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Many utilities in developing countries are investing in installation and renewing of Electrical Distribution
System (EDS) components, such as overhead lines, cables and switching devices, to improve the EDS
reliability and meet the rapid increase of load demand. In the beginning stage of investment, it is very
difficult to evaluate the EDS reliability by using traditional methods due to EDS topology not being fully
determined. This paper presents a comprehensive model for forecasting EDS reliability, which is built
separately into two parts, i.e. the models for EDS failures and planned outages. Firstly, a three-layer
Artificial Neural Network (ANN) model is proposed to forecast the EDS reliability considering EDS
failures. Each neuron in the ANN input layer represents a key influencing factor of EDS failures, which
are recognized by Gray Relational Analysis (GRA) method. The proposed ANN is trained using historical
reliability data of an EDS. In addition, a planned outage reliability model is also built according to the
magnitude of investment and type of planned outage. The priorities of improvement measures can also
be obtained using the GRA to improve the EDS reliability. Case studies of practical EDSs illustrate the
efficiency and applicability of the proposed techniques.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Forecasting technique is widely used in many research fields,
such as load forecasting, temperature forecasting and stock market
forecasting. Reliability forecasting of a power system, such as an
Electrical Distribution System (EDS), is a statement about the
system reliability performance that will be realized in the future
based on current information.

EDS is an important link between power system supply and the
distribution customers. EDS reliability forecasting techniques can
be used to directly evaluate the reliability performance of an EDS
in the future, analyze the reliability performance trend of an EDS,
recognize the weak parts of an EDS, propose reliability improve-
ment suggestions to design schemes, and address reliability price
and unreliability cost contributions in an electricity market [1,2].
In other words, reliability forecasting techniques are considerably
helpful in the processes of EDS design, planning and operation.

Currently, there exists considerable research on non-power-
system reliability forecasting techniques. Ref. [3] proposed a soft-
ware reliability forecasting model using support vector regression,
which was solved by a combination of genetic algorithm and sim-
ulated annealing algorithm. Ref. [4] proposed a real-time reliability
forecasting technique for dynamic systems based on an online fail-
ure forecasting method. Ref. [5] proposed a reliability forecasting
model for semiconductors using a combinatorial technique using
fuzzy logic and component failure modes. Compared with other
forecasting methods, Ref. [1] discussed the effectiveness of support
vector machine in reliability forecasting for generating units. Ref.
[6] proposed several pattern recognition algorithms and analyzed
their practicability in component reliability forecasting. Ref. [7]
used a technique called Group Method of Data Handling (GMDH)
to forecast the reliability of flexible manufacturing systems.

Unfortunately, there has not been work on reliability forecast-
ing of EDS. Ref. [8] proposed a forecasting method of EDS reliability
indices by using logistic regression and dynamic regression mod-
els. Ref. [9] proposed a method for forecasting the reliability
parameters, such as failure rate, of overhead distribution lines
using radial-basis-function Artificial Neural Network (ANN), which
was built by using data fitting techniques. Ref. [10] proposed a
reliability forecasting method for EDS feeders using fuzzy set the-
ory. It can be seen from the above discussion that time series meth-
ods, ANN and similar methods were used to forecast the reliability
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performance for a component or an EDS based on the collected
reliability information.

There is one key assumption implicit in the methods described,
i.e. the component or EDS system reliability performance parame-
ters have steady values. The behavior of component failures is typ-
ically a random process, which always results in the difficulty of
establishing an accurate model for the component reliability
parameters, such as failure rate. More importantly, many measures
were used in EDS in these cases, such as replacing feeders and
installation of switching devices and tie lines, which resulted in
changes in the EDS system performance. Therefore, the above
methods are unsuitable to forecast the changing reliability perfor-
mance of an EDS. In addition, these methods lack inclusion of the
effect analysis of key influencing factors on the EDS reliability, such
as the number of tie lines, the average length of feeder sections and
the ratio of insulated feeders to total feeders.

Although there are many factors influencing the EDS reliability
performance based on the above analysis, there is relatively little
research on the model of EDS reliability forecasting considering
influencing factors. It is, therefore, important to propose an EDS
reliability forecasting technique considering all key influencing
factors.

