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Abstract: Modelling of real physical systems having long memory transients and infinite dimensional structures using fractional-
order dynamic models has significantly attracted interest over the last few years. For this reason, many identification techniques
both in the frequency domain and time domain have been developed to model these fractional-order systems. However, in many
processes time delays are also present and estimation of time delays along with continuous-time fractional-order model
parameters have not been addressed anywhere. This study deals with the continuous-time model identification of fractional-
order system models with time delays. In this study, a new linear filter is introduced for simultaneous estimation of all model
parameters for commensurate fractional-order system models with time delays. The proposed method simultaneously
estimates time delays along with other model parameters in an iterative manner by solving simple linear regression equations.
For the case when the fractional order is unknown, we also propose a nested loop optimisation method where the time delay
along with other model parameters are estimated iteratively in the inner loop and the fractional order is estimated in the non-
linear outer loop. The applicability of the developed procedure is demonstrated by simulations on a fractional-order system
model by doing Monte Carlo simulation analysis in the presence of white noise. The proposed algorithm has also been
applied to identify a process of thermal diffusion in a wall in simulation, which are characterised by fractional-order behaviour.

1 Introduction

Fractional calculus is a generalisation of the traditional integer
order integral and differential calculus to non-integer orders.
With the growing power of computers, fractional calculus
now has become an increasingly interesting topic of
research in the scientific and industrial communities. In the
last two decades, there has been a considerable
development in the use of fractional operators in various
fields. Before the 20th century, the theory of fractional
calculus developed mainly as a pure theoretical field of
mathematics useful only for mathematicians. A significant
amount of discussions aimed at this subject has been
presented by [1, 2]. However, recently it has been observed
that many real-world physical systems are well
characterised by fractional-order differential equations rather
than using classical integer order models. In particular,
materials having long memory and hereditary effects [3]
and dynamical processes such as mass diffusion and heat
conduction [4] in fractal porous media can be more
adequately modelled by fractional-order (FO) models rather
than integer-order models. Some of the other examples of
fractal systems include transmission lines, electrochemical
processes, dielectric polarisation and viscoelastic materials.
Diffusive interfaces are particularly characterised by
fractional-order dynamic behaviour, such as it appears in
the case of an induction machine, with Foucault currents
inside rotor bars [5] and heat transfer model relating flux
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and the temperature at the diffusive interface [6—8]. The
special issue of signal processing [9] discusses in detail
many applications of fractional calculus in different fields.
System identification has become a standard tool for
modelling unknown systems. However, identifying a given
system from data becomes more difficult when the physical
systems are characterised by fractional-order differential
equations instead of classical integer-order models. Thus,
fractional models, using fractional differentiation, have been
developed. The identified models for fractional-order
systems can also be used to design controllers for these
systems which may not be, just classical integer order
controllers. For integer-order systems, the parameters of the
model equation can be optimised directly once the
maximum order of the system to be identified is fixed,
while for fractional-order systems, identification requires the
choice of the fractional powers (orders) of the operators,
and also the coefficients of the operators. Thus, loss of
integer order significantly complicates the identification
process. Time-domain system identification using fractional
differentiation models was initiated by Lay [10], Lin [11]
and Cois [6], in their PhD thesis work in the late 1990s.
The two model identification approaches developed were:
equation error (ER)-based and output error-based
approaches, both of which are very well studied in the
literature for integer-order models. As in the case of
continuous model identification for integer-order models,
fractional differentiation of noisy signals also amplifies
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noise. Hence, a linear transformation using low-pass filter can
be applied to the model equation. As for the integer case,
continuous-time model identification (CMI) using linear
filter methods have also been proposed for FO models such
as fractional integral filter, Poisson’s state variable (SVFs)
filters [12], and Refined Instrumental Variable for
Continuous systems (RIVC) [13]. Using the iterative
instrument variable (IV) approach it has been shown in [13]
that the srivef method is asymptotically unbiased, given the
true system is in the right model class. They also proposed
an algorithm for optimising the commensurate fractional
order using a gradient-based method [14]. Many of these
identification methods have already been applied to model
some real physical processes for example see [5, 15, 16].
Use of fractional calculus theory for building parsimonious
models can be found in [17, 18]. Also, identification
methods based on orthogonal basis functions such as
fractional Laguerre and Kautz basis functions, have been
proposed [19]. The recent paper by [20] discusses briefly all
these advances in time-domain system identification using
fractional models.

