Optimal tracking and robust power control of the DFIG wind turbine

S. Abdeddaim *, A. Betka

Laboratoire de Genie Electrique de Biskra (LCEB), Electrical Engineering Department, University of Biskra, Biskra 07000, Algeria

ABSTRACT

In the present paper, an optimal operation of a grid-connected variable speed wind turbine equipped with a Doubly Fed Induction Generator (DFIG) is presented. The proposed cascaded nonlinear controller is designed to perform two main objectives. In the outer loop, a maximum power point tracking (MPPT) algorithm based on fuzzy logic theory is designed to permanently extract the optimal aerodynamic energy, whereas in the inner loop, a second order sliding mode control (2-SM) is applied to achieve smooth regulation of both stator active and reactive powers quantities. The obtained simulation results show a permanent track of the MPP point regardless of the turbine power-speed slope moreover the proposed sliding mode control strategy presents attractive features such as chattering-free, compared to the conventional first order sliding technique (1-SM).

1. Introduction

During the last decades, especially after the oil crisis in the 1970s, global interest for clean and renewable energy sources has been growing intensively. Wind energy in particular, has received a strong impulse, reflected in great technology advances regarding reliability, cost-efficiency and integration to the grid of the wind energy conversion systems (WECSs). Wind turbines generate about 1.5% of the world electricity consumption, with an installed capacity of 121 GW by the end of 2008 comprising more than 70 countries [1].

These wind turbines are all based on variable speed operation using a Doubly Fed Induction Generator (DFIG) or a direct driven synchronous generator (without gearbox).

The doubly fed induction generator is used in several wind energy conversion systems. This machine has proven its efficiency due to qualities such as robustness, cost and simplicity. It offers several advantages including variable speed operation (±33% around the synchronous speed), and four-quadrant active and reactive power capabilities Such system also results in lower converter cost and lower power losses compared to a system based on a fully fed synchronous generator with full-rated converter. Moreover, the generator is robust and requires little maintenance [2–9].

The control law of the converter can be applied in order to extract maximum power of the wind turbine for different wind speeds.

Many papers have been presented with different control schemes of DFIG. These control schemes are generally based on vector control concept (with stator flux or voltage orientation) associated with classical controllers [10–16].

With the improvements technologies in materials, power electronics and blade design, classical controllers for WECS can be updated by the development of more efficient strategies based on modern control techniques such as: fuzzy logic control [17–19], robust control [20–22], adaptive control [23] and sliding-mode control [24–27].

Among these control strategies, sliding mode (SM) control emerges as an especially suitable option to deal with variable speed operating WECS. This control technique has proven to be very robust with respect to system parameter variations and external disturbances.

In this paper, an optimal operation of a grid-connected variable speed wind turbine, based on a doubly fed induction generator is presented. The proposed control algorithms focus two main goals: a permanent track of the available maximum wind power, and a smooth regulation of the stator active and reactive powers exchanges between the machine and the grid.

In Section 2, explicit models of the different sub-systems are described. In Section 3, the proposed control algorithms are detailed precisely, while in Section 4 simulation results are presented and discussed.

2. System description and modeling

The topology of the wind energy conversion system (WECS) under consideration in this paper is depicted in Fig. 1. It is constituted...
of a small scale windmill and a Doubly Fed Induction Generator (DFIG) coupled to a three phase grid.

In such configuration, the stator winding is directly connected to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.

In the case studied in this paper, two operation modes are distinguished: when the aerodynamic power is not enough to reach the synchronous speed, the system operates at mode 1: maximum power extraction, whereas, if the wind speed exceeds the rated value, the system switches to mode 2: power limitation, which leads to the grid, whereas, two converters are inserted between the rotor side and the utility grid to permit a power exchange between the grid and the machine in sub-synchronous speed. So the grid side converter (GSC) works as a rectifier, and the rotor side converter (RSC) operates to control the DFIG for independent control of active/reactive powers quantities.
2.2. DFIG modeling