This paper proposes an ANN model for forecasting the system
reliability considering EDS component failures by exploring the
relationship between the key influencing factors and the system
reliability. It should be noted that the proposed method is mainly
used in the following cases: (1) the EDS reliability performance
may be change due to component installations and the change of
EDS structure; (2) the network structure is not still fully deter-
mined and even parts of planning scheme need a little adjustment
after taking improvement measures. In the developing countries,
the EDS engineers always face these situations.

In the foregoing situations, on one hand, the EDS reliability
evaluation cannot be conducted due to uncertainty of component
reliability parameters and the structure of an EDS; on the other
hand, directly evaluating the reliability performance of an EDS is
a time-consuming process for an EDS with a large number of feed-
ers. Therefore the reliability forecasting methods may provide a
suitable tool to deal with these issues and situations.

Influencing factors of EDS component failures

EDS reliability indices

Total Customer Outage Hours (TCOH) is defined as the sum of
products of the number of customers at each load point and its
annual outage time. Total Customer Outages (TCO) is defined as
the sum of products of the number of customers at each load point
and its annual outages.

TCOH ¼
X
i2R

UiNi ð1Þ

TCO ¼
X
i2R

kiNi ð2Þ

where Ui, ki and Ni are the annual outage time, outages and the
number of customers at load point i, respectively; R the set of load
points of an EDS.

There are many common EDS reliability indices being widely
used in practical EDSs [11], including SAIDI (System Average Inter-
ruption Duration Index), SAIFI (System Average Interruption
Frequency Index), ASAI (Average Service Availability Index) and
ASUI (Average Service Unavailability Index).

SAIDI ¼ TCOHP
i2RNi

ð3Þ
SAIFI ¼ TCOP
i2RNi

ð4Þ

ASAI ¼ 1� TCOH
8760

P
i2RNi

ð5Þ

ASUI ¼ 1� ASAI ð6Þ
It can be seen from (3)–(6) that the key step in the reliability

forecasting and evaluation of an EDS is the calculation or forecast-
ing of TCOH and TCO.

Both component failures and planned outages contribute to the
unreliability of an EDS. Therefore, TCOH can be divided into two
parts, i.e. TCOH-F (Total Customer Outage Hours due to component
failures) and TCOH-P (Total Customer Outage Hours due to
planned outages). Similarly, other indices, such as TCO-F, TCO-P,
SAIDI-F and SAIDI-P, can be defined. For simplicity, TCOH is used
as an example to explain the proposed concepts and forecasting
processes.

Influencing factors of EDS component failures

Many factors, such as management level of utility, technical
level of EDS engineers, average reliability performance of each type
of component, proportion of each type of components and EDS
configuration, influence the EDS reliability performance consider-
ing component failures. The reliability management level of utility,
technical level of EDS engineers and average reliability perfor-
mance of each type of components are assumed to be unchanged.
Therefore, this paper studies the influencing factors of EDS compo-
nent failures from other aspects, which are as follows:

(1) F1: Ratio of available tie lines (%), ratio of the number of
feeders in an EDS, which can be transferred to other feeders,
to the number of total feeders;

(2) F2: Ratio of cables (%), ratio of the length of cable feeders in
an EDS to the total length of feeders;

(3) F3: Ratio of insulated feeders (%), ratio of the length of insu-
lated feeders in an EDS to the total length of feeders;

(4) F4: Average length of each section (km/section), the total
length of all feeders divided by the number of total sections
in an EDS;

(5) F5: Average number of customers in each section
(customers/section), the number of total customers divided
by the number of total sections in an EDS;

(6) F6: Average number of circuit breakers of each feeder (break-
ers/feeder), the number of total circuit breakers divided by
the number of total feeders in an EDS;

(7) F7: Average number of transformers at each feeder (trans-
formers/feeder), the number of total distribution transform-
ers divided by the number of total feeders in an EDS;

(8) F8: Average capacity of transformers at each feeder (MVA/
feeder), total capacity of distribution transformers divided
by the number of total feeders in an EDS;

(9) F9: Ratio of tie lines (%), ratio of the number of feeders with
tie lines in an EDS, to the number of total feeders;

(10) F10: Average number of switching devices at each section
(devices/section), the number of total switching devices,
such as disconnect switches and sectionalizing switches,
divided by the number of total sections in an EDS;

(11) F11: Average sections of each feeder (sections /feeder), the
number of total sections divided by the number of feeders
in an EDS;

(12) F12: Average load factor of feeders (%), average load factor
(the load of a feeder divided by the capacity of feeder) of
feeders in an EDS in a year.
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It should be noted that many other reliability influencing
factors in an EDS, such as ratio of overload feeders to the total feed-
ers, ratio of feeders with distribution automation devices to the
total feeders and ratio of overload transformers to the total trans-
formers, were not described above due to the space limitation.