However, none of these studies discuss methods for
identification of fractional-order system models with time
delays. Whenever material or energy is physically moved in
a process or a plant, there is usually a time delay associated
with the movement [21]. Time delay is also referred to as
dead time, transportation lag or distance-velocity lag. Also,
apparent time delays may result because of measurements
or actuators in a process or in the identification exercise
when a higher-order process is approximated by a lower-
order model. It is reported in [22] that because of actuator
limitations in some systems such as motion control, the
system can be well modelled with a FO open-loop transfer
function model with time delay. Malti et al. [15] noticed
the time-lag in flux diffusion while modelling a thermal rod
process (a fractional-order system) from experimental data.
In this work, the focus is to develop a linear filter method
based on the EE approaches for direct identification of
continuous-time transfer function models. In this paper, we
describe a scheme for continuous time identification of
commensurate FO models with time delays. The proposed
algorithm is a extension of the authors’ previous work [23].
We propose two formulations based on the type of input
signal excitation. The first formulation is based on step
input excitation and the second one applies to more generic
(RBS, PRBS, Sinusoidal, etc) kind of input signal
excitation. In this scheme, the delay is estimated
simultaneously with all other model parameters. The
formulation as proposed by [24] for integer-order
continuous-time systems is extended to identification of
fractional system models. Wang and Zhang [25] proposed a
method to estimate time delay along with other parameters
for integer-order models using a step input. To the best
knowledge of the authors no formulation for estimating all
model parameters including delays has been proposed for
fractional models. The formulation is based on the low-pass
filtering operation where the filter is chosen as the
combination of RIVC and a linear integral filter, to make
the delay term appear as explicit parameter along with other
parameters. The proposed method estimates the time delay
along with constant model parameters in an iterative
manner by solving simple linear regression equations. In
the presence of noise, a modified scheme using instrument
variable method where instruments are build based on
auxiliary model is proposed. For fractional models the aim
is also to identify fractional powers along with other model
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parameters. Here, we also propose a nested loop
optimisation method where the time delay along with
constant model parameters are estimated iteratively in the
inner loop and the commensurate order is estimated in the
non-linear outer loop for commensurate type transfer
function models. The advantage of working with
commensurate order models is that all fractional powers in
the model are integer multiple of a single fractional order
and therefore we need to estimate only one term in the
outer loop. The proposed method is generic in the sense
that it can also be applied to integer-order transfer function
models.

The remainder of this paper is organised as follows.
Section 2 presents a brief mathematical background of
fractional calculus with an introduction to FO models. The
CMI algorithm for commensurate fractional-order system
models with time delays (CFOTDS) using step input and
any other generic kind of input excitation is presented in
Section 3. To study the efficacy of the proposed strategy
developed in the Section 3, different examples of fractional-
order models in the presence of noise are outlined in
Section 4. Section 5 discusses the results for the proposed
algorithm applied to a real process of thermal diffusion in a
wall, followed by concluding remarks in Section 6.

2 Mathematical background

2.1 Definitions and FO models

Fractional calculus is a generalisation of integration and
differentiation to non-integer orders. The two most popular
definitions used to describe fractional differentiation and
integration are the Griinwald—Letnikov (GL) discrete form
of the definition and the Riemann—Liouville (RL) definition
[1]. The GL definition for a function f(¢) is given as

1 & ,
DYf(5) = lim ,;; <—1)’< ?)f(r — ih) (1)

where

(A)_ T(A+ 1)
i) T+ DA —i+1)

@

and the operator D* defines fractional differentiation or
integration depending on the sign of A, I'(-) being the well-
known Euler’s Gamma function and # is the finite sampling
interval. This definition is particularly useful for digital
implementation of the fractional operator. The RL definition
is given as

A _ d" 1 ! (1)
D f(t) - ﬁ |:1—‘(m — A)jo (t _ 7_))\_;,_1_,,1

dr} 3)

where m is an integer such that (m — 1 < A <m)andt >0V
A € R,. For convenience, the Laplace domain notation is
usually used to describe fractional differentiation—
integration operation. When the initialisations are assumed
to be zero,

L{DY (1)} =s"F(s) (AER) )
The generic single-input single-output (SISO) fractional-order
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system representation in the Laplace domain is given as

Y(s) KOSBO +rsP KmSB”’

G(s) = = 5

( ) U(S) l +/"L1Sa1 +.“+“‘nsan ( )

where kg, Ky, ..., K, and p, My, ..., u, are constant
model parameters or model coefficients, while
Bo<pB<---<B, and o <a,<---<a, are the

fractional powers or fractional orders (real numbers). The
transfer function (5) is called non-commensurate when S3;,
«; can take any arbitrary values. '

The transfer function as given by (5) can be classified as a
commensurate transfer function. A transfer function G(s) is
commensurable of order vy if and only if it can be written as
G(s) = F(s"), where F = T/R is a rational function, with T
and R as two coprime polynomials. Assuming that G(s) is
commensurate transfer function of order v, then it can be
written as

ZJ{":O bjsh’

G(s) = ———"——
) 1+ Z?:l as"y

(6)

Therefore, for commensurate transfer function all fractional
powers are integer multiple of a real number, 7.
Commensurate transfer function models represent more
generic class of polynomial-type transfer functions, where
v =1 gives standard integer-order transfer function models.
A commensurate transfer function of order y for fractional-
order time-delay system is given as

m Jv
ijo b;s —Ls

R VAT

™)

where L is the time delay. In this work, we will be working
only with commensurate transfer function models with
delays as described in equation (7).

