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a b s t r a c t

Community detection in a social network is a well-known problem that has been studied in computer science

since early 2000. The algorithms available in the literature mainly follow two strategies, one, which allows

a node to be a part of multiple communities with equal membership, and the second considers a disjoint

partition of the whole network where a node belongs to only one community. In this paper, we proposed a

novel community detection algorithm which identifies fuzzy-rough communities where a node can be a part

of many groups with different memberships of their association. The algorithm runs on a new framework

of social network representation based on fuzzy granular theory. A new index viz. normalized fuzzy mutual

information, to quantify the goodness of detected communities is used. Experimental results on benchmark

data show the superiority of the proposed algorithm compared to other well known methods, particularly

when the network contains overlapping communities.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Traditionally, social network is considered to be a theoretical con-

truct useful in social sciences to study relationships between indi-

iduals, groups, organizations or even entire society. However, the

ecent boom in the social network via Facebook, Twitter, WhatsApp,

inkedIn, made it an everyday affair. This provides new research op-

ortunities, especially in Computer Sciences, because the data avail-

ble from these online social networking sites are dynamic, large

cale, diverse and complex. That is, it shows all the characteristics of

ig Data such as velocity, volume, and variety.

Since its inception in early 20th century, social networks are rep-

esented using graphs [1], and graph analysis has become crucial

o understand the features of these networks [2]. Due to the recent

evolution in computing (processing) power, one can now handle rel-

tively larger real networks [3] potentially reaching millions of ver-

ices. Accordingly, it leads to a deep change in the way social networks

ere being analyzed.

Social networks are different from random networks. It shows

ascinating patterns, and properties [4]. The degree distribution is

kewed, following the power law Barabási [5,6] or truncated geomet-

ic distribution [7]. Diameter of the network is found to be very small

ompare to the size of the network, and the network possesses high

oncentration of edges in its certain parts forming groups. This last

eature, that is, groups with high internal edge density within them-
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elves and low between them characterizes the community structure

or clustering) of the network.

In society, it is possible to find groups, such as families, co-workers’

ircle, friendship circles, villages, and town that naturally form. Sim-

lar to this, in an online social network, we can find virtual groups,

hich live on the web. For example, in world wide web it will help

o optimize the Internet infrastructure [8], in a purchase network it

an boost the sell by recommending appropriate products [9], and in

omputer network it will help to optimize the routing table creation

10]. Again, identifying special actors in the network is also a moti-

ating force behind community detection. For example, central nodes

f the clusters, or nodes in the boundary region who act as a bridge

etween communities, are the special actors who play different im-

ortant roles within the society.

Therefore, the challenge in community detection is to identify the

odules and possibly their hierarchical organization by only using the

nformation encoded in the network topology. Scientists from several

isciplines studied the problem for a long time. One of the first stud-

es on community identification was carried out by Rice [11] where

lusters are identified in a small political body based on their voting

atterns. Later in 1955, Weiss and Jacobson studied community struc-

ure within a government agency [12]. They have separated work-

roups by removing those people who work with different groups.

his idea of removing edges is the basis of several algorithms in re-

ent times [13,14]. Hierarchical [15] and partition based clustering

s the more traditional technique to identify communities in a social

etwork where vertices are jointed into groups as per their mutual

imilarities.

Girvan and Newman [13], presented a new algorithm, aiming at

he identification of the edges lying between two communities for
unity in social networks, Pattern Recognition Letters (2015),
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possible removal in order to find the communities. The possible edges

were identified based on their centrality values. The concept is con-

sidered as the start of modern era in community detection. Since then

many new methods have been proposed based on several techniques

like label propagation algorithm [16], optimization [17] and Statistical

Physics [2]. These involve mainly two strategies for finding communi-

ties in a network. The first approach considers a partition of the whole

network into disjoint communities (i.e., a node belongs to only one

community). The second strategy, on the other hand, allows a node

to be a member of multiple communities with equal membership.

However, intuitively there could be a third possibility, that is, a node

may belong to more than one community with different degrees of

associations.