The d–q model in the arbitrary reference frame is expressed as follows [29]:

\[V_s = R_i I_s + j \omega L_s I_s + j \omega \varphi_s \]
\[V_r = R_i I_r + j \omega L_s I_r + j \omega \varphi_r \]
\[V_s = V_{sd} + j V_{sq}, \quad V_r = V_{rd} + j V_{rq} \]

The stator and rotor flux are given by:

\[\varphi_s = \varphi_{sd} + j \varphi_{sq} \]
\[\varphi_r = \varphi_{rd} + j \varphi_{rq} \]
\[\varphi_{sd} = L_s I_{sd} + L_m I_{rd}, \quad \varphi_{sq} = L_s I_{sq} + L_m I_{rq} \]
\[\varphi_{rd} = L_r I_{rd} + L_m I_{rd}, \quad \varphi_{rq} = L_r I_{rq} + L_m I_{rq} \]

Stator and rotor variables are both referred to the stator reference park frame. With this orientation, the d-component of the stator flux is equal to the total flux whereas the q-component of the stator flux is null. In this approach, decoupled control between the stator active and reactive powers is obtained.

Assuming that the resistance of the stator windings \((R_s) \) is neglected and referring to the chosen reference frame, the voltage and the flux equations of the stator winding can be simplified in steady state as follows:

\[V_{sd} = 0, \quad V_{sq} = \omega_0 \varphi_{sd} \]
\[\varphi_r = L_s I_{rd} + L_m I_{rd}, \quad \varphi_{rq} = 0 \]
\[V_{rd} = R_i I_{rd} + \sigma \omega \left(\frac{L_m}{L_r} I_{rd} \right) \varphi_{rd} \]
\[V_{rq} = R_i I_{rq} + \sigma \omega \left(\frac{L_m}{L_r} I_{rd} \right) \varphi_{rq} \]

where: \(\sigma = 1 - \frac{L_m}{L_r} \). From (14), the equations linking the stator currents to the rotor currents are deduced below:

\[I_{rd} = \frac{\varphi_{rd}}{L_r} - \frac{L_m}{L_r} I_{rd} \]
\[I_{rq} = -\frac{L_m}{L_r} I_{rq} \]

The active and reactive powers at the stator side of DFIG are defined by:

\[P_s = (V_{sd} I_{sd} + V_{sq} I_{sq}) \]
\[Q_s = (V_{sd} I_{sd} - V_{sq} I_{sq}) \]

Replacing the stator currents by their expressions given in (18) and (19), the equations of the active and reactive powers at the stator side of DFIG are given by:

\[P_s = \frac{L_m}{T_m} V_{sq} I_{rq} \]
\[Q_s = V_{sd} \frac{L_m}{T_m} \left(\frac{\varphi_{sd}}{L_r} - I_{rd} \right) \]

Due to the constant stator voltage, the stator active and reactive powers are controlled by means of \(I_{rq} \) and \(I_{rd} \) respectively.

3. The variable speed control strategy

3.1. Control structure

The wind turbine electric system time responses are much faster than those of the others parts of the WECS. This makes it possible to dissociate the generator and the aeroturbine control designs and thus define a cascaded control structure around two sub-system control:

- The power sub-system control concerns the electric generator via the power converter.
- The wind sub-system control concerns the aeroturbine that provides the reference inputs of the power sub-system control. Thereafter, these two control levels will be considered separately as seen in Fig. 4.

3.2. Wind sub-system control

The two possible modes of control are as follows.

- Mode 1: tracking mode It corresponds to periods of sufficient wind power to satisfy the total demand, this situation is maintained until both the rated power and synchronous speed are attained (zone2) Fig. 5.
one; the speed variation (\(D \) is either in the positive direction or in the negative one; the speed variation (\(D \Omega_m\)) can be also small or large. From these judgements, the reference rotational speed variation \(D m_{\text{ref}}\) increases or decreases in a small or respectively large way in the direction which makes it possible to increase the power \(P_a\).

The control rules are indicated in Table 1: with \((\Delta P_a)\) and \((\Delta \Omega_m)\) as inputs, while \((\Delta \Omega_{\text{mref}})\) represent the output. These inputs and output variables are expressed in terms of linguistic variables (such as BN (big negative), MN (means negative), SN (small negative), Z (zero), SP (small positive), MP (means positive), BP (big positive)).

