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a b s t r a c t

A particle swarm optimization based simultaneous learning framework for clustering and classification
(PSOSLCC) is proposed in this paper. Firstly, an improved particle swarm optimization (PSO) is used to
partition the training samples, the number of clusters must be given in advance, an automatic clustering
algorithm rather than the trial and error is adopted to find the proper number of clusters, and a set of
clustering centers is obtained to form classification mechanism. Secondly, in order to exploit more useful
local information and get a better optimizing result, a global factor is introduced to the update strategy
update strategy of particle in PSO. PSOSLCC has been extensively compared with fuzzy relational
classifier (FRC), vector quantization and learning vector quantization (VQþLVQ3), and radial basis
function neural network (RBFNN), a simultaneous learning framework for clustering and classification
(SCC) over several real-life datasets, the experimental results indicate that the proposed algorithm not
only greatly reduces the time complexity, but also obtains better classification accuracy for most datasets
used in this paper. Moreover, PSOSLCC is applied to a real world application, namely texture image
segmentation with a good performance obtained, which shows that the proposed algorithm has a
potential of classifying the problems with large scale.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The primary goal of pattern recognition is supervised and
unsupervised classifications [1,2]. The frame of the pattern recogni-
tion is taken as: definition of pattern classes, sensing environment,
pattern representation, feature extraction and selection, cluster
analysis, classifier design and learning, selection of training and
test samples, and performance evaluation. No doubt pattern recogni-
tion has already caused a high level of concern because of its
importance in a variety of scientific disciplines and engineering
such as medicine, computer vision, and artificial intelligence.

In supervised classification, the classifier is designed using samples
with class labels, and then always classifies those data with unknown
class labels. Up to now, many techniques for such classification have
been developed, such as linear and logistic regression, decision trees
[3] and rules, k-nearest neighbor classifiers [4], neural networks [5],
and support vector machines [6]. They have been proven to achieve
good performance successfully. In unsupervised classification (e.g.,
clustering), the main aim is to group a given collection of unlabeled
patterns into meaningful clusters, which is performed to uncover the
distribution of the whole data, that is, reveal the underlying structure
in data.

Different from the approaches proposed in Refs. [1,2], another
type of classifiers is proposed by incorporating structural information
into their classification schemes [7–10]. Firstly, the clustering analysis
is utilized to discover the natural structure in data. Then, a classifier
based on the obtained structural information is designed. The results
show that using this way not only reveals the data distribution but
also improves the classification learning to some extent. In radial
basis function neural network (RBFNN) [7], training samples are
clustered so as to determine the parameters of the hidden layer by
using fuzzy c-means (FCM) [8]. While in fuzzy relational classifier
(FRC) [9], the training phase includes two phases. Firstly, execute the
clustering on the training samples, then a relation matrix between
clusters and the class labels is established, the matrix here is
constructed by some operator rather than by optimizing a function.
In vector quantization and learning vector quantization (VQþLVQ3)
[10], only the positions and class labels of the centers are used to
classify new samples, and neither of them need to predetermine the
relational matrix between clusters and classes.

Obviously, these algorithms have a common point: the clustering
learning and the classification learning optimize their own criteria
sequentially and separately, which means that the clustering learning
here just aids the classification learning but does not benefit from the
classification learning. Recently, a simultaneous learning framework
for clustering and classification (SCC) is presented [11]. In SCC, the
Bayesian theory and the cluster posterior probabilities of classes are
employed to associate the classification learning with the clustering
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learning. Based on this point, authors define a single objective
function to which the clustering process is directly embedded, which
ensures the evaluation of both clustering and classification perfor-
mance at the same time. In the process of optimization, not only the
positions of the individuals are optimized, but a relation matrix is
also obtained, which represents the connection between classifica-
tion and clustering. Therefore, some more meaningful information
becomes transparent. Compared to other algorithms, it has been
proved that SCC can get a visible superiority, possessing a simulta-
neous frame formed of clusters and classes.

