w
c
t
t
o
a
c
s
c
g
p
s
o

c
A
r
c
c

t
w
p
0
s
c
b
t

Value 3600s 80 120 3 s 2 3 s 

a RMB  (Reminbi).

(spassenger)2 = 1
L

L∑
l=1

(T̂passenger
l

− x̄passenger)
2

(soperator)2 = 1
L

L∑
l=1

(T̂ operator
l

− x̄operator)
2

(39)

here wpassenger and woperator denote the weights for passenger
osts and operator costs of the routes. L denotes the number of
he sample data, here L = 89. wpassenger,G and woperator,G indicate
he weights considering the relative importance between multiple
bjectives (the passenger costs and operator costs), i.e., the aver-
ge proportion of passenger/operator costs of each route in its total
osts. Similarly, wpassenger,C and woperator,C indicate the weights con-
idering the difference between multiple objectives (the passenger
osts and operator costs), i.e., the difference between passen-
er/operator costs of routes. x̄passenger and x̄operator denote the mean
assenger costs and operator costs of the sample data. spassenger and
operator denote the variance for passenger costs and operator costs
f the sample data.

To describe the computation process of the weight identifi-
ation, we proposed a simple example. There are three routes.
ssume that the passenger costs and operator costs of the three
outes are (passenger costs = 0.8, operator costs = 0.76), (passenger
osts = 0.9, operator costs = 0.8) and (passenger costs = 0.7, operator
osts = 0.78), respectively.

Then, the functionality weights and proportionality weights of
wo indexes are computed, wpassenger,G = 0.49, woperator,G = 0.51,

passenger,C = 0.55 and woperator,C = 0.45. Thus, the weights of the
assenger costs and the operator costs are determined, wpassenger =
.52, woperator = 0.48. From calibration results, there is almost no
ignificant difference between the coefficients of the passenger
osts and the operator costs. However, the coefficients are cali-

rated by practice data of bus system in Dalian City. This indicates
hat passenger costs and operator costs are similar in the city.

Fig. 2. Bus network in Dalian City.
Ba/h 2.0 RMB/h 1.0 RMB/h 8.75 RMB/vehicle 3 RMB/min

4.2. Results

The lists of parameters used in the headway optimization model
and PGA are shown in Tables 1 and 2. The algorithm is imple-
mented in C++, using message passing interface (MPI) library, on
8-computer cluster architecture: windows XP platform environ-
ment.

4.2.1. Performance of the proposed algorithm
In order to show the basic behavior of our parallel genetic algo-

rithm, experimental results are given here for various conditions in
which there were two  sequential GAs with 60 and 80 individuals
and eight PGAs: Psize = 240 or 320 and � = 4, 6, 8 and 16 nodes. As
the Table 2 shown, all the parameters are same except Psize which
change from 240 to 320. Fig. 3 shows the experimental results.

The sequential GAs (SGA) are the algorithms with � = 1. Since the
proposed model is a complicated problem, the SGA tends to step
into premature convergence. It is obvious that the PGAs observe a
better quantity than the SGAs. This comportment can be explained
principally because when � > 1, the migration operation between
sub-populations can diversify each subset, widen the searching
space, and improve the optimization quality. Furthermore, it can
be observed that the better performance among PGAs appears at
� = 6 and � = 8. Compared with computation time of several algo-
rithms, the convergence speeds of the PGAs with � = 8 and � = 16
are faster than the ones of other PGAs. Weighting the optimization
quality and computation time, we  select the PGA with � = 8 and
Psize = 320.

To examine the efficacy of the PGA, we continue experimenting
10 times, and Fig. 4 shows the convergence of the calculation. It
can be observed that the fitness increases fast before the 1100th
generation, and then it changes smoothly. The best fitness appears
at about the 1500th generation. Furthermore, the fitness among
ten experiments hardly changes again. This means our algorithm
has a good converge and we can conclude that after about 1500
generations of evolution the optimal solutions can be found.