Gray Relational Analysis of influencing factors

Gray Relational Analysis (GRA) [12] can be applied to analyzing
the complicated relationship among multi variables. GRA can,
therefore, be used to determine the degree of impact of different
factors on the EDS reliability and further recognize the key reliabil-
ity influencing factors, which is helpful in building an ANN fore-
casting model of EDS reliability considering failures.

The key step of GRA is to calculate Gray Relational Degree (GRD)
between the original series and reference series. GRD calculation of
TCOH-F is used as an example to explain the main steps [13].

Step 1: Standardize original series [14].

Assume that Fi = (fi1, fi2, . . ., fij, . . ., fiN) is the ith (i = 1,2, . . .,M)
influencing factor of TCOH-F, i.e. the ith original series. N is the
number of collected samples, and M is the total number of influ-
encing factors.

Based on the original series, a standardized series Xi = (xi1,
xi2, . . .,xij, . . .,xiN) is given by

xij ¼
f ij �minj f ij

maxj f ij �minj f ij
ð7Þ

Step 2: Standardize reference series.

The series of EDS reliability performance is chosen as the refer-
ence series, designated as I0 = (I01, I02, . . ., I0j, . . ., I0N). Generally, the
jth element I0j of I0 is the reliability index of the jth EDS, such as
ASAI. Similarly, a standardized series X0 = (x01,x02, . . .,x0j, . . .,x0N)
of I0 can also be obtained using (7).

Step 3: Calculate Gray relational coefficient (GRC).

GRC is used to determine the degree of closeness between xij
and x0j, which is given by

cðx0j; xijÞ ¼ Dmin þ nDmax

Dij þ nDmax
ð8Þ

where c(x0j,xij) is the GRC between xij and x0j; n the resolution factor
and n 2 [0,1]. Generally, n is 0.5.

Dij ¼ jx0j � xijj

Dmin ¼ min
i;j

Dij

Dmax ¼ max
i;j

Dij

Step 4: Calculate GRD.

GRD of original series Xi and reference series X0 can be calcu-
lated by [15]:

r0i ¼ 1
n

Xn
j¼1

cðx0j; xijÞ ð9Þ
Finish

reject the redundant factors

Fig. 1. Determination of key influencing factors of EDS component failures.
 

Key influencing factors of EDS component failures

Based on the GRA principles, the larger the GRD between an
influencing factor series and TCOH-F series is, the closer the corre-
lation between the influencing factor and TCOH-F index. Therefore,
a pre-specified GRD threshold can be used to recognize the key
factors having strong correlation with TCOH-F. In other words, if
a GRD is larger than the pre-specified one, then this factor can be
recognized as a key influence one.

It should be noted that the pre-specified GRD threshold has a
significant effect on the result of key factors and then on forecast-
ing results. Therefore, if a pre-specified threshold cannot reach
expected forecasting accuracy, the pre-specified threshold should
automatically be adjusted until satisfied results are obtained.

In addition, to avoid the redundancy of key influencing factors,
the GRD between any two key influencing factors should also be
evaluated. If two key factors have a high degree of correlation,
which is larger than a pre-specified GRD, then only one factor
can be recognized as a key influencing factor.

Fig. 1 shows the flowchart for the determination of key influ-
encing factors of EDS component failures.

Forecasting model of EDS reliability considering component
failures

Establishment of ANN model

ANN has been widely used in many science and engineering
fields [16–24]. Especially, BP (Back Propagation) ANN is the
most-widely used one [18]. A three-layer BPANNwith enough neu-
rons in the hidden layer can be used to approximate an arbitrary
mapping with K dimension inputs and I dimension outputs.

Fig. 2 shows a three-layer ANN for forecasting EDS reliability
considering component failures. The structure of ANN is as follows.