From these linguistic rules, the FLC proposes a variation of the reference speed \((\Delta \Omega_{\text{mref}})\) according to:

\[
\Delta P_a = P_a[k] - P_a[k - 1] \\
\Delta \Omega_m = \Omega_m[k] - \Omega_m[k - 1] \\
\Omega_{\text{mref}}[k] = \Omega_m[k - 1] + \Delta \Omega_{\text{mref}}[k]
\]

where \(P_a[k]\) and \(\Omega_m[k]\) are the rotor power and rotational speed at sampled times \((k)\), and \(\Omega_{\text{mref}}[k]\) is the instant of reference speed.

The fuzzy logic controller structure is shown in Fig. 6, where K1, K2 and K3 are adaptive gains.

The bloc fuzzy logic controller includes three functional blocks: fuzzification, fuzzy rule algorithm, and defuzzification.

The membership functions of inputs variables \((\Delta P_a)\) and \((\Delta \Omega_m)\) are triangular and have seven fuzzy subsets. Seven fuzzy subsets are also considered for the output variable \(\Delta \Omega_{\text{mref}}\).

The fuzzy inference is carried out by using Sugeno’s method [30,31], and the defuzzification uses the center of gravity to compute the output of this FLC.

As explained previously, the FLC optimises the reference speed \(\Omega_{\text{mref}}\) for maximum power tracking. This speed represents a positive input (reference) of the PI controller, which performs the speed control in steady state. The PI loop operates with a fast rate and provides fast response and overall system stability.

3.2.2. Power limit

Above the rated wind speed (Mode 2), the control must limit the extracted power in the tolerable range between \(P_{\text{min}}\) and \(P_{\text{max}}\), and the rotational speed in the stable operation mode (30–100% \(\omega_m\)), so when the extracted power increases over the nominal value, the control circuit reduces the reference speed Fig. 7 to prevent steady-state high power amounts. A speed controller circuit added to the previous FLCPPT design, the sensed stator power as a feedback. When the power exceeds the maximum value, the reference speed must be reduced by the amount, \(K_4 (P_{\text{min}} - P_{\text{max}})\) [32].
3.3. Power sub-system control

A common practice in addressing DFIG control problem is to use the linearisation approach [33,34]. However, due to inevitable inherent uncertainties in WECS based on DFIG, such control methods come at the price of poor system performance and low reliability [35]. Hence the need for nonlinear and robust control to take into account these control problems. In this context, sliding mode control seems to be an interesting approach.

3.3.1. High order sliding mode controller design

The first order sliding mode control (1-SM) is an effective nonlinear robust control. However, a few problems arise in some practical applications, such as chattering effect and undesirable mechanical stresses.

The second order sliding mode (2-SM) algorithm synthesizes a discontinuous control which makes the surface and its derivative null with continuous control, therefore reducing chattering and avoiding strong mechanical efforts while preserving (1-SM) advantages [36].

To ensure the DFIG active and reactive stator powers convergence, the d–q rotor currents references are linked to the optimal active and reactive stator powers as follows:

\[I_{dref} = -\frac{L_s}{L_m} V_s \]
\[I_{qref} = \frac{V_s}{\omega L_m} \]

The optimal reactive power is set to zero to ensure a unity power factor operation of the studied wind turbine: \(Q_{ref} = 0 \). Whereas the optimal active power \(P_{opt} \) can be written with neglected losses as:

\[P_{opt} \approx P_{act} \]

The block diagram of the second order sliding mode control applied to the DFIG is illustrated in Fig. 8 [37].