2.2 Stability condition

Stability condition for a class of transfer function of the form
(6) has been established by [26]. The theorem is as follows:
Stability theorem: A commensurable <y-order transfer
function G(s) = F(s”) = T(s”)/R(s”), where T(.) and R(.)
are two coprime polynomials, is BIBO stable if and only if

0<y<2

and V o € C such that R(0) =0

m
jarg ()] > v

2.3 Integer-order approximation

The modelling and simulation of fractional-order systems are
complicated because of their long memory behaviour [27]
and are based on the approximation (approximating the
infinite dimensional nature) of the fractional derivative
operator. For digital implementation of the fractional-order
operator, the key step is numerical evaluation or
discretisation of this operator. In most of the cases, it is not
easy to obtain analytical expressions of the output for a
given input excitation for a fractional-order transfer function
model. Two classes of methods developed over the last few
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years to approximate the fractional derivative operator can
be classified as: direct methods — based on the
approximation of a fractional derivative operator by a
rational discrete time one, and indirect methods — based on
the approximation of a fractional derivative operator by a
rational continuous-time one. Power series expansion and
continuous fraction expansion (CFE) of the Euler’s,
Tustin and Al-Alaoui operators give different discrete
approximations of the fractional operator. The power
series expansion of Euler’s operator gives numerical
approximation of the GL definition as in (1). The details for
the discretisation schemes can be found in [28] and [29].
One of the good continuous approximation for this
fractional-order operator compared to GL definition is the
Oustaloup continuous approximation [27], where it makes
use of a recursive distribution of poles and zeros. In
this paper, we will be using the Oustaloup continuous
approximation for the simulation of fractional-order transfer
functions. Additional details on this appear below.

Many real physical systems generally have bandlimited
fractional behaviour and also because of the practical
limitations of input and output signals (Shannon’s cut-off
frequency for the upper band and the spectrum of the input
signal for the lower band), fractional operators are usually
approximated by high-order rational models. As a result, a
fractional model and its rational approximation have the
same dynamics within a limited frequency band. The
Oustaloup approximation of s* in the frequency band
[w,, wg] has been defined as

where

log a
log am

; and A=1-—

)

= 0w; Wi = Nw;

where the parameter C is chosen such that the approximation
shall have a unit gain at 1 rad/s.

Note that the proposed method is independent from the
way fractional differentiation and integration are simulated
in the time domain. We have used the Oustaloup
approximation in this paper.

3 Identification of CFOTDS
3.1 Identification formulation

The transfer function for CFOTDS of commensurate order «
is given as

m Jja
2iobs™ i

GB)=——"—
() l+Zle:1 ajsja

(10)

For integer order models, o« =1 and only the model
coefficients aj, bj and L are estimated. However, here we
are interested in estimating « as well. For the present case,
initial conditions are assumed zero and the model in the
vector form can be represented as

a,s""Y(s) = b, s"* U(s)e ™ + e(s) (11)
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where
a,=l[a,a, . .a 1]€ R>"D (12)
b,y = [by by - by byl € ROD (13)
§1 = [0 s @ 0T g R (14
g = [ gD @ T o plmtDx] (15)

and Y(s), U(s) and e(s) are the Laplace transforms of output
W(t), input u(¢) and e(), respectively. The term e(#) accounts
for the noise. Note that here we are using an ER approach
for estimating a continuous-time model.

Parameter estimation using a filtering approach has been
very well established method available in the literature;
however, to estimate only the parameters (a, and b,,) but
not the delay. Victor et al. [14] proposed a continuous-time
identification method with optimal fractional differentiation
order for fractional-order systems. The estimation of delay
is mathematically different from the estimation of other
parameters because the other parameters appear explicitly in
the model while the delay appears implicitly as can be seen
in (10). Next, we devise a linear filter method for estimation
of model parameters. To obtain explicit appearance of the
delay term in the estimation equation and have it appear as
an element in the parameter vector, we introduce a linear
filter method with a structure of the filter as a combination
of RIVC and a linear integral filter. This structure of a filter
has been introduced by [24] for rational order models. This
low pass filter not only serves the purpose of removing
noise amplification but it also makes the delay term appear
as a explicit parameter to be estimated along with the other
parameters. The filter transfer function is represented as

Fs™) = — ) (16)

where A(s”) is the denominator of the model equation. Now
applying the filtering operation on both sides of (11) yields

a,s""F(s*)Y(s) = b, s"*F(s*)U(s)e ™ + F(s)e(s) (17)
or

1 1
na Y — b "
S () mS SA(s®)

—Ls
T U™ +s)  (18)

where s(s) = F(s)e(s). Here F(s”) can be factored as

1 O™ 1
SA(s®)  sA(s*) s

(19)
where
Cls") = =(a,8" 4 a, " oo tas®) (20)
Also, a,s"* and b,,s™" can be factored as
na _ ;= (m—Da_«a
a,s" =(a,s sY+1) (21)
and
b,s"* = (b, s" %" + b,) (22)
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where a, and b,, are the a, and b,, vectors, respectively, with
the last element removed. Now defining the filtered output
and input variables as

_ Y(s) _5%Y(s)
Yi(s) W and YfD(s) = G (23)
U _s"U(s)
Up(s) = m and UfD(s) = A6 (24)
Thus (18) becomes
Y(s) = —a,s" Y, () +b,s"" U, (s)e™"
") |1 ~Ls
+ b, <sA(s°‘) + E) U(s)e ™ + s(s) (25)
Defining additional filtered variables as
@ C(s%)
Up(s) = C6"U/5) = S UG) (26)
U
ORI @7)