The present article concerns with the third strategy where we

propose a novel algorithm for detecting communities, over a new

framework of knowledge representation of social networks. This new

framework is based on fuzzy granular theory where a granule is con-

structed around nodes and represented by a fuzzy set. The proposed

algorithm takes the set of granules as input and partition them into

meaningful communities. After getting all communities we further

model them in the framework of rough sets. That is, the nodes surely

belonging to a community constitute its lower approximation, and the

others possibly belonging to the community are identified as mem-

ber of “upper - lower” or boundary region. The nodes in boundary

region belong to multiple communities with different degrees of as-

sociation. We assign fuzzy membership for these nodes based on their

connectivity with the cores; thereby resulting in unequal member-

ship unlike the previous methods. Therefore, given a social network,

the proposed method determines the various communities with

fuzzy-rough description defined over a granular model of knowledge

representation.

Extended LFR benchmark data [18] is used to test the algorithm

and its aspects. In addition to this, we used two real-world benchmark

data viz. Zakary Karate Club data [19] and Dolphin Network Data [20]

to demonstrate the performance. To quantify the performance, a new

index, namely, normalized fuzzy mutual information (NFMI) is used.

Comparison is made with three well known community detection

algorithms of both overlapping and non-overlapping types. Results

show superior performance of the proposed method.

The rest of the paper reads as follows: Section 2 contains the pro-

posed fuzzy granular model of the social network and the commu-

nity detection algorithm along with remarks and notes. Section 3

reports the experimental results and derivation of the new nor-

malized fuzzy mutual information measure. Finally, in Section 4

we conclude.

2. Model and algorithm

2.1. Fuzzy granular model of social network

A social network is viewed as a collection of relationship between

actors such as individuals or organization. These actors form macro-

level groups with their neighbors, which are often sometime indistin-

guishable in the process of problem solving. These groups are different

as compare to the community or clusters in terms of size and working

principles. These are more like closely operative groups exists within

a neighborhood. These macro groups resemble the concepts of gran-

ules. A granule is considered to be a clump of objects (or points) in

the universe of discloser, drawn together by indistinguishablity, sim-

ilarity, proximity or functionality [21,22].

Again the relationships between nodes, clusters of nodes, interac-

tions between nodes do not lead themselves to precise definition. That

is these macro groups have ill-defined boundaries. So, it is appropri-

ate and natural that we represent a social network in the framework

of fuzzy granular theory.
Please cite this article as: S. Kundu, S.K. Pal, Fuzzy-rough comm
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A social network presented in fuzzy granular framework is repre-

ented by a triple

= (C,V,G)where

• V is a finite set of nodes of the network

• C ⊆ V is a finite set of granule representatives (1)

• G is the finite set of all granules around each c ∈ C
A granule g ∈ G around a representative node c ∈ C is defined by

ssigning fuzzy membership values to its neighborhood. When we

onsider a node’s relationship in a social network, the membership

alue should decrease as distance increases. So, any monotonically

on-increasing fuzzy function may represent a granule in a network.

epending upon the network properties and problem in hand one

an choose suitable fuzzy function to assign membership values. In

ur experiments, we use the following fuzzy membership values,

c(v, r) =

⎧⎪⎨
⎪⎩

0 for d(c, v) > r

1

1 + d(c, v)
otherwise

(2)

ere, d(c, v) is the distance function which indicates a distance from

he granule center c to node v in the network. r is considered to be

he radius of the granule.

emark 1. If one wants to capture the maximum information of the

etwork, C should be equal to V . However, social network data avail-

ble from online network shows Big Data characteristics. So, a model

escribing these kinds of networks needs to address the challenging

ssue of scalability. In this regard, for reducing the execution time

f data analysis to a tolerable range one can restrict the number of

ranules either based on a threshold, set over the cardinality of the

ranule, or with human intervention.

emark 2. Distance function d(c, v) can be of any metric depending

pon the problem in hand. For example, when we address community

etection, one can use

1. the minimum hop distance from node c to v,

2. or, minimum weighted hop distance, i.e. d(c, v) = ∑
e∈P ω(e)where

ω(e) is the weight of the edge e in path P from c to v,

3. or, the reciprocal of the “number of paths” available between c to

v in conjunction with the minimum hop distance.

point to note here is that when social relationships required to be

nalyzed with non-metric similarity measures for problems such as

omophily or Positional analysis, one may consider a membership

unction other than Eq. (2) as suited to their problems.

emark 3. A node of a social network S , can belong to more than one

ranule and in such scenario, the node will have a different degrees

f belongingness to various granules. For a node v having non-zero

embership to more than a granule, membership values can be nor-

alized using the following equation such that all these normalized

embership values add up to unity.