Let us consider the following surfaces:

\[\sigma_d = I_d - I_{dref} \]
\[\sigma_q = I_q - I_{qref} \]

Then we have

\[\dot{\sigma}_d = \frac{1}{L_r} V_{rd} + \frac{1}{L_r} \left(-R_L I_d + g \omega_L L_r \sigma_lq \right) - I_{dref} \]
\[\dot{\sigma}_q = \frac{1}{L_r} V_{rq} + \frac{1}{L_r} \left(-R_L I_q - g \omega_L L_r \sigma_lq - g \omega_L \phi_s \left(\frac{L_m}{L_s} \right) \right) - I_{qref} \]

If we define the functions \(G_1 \) and \(G_2 \) as follows:

\[G_1 = \frac{1}{L_r} \left(-R_L I_d + g \omega_L L_r \sigma_lq \right) - I_{dref} \]
\[G_2 = \frac{1}{L_r} \left(-R_L I_q - g \omega_L L_r \sigma_lq - g \omega_L \phi_s \left(\frac{L_m}{L_s} \right) \right) - I_{qref} \]

Thus:

\[\dot{\sigma}_d = \frac{1}{L_r} V_{rd} + G_1 \]
\[\dot{\sigma}_q = \frac{1}{L_r} V_{rq} + G_2 \]

The control algorithm proposed which is based on super twisting algorithm (ST) has been introduced by Levant [38]. The second order sliding mode controllers contain two parts:

\[V_{rd} = u_1 + u_2 \]

with
\[\dot{u}_1 = -\alpha_1 \text{sign}(\sigma_d) \]
\[u_2 = -\theta_1 |\sigma_d|^{0.5} \text{sign}(\sigma_d) \]

and
\[V_{rq} = w_1 + w_2 \quad (38) \]

with
\[w_1 = -\alpha_2 \text{sign}(\sigma_q) \]
\[w_2 = -\theta_2 |\sigma_q|^{0.5} \text{sign}(\sigma_q) \]

In order to ensure the convergence of the sliding manifolds to zero in finite time, the constants \(\alpha_i \) and \(\theta_i \) can be chosen as follows:
\[\alpha_i > \frac{\mu_i}{L_i \sigma} \]
\[\theta_i > \frac{4\mu_i (\alpha_i + \mu_i)}{L_i^2 \sigma^2 (\alpha_i - \mu_i)} \]
\[|\tilde{G}_i| < \mu_i; \quad i = 1, 2 \quad (39) \]

4. Simulations results

The simulation results are carried out using Matlab–Simulink package, under a wind speed profile of (8 m/s) mean value, as depicted in Fig. 8a and the rated system parameters are given in Appendix A.

It can be seen in Fig. 9b that up to the rated wind speed (8 m/s), the MPPT controller ensures the tracking of the optimum power points MPPT (mode 1), by maintaining the power coefficient to its maximum value \(\text{Cp}_{\text{max}} \) (0.54); whereas above the rated wind speed, the power coefficient is reduced accordingly to (mode 2), to perform constant power operation (power limitation).

In Fig. 10 are displayed the active and reactive powers at the stator side of the DFIG, controlled via the proposed high order sliding mode controller (2-SM), while, in a comparative way, Fig. 11, describes these quantities under the conventional first order sliding mode control (1-SM). One can conclude that, under the super-twisting control algorithm, the stator power amounts track their references values with smooth profiles, with chattering-free. On the other hand, in Fig. 11 undesirable surging phenomena chattering are easily remarked. In addition, to see the efficiency of the proposed control strategy, Table 2 presents the results of the following tracking indices:

1. The integral of absolute error: IAE, given by: \(\text{IAE} = \int_0^T |e(t)| \, dt \).
2. The integral of square error: ISE, as: \(\text{ISE} = \int_0^T e^2(t) \, dt \).

One can easily conclude, that the suggested control technique submits low tracking indices over the wind speed profile, which proves its performance, while compared to the 1-SM strategy.

Fig. 12a shows both the DFIG speed and its reference, while Fig. 12b gives the speed tracking error. Two remarks can be extracted:

1- In mode 1, the DFIG speed tracks satisfactorily its optimum reference, provided by the FLC algorithm with negligible error (Fig. 12b).
2- In mode 2, as the power limitation circuit described above, the speed values are bounded in the tolerable range under constant power, a reduction of the machine’s speed is observed. Consequently, the DFIG releases its rated power with a speed range from 450 to 1500 rpm.
Fig. 13 displays respectively the rotor current waveform and the d–q sliding surfaces. It can be seen, that the rotor is supplied with variable low frequency signals according to wind speed variations. In addition, after a brief time (convergence mode), the two axes sliding surfaces reach their steady-state values (zero) smoothly.

