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Detection of continuous edges is a hard problem and most edge detection algorithms pro-
duce jagged and thick edges particularly in noisy images. This paper firstly presents a novel
constrained optimisation model for detecting continuous, thin and smooth edges in such
images. Then two particle swarm optimisation-based algorithms are applied to search
for good solutions. These two algorithms utilise two different constraint handling meth-
ods: penalising and preservation. The algorithms are examined and compared with a mod-
ified version of the Canny algorithm as a Gaussian filter-based edge detector and the robust
rank order (RRO)-based algorithm as a statistical-based edge detector on two sets of
images with different types and levels of noise. Pratt’s figure of merit as a measure of local-
isation accuracy is used for the comparison of these algorithms. Experimental results show
that the proposed edge detectors are more robust under noisy conditions and their perfor-
mances are better than the Canny and RRO algorithms for the images corrupted by impul-
sive and Gaussian noise. The proposed algorithm based on the penalising method is faster
than the algorithm using the preservation method to handle the constraints.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The edges of objects in an image contain important information that can be used as low level features in image analysis
and computer vision systems [57]. The main goal of an edge detection algorithm is to provide the continuous contours of the
object boundaries. In practice, accurately detecting these continuous contours is very hard and time consuming especially
when noise exists in the image [18].

Many algorithms have been proposed using various different paradigms such as curve fitting [7], optimisation of a crite-
rion [6,41], image transforms [26,53] statistical testing [32] and soft computing [2,22] to detect edges for different applica-
tions. The selection of an edge detection algorithm for a particular application depends on its performance in a variety of
environmental conditions (such as illumination and noise) and the requirements of the system of interest (such as real time
ability, continuity of edges, thinness of edges and scale insensitivity).

The commonly used algorithms for detecting edges in noisy images include Gaussian-based [3], statistical-based [32], and
scale space-based [56] edge detectors. The Gaussian-based algorithms often malfunction at corners and curves [54] and
establish double edges in areas with high frequencies of information. They also displace edges and produce false edges
[3]. These methods use a Gaussian filter as a smoothing technique to reduce noise, which often causes edges to be weak
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and broken as a side effect [11,25]. Although there are several algorithms that utilise sharpening techniques to reduce these
side effects, they suffer from producing jagged edges as a side effect of these techniques [19].

Several statistical-based methods have been proposed to detect edges in noisy images, such as the t-detector, Wilcoxon
detector, and robust rank-order (RRO) detector [32]. These methods are insensitive to noise because of considering a large
neighbourhood for each pixel in comparison to other edge detection methods. They use a statistical test to check whether an
r � r window can be divided into two subregions with significant differences in intensities. If there is a significant difference
between them, the pixel is classified as an edge otherwise a non-edge. These algorithms are data-driven and do not function
based on an edge model, thus they cannot recognise edge magnitudes which are required for edge thinning and linking.
Therefore the produced edges are often thick [29].

Another group of algorithms uses the scale space theory [33] to generate different scales of an image and produce an im-
age pyramid. These methods operate on a large area of an image through generating different scales of the image. While the
operation on the low resolution images allows them to be very fast, the difficulty of choosing the size of the filters with com-
bining edge information from different scales restricts their application. Some of these methods such as wavelet-based edge
detectors utilise an image transform to detect edges. Although these methods are insensitive to noise, they suffer from pro-
ducing broken and jagged edges [3,26].

Several techniques have been proposed to compensate for broken edges, such as sequential edge linking (SEL) [12],
multi-resolution SEL (M-SEL) [9] and the Hough transform. The simplicity and high speed are the main advantages, but
they are not necessarily accurate due to not considering the global structure of edges. While the Hough transform can
operate well on the images containing just simple shapes (such as straight lines or circles), it often does not deal well
on objects with complicated shapes [34]. Snake-based methods are another type of these techniques. They utilise an active
contour model to detect an object boundary [31]. These methods need to have a priori knowledge about the boundary and
are very slow [35].

Most of the edge detection algorithms described above use a convolution of an image with an n � n matrix, where usually
n 6 5 to reduce the computation time. This means that the information from a limited area is considered in these algorithms
to mark a pixel as an edge. The area size has a strong effect on accuracy such that if the area size is increased, the algorithm
will be less sensitive to noise but at the same time, the localisation accuracy will be lower. If we want to increase the local-
isation accuracy of the algorithm, we need to consider all edge patterns. However, this will substantially increase the com-

putation time tðnÞ ¼ ðn2�1Þn

2 ¼ Oðn2nÞ
� �

[62]. Therefore a heuristic algorithm is required to explore a large area to overcome

the noise and consider the global structure of the edges to reduce broken edges in a reasonable time.
Particle Swarm Optimisation (PSO) is a population-based meta-heuristic method for solving global optimisation problems

based on social-psychological principles, introduced by Kennedy and Eberhart in 1995 [28]. Compared with some heuristic
methods such as genetic algorithms, the most important general advantages of PSO are ease of its implementation, few oper-
ators, a limited memory for each particle and high speed of convergence [1]. PSO is very stable and efficient in noisy envi-
ronments [44]. Its comparison with evolutionary algorithms has shown that PSO has a high capability to optimise noisy
functions [38,43,58] and it has been successfully applied to many problems in noisy environments, such as image segmen-
tation [40] and vision tracking [61]. PSO has a good potential for edge detection in noisy images, but surprisingly, it has not
been sufficiently analysed for tackling edge detection problems.

This paper aims to develop a new PSO based approach to edge detection in noisy images with the goal of extracting con-
tinuous and thin edges, and reducing broken and jagged edges. The new approach will be examined and compared to the
modified version of the Canny algorithm proposed in [50] and the RRO algorithm proposed in [32] on two sets of noisy
images. The localisation accuracy will be used to measure the performance of different algorithms.

The rest of this paper is organised as follows. Section 2 provides background information on PSO and a brief overview of
edge detection. The new PSO-based edge detection approach will be introduced in Section 3 followed by a summary of two
new algorithms in Section 4. Sections 5 and 6 present the experiments and results with discussion. Section 7 draws conclud-
ing remarks.

2. Background

This section provides a summary of the necessary background on particle swarm optimisation and edge detection.

2.1. Particle swarm optimisation

PSO is a branch of swarm intelligence inspired by the social behaviour of animals and biological populations. It simulates
a simplified social model, such as a flock of birds and a school of fish. Although it was originally developed to optimise con-
tinuous nonlinear functions, there are some discrete versions of PSO to work on discrete search spaces [59].

In PSO, there is a population of m particles. These particles move through an n-dimensional search space. The location of
each particle in the search space at time t is represented as the vector X

!
iðtÞ ¼ ðxi1ðtÞ; xi2ðtÞ; . . . ; xinðtÞÞ, where i is the index of

the particle in the population. Its location is updated according to its own experience (current motion and particle memory
influences) and that of its neighbours (swarm influence). Each particle has a velocity represented by V

!
iðtÞ that is added to

X
!

iðtÞ at each iteration of PSO as in Eq. (1).
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X
!

iðt þ 1Þ ¼ X
!

iðtÞ þ V
!

iðt þ 1Þ: ð1Þ 
The velocity is changed based on three components: current motion influence, particle memory influence, and swarm
influence [55]:

 

 

Vi;jðt þ 1Þ ¼ wVi;jðtÞ þ C1r1;jðXpbesti ;j � Xi;jðtÞÞ þ C2r2;jðXleader;j � Xi;jðtÞÞ ð2Þ
where j shows the index of jth element of the corresponding vector; r1,j, and r2,j are uniform random variables between 0 and
1; w is an inertia weight to control the impact of the previous velocity; C1 and C2 are called the self and swarm confidence
learning factors that represent the attraction of a particle toward its best previous location and the best particle of the pop-
ulation, respectively; X

!
pbesti

denotes the best position of ith particle so far; and X
!

leader is the position of a particle for guiding
other particles toward better regions of the search space.

Several methods have been proposed to handle constraints in PSO. These methods can be categorised into four main
groups. In the first group, all particles are initialised such that the potential solutions fall within a feasible search space.
These methods typically utilise a particular operator to preserve new solutions to not violate existing constraints [23]. In
the second group, the algorithms add a penalty to the fitness of the particles which violate constraints [49]. The third group
(partitioning methods) divides all particles into a feasible set and an infeasible set that are operated on differently. Some of
them manipulate and mend infeasible solutions or prioritise solutions based on their feasibility [5,16]. In the last category,
the optimisation problem is transformed to another one such that either the constraints can be handled in an easier way, or
they can be eliminated. An example is using homomorphous mappings on a problem with linear equality constraints [39].