However, in the cluster learning stage of SCC [11], the number
of cluster k is set in the range from lmax to cmax, suggested by
Bezdek [12]. Obviously, there also exists a large uncertainty and
randomness. Suppose that k is a large value, this kind of selection
strategy will lead to a higher dimension structure with solutions
encoded. Similarly, the trial and error [13], which is the traditional
method for finding out the value of cluster number k, demands
running algorithm time by time to determine the number of
clusters. In this paper, an improved simultaneous framework for
clustering and classification (PSOSLCC) is proposed. In order to
compensate for the shortcoming mentioned above, an automatic
clustering using an improved differential evolution algorithm
(ACDE) [14] is used to obtain the number of clusters, which not
only save the time, but also can always get approximate true
number of clusters. Meanwhile, SCC used a modified particle
swarm optimizer (PSOm) to optimize the objective function, while
the proposed algorithm adopts a global factor to update the
positions of particles in the process of the PSOm, which can get
more local information from neighborhood and improve the
performance to some extent. PSOSLCC is compared against FRC,
VQþLVQ3, RBFNN and SCC. The experimental results show that
the PSOSLCC is better than other algorithms in term of classifica-
tion accuracy. In addition, PSOSLCC is also applied to a real world
application, namely texture image segmentation.

The rest of this paper is organized as follows: in Section 2, the
proposed algorithm (PSOSLCC) is described in detail. The experi-
mental sets, results on two synthetic datasets and several real-life
benchmark datasets are elaborated in Section 3. In addition, the
algorithm is executed on several texture images. Finally, the
conclusions are displayed in Section 4.

2. The proposed algorithm

In PSOSLCC, by running an automatic clustering using improved
differential evolution algorithm (ACDE) [14] for many times, the
optimal cluster number of dataset is found and meanwhile a set of
clustering centers corresponding to the optimal clustering number
are obtained. Then a simultaneous learning framework for clustering
and classification based on an improved particle swarm optimization
is adopted to classify the dataset. In the proposed algorithms, these
clustering centers will act as the initial swarm in the improved PSO,
and a special objective function used in [11] will be optimized to
obtain a best clustering centers for training datasets and can evaluate
the classification and clustering ability simultaneously, in which, a
relational matrix is established through Bayesian theorem to for-
mulate the relationship between clusters and classes. Moreover, a
global factor is introduced into PSOm [14] to update the position of
particles in order to obtain a better performance.

The procedure of the proposed PSOSLCC will be described as
follows:

Step 1: Load dataset, and divide the dataset into two parts,
training dataset and testing dataset.

For training dataset (training phase):
Step 2: Run the automatic clustering algorithm (ACDE) to
determine the optimal cluster number, obtain a set of

clustering centers, which are defined as the initial positions of
the particles in PSO, and set the current iteration number t to
1 and the ideal value of the objective function of PSO to 0.

Step 3: Calculate pðcjjxiÞ using fuzzy c-means (FCM) based on
the training dataset by using Eq. (11). Here xi is the training
sample and cj represents the jth cluster, pðcjjxiÞ is the
posterior probability of sample xi belonging to jth cluster.

Step 4: Calculate relational matrix P by using Eq. (13), then
determine the labels for the training dataset based on pðcjjxiÞ
and P by using Eq. (9).

Step 5: Based on the results of steps 3 and 4, calculate the
objective value of each particle according to Eq. (16).

Step 6: If t¼1, set pi of each particle and its objective value
equal to its current position and objective value; otherwise
compare the current particle’s objective value with the
previous, and choose the better one as the current position
and objective value.

Step 7: Determine the best particle pg with the best objective
value.

Step 8: Update the velocity and position of each particle by
using Eqs. (28) and (29).

Step 9: Update the inertia weight ω using Eq. (22).
Step 11: If tZtmax or the objective function value of pgr0, then
stop; otherwise return back to step 3.

For testing dataset (testing phase):
Step 12: Determine the labels of the testing data using position
of global optimum particle and its corresponding relational
matrix P.

Step 13: Calculate the classification accuracy.
Step 14: End.

In the following sections, we will give a detailed introduction of
each step of the proposed algorithm.

2.1. The automatic clustering algorithm

In this paper, the simultaneous frame consists of two parts:
clustering and classification. For the clustering part, the number of
clusters k becomes a key issue to be determined. One of the
intuitive manners is the “trial-and-error” [13]. First, the dataset is
divided into c clusters, and then the classification rate of the
algorithm is evaluated. Finally, choose the appropriate value for
parameter k. In [11], the parameter k is set in the range from the
number of classes lmax up to cmax, cmax is set as

ffiffiffiffi
N

p
and N is the

number of the training samples [12]. Due to the uncertainty of k,
the method above has a higher computational complexity.