(1) Input layer: In order to avoid redundant variables or neu-
rons, the number of neurons in this layer is equal to the
number of key influencing factors recognized by the method
mentioned in Section ‘Influencing factors of EDS component
failures’.

(2) Hidden layer: Generally, the more the hidden layer neurons
are, the more accurate the result is but computational time
is also more. A formula based on experience can be used to
appropriately determine the number of hidden layer neu-
rons, which has been widely used in many problems [19]:

 

L ¼ ðK þ IÞ
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þ
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p
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Fig. 2. Structure of a BPANN with three layers.
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where K, L and I are the number of neurons in the input,
hidden and output layers, respectively; NS the number of
training samples.
(3) Output layer: The ANN output is the forecasted TCOH-F
index, so the number of output layer neurons is 1, i.e. I = 1.

ANN training process

BP algorithm is widely used to train ANN. Using the least square
technique, the training process of ANN can decrease the error sum
of squares between the evaluated outputs and original outputs by
constantly adjusting the ANN weights [23]. The error E between
the original outputs and evaluated outputs is defined by

E ¼ 1
2

XNS

p¼1

ðdp � ypÞ2 ¼ 1
2

XNS

p¼1

½dp � wðnetÞ�2 ð11Þ

where

net ¼
XL
j¼1

wj1u
XK
i¼1

v ijxi þ hj

 !
þ a ð12Þ

where dp and yp are the calculated output and original output of
sample p, respectively; net the input of output layer neuron; xi
the input of neuron i in the input layer; wj1 the weight from the
neuron j in the hidden layer to the neuron in output layer; vij the
weight from the neuron i to the neuron j; u(x) and w(x) the func-
tions of hidden and output layers, respectively; hj and a the thresh-
olds of neuron j in the hidden layer and the neuron in the output
layer, respectively.

The error E is a function of the thresholds and weights of ANN,
so E can be decreased by adjustment of thresholds and weights
using a Gradient Descent Algorithm, which is given by [24]:

Da ¼ g
XNS

p¼1

½dp � wðnetÞ�w0ðnetÞ ð13Þ

Dwj1 ¼ Dau
XK
i¼1

v ijxi þ hj

 !
ð14Þ

Dhj ¼ Dawj1/
0 XK

i¼1

v ijxi þ hj

 !
ð15Þ

Dv ij ¼ Daxi ð16Þ
where Da and Dwj1 are the threshold and weight modifications in
output layer, respectively; Dhj and Dvij are the threshold modifica-
tion and weight modification in the hidden layer, respectively.
Determination of key influencing factors in the forecasting year

The basic concepts of reliability forecasting method considering
EDS component failures are: (1) to apply the collected historical
data to train an ANN so as to build a nonlinear mapping relation-
ship between the EDS reliability considering failures and key influ-
encing factors; (2) to forecast the EDS reliability using the trained
ANN and input data which are the key influencing factors in the
forecasting year. Therefore, it is necessary to determine the
amounts of key influencing factors in the forecasting year before
using the ANN.

The planning scheme of an EDS is a valuable reference to deter-
mine the amount of influencing factors in the forecasting year. For
example, according to the investment and planning schemes of
feeders in an EDS in 2014, the total sections and total length of
all feeders in 2014 can be obtained. Therefore, the amount of aver-
age length of each section, i.e. F4, in 2014, can be obtained. Simi-
larly, the other amounts of key factors in the forecasting year can
also be obtained.

Forecasting TCOH-F

TCOH-F forecasting of an EDS in 2014 is used as an example to
explain the forecasting model using the influencing factor series
and TCOH-F series during the years 2004–2013. The TCOH-F fore-
casting algorithm is shown as follows.

Step 1: Collect historical TCOH-F indices and data of influencing
factors during the years 2004–2013, and build the original
series and reference series;
Step 2: Standardize the series using (7);
Step 3: Recognize the key influencing factors of TCOH-F by GRA
method in Section ‘Influencing factors of EDS component
failures’;
Step 4: Divide the standardized data into training set and test
set. The training set includes the data during the years 2004–
2012 and the test set includes the data in 2013;
Step 5: Determine the structure of BPANN;
Step 6: Train the ANN using (11)–(16);
Step 7: Test ANN forecasting model using data in 2013;
Step 8: Determine the amounts of key influencing factors in
2014;
Step 9: Forecast the TCOH-F index in 2014 using the ANN
model.