2.2. Edge detection algorithms

Edge detection as low level feature detection is one of the critical elements in image processing. The main function of
edge detection is to find the boundaries of image regions based on properties such as intensity and texture [32]. Although
many algorithms have been proposed to detect edges in noisy images, this section only briefly reviews a modified version of
Canny [11] and RRO [32] as they are very commonly used in edge detection in noisy images and will be compared with the
new approaches proposed in this paper.

2.2.1. Revised versions of Canny algorithm
The Canny edge detector as a Gaussian filter-based algorithm operates as an optimisation process to find the maxima of

the gradient magnitude of an image after the image is smoothed by a Gaussian filter to reduce noise [6]. This algorithm is
very popular because it has a complete process of edge detection and has good localisation accuracy. This edge detector has
been revised many times since it was first proposed. Its typical steps include applying a Gaussian filter to reduce noise, esti-
mating the gradient magnitude and edge direction for each pixel of an image, using a non-maxima suppression (NMS) algo-
rithm to suppress non-maxima edges, and applying a hysteresis thresholding technique to identify edges and to link broken
edges.

The size of the filter is very important in reducing noise and its size depends on the noise level. The Canny algorithm was
revised by Jeong and Kim [24] by proposing an adaptive method in order to determine the optimal filter size in noisy images.
They suggested a standard and adaptive method to determine filter scale for edge detection for each area of an image. This
method was extended from the optimal filter concept proposed by Poggio et al. [46] and the scale-space theory proposed by
Witkin [60]. This method adaptively finds optimal filter scales for each pixel before extracting edge maps. [24] defined an
energy function as a function over continuous scale space as follows:
EðrÞ ¼
ZZ
ðf � GHf Þ2 þ k r 1

rðx; yÞ

����
����
2

dxdy

¼
ZZ

f �
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2pr2 e�
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� �2
� �

dxdy ð3Þ
where q is the convolution operator, r is the size of Gaussian filter and k = 60 is a parameter to control the smoothness abil-
ity of the Canny algorithm. It is obvious that when r ? 0, the first term, i.e, f � GIf tends to a small value and when r ?1,
it tends to a large value. This is reverse for the second term. Therefore, this energy function is minimised at somewhere in the
search space, 0 < r(x,y) <1. The discrete form of this energy function can be estimated as follows:
E¼
X

i

X
j
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[24] used a simple iterative successive over-relaxation method to obtain the optimal scale for each pixel on an image.
After applying the Gaussian filter and estimating the magnitude of the edges, an NMS technique is used as an edge thin-

ning algorithm [10]. The NMS technique proposed by Canny chooses a pixel as an edge only when the gradient magnitude at
that pixel is larger than the edge magnitude of the pixels in the direction of the gradient. Canny also proposed that it can be
used as a post-processing algorithm along with any gradient operator to detect edges with a single pixel width. Most edge
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detection algorithms utilise a thresholding technique to identify edges and non-edges. The problem of producing broken
edges is very common when a single global threshold value is used for edge thresholding [50]. Canny proposed the hysteresis
thresholding technique, inspired by biological mechanisms, for detecting more continuous edges [14]. This technique usually
utilises two threshold values (high and low) to tackle the problem of broken edges [6]. The hysteresis thresholding technique
includes two main steps. In the first step, only the pixels whose gradient magnitudes are greater than the high threshold
value are chosen as edges. In the second step, the pixels are detected whose gradient magnitudes are greater than the
low threshold value and are adjacent to other edge pixels [20]. Manual determination of these two threshold values is very
time consuming. Therefore, many unsupervised techniques have been proposed to determine these values [50]. Sen and Pal
[50] proposed an automatic way in order to estimate these two threshold values. The low and high threshold values are com-
puted as follows:

 
 

 

ThresholdHigh ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffi
fuln2

p
ð5Þ

ThresholdLow ¼
1
2

ThresholdHigh ð6Þ
where fu ¼ s� l; s ¼
PN

i¼1

PN
j¼1a2

ij and l ¼
PN

i¼1

PN
j¼3aijaij�2, and the coefficients aij correspond to the kernel of the Gaussian

filter.

2.2.2. Robust rank order-based edge detector
Many edge detection algorithms have been proposed to deal with noise within the framework of statistics. These algo-

rithms utilise a statistical test to detect an edge. An algorithm was developed by [32] based on the robust rank-order
(RRO) test [32]. This algorithm operates better than other statistical-based edge detectors such as Wilcoxon and t-test-based
edge detectors [4,15] in terms of accuracy. The RRO algorithm considers eight different edge patterns for each pixel, each of
which partitions the neighbourhood of the pixel into two sub-regions (grey and white) where each subregion contains 12
pixels. [32] considered the intensity of neighbours of each pixel on an image as 24 independent observations which are par-
titioned into G ¼ fg1; g2; . . . ; g12g and W ¼ fw1;w2; . . . ;w12g corresponding with the grey (G) and the white (W) subregions.
At least one of the window partitions will be matched on an edge if there is an edge passing from the central pixel. The sam-
ples in G and W come from two continuous distributions, Aðg� lgÞ and Bðw� lwÞ with shifted parameters lg and lw. [32]
did not make any assumption about the nature of these two distributions. He defined the modified observations, ai and bi as
follows:
ai ¼
gi þ d gi 2 G

wi wi 2W



ð7Þ

bi ¼
gi � d gi 2 G

wi wi 2W



ð8Þ
where d is a parameter to define the minimum grey-level differential for the detection of an edge. In this method, the fol-
lowing hypothesises are tested:
H"0 : lg þ d P lw versus H"1 : lg þ d < lw ð9Þ
and
H#0 : lg � d 6 lw versus H#1 : lg � d > lw ð10Þ
He showed that since the distributions A and B are not identical in real world images, the Wilcoxon test is not an appro-
priate test. Accordingly, he considered the RRO test on the modified observations, ai and bi to determine the existence of a
significant difference in grey level between them. [32]’s method first considers eight different edge patterns and then the
RRO statistic is obtained for testing H"0 against H"1 on ai for each edge pattern. In order to obtain the statistic, for each
gi þ d, the number of wi in W, which is smaller than gi þ d, is counted. This number shows the position of gi þ d and is denoted
by UðW; gi þ dÞ. Similarly, the position of each wi in W;UðGþ d;wiÞ is found. Let UðW;Gþ dÞ be the mean of
UðW; gi þ dÞ;UðGþ d;WÞ be the mean of UðGþ d;wiÞ, VGþd ¼

P
gi2GðUðW; gi þ dÞ � UðW;Gþ dÞÞ and

VWþd ¼
P

wi2WðUðGþ d;wiÞ � UðGþ d;WÞÞ. So, the RRO statistic can easily be computed as:
Ua ¼
12ðUðGþ d;WÞ � UðW;Gþ dÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VGþd þ VWþd þ UðGþ d;WÞUðW;Gþ dÞ

p ð11Þ
Similarly, the RRO statistic can be obtained for testing H#0 against H#1 on bi. So,
Ub ¼
12ðUðW;G� dÞ � UðG� d;WÞÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VG�d þ VW�d þ UðG� d;WÞUðW;G� dÞ

p ð12Þ
The null hypothesis, H"0 (or H#0) is rejected if U⁄ = max(Ua,Ub) has a large value. In the RRO-edge detector, a pixel is recog-
nised as an edge when U⁄ is larger than a predefined threshold value, Tsl at a specified significance level sl.
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The number of edge patterns used in this algorithm is more than that of the Canny edge detector which usually uses two
or four edge patterns. Therefore, the localisation accuracy of these algorithms is often higher than that of Gaussian-based
edge detectors in the images corrupted by noise. This algorithm also has a few parameters that can be easily tuned by
the user in order to detect edges in noisy images.

Note that PSO has not been applied to edge detection before our preliminary works [51,52]. In this paper, we extend those
works by adopting the PSO-based algorithm with the Otsu’s method and providing further results and analysis.