˜c(v, r) = μc(v, r)∑
i∈C μi(v, r)

such that
∑
i∈C

μ̃i(v, r) = 1. (3)

.2. Fuzzy-rough community detection on fuzzy granular model

f social network (FRC-FGSN)

A community is formed when nodes are densely connected, com-

are to the other parts of the network. In the new knowledge rep-

esentation scheme of fuzzy granular social network, as stated in

ection 2.1, we would like to find out such densely connected groups.

he key idea of finding such groups is to identify the granules with

ense neighborhood and merge them when they are nearby (merg-

ng dense regions). Thus the first step is to find those granules where

ranular degree (Definition 1) exceeds a certain threshold indicating

ense region.  
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efinition 1 (Granular degree). Granular degree of a granule is de-

ned by the cardinality of the fuzzy set representing the granules. So,

ranular degree of Ac is,

(Ac) = |Ac| =
∑
v∈V

μ̃c(v, r) (4)

here r is the radius of the granule. Granular degree is the fuzzy

quivalent degree of the node in the center to the granule.

emark 4 (Crisp equivalence). Let us consider a crisp membership

alue for the granules. That is, if a node v is connected to the center

ode c, it will get a membership of 1, and 0 otherwise. Furthermore,

onsider r = 1. Then, the granular degree D(Ac) = ∑
v∈V μ̃c(v, 1) =

(c), which is nothing but the network degree of node c. D(c) repre-

ents the crisp equivalence of granular degree (Eq. (4)).

efinition 2 (θ-Core). A granule Ap is said to be a θ-core with respect

o θ , if the granular degree of the Ap is greater or equals to θ , i.e.,

(Ap) ≥ θ .

A community may have multiple such θ-cores. The algorithm

eeds to identify the set of those closeby θ-cores. So the goal is to

earch for θ-cores which belong to a same community. We call them

community reachable cores’. In order to find them, let us first define

he neighborhood of a granule as in Definition 3.

efinition 3 (Neighborhood of a granule). Neighborhood of a granule

c is the set of all granules whose centers lies on the support set of Ac,

.e.,

(Ac) = {Ai|Ai ∈ G and i ∈ Support(Ac)∀i �= c}
here, Support(Ac) = {v|μ̃c(v, r) > 0}. r is the radius of the granule.

Based on the neighborhood, thus defined, we can find the θ-cores

hich are community reachable to each other, i.e., belong to the same

ommunity.

efinition 4 (Directly community reachable θ-cores). Granule Ap

nd Aq are directly community reachable θ-cores, if Ap and Aq are

-cores and Ap is in the neighborhood of Aq, i.e., if Ap ∈ �(Aq) and

(Aq),D(Ap) ≥ θ .

efinition 5 (Community reachable θ-cores). A granule Ap is com-

unity reachable θ-cores to granule Aq if there is a chain of granule

enters p1, p2, . . . , pn; p1 = p and pn = q such that Api+1
is directly

ommunity reachable θ-cores from Api
.

Community reachable cores have another notion of connectivity,

ay, community connected θ-cores, as stated in Definition 6.

efinition 6 (Community connected θ-cores). Two θ-cores Ap and

q are said to be community connected if there exists a θ-core Ar from

hich both Ap and Aq are community reachable.

In a network, there might be nodes, which reside at the bound-

ry regions and have neighborhood spread over multiple groups. To

epresent the notion of this overlapping, we introduce a normalized

ranular embeddedness measure as in Definition 7.

efinition 7 (Normalized granular embeddedness). For two given

ranules Ap and Aq, normalized granular embeddedness is defined by

he ratio of the cardinality of their intersection and union, i.e.,

(Ap, Aq) = |Ap ∩ Aq|
|Ap ∪ Aq|

E = 0 implies no overlapping between granules Ap and Aq. E = 1

ignifies complete overlapping.