To settle this problem, we adopt an automatic clustering algo-
rithm rather than the trial-and-error method to determine the
parameter k. Das et al. [14] put forward an automatic clustering
using improved differential evolution algorithm (ACDE) for the
clustering of large unlabeled datasets. Two techniques are used in
the algorithm to find the correct number of clusters as well as the
optimal partitioning. One is the algorithm adopting a real-coding
chromosome with fixed length which contains activation threshold
and clustering center. The activation threshold controls whether the
corresponding clustering center is to be activated. The other is using
an improved differential evolution to further improve the algo-
rithm’s accuracy, convergence speed, and robustness.

By introducing ACDE into the proposed algorithm, not only the
computation complexity is reduced greatly, but also a set of
clustering centers can be achieved at the same time, which most
of the times can reveal the underlying structure of data correctly.
We will describe ACDE as follows.
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2.1.1. Solution encoding
In ACDE, the encoding of the solution contains two parts: threshold

and feature attributes with d dimensions. For the first part, all the
values are initialized in the range [0,1], each of which controls whether
the corresponding individual is to be activated or not. In the second
part, every sample consists of the same dimensions as the training
datasets. The whole solution is shown in Table 1.

2.1.2. Fitness function
In ACDE, PBM index [15] is used to evaluate the solutions,

which is proposed by Pakhira, Bandyopadhyay and Maulik in 2004.
PBM index can be defined as

PBMðkÞ ¼ 1
k
� E1

Ek
� Dk

� �2

ð1Þ

where k is the number of clusters. And the other factors can be
shown as

Ek ¼ ∑
k

i ¼ 1
Ei ð2Þ

Ei ¼ ∑
n

j ¼ 1
uijjjxj�cijj ð3Þ

Dk ¼ max
k

i;j ¼ 1
jjci�cjjj ð4Þ

where n is the scale of the training data, uij is the partition matrix,
xij is the sample with label, cj is the cluster center. Thus, the
function value of the ith individual is

f i ¼ PBMiðkÞ ð5Þ
Maximizing Eq. (5) will result in compact clusters and k in PBM
index got will be the optimal number of clusters.

2.1.3. Update strategy
Differential evolution is also an evolutionary algorithm, which

varies with iteration [14]. For each individual, DE algorithm selects
three other individuals randomly as reference. Suppose that xtk is
the current individual, and the others are xti ,x

t
j , and xtm. Then, the

offspring can be updated as

utþ1
k;d ¼

xtm;dþF U ðxti;d�xtj;dÞ if randdð0;1ÞoCr

xtk;d otherwise

8<
: ð6Þ

where utþ1
k;d represents the offspring, Cr is a scalar parameter

between 0 and 1, called the crossover rate, the choice of F is as:

F ¼ 0:5� ð1þrandð0:1ÞÞ ð7Þ
Then, the new individual is selected between utþ1

i and xti ,
according to the following equation:

xtþ1
i ¼

utþ1
i if f ðutþ1

i Þ4 f ðxti Þ
xti if f ðutþ1

i Þr f ðxti Þ

(
ð8Þ

where f ð Þ is the fitness value of the sample.
The procedure of the ACDE used in the proposed algorithm can

be shown below:

Step 1: Load dataset.

Step 2: Initialization. Each individual in the population consists
of thresholds and cluster centers.

Step 3: Find out the valid cluster centers in each individual
using the value of thresholds.

Step 4: For t¼1 to tmax do
1. Clustering using the cluster centers and dataset for the current

individual.
2. Calculate the fitness of the current individual and select three

other individuals in the population.
3. Check whether the number of data belonging to the same

class is larger than 2. If so, update the position of the current
individual according to Eqs. (6) and (8). Use the fitness of the
individuals to guide the evolution of the population.

Step 5: Record the final global optimum individual and the
corresponding cluster number at t¼tmax.

Step 6: End.

2.2. Relational matrix

After running the ACDE, a set of clustering centers have gotten,
then a classification mechanism depending only on them is adopt
in [11], which uses both cluster information and the relational
matrix to determine the class labels for new samples. In the
training process, a relational matrix of each clustering centers is
established firstly between the cluster and class labels. After
optimizing, which is described in next section, we can obtain the
relational matrix of the optimum clustering centers. In the testing
process, the classification mechanism combined with the rela-
tional matrix of the optimum clustering centers is used to
determine the class labels for new samples. The following details
the classification mechanism.