 
 

 

3. The new PSO-based approaches

The new methods proposed here are based on heuristically solving an optimisation problem. We wish to search for the
best curve segment of a given length which can be fitted on a continuous edge. This curve separates a region of an image into
two subregions. All possible edge patterns would need to be examined in order to find the best curve such that it maximises
the dissimilarity of pixel intensities of two subregions and maximises the similarities in intensity of the pixels inside of each
subregion. Therefore the search space in this optimisation problem is all possible curves which partition this region into two
subregions. A new encoding scheme is developed to represent these curves in this search space. To evaluate each curve, a
new fitness function is formulated to measure the dissimilarity between two subregions and the similarities of the pixels
within each subregion. In this formulation, there are two simple constraints which should be satisfied. Two different PSO-
based algorithms are proposed to handle the constraints. As will be shown, these algorithms have different efficiency in
speed and effectiveness in accuracy. This section provides the details about the encoding scheme and the fitness function
with the two constraints, followed by two PSO-based algorithms proposed in Section 4.
3.1. Encoding scheme

Most edge detection algorithms convolve a convolution matrix on an image to calculate the edge magnitude only for a
single pixel at a time and then utilise a thresholding technique to classify the pixel as an edge or a non-edge. Therefore, a
large number of pixels which have weak magnitudes may be falsely classified as non-edges, or a few pixels which have high
magnitudes may be falsely recognised as edges. It may cause a real continuous edge to be broken or some speckles to appear
on a resulting edge map especially in noisy images. For that reason, the proposed method processes a collection of pixels at a
time instead of a single pixel in order to extract the global structure of the real edge and considers a large area rather than a
small one in order to attempt to overcome noise.

A continuous edge is a collection of consecutive pixels which divide an area of an image into two regions: the light and
dark regions in Fig. 1a. The goal is to maximise the interset distance between the pixel intensities of the two regions and
minimise the intraset distances within both regions. These consecutive pixels can be represented by a group of directional
arrows (see the arrows in Fig. 1a). Let pixel C be the middle pixel of the consecutive pixels on the continuous edge and 2L + 1
(a) (b)

(c)
Fig. 1. The particle encoding scheme. (a) An example of a curve with two regions; (b) eight movement directions from a pixel P; (c) the particle representing
the curve with L = 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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be the number of the pixels on it. The dotted red square in Fig. 1a is the area which pixel C can be located in. The number of
pixels along one side of this square is SqrSize. The relative position of pixel C with respect to pixel A (the upper left pixel of the
dotted red square) shows the offset of pixel C. With regard to the points explained above, a continuous edge can be repre-
sented by three components: the offset of pixel C and two sets of movement direction sequences from pixel C representing
the consecutive pixels. Let ho1,o2i be the offset where o1 and o2 are integers ranging from 0 to SqrSize � 1, and hm1, m2, -
. . . , mLi and hmL+1, mL+2, . . . , m2Li be two sets of movement direction sequences away from pixel C where mi are integers
ranging from 0 to 7. Each mi shows the direction of movement from a pixel to one of the eight possible adjacent pixels in
its neighbourhood along the continuous edge as shown in Fig. 1b. By changing the values of these components in the range
of interest, all possible continuous edges inside of a region with the area of (2L + SqrSize)2 can be represented by this new
encoding.

For example, the edge passing through pixel C, which is located inside the square in Fig. 1a, is encoded as shown in Fig. 1c.
In this example, SqrSize = 4, L = 5, and m1, m2, . . . , m5 show the movement directions from the point C towards the top and
m6, m7, . . . , m10 towards the bottom. In this example, all striped pixels enclosed by the dashed green lines are used to eval-
uate the curve, as follows.

3.2. A new fitness function

The new encoding scheme can represent all possible continuous edges with a minimum specified length (2L + 1) located
in a specified area of an image. To evaluate each edge in this search space, a new fitness function is introduced in this sub-
section. As illustrated later, the fitness value of each continuous edge is based on the average edge magnitude of all pixels
along the edge. In this subsection, a new edge magnitude measure and a curvature cost measure are also formulated fol-
lowed by two constraints to detect continuous, smooth and thin edges in the images corrupted by noise.

3.2.1. New edge magnitude measure
Most edge detection algorithms use variant edge operators which have been developed based on different order deriva-

tives to calculate edge magnitude, such as the first [6], second [36] and fourth derivatives [17]. These algorithms are often
very sensitive to noise. However some of these operators work well in clean images. For this reason, we introduce a new
approach to calculating edge magnitude in noisy images. The main idea is the optimisation of the interset distance between
the regions separated by a continuous edge, and the intraset distances within the regions.

We propose six ways of dividing the neighbourhood of each pixel of an image into two regions according to the eight pos-
sible movement directions, as shown in Fig. 2. Note that the patterns corresponding with the movement directions 2 and 6,
and 0 and 4 are same and so appear once each in Fig. 2. In each edge pattern in Fig. 2, let D and B be the two sets of pixels
corresponding to the dark and light regions respectively. It is obvious that if the interset distance between these two sets is
large and their intraset distances are small, the edge magnitude will be large; and also if the interset distance is small and
their intraset distances are large, the edge magnitude will be small. Hence, edge magnitude can be modelled as a function of
these distances. We expect that the pixels of each region are close in intensity (low intraset distance), and the pixels of these
two regions have the highest possible difference in intensity (high interset distance). Therefore, we formulate the edge mag-
nitude at pixel P in movement direction m, EdgeMagm(P) as Eq. (13) to maximise the interset distance (InterDism(P)) between

 
 

 

Fig. 2. Six ways of moving from pixel P to a neighbouring pixel.
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the regions and minimise the intraset distance (IntraDism(P)) within the regions. To avoid dividing by zero, the denominator
is increased by 1.

 
 

EdgeMagmðPÞ ¼
InterDismðPÞ

1þ IntraDismðPÞ
ð13Þ 
Here P is a single pixel on a continuous edge and m is the movement direction from the pixel P to the next adjacent pixel on
the edge. The intraset and interset distances are calculated as Eqs. (14) and (15).
InterDismðPÞ ¼ minð1; javgm;dðPÞ � avgm;lðPÞj=w1Þ ð14Þ
Here avgm,d(P) and avgm,l(P) are the average intensities of the dark and light regions corresponding to movement direction m
for pixel P (see Fig. 2), as calculated in avgm;dðPÞ ¼ 1

n

P
Pi2DIPi

and avgm;lðPÞ ¼ 1
n

P
Pi2BIPi

; n = jBj = jDj (n = 9 in Fig. 2); IPi
is the

intensity of the ith pixel in the corresponding set; and w1 is a weight factor.
The intraset distance IntraDism(P) is a sum of pairwise subtractions of pixel intensities in a region:
IntraDismðPÞ ¼
1
n

2

� � X
Pi; Pj 2 D

i > j

minð1; jIPi
� IPj
j=w2Þ þ

X
Pi; Pj 2 B

i > j

minð1; jIPi
� IPj
j=w2Þ

0
BBBBB@

1
CCCCCA ð15Þ
where w2 is a weight factor.

3.2.2. NMS factor for edge thinning
Non-maxima suppression (NMS) is one of the most important edge thinning techniques [57]. It extracts a local maximum

of the edge magnitude along the direction of the gradient vector and suppresses non-maximal edges. Here, the EdgeMagm of a
pixel on a continuous edge for each direction m is compared to the EdgeMagm of pixels P1, P2, . . ., P6 (as shown in Fig. 2) on
both sides of the edge. The NMS factor in each direction is the number of these neighbouring pixels whose edge magnitudes
in the same direction are lower than the edge magnitude of the pixel:
NMSmðPÞ ¼ jfPiji 2 f1; . . . ;6g; EdgeMagmðPiÞ < EdgeMagmðPÞgj ð16Þ
where j � j is the cardinality of a set and {P1, . . . , P6} are the particular neighbours of the pixel P as shown in Fig. 2. The value of
NMS is an integer ranging from 0 to 6. The NMS factor in direction m is larger when P is a local maxima in that direction.

The NMS factor in conjunction with EdgeMagm(P) is used to indicate the total edge magnitude of a pixel lying on a thin
edge in the direction m. If the edge direction is not estimated accurately, it may cause some real edge pixels to be removed by
the NMS algorithm and broken edges to appear on the edge map. Therefore, a non-maxima edge should not necessarily be
removed. The proposed method does not remove the non-maxima edge, but reduces the edge magnitude of the non-maxima
edge by multiplying by a number less than 1; for the edges with high NMS factor values, this is close to 1 and for those with
the low values, this is close to zero. Therefore we use a sigmoid function to scale a NMS factor value between 0 and 1 and
generate this number. Thus the total edge magnitude of each pixel in direction m is calculated as Eq. (17).
TotalEdgeMagmðPÞ ¼ EdgeMagmðPÞ �
1

1þ e�2ðNMSmðPÞ�4Þ ð17Þ
Most edge detection algorithms utilise thresholding techniques to identify edges after calculation of edge magnitudes.
These techniques use one or more threshold values to decide whether or not a pixel is an edge according to its edge mag-
nitude. An edge pixel with an edge magnitude less than the threshold value may be wrongly recognised as a non-edge. For
this reason, thresholding techniques often cause broken edges. Therefore, we use another sigmoid function to minimise the
side effect of using these techniques. The total edge magnitude of each pixel is scaled by the sigmoid function between 0 and
1 in order to estimate a possibility score of the pixel P lying on an edge, as can be seen in Eq. (18):
PScoremðPÞ ¼
1