With these new Definitions 1–7, based on fuzzy granular frame-

ork of social network, let us define community and orphan nodes of
network as in Definitions 8–10. n

Please cite this article as: S. Kundu, S.K. Pal, Fuzzy-rough comm
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efinition 8 (Community). For a given social network S =
C,V,G), θ , and ε, a community C is a non-empty subset of gran-

les G satisfying the following conditions:

• ∀Ap, Aq ∈ C, Ap and Aq are community connected cores
• ∀Ap ∈ C,E(Ap,

⋃
Aq∈C\Ap

Aq) > ε

emark 5. θ may be referred as density co-efficient of the commu-

ity. That is, as θ increases the more dense communities get detected

nd in the process the number of orphan nodes (Definition 10) in-

reases. If the parameter θ is chosen too high, it may happen that

here is no θ-cores in the system and in such cases the algorithm

eturns “no community”, i.e., all nodes are orphans. This scenario can

e avoided by choosing the aforesaid parameter more conservative

ay, for example, by selecting the mean of granular degrees as θ .

emark 6. 1/ε may be referred as coupling co-efficient of the com-

unity. When a higher value of coupling is selected then loosely

onnected groups get merged into a single community. On the other

and, very low coupling value may result in more communities than

esire.

One may note that the communities, thus identified, have fuzzy

ill defined) boundaries. These communities can further be viewed in

erms of lower and upper approximations in the framework of rough

et theory. That is, each community has a lower approximate re-

ion reflecting nodes definitely belonging to, and a boundary (i.e.,

pper - lower) region reflecting the nodes possibly belonging to.

herefore it may be appropriate to assign fuzzy membership values

n (0, 1) to only those nodes which lie within the said (upper - lower)

egion, and assign unity (1) value to those of lower approximation.

he fuzzy-rough communities are accordingly defined (Definition 9).

efinition 9 (Fuzzy-rough community). Let the n communities found

or a social network be C1, C2, . . . , Cn, and the upper and lower ap-

roximation of the ith community be Ciθ and Ciθ respectively. Then

iθ = {x|x ∈ Support(Ap)∧ x /∈ Support(Aq);

∀Ap ∈ Ci and Aq ∈ Cj; i �= j} (5)

iθ = {x|x ∈ Support(Ap); Ap ∈ Ci}
Fuzzy-rough membership function characterizing the community

i is defined as,

θ
Ci
(x, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x ∈ Ciθ∑
c∈Ciθ

μ̃c(x, r) if x ∈ Ciθ \ Ciθ

0 Otherwise

(6)

here μ̃c(x, r) is defined in Eq. (3).

efinition 10 (Orphans). Let a social network contain C1, C2, . . . , Cn

ommunities. A node p is said to be orphan if p /∈ Ciθ ∀i.

Given a social network, the proposed method finds its various

ommunities (Definition 8) with fuzzy-rough description (Eq. (6))

efined over a granular model (Eq. (1)) of knowledge representation.

odes not being included as a part of any community are designated

s orphans. The block diagram of the methodology is shown in Fig. 1

or convenience.

. Experiment and results

In this section, we evaluate the performance of the proposed al-

orithm and compare it with other popular community detection

lgorithms. To compare results, we consider a new index measure,

amely, normalized fuzzy mutual information (NFMI).  

 

unity in social networks, Pattern Recognition Letters (2015),

http://dx.doi.org/10.1016/j.patrec.2015.02.005


4 S. Kundu, S.K. Pal / Pattern Recognition Letters 000 (2015) 1–8

ARTICLE IN PRESS
JID: PATREC [m5G;March 10, 2015;21:47]

initialize:
θ-Cores ← ∅,

Ac ∈ G

θ-Cores
← θ-Cores ∪{Ac}

Ac ← next
granule

Ac ∈ θ-Cores

C ← {Ac} Ac ←next granule
from θ-Cores

Rechable
← {X|X ∈ Γ(Ac) AND X ∈ θ-Cores}

Ap ∈Rechable

Ap ←next granule
from Rechable

Add Ap to C

Add C to Communities

Remove all
Ac ∈ C from

θ-Cores

output:
Communities

Membership
Assign

D(Ac) > θ

no more granules to chcek

E(Ap,
⋃

Aq∈C Aq) > ε

Rechable \ C �= ∅

no more granule in θ-Cores

Fig. 1. Block diagram of FRC-FGSN algorithm.
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3.1. Normalized fuzzy mutual information

In recent time, a measure based on normalized mutual infor-

mation [23] has become popular for comparing community struc-

tures. However, this measure is suitable for crisp membership val-

ues. Fuzzy mutual information, on the other hand, was proposed

by Maji and Pal [24] to use in a supervised gene selection algo-

rithm with respect to normal-cancer classification. In case of com-

munity detection (which is unsupervised), the numbers of commu-

nities is unknown, and the numbers detected by distinct algorithms

are also different. Here, we describe a new index measure, namely
Please cite this article as: S. Kundu, S.K. Pal, Fuzzy-rough comm

http://dx.doi.org/10.1016/j.patrec.2015.02.005
ormalized fuzzy mutual information, suitable for fuzzy community

tructures.