Then (25) can be written as

Yi(s) = —a, s e Y, (s) + b, s e Ulb(s)e_LS

+ byUp ()™ + byUy(s)e™™ + s(s) (28)

Before taking the laplace inverse on both sides, we define the
laplace inverse for various terms

L7 (Y (s) = () (29)
L7 (Y p(9)) =y, () (30)
L7 Up(s) = uy, (1) (31)
L7 (s(s)) = s(0) (32)
L7y () =0 (33)

LU ey =u e -0 (34)

LU ) = u, (1) (35)
LU ()e ™) = u (1 — L) (36)
and
L7 (U(s) = f u(t) dt (37)
0
LN Us)e ™) = w(t = L) (38)

Now, depending upon the type of input signal used for
perturbation we propose two different formulations for
estimating the model parameters.

3.1.1 Using step input signal: In continuous model
identification, by using a step input signal we can estimate
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all the parameters of a higher dimensional model. If we have a
step input signal of step size 4, then

Uy =" (39)
S
then (38) becomes
L7 Uys)e™) = 7! G?e—“) =h(t—L)VYt>L (40)

and (36) can be written as

C(s™) h
sA(sa);e

LU (s)e ™) = /:1( LS) =u, (t—L) (41)

Now taking inverse Laplace transform of (28) we have

(0 = =2,y "0 + b,w "t — 1)
+ bohuy (t — L) + boh(t — L) + s(t)  for t > L

(42)

If we define G/, as

w1 — 1)
Gy = (43)
huy (t — L) + ht

then
! 2,
yO=[ v 0 Gy —h]| b, [+ @4
or equivalently
(1) = ()6 + (1) (45)
ﬁll
where 6= | b, |. Note that ¢, = 1. Similarly, we can
byL

consider ~model (45) for all ¢t=¢, where
k=tt+1,...,N, such that t> L, N being the total
number of data points. The stacked terms in this equation
then yield the following estimation equation

¥ = g+ A (46)

which is linear in parameter equation and can be solved using
linear least squares. However, the delay, L appears as b,L but
since b, is estimated simultaneously in 6, we can estimate
delay using this fact. In practice, the selection of the output
y(t) after t > L can be made as follows [30]. When the
process output is stationary, the process output will be
monitored for a period, the ‘listening’ period, during which
the noise band B, can be found. Then, y(¢) satisfying

arg(y(¢)) > 2B, 47)

can be treated as the process response after + > L, and thus
can be used for the model (46).
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3.1.2 Generic input signal: For any other kind of input
signal, we use graphical information from the time series
input curve. From Fig. 1 it can be seen that, for the input
signal U(¢), the U,(t — L) term corresponds to area under
the U(#) curve over the time instant (¢ — L). This can be
written as the sum of three terms (or representing areas on
the curve) as

areal

uy(t — L) = uy (1) — j [u(t) — u(®]dty — w(L — (43)
L M

area Il

—

Here, for demonstration purpose we have used a sinusoidal
input but the above relationship can be used for any type of
input signal excitation. Using the above defined relation
(48) and taking laplace inverse of (28), we have

_ n—a = m—1)a
() = =2,y 0) + b, uf" V(e — L) + buy (1 — 1)

+ by I:“](f) - j

t—L

[u(t) — u(®)]dy, — u(t)L} + s(2)
(49)

Now if we again define the augmented Gy, (?) as

u/([m—l)a(t _ L)
Gpa(t) = b (50)
= L)+ uy(0) = [, [u(t) = u())dy
then
a,
0=~y 0 Gu —uw]| b, |+s0) 61
boL

The model (51) can be written as a linear regression equation
of the form

() = p(1)0 + s(7) (52)
F s
u(t)
o
t-L t
;.\'_/
L t >
¥ —> Areal
g —> Areall
Fig. 1 Time series process input curve
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where
a,
6= b, (53)
boL

Similarly, we can consider model (52) for all ¢ = ¢, where
k=1, 2, , N. The stacked terms in this equation for
different times then yield the following estimation equation

U =0+ A (54)

Thus, using all the filtered variables and approximating the area
for the input curve, we are able to make time delay term appear
as an explicit term in the form of a parameter vector in the
regression model. Now given any input—output data, we
can formulate this identification problem as given above
and estimate all the parameters using linear least square
method.

3.2 Parameter estimation

3.2.1 When « is known: For the case when the
commensurate order « is known, we only need to estimate
a,, b, and L. Since the filter itself involves the coefficients
a, and we need L in order to formulate the above linear
regression equation, we start with some initial values of a,
and L, then solving the linear model developed in the
previous section using linear least squares we can obtain a
new estimate of the parameter vector 6. This parameter
vector also gives us updated estimates of a, (note that
a, = 1) and L. The updated values are again used to get
the new estimates. The proposed algorithm is similar to the
RIVC algorithm except the proposed algorithm formulates
an iterative procedure to simultaneously estimate the
parameters and the delay, L. However, the delay L appears
as byL but since b, is estimated separately in 6, we can
estimate the delay using this and do it iteratively until until
the convergence is achieved for all the parameters. Note
that we still have L term coupled with the b, term, so any
error in estimating one term translates to another.