1þ e�
3:317

TH ðTotalEdgeMagmðPÞ�0:6229THÞ
ð18Þ
where PScorem(P) is the possibility score of the pixel P lying on an edge in the direction of m; and TH is a threshold value
between 0 and 1 which can be estimated by Otsu’s method for image segmentation [42] as will be described in Section 3.3.
We use Eq. (18) to minimise the side effect of using the thresholding techniques and improve the detection of the weak
edges. This equation is formulated such that TH is the threshold point of the sigmoid function at which the third derivative
of the sigmoid function is zero, so its saturation point is 0.246TH at which the third derivative of the function is also zero. By
this way, the possibility scores of the strongest edges will be higher than the threshold point TH and close to 1, those of the
weak edges will be about 0.5, and those of weakest edges will be lower than the value corresponding to the saturation point.
We aim that all weak edges are given a chance to be detected as edges if they are located on a continuous edge along with
some strong edges. More information about the sigmoid function is available in the appendix.
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3.2.3. Possibility score of a curve on a continuous edge
The proposed model considers a collection of pixels located on a continuous edge instead of considering only a single pix-

el as most edge detection algorithms operate. Since the pixels along a continuous edge have similar intensities, the pixel
intensity of the broken edges are very similar to the intensities of their adjacent edge pixels. Therefore, in addition to the
edge magnitude of the pixels on the continuous edge, the intensities of the pixels are also used to evaluate each curve.
We introduce the uniformity factor of curve C fitting on a continuous edge in order to calculate the similarity of the pixels
on the curve in intensity:

 
 

 

UðCÞ ¼ 1
255� 2L

X2L

i¼1

jIPiþ1
� IPi
j ð19Þ
where IPi
is the intensity of the ith pixel on curve C. Here U(C) is a real number between 0 and 1 and a low value of this factor

for a curve implies a better fit on the actual edge, as pixel intensities are similar along the curve. In the denominator of Eq.
(19), 255 is the maximum distance between two pixels in an image with a resolution of 8 bits per pixel.

The average of the possibility scores of the pixels on a continuous edge in conjunction with the uniformity factor of the
edge are used to estimate the total possibility score of the curve being on a continuous edge. The possibility score of the
curve C is formulated as Eq. (20) such that it maximises the possibility of the pixels on the curve and minimises its unifor-
mity factor.
PScoreðCÞ ¼
P

Pi2CPScoremi
ðPiÞ=ð2Lþ 1Þ

1þ UðCÞ ð20Þ
where mi is the movement direction from pixel Pi on curve C.

3.2.4. Curvature cost of continuous edges
All adjacent pixels on a smooth edge usually have almost the same edge orientation, i.e., the difference between the edge

orientation of two adjacent pixels is low and their edge directions are similar. Therefore, we propose a curvature cost of a
continuous edge in order to reduce the effect of producing jagged edges. The curvature cost (CC) of an edge pixel is intro-
duced here to show a local measure of curvature followed by the curvature cost of a continuous edge. The local curvature
measure is defined based on a movement direction from a pixel to its adjacent pixels, as shown in Eq. (21).
CCðmi;miþ1Þ ¼
jmi �miþ1j=w3 jmi �miþ1j 6 4
ð8� jmi �miþ1jÞ=w3 otherwise



ð21Þ
Here mi is the ith movement direction according to the encoding and w3 is a weight factor.
The curvature cost of curve C is calculated by Eq. (22) which is the average of the curvature cost of all single pixels on the

curve.
CCostðCÞ ¼ 1
2L� 2

XL�1

i¼1

CCðmi;miþ1Þ þ
X2L�1

i¼Lþ1

CCðmi;miþ1Þ
 !

ð22Þ
3.2.5. Fitness function with two constraints
Since the possibility score of a curve should be maximised to fit more accurately on a continuous edge and its curvature

cost should be minimised to be smooth, we propose the following fitness function to evaluate curve C:
FitnessðCÞ ¼ PScoreðCÞ � CCostðCÞ ð23Þ
subject to two constraints:
CrossðCÞ ¼ 0 and PScoreðCÞ > HP
where Cross(C) counts how many times the curve C crosses itself and HP is a threshold value that is defined by the user. The
curves, represented by the encoding, may sometimes intersect themselves, so we set a constraint Cross(C) = 0. On the other
hand, PScore(C) > HP as another constraint should be satisfied to reduce false alarms.

3.3. Otsu’s Method for Estimation of TH

Otsu’s method [42] is a very common nonparametric approach to determining a global threshold value for binarisation of
the resulting image after applying an edge operator. It works in an optimum way to divide a set of pixels into two subsets
(edge and non-edge) where it maximises the discriminating criteria of interset variance between the pixel intensities in
these subsets [42]. The edge magnitudes of the pixels belonging to the first subset are less than or equal with t and those
of the pixels in the second subset are greater than t. Let l1(t) and l2(t) be the average edge magnitude of the pixels in
the first and second subsets, and N1(t) and N2(t) be the number of the pixels in these subsets respectively. The average edge
magnitude of all pixels (lA(t)) can be calculated as follows.
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lAðtÞ ¼
N1ðtÞl1ðtÞ þ N2ðtÞl2ðtÞ

N1ðtÞ þ N2ðtÞ
 
 

The interset variance between these two subsets (dA(t)) is
 

dAðtÞ ¼ N1ðtÞ½l1ðtÞ � lAðtÞ�

2 þ N2ðtÞ½l2ðtÞ � lAðtÞ�
2

To estimate TH in Eq. (18), the local maximum of the edge magnitude of each pixel LocalEdgeMag(P) is first calculated
using Eq. (24).
LocalEdgeMagðPÞ ¼max
7

i¼0
ðTotalEdgeMagiðPÞÞ ð24Þ
Applying this equation results in an edge magnitude map which can be used as the input to Otsu’s method in order to
estimate the value of parameter TH in Eq. (18). Fig. 3 shows how Otsu’s method can be used in the proposed method for
determination of the value of this parameter. The value t corresponding to the maximum of dA(t) is considered as TH.

4. Summary of the two proposed algorithms

Two PSO-based algorithms are used for the optimisation of the proposed model to detect edges in noisy images. As can be
seen in the overall flowchart of the PSO-based algorithm in Fig. 4, the dotted red square first moves over the area in which
exists at least one pixel with a high edge magnitude. Then one of the PSO-based algorithms is applied to the chosen area to
find a best curve which can be fitted on a continuous edge passing inside the dotted red square. After applying the PSO-based
algorithms, the dotted red square moves to the next block.

The selection of a constraint handling method is very problem dependent. As described earlier, there are many ap-
proaches to handling constraints in PSO. Two different methods are applied here. The first is based on a preservation method
and the second is based on a penalising method. This section summarises these two algorithms after explaining the trunca-
tion method to convert the real values to integers in the PSO-based algorithms.

Each particle in the PSO-based algorithms represents a curve in an area of an image using the developed encoding
scheme. In the proposed algorithms, we move the dotted red square (as shown in Fig. 1a) over the image from top left
to bottom right. After each movement, we apply a PSO-based algorithm to find the best curve which can be fitted on a
real continuous edge. In each run of PSO, all possible curves, whose centres (pixel C) are located inside of the
SqrSize � SqrSize dotted red square, are processed. If the best curve is found by the PSO algorithm, the pixels on the
curve are marked as edges and the pixels within the rectangle are not marked as processed pixels; otherwise all pixels
within the square are marked as processed pixels. Those pixels which are not marked as processed should be consid-
ered in the next iteration of the main loop because the algorithm may find another curve in this area. If SqrSize is set
to a large value, the speed of the algorithm will be increased because of processing a large number of pixels by the
PSO algorithm at a time. However, it may cause that some details in the edge map are removed as will be shown
later. Also, if 2L + 1 is set to a small value, the execution time of the algorithm will be decreased due to the reduction
of the length of the particle encoding. However, it may cause that the number of the broken edges will be increased.
Therefore, these parameters should be adjusted by the user carefully. We will further discuss about these parameters
in Section 6.3.

4.1. Truncation method for discrete PSO

As the search space explored by the new PSO-based algorithms is discrete, the particle positions must be truncated to
integers after they are updated by Eq. (1). Many discrete versions of PSO use a simple truncation method to convert real
numbers to integers [27]. Instead of using a simple truncation method, the following method is used to truncate the values
of particle positions to integers:
Fig. 3. Paradigm of PSO-based edge detector.