Let us consider that algorithms X and Y produce two community

tructures represented by the fuzzy partition matrices C
X and C

Y .

ach row of a partition matrix corresponds to a community. Let the

embership that a node v belongs to a community P of C
X be mX

P (v).
e seek to measure the similarities between C

X and C
Y . Let there

e n nodes in the network. Mutual information of C
X and C

Y can be

epresented as,

(CX : C
Y) = 1

[H(CX)− H(CX|CY)+ H(CY)− H(CY |CX)] (7) 
2
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ere, H(CX)(or H(CY)) is the information contained in C

X(or C
Y) and

s defined as:

(CX) = −
∑
P∈CX

λX
P log2

(
λX

P

)
(8)

here λX
P = ∑n

i mX
P (i) is the fuzzy relative frequency of community

∈ C
X .

H(CX|CY)(or H(CY |CX)) is the conditional information measure in

erms of lack of information of C
X(or C

Y) given C
Y(or C

X). In order

o compute the conditional information, we calculate, the joint fre-

uency distribution of two communities P and Q . In an overlapping

ommunity structure a node may belong to only P, only Q , both P, Q ,

r none. Let us now denote these four scenarios respectively as, (i)

= 1, Q = 0, (ii) P = 0, Q = 1, (iii) P = 1, Q = 1 and (iv) P = 0, Q = 0.

ith these notions, the joint frequency distribution of P and Q is as

ollows

00 = λ(P=0,Q=0) = n − |P ∪ Q|
n

= n − ∑n
i=1 max(mX

P (i), mY
Q(i))

n
(9)

01 = λ(P=0,Q=1) = |Q| − |P ∩ Q|
n

=
∑n

i mX
Q(i)− ∑n

i=1 min
(
mX

P (i), mX
Q(i)

)
n

(10)

10 = λ(P=1,Q=0) = |P| − |P ∩ Q|
n

=
∑n

i mX
P (i)− ∑n

i=1 min
(
mX

P (i), mX
Q(i)

)
n

(11)

11 = λ(P=1,Q=1) = |P ∩ Q|
n

=
∑n

i=1 min
(
mX

P (i), mX
Q(i)

)
n

(12)

Thus the information measure, in terms of lack of information, is

(P|Q) = H(P, Q)− H(Q)

= h(λ00)+ h(λ01)+ h(λ10)+ h(λ11)− H(Q) (13)

here, h(x) = −x log2(x).
We now compute the conditional information measure for a com-

unity P, given C
Y , as

(P|CY) = min
Q∈CY

H(P|Q); P ∈ C
X (14)

The conditional information measure of C
X , given C

Y , is then com-

uted as

(CX|CY) =
∑
P∈CX

H(P|CY) (15)

Similarly, H(CY |CX) may be computed.

The normalized fuzzy mutual information is defined as follows:

FMI(CX : C
Y) = 1

2

[
H(CX)− H(CX|CY)

H(CX)
+ H(CY)− H(CY |CX)

H(CY)

]
(16)

Higher the value of NFMI larger the similarity (or relevance) be-

ween C
X and C

Y . One may note that higher value may also occur

hen two communities are nearly complement to each other. In

rder to avoid this undesirable situation, we enforce the following

ondition while computing Eq. (13):

(P|Q) =
{

H(P|Q) if h(λ00)+ h(λ11) > h(λ01)+ h(λ10)

H(P) otherwise
(17)
(

Please cite this article as: S. Kundu, S.K. Pal, Fuzzy-rough comm

http://dx.doi.org/10.1016/j.patrec.2015.02.005
emark 7. The conditional information measure represents the lack

f information in a community structure, given another. In an ideal

ase, i.e., when two comparative community structures are identical,

(CX|CY)and H(CY |CX)will be zero. Hence, the NFMI(CX : C
Y)would

e equal to 1 (Eq. (16)).