Forecasting EDS reliability considering planned outages

Section ‘Forecasting model of EDS reliability considering
component failures’ proposed a TCOH-F forecasting method con-
sidering EDS component failures. As commonly known, reliability
performance of an EDS is also influenced by planned outages.
Generally, planned outages are mainly focused on the implementa-
tion of engineering projects, such as EDS component replacement,
installation, maintenance and test, which can be notified to cus-
tomers in advance by planning and operation departments.

Planned outages are closely related with annual engineering
projects and investments. A forecasting algorithm for TCOH-P is
proposed based on the relationship between the investment of dif-
ferent engineering projects and TCOH-P. The main procedure is as
follows.

Step 1: Classify the EDS projects into different types, such as
distribution line project, switching device project and distribu-
tion transformer project, and obtain the statistical data about
the investment and TCOH-P of each type in recent years;

 

 



Table 3
MAPE of forecasted SAIDI indices with different GRD thresholds.

Pre-specified
GRD threshold

0.50 0.55 0.60 0.65 0.70 0.75 0.8 0.85

MAPE (%) 11.45 11.45 9.68 9.68 9.68 3.09 6.73 10.11
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Step 2: Calculate average TCOH-P of a unit investment for each
type of project, and designate as hi;
Step 3: Obtain the investment Mi of each type of projects
according to the annual investment list in the forecasting year;
Step 4: Forecasting TCOH-P:

TCOH-P ¼
XNty

i¼1

hiMi ð17Þ

where Nty is the number of project type.

EDS reliability forecasting considering component failures and
planned outages

Based on the forecasted TCOH-F considering EDS component
failures and TCOH-P considering planned outages, total TCOH can
be given by

TCOH ¼ TCOH-Fþ TCOH-P ð18Þ
TCOH is also used as an example to explain the procedures of

EDS reliability forecasting.

Step 1: Build a forecasting model considering EDS component
failures, which was proposed in Section ‘Forecasting model of
EDS reliability considering component failures’;
Step 2: Determine the magnitudes of key influencing factors of
TCOH-F in forecasting year;
Step 3: Forecast the TCOH-F in the forecasting year;
Step 4: Build a forecasting model considering EDS planned
outages, which was proposed in Section ‘Forecasting EDS relia-
bility considering planned outages’, and forecast TCOH-P in the
forecasting year;
Step 5: Obtain TCOH using (18), and forecast EDS system
indices using (3)–(6).

Based on (3)–(6) and (18), SAIDI, ASAI and other EDS system relia-
bility indices can also be forecasted.

If the collected historical data are not enough, the accuracy of
EDS reliability forecasting model can hardly satisfy the require-
ment. In order to obtain an acceptable accuracy, a large-scale
EDS can be divided into several parts, which have similar levels
in economic development, component reliability performance
Table 1
Statistical data of 10 kV EDSs.

EDS no. I0 F1 F2 F3 F4 F5

1 3.11 26.79 56.12 57.57 4.29 11.24
2 1.66 48.94 87.25 89.94 1.28 4.36
3 1.58 50.71 73.06 73.35 1.76 4.65
4 0.91 95.84 97.18 97.3 1.81 5.02
5 2.01 44.93 71.36 71.36 3.42 10.03
6 1.55 62.44 62.49 69.51 3.67 7.54
7 1.97 48.32 58.02 59.63 3.83 9.61
8 2.20 40.56 81.13 81.13 2.87 6.99

. . . . . . . . . . . . . . . . . .

32 1.73 46.08 76.63 79.72 1.27 3.71
33 1.88 39.88 75.27 76.28 1.29 4.18

Table 2
GRD between each influencing factor and I0.

Factor no. r01 r02 r03 r04 r05 r06

GRD 0.8864 0.7641 0.7883 0.7245 0.7687 0.48
and management. Then each part can be looked on as an EDS to
establish a reliability forecasting model.

When the influencing factors in a given period of time, such as
one day or one year, are known and used in the proposed tech-
niques the reliability of EDS for this time scale can be forecasted.