Then, we test the coarse-grained strategy and the local search
algorithm. The performances of several algorithms are compared,
which include SGA, SGA with the local search algorithm (denoted by
SGA-L), GA with coarse-grained strategy (denoted by CGA) and the
proposed algorithm (PGA). The several algorithms continue exper-
imenting 10 times and the best solution, the worst solution and the
average solution of the 10 results are shown in Fig. 5.

We can find that the performances of SGA-L, CGA and PGA are
better than the one of SGA. This is just as expected as the more
efforts an algorithm expends, the better performance it certainly
gains. Compared with SGA-L, CGA generally provides better solu-
tion. This can be attributed that the coarse-grain strategy diversifies

the population and prevents the algorithm from trapping in local
optimization. Furthermore, the introduction of the local search
algorithm into CGA (PGA) can adequately search the local region
and improve the solutions. This indicates that the incorporation

Table 2
Parameters in PGA.

Parameter Q pc pm � �max ˇ1 ˇ2 	 epoch

Value 10,000 0.6 0.1 1 2000 1 1 3 50
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Fig. 3. Experimental result of several parameter combinations.

lt of e

o
g

h

Fig. 4. The resu
f the coarse-grained strategy and the local search algorithm can
reatly improve the performance of the algorithm.

In order to further examine the performance of the algorithm,
ere, a multi-objective genetic algorithm (MOGA) is introduced.

Fig. 5. The comparison of
ach calculation.
There are two  objective functions in the MOGA: one is the minimum
total passenger cost, and the other is the minimum operation costs.
The coding of the MOGA is consistent to the algorithm proposed in
this paper.

 several algorithms.
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Fig. 6. The computation

First, each chromosome is sorted according to two objectives,
espectively. After sorting each object, the objective function of the
verall performance can be got.

i(Xj) =
{

(N − Ri(Xj))
2 Ri(Xj) > 1

kN2 Ri(Xj) = 1
(40)
(xj) =
∑

i

Ei(Xj) (41)

Fig. 7. Comparison of three headways in t
ults of two algorithms.

where n is the number of the object; N is the total number of indi-
viduals; Xj is the individual j in population; Ri is the number for
sorting all individual quality in the population; Ei(Xj) is the fitness
of Xj on the target i; K is the constant between (1, 2), which is used
to increase the fitness when the individual function value performs
optimal. Individual choice is adopted by the roulette wheel way.

Here, K is set to 1.5. E(Xj) is the final fitness value of the chromo-
somes j.

For example, there are three chromosomes in a population.
Assume that the order of three chromosomes according to two

he direction with more passengers.



5090 B. Yu et al. / Applied Soft Computing 11 (2011) 5081–5091

osts by

o
R
T
E

t
p
t
r
p
5
t
f
i
t
h
c
p
a
t

4

r
o
t
t
c

Fig. 8. Decreasing or increasing c

bjectives are (1, 3), (2, 1) and (3, 2), respectively. Then, N = 3,
1(x1) = 1, R2(x2) = 3, R1(x2) = 2, R2(x2) = 1, R1(x3) = 3 and R2(x3) = 2.
hus, the fitness values of three chromosomes are set to E(x1) = 13.5,
(x2) = 14.5 and E(x3) = 1.

In the MOGA, the same crossover and mutation operations with
he proposed algorithm are used. To be fair, the MOGA also uses the
arallel strategy. Then, in the same condition, we  calculated con-
inuously 10 times two algorithms. Fig. 6 shows the computational
esults. Obviously, both algorithms have good stability, for exam-
le, the difference between the best and worst solutions is less than
%. In addition, the solution optimized by the MOGA, passenger
otal cost is lower while there is a lower operator cost in the solution
rom our algorithm. This is because the MOGA is based on the rank-
ng of chromosomes to select the target chromosome, rather than
he objective values. Therefore, when the quality of chromosomes
as a larger difference, the MOGA has difficulty in distinguishing
hromosomes according to evolution. In addition, from the com-
utational time, one can found the convergence speeds of the two
lgorithms are similar. On the whole, the optimization qualities of
he two algorithms are similar.