Suppose the posterior probabilities pðwljxiÞ for each sample are
available. Then the label for sample xi can be obtained by the
following equation:

f ðxiÞ ¼ arg max
1r lr L

pðωljxiÞ ð9Þ

here wl denotes the lth class, xi is the ith sample in the input
samples (in the training process they are training samples and in
the testing process they are testing samples), L is the number of
classes, f ðxÞ is the new label for the sample. In order to combine
the classification with the clustering, the total probability theorem
is used to incorporate the clusters into the reformulation pðwljxiÞ
shown by the following equation:

pðωljxiÞ ¼ ∑
k

j ¼ 1
pðωl; cjjxiÞ ¼ ∑

k

j ¼ 1
pðcjjxiÞpðωljcj; xiÞ ¼ ∑

k

j ¼ 1
pðcjjxiÞpðωljcjÞ

ð10Þ
where k is the number of clusters, cj is the jth cluster center, pðcjjxiÞ
is the posterior probability of sample xi belonging to jth cluster.
From pðωljcj; xiÞ, it can be seen that pðωljcj; xiÞ is independent of xi,
therefore, it can be taken as pðωljcjÞ, and denotes the lth class
posterior probabilities in the condition of jth cluster.

In Eq. (10), pðcjjxiÞ can be calculated by using different cluster-
ing models. In this paper, FCM is applied to compute the posterior
probability and it can be obtained by the following equation:

pðcjjxiÞ ¼
distðxi; cjÞ�1

∑K
r ¼ 1distðxi; crÞ�1 ð11Þ

where cj denotes the jth cluster center, and it can be observed that
the formula only depends on the positions of the cluster centers.
Thus, the optimization for centers becomes vital important in the
whole training process.

Table 1
Solution encoding in ACDE.

Ti;1 Ti;2 … Ti;Kmax|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Activation Threshholds

ci;1 ci;2 … ci;Kmax|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Clusher Centers

Kmax is the maximum number of clusters. Tij;jA ½1;Kmax� is the decision-maker.
When Tij40:5, the corresponding ci;j is active, otherwise, it is inactive.
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In Eq. (10), the posterior probability is calculated through
Bayesian theory as shown in the following equation:

pðωljcjÞ ¼
pðωl; cjÞ
pðcjÞ

ð12Þ

where pðcjÞ is the proportion of the samples in the jth cluster to
the whole training samples, such as NumðxAcjÞ=N, N is the size of
training samples, pðωl; cjÞ represents the probability of the samples
in the lth class and jth cluster simultaneously, shown as
NumðxAωl and xAcjÞ=N. So the whole expression can be written
as the following equation:

pðωljcjÞ ¼
NumðxAωl and xAcjÞ

NumðxAcjÞ
ð13Þ

From Eq. (13), a relation matrix can be derived as

∑
L

l ¼ 1
pðωljcjÞ ¼ 1 ð14Þ

And the whole expression can be expanded as the following
equation:

P ¼

pðω1jc1Þ pðω2jc1Þ ::: pðωLjc1Þ
pðω1jc2Þ pðω2jc2Þ ::: pðωLjc2Þ
::: ::: ::: :::

pðω1jckÞ pðω2jckÞ ::: pðωLjckÞ

2
66664

3
77775 ð15Þ

It can be seen that pðωljcjÞ is a matrix with k� L, revealing a
statistical relationship between the lth class and the jth cluster.
pðωljcjÞ represents the probability of the samples in the lth class
and the jth cluster simultaneously to the jth cluster. When pðωljcjÞ
is small, the number of samples in the jth cluster from the lth class
is fewer.

Here, we note that the classification mechanism is only
relevant to the cluster centers. From Eq. (13), pðωljcjÞ only depends
on the cluster centers, each sample of the training samples only
belongs to one cluster. According to Eq. (10), pðcjjxiÞ just relies on
the positions of the cluster centers as well. Thus, the posterior
probability pðωljxiÞ is determined by the clustering centers, which
means that it is crucial to optimize the cluster centers.