Fig. 4. The flowchart of the PSO-based algorithm.
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oi ¼
ðboic þ 1Þ if oi � boic > R
boic otherwise




mi ¼
ðmi þ 1Þ mod8 if mi � bmic > R

mi mod8 otherwise



ð25Þ
where R is a uniform random number ranging from 0 to 1. We expect that this simple truncation method increases the diver-
sity of the particles in the population in the described discrete search space to avoid being trapped in a local optima. Note
that this rule is only applied to convert the real values of the particle positions to integers but not used to update the particle
velocities. In this equation, the decimal parts of the numbers mi and oi show the probability of truncating to the largest inte-
ger numbers which are smaller than them and the complementary probability shows the probability of truncating to the
smallest integer numbers which is at least as large.

4.2. Preservation of feasible continuous edges

Algorithm 1 summarises the first PSO-based algorithm (PSO1) which aims to detect edges in noisy images using the opti-
misation method described in the previous section. This algorithm utilises a preservation method to handle the constraints.
In this method, the feasibility of each particle is examined in each iteration. If it violates the constraints, it is replaced with a
new feasible one.

Algorithm 1. PSO-based edge detection algorithm based on a preservation method to handle the constraints (PSO1)
1:
 for all pixel P on an image with local edge magnitude larger than TH do

2:
 if P is unprocessed and not marked as an edge then

3:
 Initialize PSO population in feasible search space randomly for pixel P

4:
 repeat

5:
 for all Particle decoded as curve C in Population do

6:
 Evaluate U(C) (19), PScore(C) (20) and CCost(C) (22)

7:
 Evaluate Fitness(C) (23)

8:
 if Fitness(C) is better than best fitness value in history and C is feasible then

9:
 Update personal best position

10:
 end if

11:
 end for

12:
 Assign the best particle in the population to the leader

13:
 for all particle decoded as curve C in population do

14:
 Calculate particle velocity (2)

15:
 Update particle position (1) and apply update rule (25)
(continued on next page)
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16:  
if Cross(C) – 0 or PScore(C) 6 HP then

17:  
Replace the particle with a new random feasible one

18:
 end if

19:  
end for

20:
 until maximum iterations exceeded or minimum error criteria attained

21:
 Select best feasible particle in the population and decode it as curve C⁄
22:
 Mark all pixels on curve C⁄ as an edge

23:
 if no feasible particle found then

24:
 Mark all pixels within the red rectangle as processed

25:
 end if

26:
 end if

27:
 end for
We expect that this algorithm based on preservation can effectively maximise the distances between pixels in the two
regions (interset distance) separated by a continuous edge and minimise the distance between the pixels within each region
(intraset distance), and accordingly accurately detect continuous, thin and smooth edges in complex images. The PSO algo-
rithm could be initialised only once for all runs. This increases the speed of the algorithm; however, it may prematurely con-
verge to local optima and reduce the accuracy of the algorithm. In the proposed algorithm, the PSO-algorithm is initialised
for the each iteration of the main loop. Since preservation methods suffer from low diversity of particles, the constraints are
examined in line 16 after updating the position of each particle and applying the update rule in line 15. If the constraints are
violated, the particle is reinitialized at random in line 17 so that the curve C, represented by the particle, does not cross itself,
i.e., Cross(C) = 0.
4.3. Penalising infeasible continuous edges

The second PSO-based algorithm (PSO2) uses a penalising method to handle constraints. Although penalising methods
require tuning for any constrained optimisation problem, their rapid convergence characteristic makes them attractive
[8]. We define a non-stationary and multi-stage penalty fitness function adopted from [45] for edge detection to handle
the two constraints as shown in Eq. (26). Since any optimisation problem can be optimised by an easier way when it does
not have any constraints, we expect that the penalised PSO algorithm operates more efficiently than the previous algorithm.
PenFitðCÞ ¼ FitnessðCÞ �
ffiffiffiffi
K
p
ðCrossðCÞ þ hðqðCÞÞqðCÞÞ ð26Þ
Here K is the current iteration number of the PSO algorithm, q(C) = max(0,HP � PScore(C)), and h(q(C)) is calculated as Eq.
(27):
hðqðCÞÞ ¼
1 if qðCÞ < 0:001
2 if qðCÞ < 0:1
10 otherwise

8><
>: ð27Þ
Algorithm 2. Constrained PSO-based edge detection algorithm based on a penalising method to handle the constraints
(PSO2)
1:
 for all pixel P on an image with a local edge magnitude larger than TH do

2:
 if P is unprocessed and not marked as an edge then

3:
 Initialize PSO population randomly for pixel P

4:
 K = 0

5:
 repeat

6:
 Increment K

7:
 for all particle (decoded as curve C) do

8:
 Evaluate U(C), PScore(C) and CCost(C)

9:
 Evaluate q(C) and h(q(C))

10:
 Evaluate Fitness(C) and PenFit(C)

11:
 if PenFit(C) is better than best fitness value then

12:
 Assign C to best particle

13:
 end if

14:
 end for
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Replace the worst particle with a new random one

16:
 forall Particle decoded as curve C do

17:
 Calculate particle velocity

18:
 Update particle position and apply update rule (25)

19:
 end for

20:
 until maximum iterations exceeded or minimum error criteria attained

21:
 Select best particle and decode it as curve C⁄
22:
 if C⁄ is feasible then

23:
 Mark all pixels on curve C⁄ as an edge

24:
 else

25:
 Mark all pixels within red rectangle as processed

26:
 end if

27:
 end if

28:
 end for
The second constrained discrete PSO-based algorithm utilising a penalising method is outlined in Algorithm 2. In each
iteration of this algorithm (lines 5–19), the uniformity factor, edge possibility and curvature cost of each curve presented
by each particle are calculated. The fitness value of each particle is computed and then the best and the worst particles
are found. The worst particle is replaced with a new random one in line 15 in order to increase the diversity of the particles.
After updating the velocities and the positions of the particles, the stopping criteria are checked, i.e, whether the maximum
number of iterations is exceeded or minimum error criterion is attained. Since the best continuous curve C⁄ may violate the
constraints, its penalised fitness value is checked not to be less than HP. If the value is less than HP, all pixels on the curve C⁄

are marked as edges; otherwise all pixels inside of the dotted red square are marked as processed pixels (lines 21–25).

5. Experimental design

To investigate the effectiveness of the new algorithms, we first compare the first algorithm (PSO1) with a modified ver-
sion of Canny [11] and RRO [32] algorithms on two sets of benchmark images at different types and levels of noise. Then we
compare the efficiency and effectiveness of PSO1 which is based on a preservation method with those of the second new
algorithm (PSO2) which is based on a penalising method. We equip the Canny algorithm with an unsupervised hysteresis
thresholding technique proposed in [37], with an adaptive method to estimate its filter scale proposed in [24] and with a
NMS technique proposed in [6] to improve its performance. Note that these techniques are not applicable for the RRO detec-
tor. This section also describes the image sets, performance measure, and parameter settings, which are used in the
experiments.

5.1. Image sets

Two different image sets are used in our experiments. The first image set includes five natural images which are com-
monly used as benchmarks for edge detection: Lena, egg, coffee maker, rubbish bin and car (see Fig. 5). These images were
downloaded from the South Florida University database [21]. To explore the performance of the new algorithms in noisy
environments, these images are corrupted by two different types of noise: impulsive and Gaussian (see the images in
Fig. 5 in columns (b) and (c)). The probability of the impulsive noise is 0.1 and the peak-signal to noise ratio (PSNR) is
16 dB for the Gaussian noise in these noisy images. As the ground truth of these images are not available, we will use them
for a subjective (qualitative) comparison.

The second image set includes one synthetic circle image and four real images (Saturn, multi-cube, wall and road). The
real images have been provided by the University of Cordoba (Spain) and their ground truth edge maps are available from
[13]. The size of each image is 256 � 256 pixels and the resolution of each is 8 bits per pixel. These images are shown in
Fig. 6. To investigate the performance of the new algorithms in noisy environments, we also add two different types of noise
in different noise levels. For the impulsive noise, the noise probability ranges from 0.1 to 0.5 with a step size of 0.05. For the
Gaussian noise, the PSNR value ranges from 0 to 22 dB with a step size of 1 dB. As the ground truth of these images are avail-
able, we used them for an objective (quantitative) comparison.