 

Case studies

The 10 kV EDSs in a Power Supply Bureau (PSB) with a peak load
more than 10,000 MW are used as examples to illustrate the valid-
ity and the effectiveness of the proposed method for forecasting
the EDS reliability.

The PSB had 33 EDSs in 2013. Table 1 shows the statistical data
of 33 EDSs. I0 is the collected historical TCOH-F series, and Fi
(i = 1,2, . . .,12) is the series of the ith influencing factors defined
in Section ‘Influencing factors of EDS component failures’.
Recognizing key influencing factors of EDS component failures

Table 2 shows the GRD between each influencing factor series Fi
and I0 of TCOH-F series. Table 3 shows the mean absolute percent-
age errors (MAPE) of forecasted SAIDI indices with different pre-
specified GRD thresholds using the proposed model. It can be seen
from Table 3 that the pre-specified GRD threshold of 0.75 can reach
a minimum MAPE.

It can also be seen from Table 2 that there are 8 factors with the
GRD more than 0.75, which are influencing factors F1, F2, F3, F5, F9,
F10, F11 and F12. These 8 factors are the candidates of key influenc-
ing factors.

Table 4 shows the GRD between any two influencing factors. It
can be seen from Table 4 that the GRDs between factors F2 and F3
and F10 and F11 are more than 0.75, which indicates that there are
strong correlations between those factors. This is consistent with
the engineering experience analysis. Therefore, the redundancy
factors F2 and F10 should be deleted due to r03 > r02 and r011 > r010.
F6 F7 F8 F9 F10 F11 F12

0.37 15.98 9.57 0.92 1.05 1.07 73.33
0.3 9.28 6.15 1.57 1.76 1.80 39.41
0.33 8.31 5.50 2.06 2.07 2.12 48.41
1.08 5.74 3.22 2.58 3.62 3.63 33.67
0.64 12.03 7.97 1.09 1.56 1.59 51.26
1.09 11.43 9.56 1.82 1.82 1.86 52.51
1 15.86 10.50 0.98 1.72 1.75 56.83
0.59 8.21 5.44 1.29 1.29 1.32 42.96
. . . . . . . . . . . . . . .

0.3 11.05 7.32 1.62 1.81 1.85 41.13
0.29 10.60 7.02 1.43 1.67 1.70 43.68

r07 r08 r09 r010 r011 r012

52 0.6806 0.5864 0.8322 0.8495 0.8640 0.7951 



Table 4
GRD between any two influencing factors.

F1 F2 F3 F5 F9 F10 F11 F12

F1 1.00 0.43 0.39 0.46 0.61 0.51 0.50 0.46
F2 – 1.00 0.86 0.38 0.52 0.49 0.47 0.52
F3 – – 1.00 0.43 0.46 0.46 0.49 0.44
F5 – – – 1.00 0.52 0.49 0.43 0.63
F9 – – – – 1.00 0.48 0.46 0.52
F10 – – – – – 1.00 0.88 0.43
F11 – – – – – – 1.00 0.42
F12 – – – – – – – 1.00

Table 5
Amounts of key influencing factors in 33 EDSs in 2013.

EDS no. Key influencing factors

F1 (%) F3 (%) F5 F9 F11 F12 (%)

1 33.30 58.80 10.68 1.05 1.86 54.83
2 50.84 95.33 4.33 1.62 2.32 37.95
3 50.73 76.45 4.83 2.03 2.89 48.71
4 98.60 97.04 5.08 2.57 3.66 40.49
5 57.90 82.87 10.45 1.58 1.83 53.78
6 60.55 67.58 7.57 1.95 1.43 62.18
7 52.42 61.93 9.68 1.06 1.27 47.81
8 62.59 90.86 6.99 1.29 2.36 46.68

. . . . . . . . . . . . . . . . . . . . .

32 51.19 79.39 3.80 1.64 3.52 39.12
33 40.97 77.84 4.23 1.44 3.40 37.48

Table 7
Forecasted SAIDI and ASAI indices of 33 EDSs in 2014.

EDS no. SAIDI-F SAIDI-P SAIDI ASAI (%)

1 2.37 2.04 4.41 99.95
2 1.83 3.87 5.70 99.93
3 0.98 3.46 4.44 99.95
4 0.69 0.90 1.59 99.98
5 1.65 2.99 4.64 99.95
6 1.32 5.32 6.64 99.92
7 1.58 4.22 5.80 99.93
8 1.78 4.28 6.06 99.93

. . . . . . . . . . . . . . .