3.2.2 Instrument variable method: For the cases
when the data are corrupted with white noise, the filtering
operation converts the white noise signal to colored noise
and this algorithm gives biased estimates in the presence of
coloured noise. Therefore in order to get unbiased estimates
of the parameters, we use the bootstrap instrumental
variable (IV) algorithm [31] where the instruments are built
based on the auxiliary model (using predicted y(y) instead
of measured y values). The instrument variable for the first
formulation is then defined as

/NG

Gy (1) (55)
—h

bry(1) =

and for the second formulation it is defined as

A(n l)a(t)
sz(f) (56)
—U()

() =
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Using this, we can construct the instrumental variable
matrix as ®py(f) and we add this IV scheme within the
iteration steps of our proposed method thus requiring no
additional steps, and the parameter estimation step is then
given by

(=D

@) (=D\T O\T A (i—1)
i = (@@ Yol ")

IV(OIV) \P(OIV )(57)

where (l) glves the iteration count, and @IV(G(I l)) @(9(1 b

and \I’(HIV ) constructs @y, @ and P, respectively, for the
parameter vector 0, v oY

3.2.3 When « is unknown: For cases when the
commensurate order a needs to be estimated along with
other parameters, we can get an estimate of o by posing the
problem as a nested loop optimization problem. We
start with an initial value of « in the outer loop and in the
inner loop we iteratively estimate the model parameters (a,,,
b,) and the delay term (L), as discussed in the previous
section. Once convergence is achieved in the inner loop for
a fixed a, we update « in the outer loop in a non-linear
fashion.

3.3 Summary of the proposed algorithm

The iterative procedure for the parameter estimation for both
the formulations can be summarised as

Step 1: Outer loop: Initialisation 1: Initialise the algorithm
with some initial value for a.
Step 2: Inner loop: Initialisation 2: Initialise the inner loop

with some initial values for 4" and 1
1. LS step: i = 1: Construct ¥ and ® by replacing a, and L

. . ~ ~(0
with the estimates, as aio) and 1"V
the parameters as

and get new estimates of

V= @) (@)

Get values of 4, f)f,i) and L from 8"
2. IV step: i = i+ 1 to convergence: Construct ¥, ® and @y,

by replacing a,,, b,, and L with estimates as a(’ b, b(l Y and

A(i=1)

L and obtain new 0 estlmates as

= (P @) (P W)

Obtain the values of a”, BE,? and 1 from "
step till convergence.

Step 3: Update value of « based on the minimisation of the
objective function (i.e. repeat steps 1 and 2 till this
objective function is minimised).

and repeat this

& = argmin(ATA)
The algorithm stops when
167 — &), < e

the norm of the difference in the parameter vector for two
consecutlve iterations is less than, € which is chosen as equal
to 107%.
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For the cases when « is known, we will only have the inner
loop where the model parameters a,, b,, and L are estimated
iteratively. Usually if an integer-order approximation is
available for a fractional-order transfer function model, the
values of parameters from these models are used as initial
guesses for this algorithm. Also, since we are only dealing
with SISO models, a finite impulse response for the data set
can provide a good initial guess for the time delay. The
algorithm for the proposed scheme is sketched in Fig. 2.
The optimisation toolbox in MATLAB is used for solving
the outer non-linear loop.

3.4 Convergence issues for the proposed method

The initialisation of the inner loop involves choices of a,, b,, and
L. Itis very difficult to prove theoretically the convergence of the
proposed algorithm and this is beyond the scope of this paper. In
practice, any initial choice is good except that the filter should
not be unstable. As the filter is updated in every step, the final
estimate of the parameters is not found to be much sensitive to
the initial choice. However, for the outer loop some
knowledge on the commensurate fractional order is necessary.
This is the limitation of the proposed algorithm that if
the outer loop is initialised with a poor initial guess, the
convergence of inner loop is not always guaranteed. For
the case when the fractional order is known, extensive
simulation study shows that the parameter estimates obtained
in the inner iterative loop converges to the true parameter values.

4 Simulation study

To illustrate the utility of the proposed algorithm, the
identification exercise is carried out on some simulation
examples. For the formulation using step input-type
excitation, we present the result for the case when all model
parameters including commensurate order are unknown.
Using the second formulation, we present the results for the
following two cases: when the commensurate order is known
and when it is unknown. The identification exercise is carried
out using two transfer functions of the form given below

— L e Ls (58)
1

Update a

Fix filter order a

l

Assume a,, b, and L

l

LS STEP : Estimate the
parameters solving linear
regression equation.

Update L and a,
le .

)
IV STEP : Get updated
values of parameters, again
solving the linear regression
equation

Convergence Optimal a

FO model with
delay

Fig. 2 Algorithm for estimating parameters for CFOTDS
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N 2 (59)

where « is the commensurate fractional order for this model. A
zero initial condition is assumed for all cases. The sampled
noise-free outputs generated from simulations for a given
input excitation are corrupted by discrete-time white noise
sequences with a signal-to-noise ratio (SNR) given as

SNR — var(sigflal) (60)
var(noise)

In presence of noise, Monte Carlo (MC) simulation analysis
(number of runs is more for less computational expensive
case) is done to evaluate the efficacy of the proposed
algorithm. The integral in (50) is evaluated numerically. A
fast sampling rate is chosen to reduce the estimation error
because of the approximations involved in using fractional
operator and a continuous-time model in general assumes that
a sufficiently fast sampling rate data is used for parameter
estimation.