5.2. Quantitative performance measure

To evaluate the performance of the new algorithm, we use Pratt’s Figure of Merit (PFOM) which is commonly used as a
quantitative measure for the objective comparison of the localisation accuracy of edge detection algorithms [47]. This mea-
sure is defined by Eq. (28).
RPFOM ¼
1

maxðII; IAÞ
XIA

i¼1

1

1þ bdðiÞ2
ð28Þ
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Fig. 5. Example images for subjective comparison. (a) Original images Lena, egg, coffee maker, rubbish bin and car; (b) images with impulsive noise (noise
probability = 0.1); and (c) images with Gaussian noise (PSNR = 16 dB).
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Here II and IA indicate the number of ideal and actual edge points in the ground truth and the generated edge map images,
d(i) is the distance between the pixel i in the generated edge map and the nearest ideal edge point in the ideal edge map, and
b is a constant scale factor which is typically set to 1

9. This measure is an index to compute the localisation accuracy of edge
detection algorithms. The ideal value of RPFOM is 1.0 and the minimum could be very small. A larger value indicates stronger
performance.

5.3. Parameter settings

In the proposed PSO algorithms, the population size is 50 and the maximum number of iterations is 200 according to the
chosen particle length. The minimum length of a continuous edge, 2L + 1 was set at 21, SqrSize at 6, n at 9, w1 = 90, w2 = 40,
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Fig. 6. Example images for objective comparision. (a)–(d) four real image from the UCO university and their manual ground truth images [13]; and (e) one
synthetic circle image and its ground truth.
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w3 = 40, TH at the value estimated by the Ostu’s method [42], and HP at 0.5. We chose the value of the weight factors (w1, w2

and w3) based on the following preliminary experimentation. We changed the values of w1 and w2 and then calculated the
local edge magnitude of each pixel on several images. We subjectively compared the resulting edge magnitude images with
those provided by the Sobel edge detector [57] used in the Canny algorithm to estimate edge magnitudes. The value of these
two factors (w1,w2) were adjusted such that the resulting edge magnitude images are sufficiently similar. To estimate weight
factor w3, we applied PSO1 on several noisy images including simple shapes such as (circles, ellipses and rectangles). We
chose the value of this factor such that PSO1 could detect smooth edges in this images. These three weight factors can be
ideally determined through a brute-force search on a large number of images with ground truth. Although Samal et al.
[48] showed that the convergence time may be decreased in PSO and a good fitness value may also be obtained when
w = 0.6, c1 = 0.103 and c2 = 2.897, we used the values w = 0.7298, c1 = 1.4962, c2 = 1.4962 for the parameters in Eq. (2) be-
cause these values are more commonly used for real and integer valued parameter optimisation problems [30,59]. We also
chose the fully connected graph (gbest) as a swarm topology to select the leader particle in PSO because of its speed and the
ease of its implementation.

In order to make consistent and fair comparison of the proposed algorithms with Canny and RRO, we used the following
adaptive parameters for the Canny edge detector: highthreshold ¼ 2r

ffiffiffiffiffiffiffiffiffiffiffi
fuln2

p
; lowthreshold ¼ 1

2 highthreshold with fu = s � l,
s ¼

PN
i¼1

PN
j¼1a2

ij and l ¼
PN

i¼1

PN
j¼3aijaij�2 where the coefficients aij correspond to the kernel of the filter with which the image

has been smoothed [37], the filter size (r) was set at the value estimated from the approach proposed by Jeong and Kim [24].
The edge-height parameter of the RRO detector, which defines the minimum grey-level differential across an edge, was set to
the value which gave a highest PFOM value.

6. Results and discussion

This section presents the results of the subjective comparison of four algorithms (Canny, RRO, PSO1 and PSO2) followed
by the results of the objective comparison. This section also provides a short discussion on the parameters of the PSO-based
edge detection algorithms.

6.1. Subjective/qualitative comparison

The resulting images are shown in Figs. 7 and 8 after applying the Canny [11], the RRO [32] and PSO1 on the images in the
first set (Fig. 5) corrupted by impulsive and Gaussian noises respectively.

The resulting images in Fig. 7 show that PSO1 performed better than the other two algorithms on the five images with
impulsive noise at a noise probability level of 0.1. The Canny algorithm, even with preprocessing (Gaussian filter and
NMS) and post-processing (hysteresis thresholding as an edge linking technique), did not work well for these noisy images
and there are many noise spots in the resulting images. This suggests that the Canny algorithm is not suitable for detecting
edges for the images corrupted by impulsive noise and is sensitive to this kind of noise. The RRO detector operated better
than Canny, however the detected edges are thicker than those detected by Canny. PSO1 detected edges much thinner than
the RRO detector and found edges with greater continuity. As can be seen from Fig. 7, for the Lena image, there are some
broken edges on Lena’s hat in the resulting image by RRO, while PSO1 improved the detection of the edges in this area
and reduced the broken edges. The edges detected by PSO1 on the bar in the upper left corner of the image have been
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Fig. 7. Subjective results of edge detection produced by three algorithms on the five images corrupted by impulsive noise (noise probability = 0.1).
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significantly improved in comparison with the other two algorithms. For the egg image, RRO detected some false edges on
the surface of the egg and also there are several broken edges on the egg’s boundary. PSO1 operated much better than RRO on
the boundary of the egg. PSO1 reduced the broken edges on the egg’s boundary especially at the bottom of the egg. RRO de-
tected edges well in the coffee maker image, however there are still some problems in the detection of the edges in the mid-
dle-right of the image. PSO1 detected more continuous and smoother edges in this region. RRO did not operate well on the
rubbish bin especially on the left and bottom sides of the bin and there are many broken edges in the image produced by
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Fig. 8. Subjective results of edge detection produced by the three algorithms on the five images with Gaussian noise (PSNR = 16 dB).
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RRO, while PSO1 improved the detection of the edges in this area. PSO1 also improved the detection of the edges for the car
image on the surface of the street, the back wheel of the car and the trolley, while RRO did not work well in these areas.

The resulting images are shown in Fig. 8 after applying the three algorithms on the five noisy images corrupted by Gauss-
ian noise (PSNR = 16 dB). The comparison of these results with those for the impulsive noise shows that Canny detected
edges much better on the egg and coffee maker images and the noise was almost removed, but there were still many noise
spots and broken edges on the Lena, car, and rubbish bin images. This implies that Canny is less sensitive to Gaussian noise
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than to impulsive noise. The edges detected by RRO and PSO1 for these images have very similar quality to those with the
impulsive noise, although PSO1 recognised edges that are more continuous and smoother than Canny, and also detected
edges much thinner than RRO.
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Fig. 9. PFOM for the street, Saturn, wall and circle images in the second image set. (a)–(e): with different impulsive noise levels (the noise probability
ranging from 0.1 to 0.5); and (f)–(j) with different Gaussian noise levels (PSNR ranging from 0 to 22 dB) (Part I).
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Fig. 9 (continued)
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6.2. Objective/quantitative comparison

To objectively compare the first new algorithm (PSO1) with the other two algorithms (RRO and Canny), the localisation
accuracy (PFOM) was calculated from the resulting images after applying the three algorithms to the second set of images
(Fig. 6) at different noise levels. The PFOM values are plotted at 11 different Gaussian noise levels and 9 impulsive noise lev-
els as depicted in Fig. 9. PSNR ranges from 0 to 22 dB with step of 1 dB and the noise probability ranges from 0.1 to 0.5 with
step of 0.05. The number of pixels in each set in Eqs. (14) and (15), parameter n, was set at 9 in all experiments in this sub-
section. The average of the localisation accuracy of PSO was plotted after 30 runs for each image in each noise level.

As can be seen from the resulting plots in Fig. 9, PSO1 generally outperformed the other two algorithms especially when a
high level of noise is present in the images. The Canny algorithm operated reasonably well on the images with a low level of
Gaussian noise, but it did not work well in the images even with a low level of impulsive noise in most cases (see Fig. 9a–e).
These resulting plots also illustrate that PSO1 outperformed RRO in the images with impulsive and Gaussian noises in most
cases, however its performance is lower than RRO in a few cases in the images corrupted by Gaussian noise (see Fig. 9f). This
suggests that PSO1 is less sensitive to Gaussian noise and impulsive noise than RRO. Canny is more sensitive to impulsive
noise and also more sensitive to high levels of Gaussian noise than RRO. As expected, the accuracy of most algorithms is de-
creased when noise level is increased. However, PSO1 can overcome high levels of noise and it is less sensitive to noise than
other methods in most cases.

6.3. Discussion on parameter values

As already described, PSO1 has several additional parameters in comparison with Canny and RRO. The parameters include
w1, w2, w3, n, SqrSize and L as described in Section 5.3. Variation of the values of the parameters n, SqrSize and L may have
different influences on efficiency and effectiveness of PSO1 and PSO2. This subsection considers the influences of these
parameters on the performance of PSO1.