2.3. Objective function

Based on the above classification mechanism, the classification
and clustering is optimized in a single objective function [11].
To realize the purpose, the objective function consists of two parts:
misclassification rate and clustering impurity. Suppose the sam-
ples and labels are xi and ωi, where xiARd and ωiAf1;2; :::; Lg, and
then the objective function is used in proposed algorithm given by
the following equation [11]:

JðfcjgÞ ¼ ∑
N

i ¼ 1
δðf ðxiÞ;ωiÞ=NþβqðXÞ ð16Þ

where f ðxiÞ denotes the label obtained from the classification
mechanism. When f ðxiÞ ¼ωi, the value of δ function is 0, other-
wise 1. qðXÞ represents the clustering impurity explained by the
following equation:

qðXÞ ¼ 1� ∑
k

j ¼ 1
max

l ¼ 1;2;:::;L
pðωl; cjÞ

¼ 1� ∑
k

j ¼ 1
max

l ¼ 1;2;:::;L
pðωljcjÞ � pðcjÞ

¼ 1� ∑
k

j ¼ 1

max
l ¼ 1;2;:::;L

pðωljcjÞ � NumðxAcjÞ
N

ð17Þ

As referred in [11], the parameter β is an important factor used
to balance the classification rate and clustering impurity, and its

value is taken among f0:01; 0:1; 1g. Obviously, the process of
optimizing the centers fcjg is the process of adjusting the simulta-
neous framework, composed of misclassification rate and the
clustering impurity.

In Eq. (17), in order to calculate NumðxAcjÞ, various distance
metrics can lead to different algorithms. In this paper, a distance
metric based on kernel-induced is used to improve the perfor-
mance of the algorithm. Thus, the distance formula can be written
as follows:

distðxi; cjÞ ¼ 2�2 exp
�jjxi�cjjj2

δ2

 !
ð18Þ

where δ is a parameter in the distance metric. Due to the great
effect, parameter δ is defined in terms of [16]:

δ2 ¼∑N
i ¼ 1jjxi�xjj2

λ
ð19Þ

x¼ ∑
N

i ¼ 1
xi=N ð20Þ

To get the value of δ, a trial-error-approach is used to seek λ in
a range of 0:01; 0:05; 0:1;0:5; 1; 5; 10; 15f g[17].

2.4. Particle swarm optimization of objection function

PSO originates from the study of behavior mechanism,
generated from birds flocking and fish schooling in the nature
[18]. Due to the simplicity of single unity, the main idea of PSO is
to complete the complicated task relying on the collaboration
with each other in a population. Compared to the basic PSO [19],
an inertia weight is introduced into the improved PSO [20] to
balance the global search and local search. Obviously, the larger
the value of ω is, the greater the impact of the global search will
produce. And the algorithm uses a local search when the value
of ω is small. Compared to some other evolutionary algorithms,
the improved PSO has been proved to get a competitive
performance.

2.4.1. The basic PSO
PSO as an evolutionary technique was first put forward by J.

Kennedy and R. Eberhart in 1995 [18], a social psychologist and
electrical engineer respectively in USA.

In PSO, each individual is treated as a ‘particle’, which, in fact,
represents a solution to the problem. A particle is defined as a point
Xiðxi1; xi2; :::; xid; :::; xiDÞ in a D-dimensional space. Here, the D-dimen-
sional space is just the search environment. Meanwhile, each particle
has its own velocity constituted as Viðvi1; vi2; :::; vid; :::; viDÞ. Thus, it
allows the particles to own the ability to move around in the search
space. Above all, an array of solutions is initialized randomly, and
then updating their positions and velocities according to their own
experience and the others. During this phase, a pbest (personal best)
and gbest (global best) will be selected out to be introduced into the
following equation:

vtþ1
id ¼ωt Uvtidþc1 Ur1 Uðptid�xtidÞþc2 Ur2 Uðptgd�xtidÞ ð21Þ

where t is the current iteration number, d is the dth element defined
as dA ½1;D�, ω is an inertia weight, c1 and c2 are two factors, c1
represents its own dependence, c2 determines the effect other
particles has on the current one. In [21], an adaptive parameter
selection in PSO is applied by learning automata, including the inertia
weight and acceleration coefficients. Factors r1 and r2 are two
random values uniformly distributed in the range [0,1], simulating
the slight disturbance in the nature environment. ptid is the dth
component of pbest at generation t, and ptgd is the one of gbest.
Considering the search ability, the inertia weight is defined by the
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following equation [22]:

ωt ¼ 1:4�0:4� t=T max ð22Þ

where T max is the maximum number of iteration. As shown in
Eq. (22), the algorithm tends to have a larger search range at the
beginning. While with t increasing, it has more local search around
the preferable solution. In [23], a comparison is utilized between the
linearly decreasing inertia weight PSO and the adaptive population
size PSO, which is also an improved manner for PSO and can be
studied in a further step.