4.1 Example 1

For this case, we considered the following fractional-order
system described in (61), where we are also estimating the
commensurate order « along with a,, b, and L.

Gro (s) = e O (61)

s05 41

Thus, the true parameters are by =1, a; =1, L = 0.5 and
a = 0.50. The integer-order model approximation for (61)
is available for this process and is given as

Gio/(s) = e (62)

1.5s+1

The fractional-order term is approximated with
Oustaloup’s approximation with N = 15 in the frequency
interval [1072, 10°].

4.1.1 Step input excitation: The sampled data are
generated by simulating the system using a unit step input
with sampling time of 0.1 s. Fig. 3 shows the response of

1
—
g 0.5
£
2 0
g
& .05
-1 & : .
0 200 400 600 800
] L
=
g0
-1
0 200 400 600 800

Sampling time (sec)

Fig.3 Step response for Gro,
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Table 1 Step input: estimated parameters for process Gro,(s)

True SNR = = SNR =10 SNR=5
9 s(6) o s(0)
o 0.50 0.500 0.498 0.027 0.492 0.039
a, 1.00 1.001 1.000 0.025 1.001 0.06
bo 1.00 1.000 1.003 0.009 1.01 0.026
L 0.50 0.501 0.490 0.023 0.488 0.05

the process to two successive steps. The output y(¢) is
corrupted with noise having the following values of SNR:
oo(deterministic case), 10 and 5; and for each SNR, for
different noise realisations we perform 200 MC simulations.
For each case, we estimated the fractional order («) as well
as other model parameters (a,, b,, L) simultaneously using
the proposed nested loop optimisation algorithm. Table 1

gives the the average () and the sample standard deviation
(s(9)) of each parameter for these MC simulations. We
started with an initial guess of a = 0.4 for all the cases.
As can be seen the estimated parameters including the
fractional order « are quite close to the true values, thus
indicating that the proposed algorithm gives unbiased
estimates of all the parameters in the presence of noise and
the uncertainty associated with each parameter is more for
lower SNR. However, there are some computational issues
with the outer non-linear loop, as for some other guess
value of «, the inner loop does not always converge.
Therefore having some process knowledge regarding the
fractional order « is important.

4.1.2 Generic input excitation: The input excitation is
chosen to be a pseudo-random binary sequence (PRBS)
generated using the idinput function in MATLAB with
levels [—1, 1]. As we do not have any rule of thumb
available for fractional order processes, here a rule of
thumb, which is commonly used in many identification
techniques is used: the frequency band for PRBS
perturbation is used according to the following rule,
Frequency band = [0, 3], where Ts is the settling time.
The frequency band for PRBS excitation is chosen as [0,
0.02] and the sampled data are generated using a sampling
time of 0.1 s. Fig. 4 shows the input—output data used for

www.ietdl.org

identification for this type of excitation. For this example
we performed the identification exercise for these two cases:

e When « is known and
e When « is unknown.

The same three values of SNR (oo, 10, 5) are chosen and
for each SNR, MC simulations are performed for different
noise realisations. The algorithm is initialised with values of
a,, by, L from the integer-order model and for the case with
unknown e it is initialised with a value of 0.55 and the
inner loop with the parameters from the integer-order model.

Case 1 — When « is known: For this case, we estimated
the model parameters (a;, b;, L) assuming the
commensurate order « is known and equal to 0.5. Table 2
gives the average and the sample standard deviation of each
parameter for 200 MC simulations. As can be seen, the
estimated parameters are quite close to the true values, thus
indicating that the proposed algorithm gives unbiased
estimates even in the presence of noise.

Case 2 — When « is unknown: For this case, we estimated the
fractional order («) as well as other model parameters
(a,, by, L) simultaneously using the proposed nested loop
optimisation algorithm. Table 3 gives the average and the
sample standard deviation of each parameter for 100 MC
simulations. Some error in estimating fractional order in the
outer loop is present because of the approximations
involved. Fig. 5 presents the ratios of estimated to true
parameters along with their confidence intervals (average +
one standard deviation) in a graphical form. As can be seen,
the estimated parameters are quite close to the true values,
and the scaled confidence intervals include the ratio of one,
thus indicating that the proposed algorithm gives unbiased
estimates in the presence of noise.

Fig. 6 presents the Bode plots for parameter estimates from
all the 200 realisations. As can be seen the 200 models fit the
Bode diagram of the simulated system (61) really well.