.2.2. Headway optimization model
To validate the proposed model, the optimized headways of

outes are compared with the existing headways. The total costs

f the current transit system are 573.2 thousand RMB (the opera-
or costs is 289.8 thousand RMB  and the passenger costs is 283.4
housand RMB). Compared with current situation, the operator
osts (272.2 thousand RMB) and the passenger costs (243.7 thou-
 increasing an operation vehicle.

sand RMB) of the transit system with optimized headways are
decreased by about 6% and 14%, respectively. This can attribute
to the unreasonable resource allocation in current situation and
can also indicate that the integrating resources, the service level of
system and the efficiency of resources can be improved.

Furthermore, from optimization results, it is found that the total
fleet size of the transit network with optimized headways just
equals to the existing one (the maximum fleet size constraint).
This implies that the fleet size of the transit system in Dalian City
can perhaps not be enough for demands. Therefore, we  compute
the desired headways of routes using the same data sets as the
proposed model through releasing maximum fleet size constraint.
Thus, if the costs to purchase vehicles are not being considered, the
total costs of the transit system with the desired headways can be
greatly decreased by about 18.3%. This can be seen as the one proof
for the crowded condition of rush hours in Dalian City. The details
of the comparison of three headways in the direction with more
passengers of each route are shown in Fig. 7.

It is obvious that the headways of the three situations are dif-
ferent. As a whole, desired headways of most routes are lower or
equal to the existing headways or optimized headways. It is also
observed that the optimized headways of some routes are much
lower than the existing headways of these routes, e.g. route 1, 23,
31, 35, 36, 38, 39, 45, 74, 78, 79 and 86, etc. In fact, these routes are

indeed heavily crowed in the rush hours. It is necessary to increase
the vehicles to operation to improve service level of these routes.
Contrarily, the optimized headways of some routes are higher than
the existing headways of these routes, e.g. route 15, 26, 50, 59, 63,
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5, 67, 88 and 89, etc. Half of these routes are comprised of an
ffiliated company, which includes route 60–77. The routes of the
ffiliated company mainly serve in suburb. From optimized results
fter resource integration, the comfortable level of passengers in
rowed routes can be improved.

From Fig. 7, the existing fleet size is insufficient for the demand
n rush hours. However, it is difficult and impossible to purchase
nough vehicles to satisfy all routes simultaneously. Therefore, it
s necessary to analyze the sensitivity to increase operation vehi-
les into a route. If the lower limit of headways of routes is set
s 60 s, the sensitivity analysis to the routes satisfying the lower
imit constrain of headways is shown in Fig. 8. It can be observed
hat in the transit system with existing headways increasing an
peration vehicle into the route 36 can decrease the most costs of
mong all the routes, while increasing an operation vehicle into
he route 8 can gain the most benefit in the transit system with
he optimized headways. In addition, we can find that some routes
n the existing situation or in the optimized situation bring more
osts after increasing an operation vehicle. This indicates that these
outes are not crowed. Increasing more operation vehicles to these
outes will aggravate the imbalance or break the balance between
assenger costs and operator costs. The sensitivity analysis can pro-
ide a reference when the transit system or bus companies increase
peration vehicles.

. Conclusions

Headway design is a necessary product for transit system, and it
s also true that a transit agency will often evaluate and determine
eadways of routes. This paper presents a headway optimiza-
ion model based on a given network configuration and demand

atrix. This model synthetically considers the passenger costs and
perator costs. Also, an objective approach integrating the func-
ionality and proportionality to weight determination is proposed
o find an acceptable balance between the operator costs and the
assenger costs. Parallel genetic algorithm is used to solve the
eadway optimization model and parameters in the algorithm are
lso tested. Data of transit system in Dalian City, China, is col-
ected to test the model and the algorithm. The existing passenger
osts and operator costs of the bus routes of transit system in
alian City are used to determine the weight between two costs.
esults show that PGA is a powerful tool for bus route head-
ay optimization in this paper. Furthermore, results also suggest

hat resource integration can improve the service level of transit
ystem.
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