On the other hand, when two community structures are comple-

ent to each other, then H(CX|CY) and H(CY |CX) will be equal to

(CX) and H(CY) respectively (Eq. (17)). In this case, the NFMI(CX :
Y) score will be 0.

In all the other cases, the value of NFMI(CX : C
Y) will be between

and 1. That means, higher the value of NFMI, more closer the com-

unity structures.

To evaluate the performance of two different community detec-

ion algorithms, one needs to find the NFMI score of both the output

ith those of the ground truth. Higher the NFMI value better is the

uality of the determined community structures.

.2. Benchmark

In the evaluation of performance of the proposed method, we

sed two types of benchmark data. These are synthetically generated

etworks, and real-world social networks, both with known commu-

ities. Description of the data sets is presented below followed by the

xperimental results.

.2.1. LFR benchmark

One of the popular benchmark data for comparing community de-

ection algorithms is proposed by Lancichinetti et al. [25] in 2008. It is

eferred as LFR benchmark data after the name of the authors. Later,

t was modified to accommodate more properties of network and

ommunities viz. directed, weighted network and overlapping com-

unities, in Lancichinetti and Fortunato [18]. The idea is to generate

etwork graphs based on few parameters. These parameters include,

• Size of the network N
• Size of the communities (within Cmin to Cmax)
• Mixing parameter, i.e., the average ratio of edges within commu-

nity and edges with other communities (η)
• Fraction of overlapping nodes (On) and
• Number of overlapping communities (Om)

In the experiments we have fixed the size of the network to

001 and vary the other variables, and analyze the algorithms and

heir performance. We compare the proposed algorithms with three

opular algorithms. These are, centrality based community detection

ethod proposed by Girvan and Newman [13], Modularity optimiza-

ion method of Newman [17] and k-clique percolation method (CPM)

f Palla et al. [26]. A point to note here is that, CPM can identify

verlapping communities whereas the other two comparing methods

dentify non-overlapping partitions of the network. The benchmark

ata generated from LFR algorithm for overlapping communities is

ar from the reality. It considers a fixed number of overlaps for the

odes which is unusual for real world networks. Furthermore, we

re assigning different memberships for being in different communi-

ies based on the network values, but the generated network assigns

nit value to the same. So, it is not the perfect data set to test our

lgorithms, yet results are convincing, as described below.

First, we vary the η from 0.0 to 1.0 by fixing the fraction of overlap

o 0.15 and run all the four algorithms. We measure NFMI of each

utput with the ground truth. Fig. 2, shows the variation of NFMI

ith respect to η for these algorithms. As expected, NFMI decreases

hen η increases in all the cases. For lower values of η, modularity

nd centrality based algorithms’ show better results, but for η ≥ 0.3

he proposed FRC-FGSN shows prominent improvement over all other

ethods.

In another experiment, we vary the fraction of overlapping nodes

On) from 0.0 to 0.5 by fixing the mixing parameter to 0.4. Results 
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FRC–FGSN

CPM

Modularity

Centrality

0.2 0.4 0.6 0.8 1.0
η
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0.3

0.4

0.5

0.6

0.7
NFMI

Fig. 2. Comparative results with different values of mixing parameter. Network size:

1001; min community size: 150; max community size: 250.
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CPM
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Centrality
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0.2

0.3
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NFMI

Fig. 3. Comparison showing variation of NFMI for different fraction of overlapping

community. Network size: 1001; mixing parameter: 0.4; min community size: 150;

max community size: 250.
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are reported in Fig. 3. It shows that the proposed FRC-FGSN produces

superior performance for On ranging from 0.2 to 0.4 and second best

for On < 0.2.