Fig. 10 shows the resulting images after applying PSO1 with different parameters on the rubbish bin and egg images cor-
rupted by impulsive noise whose probability is 0.1. As can be seen in the original images in Fig. 5, there are some illumina-
tion areas in the egg and rubbish bin images. The illumination phenomena makes it difficult for an edge detection algorithm
to work well in these areas. The images shown in Fig. 10a are the output of PSO1 with L = 10 and SqrSize = 6. The resulting
images in Fig. 10b depict that when SqrSize is increased, some details of the objects in the images are lost. This happens espe-
cially when a weak continuous edge is close to a strong edge and is almost parallel with it such as the edges of the chairs and
rubbish bin in the first image and the edges around the plate in the egg image. The images in Fig. 10c are the resulting images
when L = 15 and SqrSize = 6. In these images, the edges around the egg and rubbish bin have been improved. In this case,
when the length of the curve represented by a particle is increased, the length of broken edges is reduced but the algorithm
is slower. Therefore, the selection of a suitable particle length and the size of the square can affect the accuracy and speed of
the algorithm.

To illustrate the influence of parameter n which is the number of the neighbour pixels in Eqs. (14) and (15) on the algo-
rithm’s accuracy, the localisation accuracy (PFOM) at different noise levels was calculated from the resulting images after
applying PSO1. The value of parameter n was set at 6 (see the edge partitions in Fig. B.1 in B) and 9 (see the edge partitions
in Fig. 2) and then the algorithm was applied to the street image in the second image set which was corrupted by different
types and levels of noise. The average of the localisation accuracy of PSO1 was plotted after 30 runs in each noise level as can
be seen in Fig. 11. The plots shows that when n = 9, the algorithm’s accuracy is higher than when n = 6 in most cases.

6.4. Comparison of the two proposed algorithms

For the objective comparision of the two proposed algorithms (PSO1 and PSO2), we use PFOM as a measure of localisation
accuracy and the number of fitness function evaluations as a measure of time.



Fig. 10. Resulting images after applying PSO1 with different parameter values (a) L = 10 and SqrSize = 6, (b) L = 10 and SqrSize = 10 (c) L = 15 and SqrSize = 6.
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Table 1 shows PFOM estimated from the resulting images after applying Canny, RRO, PSO1 and PSO2. G6, G10, G14, G18
and G22 represent PSNR from 6 dB to 22 dB for Gaussian noise and N0.1, N0.2, N0.3, N0.4 and N0.5 represent noise proba-
bility from 0.1 to 0.5 for impulsive noise. The columns ‘‘PSO1’’ and ‘‘PSO2’’ show the 95% confidence intervals for the local-
isation accuracy of the two new algorithms after 30 runs for each image in each noise level. To compare the accuracy means
of PSO1 and PSO2, t-tests were used (the alternative hypothesis was inequality of the means). The statistical analysis showed
that the null hypothesis is accepted in almost all cases, i.e, there is no significant difference between their localisation accu-
racy, except for a few cases as shown by symbol ⁄ in Table 1 columns PSO1 and PSO2. However, the accuracy standard devi-
ation of the second algorithm is lower than that of the first one; this implies that the second algorithm is more stable than
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Fig. 11. Comparing PFOM for the street image in the second image set when n = 6 or n = 9 (a) with different impulsive noise levels (the noise probability
ranging from 0.1 to 0.5 the impulsive noise) (b) with different Gaussian noise levels (PSNR ranging from 0 to 22 dB). Note horizontal axis is 22-PSNR.
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the first one. Table 1 also shows that both PSO1 and PSO2 are significantly better than Canny and RRO in most cases except a
few cases as shown by symbol 4 in Table 1 columns Canny and RRO.

Table 2 depicts the 95% confidence intervals for the number of fitness function evaluations of the two new algorithms
after 30 runs for each image in each noise level. The alternative hypothesis was that the number of fitness function evalu-
ations of PSO2 is greater than that of PSO1. Statistical analysis showed that the null hypothesis is rejected in all cases. In fact,
the number of fitness function evaluations of PSO1 is 23–45% greater than PSO2. It implies that PSO1 is slower than PSO2.
The results in this table also shows that the execution time of the both algorithms is reduced when the level of the noise is
increased.

 
 

 

Table 1
Comparison of accuracy of two proposed Algorithms 1 and 2 with Canny and RRO.

Image Noise level 95% Confidence interval for accuracy Standard deviation Canny RRO

PSO1 PSO2 PSO1 PSO2

Circle G22 0.935478 ± 0.008350 0.931228 ± 0.001180 0.023335 0.003298 0.768116 0.835660
Circle G18 0.931387 ± 0.008350 0.929149 ± 0.002917 0.023335 0.008151 0.754445 0.816217
Cicle G14 0.935589 ± 0.009186 0.935650 ± 0.003156 0.025669 0.008821 0.751867 0.858205
Circle G10 0.929730 ± 0.009603 0.928105 ± 0.003227 0.026836 0.009017 0.769119 0.852699
Circle G6 0.932547 ± 0.010021 0.931485 ± 0.002688 0.028003 0.007511 0.749058 0.824651

Saturn G22 0.772790 ± 0.007515 0.772799 ± 0.003151 0.021002 0.008807 0.852345 4 0.812005
Saturn G18 0.851451 ± 0.008768 0.853361 ± 0.002623 0.024502 0.007330 0.822624 0.813742
Saturn G14 0.780282 ± 0.010021 0.784602 ± 0.002808 0.028003 0.007847 0.840852 4 0.824204
Saturn G10 0.885272 ± 0.010438 0.883163 ± 0.003215 0.029169 0.008985 0.841772 0.766146
Saturn G6 0.767548 ± 0.011273 0.767398 ± 0.002800 0.031503 0.007826 0.838813 4 0.828318

Cube G22 0.617938 ± 0.005845 0.618242 ± 0.003151 0.016335 0.008807 0.187473 0.401117
Cube G18 0.644613 ± 0.006680 0.646577 ± 0.002529 0.018668 0.007068 0.222038 0.360251
Cube G14 0.517665 ± 0.007933 0.516603 ± 0.002968 0.022169 0.008295 0.207251 0.406565
Cube G10 0.632640 ± 0.008768 0.633265 ± 0.002672 0.024502 0.007467 0.194032 0.399380
Cube G6 0.589924 ± 0.010021 0.589206 ± 0.002687 0.028003 0.007508 0.203340 0.395320

Wall G22 0.832500 ± 0.005428 0.746579 ± 0.002871 0.015168 0.008024 0.654331 0.680672
Wall G18 0.747364 ± 0.006263 ⁄ 0.746972 ± 0.003032 0.017502 0.008473 0.652029 0.673407
Wall G14 0.791053 ± 0.020088 0.791264 ± 0.003442 0.056135 0.009618 0.652318 0.675357
Wall G10 0.806529 ± 0.009269 0.806284 ± 0.002958 0.025902 0.008265 0.630157 0.669606
Wall G6 0.780092 ± 0.010605 0.780462 ± 0.002816 0.029636 0.007870 0.635119 0.671810

Street G22 0.810434 ± 0.004175 0.809075 ± 0.002740 0.011668 0.007656 0.652529 0.741287
Street G18 0.743296 ± 0.005845 0.743951 ± 0.003119 0.016335 0.008716 0.663258 0.698976
Street G14 0.746577 ± 0.007098 0.746826 ± 0.002906 0.019835 0.008120 0.591021 0.662430
Street G10 0.637710 ± 0.007933 0.641211 ± 0.003197 0.022169 0.008934 0.581495 0.6643914
Street G6 0.750670 ± 0.008852 0.750181 ± 0.003453 0.024736 0.009649 0.638049 0.722894

Circle N0.1 0.959942 ± 0.012526 0.959575 ± 0.002985 0.035003 0.008342 0.416076 0.910307
Circle N0.2 0.919787 ± 0.014196 0.922108 ± 0.003108 0.039670 0.008684 0.128539 0.896144
Cicle N0.3 0.868376 ± 0.015448 0.872434 ± 0.002940 0.043171 0.008216 0.009316 0.863126
Circle N0.4 0.805718 ± 0.016283 0.805952 ± 0.002973 0.045504 0.008307 0.003783 0.551743
Circle N0.5 0.457309 ± 0.017536 0.453197 ± 0.002472 0.049004 0.006908 0.001893 0.019552

Saturn N0.1 0.419754 ± 0.011273 0.421777 ± 0.002676 0.031503 0.007479 0.374629 0.389246
Saturn N0.2 0.468760 ± 0.012943 0.470071 ± 0.002718 0.036170 0.007596 0.114122 0.394962
Saturn N0.3 0.484417 ± 0.014613 0.483590 ± 0.002852 0.040837 0.007969 0.008486 0.365243
Saturn N0.4 0.344146 ± 0.016283 0.191153 ± 0.003083 0.045504 0.008615 0.003533 0.249544
Saturn N0.5 0.191539 ± 0.016283 0.192462 ± 0.002698 ⁄ 0.045504 0.007539 0.001750 0.007544