4.2 Example 2

The process with the following transfer function is used

1 ‘
e—4.8.§ (63)

Gro, (%) = g55575 15505 1+ 1

400 500 600 700 800

1 . .
05}
[:F]
Z
2 of
5
(="
_0'5 L
e : . ;
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: .
0.5
E]
& o
-0.5
_I 2 ' L
0 100 200 300

400 500 600 700 800

Sampling time(sec)

Fig. 4 Generic input excitation data for Gpo,
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Table 2 PRBS input: estimated parameters for process Gro,(s)

True SNR = x SNR =10 SNR=5
9 s(6) o s(0)
a 1.00 1.001 1.011 0.017 1.007 0.044
bo 1.00 1.000 1.001 0.006 1.000 0.015
L 0.50 0.500 0.502 0.012 0.490 0.039

Table 3 PRBS input: estimated parameters for process Gro,(s)

Thus, the true parameters are by =1, a; =5, a, = 3§,
L =438 and a = 0.75. The input excitation is chosen to be
a PRBS generated using the idinput function in MATLAB
with levels [—1, 1]. The frequency band for PRBS
excitation is chosen as [0, 0.015] and the sampled data is
generated using a sampling time of 0.1 s. Fig. 7 shows the
input—output data used for identification for this type of
excitation.

Table 4 gives the average and the sample standard
deviation of each parameter for 100 MC simulations. As
can be seen, the average + one standard deviation of the

True SNR = o SNR =10 SNR =5 1
- N - N u 0.5
0 s(0) 0 s(0) E
5:3.. )
@ 0.50 0.499 0.502 0.019 0.509 0.036 = 0.5 U k &
as 1.00 1.000 1.01 0.013 1.018 0.029 3 u
b  1.00 1.001 1.003 0009 0998  0.018 0 500 1000 1,500 2,000 2,500
L 0.50 0.499 0.506 0.01 0.515 0.029 1 1 1
_ 05
2 o
T .05
1.14 -1 ' —
0 500 1000 1500 2000 2500
3 © alpha Sampling time(sec)
2 1.1 o gl
g b EO Fig. 7 Generic input excitation data for Gro,
- 8
g
2 1.05
g w
2 m] * Table 4 PRBS input: estimated parameters for process Geo,(s)
PR SU— | - S— P—
g 1 True  SNR=oo SNR = 20 SNR = 10
E ~ A A ~
S 0.95 0 s(6) 0 s(6)
g o 0.75 0.750 0.744 0.022 0.740 0.025
oo ) ) ) ) a,  5.00 5.010 4896 0254 4821 0511
' 5 10 Inf a; 8.00 8.004 8.149  0.331 8.110  0.415
SNR bo 1.00 0.999 1.008 0.002 1.000 0.031
) L 4.80 4.793 4,701 0.108 4.689 0.151
Fig.5 Effect of noise level on parameter estimates
. Bode Diagram
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Fig. 6 Bode plots for 200 MC simulation runs: (-) true process, (- -) 200 FO models
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parameters include the true value of parameters. The
algorithm is initialised with the value of « as 0.5 for all cases.

5 Application to thermal diffusion in a wall

For many real processes, fractional differentiation appears
naturally when the system transients are governed by a
diffusion equation, and particularly between the variables
governing the functioning of the interface. Benchellal et al.
[7] have shown that the transfer function H(s) relating heat
flux and the temperature, on the front face of the heated
wall (which is governed by classical heat conduction
equation), is a fractional order transfer function with half-
integer order. This classical wall problem is considered as a
process for this simulation study to illustrate the importance
of our proposed algorithm on a real physical system. Fig. 8
represents the classical wall problem used to analyse heat
transfer. The governing equation relating heat flux, ®(x, ¢)
and the temperature, T(x, ¢) for this process is given by the
heat diffusion equation as

aT(x, 1) éaz T(x, f)

ot ox? ©4)
O, 1) = 2L g’; 2 (65)

where { is the thermal diffusivity (= ﬁ), A is the thermal
conductivity, p is the mass density and ¢ is the specific
heat. The boundary conditions are such that the temperature
at face B is kept constant and equal to zero during the
overall heating experiment and the external heat is added at
face A, that is

T, t)=0 (66)
D0, 1) = Dy, (1) (67)
where ‘I’ is the distance between two walls.

5.1 Transfer function for the wall problem

If S, is the cross-sectional area of the wall and we define
W) = T(x", £) and heat input (not flux) as, u(t) = ®,,(1)S,,
then an analytical expression for the transfer function, H(s)

T(x,t)
o(xyt)

TH=T.=0

A

v

0 1 X

Fig. 8 Classical wall problem
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relating Y(s) and U(s) can be formulated as

B0
~U(®s)

! exp((Zl - x*)\/%) - exp(x*\/%)
- SAA\/% 1 +exp <21\/§)

Once the exponential series expansion is done, the transfer
function relating temperature and heat input is a
commensurate FO model with commensurate order 0.5. For
the case when x* = 0, the transfer function as given by [8] is

T(0.5) 1 exp<2l\/§) -1

—F (69)

D,(s) A Eexp<2l\/§)+1

Thus, it would require an infinite number of terms in both the
numerator and denominator to model this process accurately,
and working with a reduced model structure will always result
in some modelling errors. A truncated fractional-order
transfer function for model (69) has been presented by [8].

Based on the first-principles model, a time delay or dead
time will not appear in a process transfer function until and
unless there is mass or energy flow. Since this process
involves energy flow, and depending on the location of the
process measurement device (which is represented by x*
here), a dead time may appear in the process. Malti et al.
[15] noticed the time lag in flux diffusion while modelling
thermal rod process from experimental data. Thus, apparent
time delay may be present in this process. Using this fact
into consideration, and the fact that the process dynamics
involve non-integer behaviour, it is assumed that this system
can be approximated by FO model with a time delay using a
fewer number of parameters. So, we are trying to model this
process as a parsimonious in parameter model using
fractional-order dynamic model with a delay term.