As we mentioned in Remark 1, one may restrict the number of

granules to reduce the execution time to a tolerable range. We per-

form an experiment to observe this phenomenon. The result in this

regard, for one of the benchmark networks is shown in Fig. 4. Here,

x-axis shows the percentage of granules corresponding to the number

of nodes in the network. The blue curve with square points shows the
50 60 70 80 90 100
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T
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e
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Fig. 4. Plot showing the performance on number of granules for LFR data. (For inter-

pretation of the references to color in the text, the reader is referred to the web version

of this article.)
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ime taken by the proposed FRC-FGSN and the red curve with circular

oints shows its accuracy in terms of NFMI. As expected, the time and

ccuracy both decreases as we reduce the number of granules from

00% to 50%. Interestingly the rate of drop in execution time is higher

han that of the accuracy. This shows that by reducing the number

f granules in a fuzzy granular model of social network one may get

xecution benefits in the algorithm.

.2.2. Real world benchmark data

We used two real-world social network data, namely, Zachary

arate Club [19] and Dolphin Social Network [20].

Zachary Karate Club data is shown in Fig. 5(a). This network shows

he friendship relations between 34 members of a US Karate Club in

970s. Fig. 5(b) summarizes the statistics about the data set. The club

ventually split into two and the ground truth of the community

tructure is shown in Fig. 5(c).

The network of frequent associations among 62 bottlenose dol-

hins living in Doubtful Sound, New Zealand was collected between

995 and 2001 by Lusseau et al. [20]. The network is an undirected

raph of their interactions, and properties of the network are given

n Fig. 6.

Although, the ground truth available for these two real world net-

orks does not have any overlapping nodes, yet the results are very

romising and close to those of modularity optimization algorithms

nd better than CPM methods for both the cases. For Karate Club data,

t is even much better than the centrality based community detection

lgorithms. Results of these experiments are shown in Fig. 7.

. Discussions and conclusions

We presented a new algorithm (FRC-FGSN) to identify different

ommunities in a social network. Here, a network is represented by

collection of fuzzy granules. The output communities found are

haracterized with crisp lower and fuzzy upper memberships, and

re designated as “fuzzy-rough communities”. A fuzzy membership

s assigned only to those nodes which fall into the boundary (upper -

ower) region of a community signifying that a node in that region can

elong to multiple communities with different degrees of association.

odes in the lower approximate region are assigned unity member-

hip reflecting the certainty of the belonging. In the process orphan

nodes with zero membership to all communities) are detected auto-

atically. The proposed framework of knowledge representation is

apable of handling uncertainty arising from both fuzziness in bound-

ry and granularity of the community.

In addition to the proposed algorithm, an index, namely, normal-

zed fuzzy mutual information (NFMI) has been defined to quantify

he goodness of the identified communities. Larger is the value of

FMI, between two community structures, higher is their similari-

ies. Computation of this measure involves comparison of two fuzzy

artition matrices, one corresponding to the identified communities

nd the other corresponds to those of the ground truth. Here, the

est match of each of the identified communities out of those in

he ground truth is determined. Amount of matching is quantified

n terms of fuzzy mutual information. Normalized aggregate of these

atching scores is reflected by the NFMI index, which accordingly

uantifies how close the identified communities are to those of the

round truth.

It is shown that the FRC-FGSN algorithm produces superior out-

omes as compared to other popularly known community detection

lgorithms when the network contains overlapped communities. We,

eported experimental results conducted with both LFR benchmark

ata and real-world social network of Zachary Karate Club data and

olphin Social Network.

In the proposed knowledge representation scheme, we have con-

idered single relationship between actors. In addition, we considered

hat the membership of a node in a granule decreases as its distance 
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Fig. 5. Zechary Karate Club data.
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Fig. 6. Dolphin Social Graph data.
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rom the granule center increases. Although these are usual assump-

ions in social network analysis, sometimes these may not be true

epending on the data set. However, such characteristics may be ac-

ommodated in the said framework of knowledge representation just

y changing the membership functions appropriately. For example,

f the network contains multiple relationships, then one may assign
Please cite this article as: S. Kundu, S.K. Pal, Fuzzy-rough comm
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emberships using a vector or multi-variable based distance function

nstead of a simple hop distance.

In designing our framework, we assumed the same role for all

he actors in a network. This means, the model is valid for any social

etwork as long as the roles of all the actors in the network remain the

ame. However, if a network contains different roles for its different
unity in social networks, Pattern Recognition Letters (2015),
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Fig. 7. Bar chart showing the comparative values of NFMI for different algorithms of

Karate Club Network and Dolphin Social Network.
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actors, then a modification may be required, in the proposed model,

to accommodate such role-players in community structures.
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