Cube N0.1 0.570007 ± 0.012108 0.569811 ± 0.002997 0.033836 0.008375 0.238533 0.451012
Cube N0.2 0.534157 ± 0.012943 0.535551 ± 0.002924 0.036170 0.008171 0.066385 0.430736
Cube N0.3 0.535441 ± 0.013778 0.534368 ± 0.002878 0.038503 0.008043 0.005257 0.393973
Cube N0.4 0.406655 ± 0.015448 0.406561 ± 0.002501 0.043171 0.006988 0.002173 0.263651
Cube N0.5 0.291388 ± 0.016283 0.291420 ± 0.003122 0.045504 0.008724 0.001052 0.009412

Wall N0.1 0.474320 ± 0.006263 0.477228 ± 0.002531 0.017502 0.007074 0.612840 4 0.394115
Wall N0.2 0.485948 ± 0.007933 0.488712 ± 0.002757 0.022169 0.007705 0.116294 0.388994
Wall N0.3 0.581962 ± 0.008768 0.582185 ± 0.002954 0.024502 0.008256 0.005233 0.369926
Wall N0.4 0.438475 ± 0.009603 0.440016 ± 0.002716 0.026836 0.007589 0.003154 0.241493
Wall N0.5 0.254742 ± 0.010021 0.256399 ± 0.002995 0.028003 0.008369 0.002110 0.008363

Street N0.1 0.542130 ± 0.009186 0.542094 ± 0.002988 0.025669 0.008349 0.492784 0.384163
Street N0.2 0.503819 ± 0.012641 0.381383 ± 0.003045 0.035327 0.008508 0.147636 0.381919
Street N0.3 0.456459 ± 0.010922 0.456501 ± 0.002825 ⁄ 0.030521 0.007895 0.005876 0.364330
Street N0.4 0.413806 ± 0.013200 0.413252 ± 0.002178 0.036886 0.006086 0.004350 0.244949
Street N0.5 0.274330 ± 0.019822 0.275494 ± 0.003303 0.055392 0.009229 0.002438 0.008015



Table 2
Comparison of number of fitness function evaluations of two proposed algorithms.

Image Gaussian Number of fitness Function evaluation Impulsive Number of fitness Function evaluation
Noise PSO1 PSO2 Noise PSO1 PSO2

Circle G22 323030 ± 1312 207800 ± 920 N0.1 400715 ± 991 219534 ± 432
Circle G18 327334 ± 1521 229185 ± 1212 N0.2 450759 ± 1235 252709 ± 672
Circle G14 353063 ± 1715 244257 ± 1589 N0.3 490668 ± 1331 304466 ± 1005
Circle G10 366924 ± 1777 243988 ± 2123 N0.4 539773 ± 1465 346415 ± 1226
Circle G6 373982 ± 1796 253840 ± 2546 N0.5 581010 ± 1544 386201 ± 1364

Saturn G22 476004 ± 902 345226 ± 414 N0.1 541637 ± 1102 354948 ± 589
Saturn G18 484546 ± 1117 346531 ± 715 N0.2 584619 ± 1375 385045 ± 1069
Saturn G14 524227 ± 1489 359331 ± 1002 N0.3 620979 ± 1629 419322 ± 1217
Saturn G10 532034 ± 1822 369737 ± 1135 N0.4 667164 ± 1934 471066 ± 1340
Saturn G6 545284 ± 2155 376747 ± 1319 N0.5 707622 ± 1822 528268 ± 1474

Cube G22 469166 ± 1512 340213 ± 1132 N0.1 508684 ± 512 345031 ± 361
Cube G18 496997 ± 1802 363181 ± 1345 N0.2 544439 ± 1013 374948 ± 612
Cube G14 509903 ± 1937 380805 ± 1717 N0.3 585330 ± 1977 421404 ± 1023
Cube G10 540693 ± 2158 381208 ± 1677 N0.4 631625 ± 2742 466059 ± 1408
Cube G6 556178 ± 2282 397107 ± 1753 N0.5 670429 ± 3363 502716 ± 2027

Wall G22 519792 ± 604 354213 ± 918 N0.1 562815 ± 1472 365010 ± 1239
Wall G18 523865 ± 1287 367963 ± 1392 N0.2 607663 ± 1813 394998 ± 1472
Wall G14 538217 ± 2380 386111 ± 1751 N0.3 651921 ± 2399 441756 ± 1851
Wall G10 554694 ± 2605 407519 ± 2082 N0.4 689938 ± 3311 504399 ± 1936
Wall G6 572290 ± 2757 407763 ± 2503 N0.5 734026 ± 4646 549808 ± 2066

Street G22 461291 ± 812 287938 ± 376 N0.1 450404 ± 771 294990 ± 503
Street G18 487904 ± 1172 282458 ± 710 N0.2 496485 ± 1326 324903 ± 693
Street G14 512448 ± 1518 295158 ± 1002 N0.3 535521 ± 1589 384105 ± 792
Street G10 526171 ± 1779 312752 ± 1627 N0.4 580484 ± 1989 428221 ± 947
Street G6 565901 ± 2002 336680 ± 2317 N0.5 614524 ± 2280 471332 ± 1148
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The execution time of PSO1 is usually between 50 and 70 s and that of PSO2 is between 40 and 50 s for these images
depending on the noise level on a machine with 2.6 GHz CPU and 4 GB RAM. These are considerably longer than RRO and
Canny. We will investigate new ways of reducing the computation cost in the future.

7. Conclusions

The main goal of this paper was the reduction of the broken and jagged edges in noisy images by proposing an optimi-
sation model in order to detect edges in such images. The goal was successfully achieved by developing a new approach in
the framework of PSO to optimise the solution. To overcome noise and reduce the broken and jagged edges, a new fitness
function based on the possibility score of a curve being fitted on an edge and the curvature cost of the curve with two con-
straints was developed. Two different methods were proposed to handle the constraints. The efficiency and effectiveness of
the new PSO-based algorithms were examined on two benchmark image sets corrupted by two different types of noise at
different levels and compared with the Canny and RRO algorithms based on PFOM as a measure of efficiency.

The objective and subjective results showed that the new algorithms generally performed better than the Canny and RRO
edge detectors in the images corrupted by Gaussian and impulsive noise. Although the execution time of the new algorithms
are longer than Canny and RRO, the edges detected by them are more connected and more accurate than Canny and RRO.
Furthermore, the new algorithms do not use any extra preprocessing or post processing techniques. These results also
showed that Canny could perform reasonably well for some images with a low level of noise; however, its performance is
worse than RRO in most cases.

In comparison with the other deterministic algorithms, the new approach has many parameters such as the size of the
square, the minimum length of the particle, and the weights of different factors in the fitness function. Our experiments
show that there may be a relationship between these parameters especially between first two parameters. The size of the
square and the minimum length of the particle affect the accuracy and the speed of the algorithms and they will be analysed
more precisely in the future. Furthermore, as a future research direction, the initialization of particles with more diversity,
which may help the PSO convergence, can be investigated. In this paper, we used a fully connected graph as the neighbour-
hood topology in all our experiments. Since choosing an ideal topology requires complete experimentation, we will inves-
tigate the influence of the different topologies on the accuracy and execution time of the new algorithms. The influence of
using local thresholding techniques instead of using global ones will also be investigated.

Appendix A. Sigmoid function

The general form of the sigmoid function is formulated as:



Fig. B.1. Six ways of moving from pixel P to a neighbouring pixel when n = 6.
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Y ¼ a1

1þ e�a2ðx�a3 Þ
where x is the input variable, a1 is the range of Y, a2 is the gain coefficient, and a3 is the point of maximum gain. The max-
imum gain is the point at which the slope of the sigmoid function is maximum or at which the value of the second derivative
is zero. Therefore, the maximum gain equals a1a2/4. The threshold and saturation points for the sigmoid function are defined
as the values of X at which the third derivative of the sigmoid function are zero, i.e.,
TH ¼ a3 þ 1:317=a2

SAT ¼ a3 � 1:317=a2
where TH and SAT are the threshold and saturation points for the sigmoid function. Therefore,
a2 ¼
2:634

TH � SAT

a3 ¼
SAT þ TH

2

Appendix B. Edge partitions when n = 6

For n = 6, we considered six ways of dividing a neighbourhood of a pixel into two sub-regions in our experiments as fol-
lows: (see Fig. B.1).
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