Finally, Fig. 14 displays, a sample waveform of the DFIG stator current and voltage, between 2 s and 2.1 s. It can be seen that the phase angle is kept at 180°, which proves that the DFIG machine performs as generator, and no reactive power is provided to the grid, as can be checked on Fig. 10b.

5. Conclusion

The DFIG is nowadays a popular choice for wind energy conversion systems. This popularity is mostly due to its ability for large variable speed drive. Such system also results in lower converter cost and lower power losses compared to a system based on a fully fed synchronous generator with full-rated converter.

In this paper, a complete system to produce electrical energy using DFIG is presented. The stator is directly connected to the grid and the rotor is connected to the utility by the way of two converters (machine inverter and grid rectifier). A cascaded control algorithms where properly designed to ensure the optimal operation of the whole system. In the outer loop, a fuzzy logic controller was designed to extract the maximum aerodynamic power up to the rated power, regardless of the turbine power-speed slope. If the wind power exceeds the rated value, the system switches to power regulation mode, via the power limitation circuit. In the inner loop, the described high order sliding mode controller has been designed to control the active and reactive powers exchanged between the machine and the grid, through the machine inverter. The obtained simulation results show that the system switches with flexibility between the “Tracking mode” and the “Power regulation mode” without synchronous speed overshoot. On the other hand, the stator power quantities provided by the 2-SM strategy show...
smooth waveforms, with good tracking indices. Consequently, undesirable mechanical stresses and the chattering phenomena in the case of 1-SM control are avoided.

Appendix A

See Table A.1.
Table A.1
DFIG and turbine models parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. DFIG data</td>
<td></td>
</tr>
<tr>
<td>Rated power</td>
<td>7.5 (kw)</td>
</tr>
<tr>
<td>Rated line voltage</td>
<td>220 (V)</td>
</tr>
<tr>
<td>Grid frequency</td>
<td>50 (Hz)</td>
</tr>
<tr>
<td>R_s</td>
<td>0.455 (Ω)</td>
</tr>
<tr>
<td>R_r</td>
<td>0.62 (Ω)</td>
</tr>
<tr>
<td>L_s</td>
<td>0.084 (H)</td>
</tr>
<tr>
<td>L_r (refer to stator)</td>
<td>0.081 (H)</td>
</tr>
<tr>
<td>L_m (refer to rotor)</td>
<td>0.078 (H)</td>
</tr>
<tr>
<td>Moment of inertia, I</td>
<td>0.3125 (kg m²)</td>
</tr>
<tr>
<td>Friction coefficient, f</td>
<td>6.7310^{-3} (N m s⁻²)</td>
</tr>
<tr>
<td>Number of poles</td>
<td>4</td>
</tr>
<tr>
<td>B. Wind turbine data</td>
<td></td>
</tr>
<tr>
<td>Rated power P_{aw}</td>
<td>7.8 (kw)</td>
</tr>
<tr>
<td>ω_0</td>
<td>9.001</td>
</tr>
<tr>
<td>ω_2</td>
<td>6.38×10^{-2}</td>
</tr>
<tr>
<td>ω_3</td>
<td>-9.40×10^{-2}</td>
</tr>
<tr>
<td>ω_4</td>
<td>9.86×10^{-3}</td>
</tr>
<tr>
<td>ω_5</td>
<td>-17.375×10^{-4}</td>
</tr>
<tr>
<td>ω_6</td>
<td>7.956×10^{-3}</td>
</tr>
<tr>
<td>R_s</td>
<td>3.80 (m)</td>
</tr>
<tr>
<td>Rated wind speed</td>
<td>8 (m s⁻¹)</td>
</tr>
<tr>
<td>Cut-in speed</td>
<td>5 (m s⁻¹)</td>
</tr>
</tbody>
</table>