32 0.95 2.55 3.50 99.96
33 1.21 1.85 3.06 99.97
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Based on the above analysis, the input variables of ANN model,
which are recognized as the key influencing factors of the EDS
component failures, are F1, F3, F5, F9, F11 and F12. In other words,
F2 and F10 were removed from the candidates of key influencing
factors, and the number of the key influencing factors was changed
to 6 from the original number of 8.
Forecasting the EDS reliability indices

A three-layer ANN was built to forecast the EDS reliability,
whose number of neurons in input, hidden and output layers are
6, 9 and 1, respectively. Let the pre-specified convergence accuracy
of ANN model be 0.0005.

The collected historical 10 kV EDSs data during the years 2004–
2012 were used to train the ANN model. The training process was
stopped with 45 generations using the accuracy of 0.00048. Table 5
shows the amounts of key influencing factors in 2013 based on the
planning schemes. Tables 6 and 7 show the forecasting SAIDI
indices in 2013 and 2014, respectively.
Table 6
Forecasted SAIDI indices of 33 EDSs in 2013.

EDS no. SAIDI-F⁄ SAIDI-P⁄

Forecasted Original Error (%) Forecasted

1 2.74 2.85 �3.71 6.94
2 1.92 1.89 1.66 5.93
3 1.60 1.49 7.15 3.16
4 0.83 0.77 7.40 0.59
5 1.83 1.87 �2.24 4.27
6 1.59 1.62 �1.87 3.51
7 1.51 1.41 7.06 1.27
8 1.82 1.84 �0.95 1.88

. . . . . . . . . . . . . . .

32 1.34 1.25 6.83 2.51
33 1.61 1.52 6.05 3.67

Note: SAIDI-F and SAIDI-P are the SAIDI indices using NCFI-F and NCFI-P in (3), respecti
It can be seen from Table 6 that the maximum absolute error of
the proposed forecasting model is 6.84% and mean absolute error is
3.09%, which indicate that the proposed model is efficient and
applicable of forecasting EDS reliability.

In addition, the proposed method was also applied to forecast-
ing EDS system reliability in many power supply bureaus in
Guangdong, Hainan and Henan provinces, China. All the mean
absolute errors are around 3%.
Conclusions

This paper proposes a comprehensive technique for forecasting
EDS reliability, which has two parts, i.e. the models for EDS compo-
nent failures and planned outages. A three-layer ANN model was
built to forecast the system reliability considering EDS component
failures. Based on the values of key factors in the next years, the
reliability indices of EDS can be forecasted by the trained ANN. In
addition, this paper also proposed a planned outage reliability
model considering the amount of investments and type of planned
outages. The proposed techniques are actually general methods for
EDS reliability forecasting without any special assumptions or
SAIDI

Original Error (%) Forecasted Original Error (%)

6.75 2.93 9.77 9.60 1.81
6.24 �5.02 7.85 8.13 �3.48
3.36 �5.85 4.64 4.85 �4.33
0.64 �8.32 1.42 1.41 0.48
4.38 �2.63 6.09 6.25 �2.57
3.62 �3.08 5.08 5.24 �2.96
1.34 �5.42 2.68 2.75 �2.44
1.96 �4.16 3.70 3.80 �2.67
. . . . . . . . . . . . . . .

2.35 6.85 3.85 3.60 6.84
3.84 �4.51 5.18 5.36 �3.28

vely.
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requirements associated with the time scales, and can be used to
forecast the short-term and long term reliability of EDSs.

The proposed method was used to forecast the reliability of
actual 10 kV EDSs in China. The case studies indicate that the pro-
posed method has a high enough forecasting accuracy to satisfy the
requirements of engineering and management decisions.

This paper also proposes a method for identifying key influenc-
ing factors of component failures using the GRD between the EDS
reliability series and the influencing factor series. The priorities
of key influencing factors can be used to improve the EDS reliabil-
ity with more benefits.

As commonly known, there are many factors influencing the
system reliability of an EDS. Different EDSs have different key reli-
ability influencing factors. In addition, the key influencing factors
of an EDS also change with the time.
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