Sampled data are generated by performing numerical
simulations using the finite-difference method. The following
properties of Brass are used for simulations: p = 8.522 x
10° kg/m®, ¢ =385 J/kg °C, A = 111 W/m °C. The distance
between the walls, / is chosen as 5 cm and surface area of the
wall(S,) is 100 cm?. Temperature is measured at a distance of
2 cm from the front face of the wall (x*). 300 discretisation
points are chosen. For a step input of 10 KW in heat input, if

H(s)

(68)

0.35

Response

0.05

3 4 5

200 300 400 500

Time (sec)

Fig. 9 Step response of the process
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Fig. 10 Time response for the wall process
we see the zoomed in Fig. 9 for the initial time, it shows why we 2
are trying to model this as FO model with delay. i W !
I 1
_ A |
5.2 Identification results o ! l‘:,q 1 | ,jv | | 1
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The sampled data (15 000 data points) for the identification g i ftff y‘w‘ Lo %h | { ] W ¥
exercise is generated using sampling time of 0.1 s with g 0 \F’ 4 T ﬁ ;MJ i U\! ]
PRBS-type input excitation with levels of [—0.1, 0.1] KW § { !] . i | i

in the frequency band of [0, 0.02]. A Gaussian white noise
signal with SNR = 20 is added into the simulated noise
free output sequence. This process is known to exhibit
fractional order dynamics for frequencies less than 10° rad/s
[7]. Here, we use the Oustaloup approximation with N = 15
in the frequency interval [107°, 10°] to approximate the
fractional differential operator. The overall data were
partitioned into two parts: (a) an identification set: first
8000 data points and (b) the validation data set: next 7000
data points. The identification data set is shown in Fig. 10.
Next, the proposed algorithm is used to fit a fractional order
model with time delay to the identification data. The model
structure of the commensurate model (7) is varied to find a
model that gives the best predictions. The estimated
continuous time FO model (using average parameter value)
along with sampled standard deviation for all parameters
using 50 MC simulations is given as (70) (see (70))

It is not possible to show the predictions from all the 50
models, so only predictions from the average model has been
presented in Fig. 11. It shows the model predictions of
Gro(s) (infinite step ahead predictions) and the process
output for all 50 realisations on the validation data set. As
can be seen, FO model (Gg) fits the measured output quite
well. Next we compare the step response (for a step change
of 10 KW in heat input) of all the 50 estimated models, to
the step response from the actual process as shown in
Fig. 12. As can be seen from Fig. 12, Gy estimates both
gain and delay very accurately. The Bode plot for the model

0 100 200 300 400 500 600 _ 700
Sampling time (sec)

Fig. 11 Model predictions on the validation set: (- -) black dotted
line is model prediction)

0.35

0.3

0.25
- True process

Response

0 100 200 300 400 500
Time (sec)

Fig. 12 Step response of the estimated models (- -) and true
process (-)

0.0273(+0.003)

—0.899(£0.058)s

Gpo(s) =
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46.239(+6.211)s2*O385£0.035) 12 263(+1.265)s0585(£0035) 4 |

(70)
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Fig. 13  Frequency responses of the estimated models (- -) and the true process (-)

Gpo along with the actual frequency response of the process is
shown in Fig. 13. It can be seen that the frequency response of
the model Gy is nearly the same as the true process at low
frequencies; however, at high frequencies the delay term in
the model starts to dominate and there is mismatch between
the true and model behaviour. The frequency response plot
indicates that our proposed modelling scheme is able to
capture the deterministic part of the process quite well at low
as well as moderate frequency regions. Thus, the proposed
algorithm can be used to model the low-frequency behaviour
of this process. This process that is described by half-integer
order model behaviour is discussed here to emphasise the
importance of the developed algorithm to model fractional-
order processes without requiring an integer-order
approximation of the process. The developed FO model can
then further be used to design rational or fractional-order
controllers.

6 Conclusion

In this paper, a continuous-time identification method for
commensurate FO models with time delay is proposed. The
proposed method works with any kind of input signal
excitation. It is based on a linear filter method where the
filter is chosen as a combination of RIVC and a linear
integral filter. Using this kind of filter, we can make the
delay term appear as explicit parameter similar to other
constant model parameters and can form a linear regression
model to estimate the parameters in an iterative manner. For
the case when the commensurate order « is unknown, a
nested loop optimisation method is proposed to estimate the
time delay along with constant model parameters in an
iterative way in the inner loop and the fractional order in
the outer loop. The applicability of the developed procedure
is demonstrated on a CFOTDS for the cases when « is
known and when it is unknown. In the presence of noise,
MC simulation analysis for different noise realisations has
been carried out to demonstrate that the proposed algorithm
gives unbiased estimates even in the presence of noise. The
proposed algorithm is also applied on a fractional order
system of classical wall heat transfer problem, which is
described by fractional behaviour. Future work proposed is
to extend this algorithm for non-commensurate models.
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