The position update strategy is introduced by the following
equation:

xtþ1
id ¼ xtidþvtþ1

id ð23Þ

2.4.2. Global factor
In PSO, to search for the optimal solution, each particle updates

its flying velocity and current position iteratively according to its
own flying experience and other particles’ flying experience. At
each generation, the velocity vector for each particle is updated
based on three terms: previous velocity of the particle, the private
thinking of the particle and the collaboration among the particles.
After that, the particle is moved to its next position. In a word, PSO
is a kind of evolutionary method through cooperation and com-
petition among different particles. Because of the simple concept
and fewer parameters to tune, PSO has been successfully used to
solve real-valued optimization problems and classification pro-
blems. In Refs [24–26], PSO is used to extract classification rules.
Thus, we also adopt PSO to optimize the clustering centers.

In PSO, updating strategy is a kernel problem. In [19], it is
performed without considering all the particles, but only using two
individuals pbest and gbest. To overcome this shortcoming, we
introduce an influence factor into the iteration equation. In that case,
an attractive force between different particles is defined first [27]:

Fdij ¼ GðtÞUMpiðtÞ �MajðtÞ
RijðtÞþε

U ðxdj ðtÞ�xdi ðtÞÞ ð24Þ

where i and j represent two particles, GðtÞ changes with the variation
of t using the equation GðtÞ ¼ G0 � eð�α U ðt=TmaxÞÞ. In this paper, we
adopt G0 ¼ 100 and α¼ 20. The value of ε is 0.01.Rij is the Euclidian
distance between i and j, there exists a formula Mai ¼Mpi ¼
Mii ¼Mi; i¼ 1;2; :::;N, while Mi can be calculated as

MiðtÞ ¼
miðtÞ

∑N
j ¼ 1mjðtÞ

ð25Þ

miðtÞ ¼
f itiðtÞ�worstðtÞ
bestðtÞ�worstðtÞ ð26Þ

where f iti is the fitness value of particle i, worst is the maximum
fitness value in the particles, and best is the minimum fitness value in
the particles. Furthermore, it can be seen that a better solution
represents a higher attraction and moves more slowly. Hence, the
total force on one individual in dth dimension can be modified as
follows:

Fdi ðtÞ ¼ ∑
ja i

randjF
d
ijðtÞ ð27Þ

where randj is uniformly distributed in the range [0,1]. Therefore, the
fitness values of particles and the distances between them become
more important in the updating formula. That promises a better
performance for the algorithm. Thus, the update equation can be
improved as

vtþ1
id ¼ωt Uvtidþc1 Ur1 U ðptid�xtidÞþc2 Ur2 U ðptgd�xtidÞþFtid ð28Þ

xtþ1
id ¼ xtidþvtþ1

id ð29Þ
where Ftid is the factor introduced into the formula.

The procedure of PSO using global factor is shown as follows.

Step 1: Initialization. A set of clustering centers, obtained by
ACDE, are defined as the positions of the particles.

Step 2: Calculate the fitness value of the samples according to
Eq. (16), set the obtained value and the current position of
each particle as its objective value and pi, set the best one and
its position as the global optimum individual and pg .

Step 3: Update the velocity and position of each particle
by Eqs. (28) and (29).

Step 4: Update the inertia weight ω using Eq. (22).
Step 5: Evaluate the fitness value of each particle by Eq. (16).
Step 6: Update the personal best position and its function value.
Step 7: Update the global best position and its function value.
Step 8: If the function value and t satisfy the terminate
condition, then stop; otherwise go back to step 3.

3. Experimental set and results

In order to evaluate the performance of the proposed algo-
rithm, we apply the proposed algorithm to seven UCI datasets, one
synthesized datasets and three texture images. One synthesized
data is used to examine the effectiveness of clustering learning
and classification learning. Classification accuracy is used to make
a comparison among RBFNN [7], FRC [9], VQþLVQ3 [10], and SCC
[11], of which results are directly from [11]. A detailed analysis of
time cost is also given in this part.

All experiments were carried out on a desktop computer with
Intel(R) Core(TM) 2CPU (1.86 GHz) and 2 GB of RAM, Running
Windows XP.

3.1. Experimental results of synthetic dataset

In this section, a two-dimensional synthetic dataset [11] is
produced to test the effectiveness of clustering learning and
classification of the algorithm. The distribution of dataset 1 is
listed in Table 2.

From Table 2, it can be seen that the dataset has two classes
and four groups. In other words, it has four centers for the whole
dataset. To show whether our algorithm can reveal the underlying
structure in data and meanwhile obtain good classification accu-
racy, the proposed algorithm is used to classify the data and is
compared with SCC. The obtained clustering centers and the
distribution structure are shown in Fig. 1.

In Fig. 1, samples from different classes are marked with
different colors. Similarly, samples in the same class are signed
with the same color. It can be seen that, data in the same class can
be formed with multi-piles. The individuals with “n” are the
centers gained through the simultaneous frame, which can reflect
the data distribution correctly. It can be seen clearly that PSOSLCC
can uncover the distribution of whole data better than SCC. In the
meanwhile, the classification accuracy of SCC is 95.83%, it is less

Table 2
Synthetic dataset.

Group Class label Group center Variance

Gaussian distribution 1 ω1 (�2, 2) (0.5, 0.5)
Gaussian distribution 2 ω1 (2, �2) (0.5, 0.5)
Gaussian distribution 3 ω2 (�2, �2) (0.5, 0.5)
Gaussian distribution 4 ω2 (2, 2) (0.5, 0.5)
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than 97.33% obtained by PSOSLCC. Thus, PSOSLCC has the ability to
reflect the relationship between the clusters and classes.

3.2. Experimental results of UCI datasets

In this section, seven datasets, namely Thyroid, Wine, Iris,
Lung_cancer, Diabetes, Balance_scale and Bupa, are used to test
the effectiveness of classification learning of the proposed algo-
rithm. The description of the datasets is given in Table 3.

From Table 3, it can be seen that the seven datasets are all from
UCI, with certain size, different dimensions, and fewer classes. They
are all well-known real problems and usually used for making a
comparison among some typical classification algorithms.

3.2.1. Experimental results of the basic PSO plus ACDE
In this section, we first combine the basic PSO [19] with ACDE

and denote it as PSOSLCC1. In order to verify the effectiveness of
ACDE, the performance of PSOSLCC1 is compared with SCC on
seven UCI datasets. The experimental results are shown in Tables 4
and 5.

In Table 4, k represents the actual classes of the data, k1 is the
average value of SCC selected from the range of lmax; cmax

� �
.

Obviously, there exists a relatively large randomness and uncer-
tainty in the selection of k1, while the clustering number k2
obtained by ACDE more approximates k.

In this paper, ACDE is executed for 40 times to get 40 values,
and the results may not be all the same for the whole experiment.
Thus, the value with the highest frequency is selected as the
optimal cluster number. From Table 4, it can be seen that k2 can
always get the same as or similar to the true cluster number. A set
of clustering centers are also obtained by performing ACDE and
they are corresponding to the optimal cluster number. In PSO,
these clustering centers are defined as the initial positions of the
particles.

Table 5 shows the classification accuracy of SCC and PSOSLCC1.
From Table 5, it can be seen that PSOSLCC1 performs better than
SCC on the most of the UCI problems used in this study, except for
balance_scale and bupa.

Table 6 gives a comparison of running time of SCC and
PSOSLCC1. From Table 6, it is easy to see that PSOSLCC1 reduces
greatly the running time compared to SCC, which proves that
adopting ACDE to determine the number of cluster of dataset is a
good alternative of selecting from the range of lmax; cmax

� �
utilized

in SCC.

3.2.2. Experimental results of basic PSO plus global factor and ACDE
In this section, PSOSLCC is compared with PSOSLCC1 in terms

of the classification accuracy and the running time. Twenty
independent runs on each test problem are performed. As men-
tioned in Section 3.2.1, PSOSLCC1 is the basic particle swarm
optimization plus ACDE based on a simultaneous learning frame-
work for classification clustering, and PSOSLCC is the improved
PSO by using the global factor plus ACDE, which is also a final
version of the proposed algorithm. Mean classification accuracy of
PSOSLCC and PSOSLCC1 is shown in Table 7.
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Fig. 1. Synthetic dataset.

Table 3
Benchmark datasets.

Dataset Number Attributes Classes

Thyroid 215 5 3
Wine 178 13 3
Iris 150 4 3
Lung_cancer 32 56 3
Diabetes 768 8 2
Balance_scale 625 4 3
Bupa 345 6 2

Table 4
Selection of cluster number.

Dataset k k1 k2

Thyroid 3 8 3
Wine 3 4.6 3
Iris 3 7 3
Lung_cancer 3 4 2
Diabetes 2 10.3 3
Balance_scale 3 10.2 3
Bupa 2 7.7 2

Table 5
Comparison of mean classification accuracy between SCC and PSOSLCC1.

Dataset SCC PSOSLCC1

Thyroid 93.27 95.70
Wine 92.27 95.34
IRIS 95.20 95.27
Lung_cancer 42.31 46.15
Diabetes 74.17 75.36
Balance_scale 89.77 89.17
Bupa 65.52 62.3
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As shown in Table 7, PSOSLCC is better than PSOSLCC1 for the
most problems, namely bupa, iris, lung_cancer, and diabetes in
terms of classification accuracy, and it gets a similar result to
PSOSLCC1 for thyroid, wine and diabetes.

Due to using the global factor, it may add the computation
complexity of the PSOSLCC compared to PSOSLCC1, and this is
proved by Table 8, which gives the running time of the two
algorithms.

In Table 8, for all the problems, the mean running time of
PSOSLCC is greater than that of PSOSLCC1. But considering the
improvement of the classification rate, PSOSLCC displays an
advantage over PSOLCC1.

3.2.3. Comparison of the proposed algorithm with four existed
classification methods

In order to verify the effectiveness of PSOSLCC, in this part, we
compare the proposed algorithm with four existing classification
algorithms such as fuzzy relational classifier (FRC) [9], vector
quantization and learning vector quantization (VQþLVQ3) [10],
radial basis function neural network (RBFNN) [7], and a simulta-
neous learning framework for clustering and classification (SCC)
[11] in terms of classification accuracy, all six algorithms are
executed for 20 runs independently.

Table 9 gives all statistical results of mean classification
accuracy obtained by these six algorithms. It can be seen that

PSOSLCC performs superiority over the other algorithms for most
of the datasets. It is easy to see from Table 9 that PSOSLCC obtains
a higher accuracy for most of the testing problems with less
running time compared to other five classification algorithms.

Experimental results in this section just show the effect of the
proposed algorithm on the problems with small scale. In the
following section, we will apply the proposed algorithm to the
image segmentation problem, which shows that PSOSLCC is also a
possible choice for dealing with problems with a large scale.

3.3. Experimental results of texture image segmentation

Image segmentation is defined as a process of dividing an
image into disjoint homogeneous regions, and these homogeneous
regions usually contain similar objects of interest part of them. The
extent of homogeneity of the segmented regions can be measured
using some image properties (e.g., pixel intensity) [18]. In this
section, we try to apply PSOSLCC to the segmentation of texture
images.

In the image segmentation experiments, we use the gray-level
co-occurrence matrix (GLCM) [28] and the undecimated wavelet
decomposition [29] to extract texture features of each pixel from
the images. For GLCM, there are many statistics that can be
determined from each GLCM, such as angular second moment,
contrast, correlation, sum of squares, and entropy. In this paper,
we chose four statistics, including contrast, angular second
moment, entropy and correlation with four directions. In this
study, we set the number of gray levels at 16 and the window
size at 16�16. For the undecimated wavelet decomposition, we
set the window size at 21�21 for artificial texture images.
Two-level wavelet transform can get seven-dimensional energy
features. We combine the 16-dimension GLCM features with
7-dimension wavelet features, so each pixel could be represented
by a 23-dimension** feature vector.

All the artificial texture images used in this part are 256�256
images. As shown in Fig. 2(a) and (e), Images 1 and 3 both contain
two textures. Fig. 2(b) and (f) represents the true partitioning of
Images 1 and 3. Image 2 contains four textures as shown in Fig. 2
(c), and Fig. 2(d) represents its true partitioning. 50% representa-
tive samples of each feature are selected as the training samples,
and all samples are used as testing samples. We perform 20
independent runs on each problem, and the resulting images are
shown in Figs. 3–5. Each contains four images, the first image is
their true partitioning. (b), (c) and (d) are the results obtained by
FRC, VQLVQ3, and PSOSLCC, respectively.

From Figs. 3 and 5, the visual results of PSOSLCC are obviously
better than that of other two algorithms. But for image 2, VQLVQ3
performs the best among these three algorithms

The mean classification accuracies of artificial texture images
are shown in Table 10.

From Table 10, it can be seen that the algorithm is probable to
get a competitive result for the image segmentation, but consider-
ing time cost, PSOSLCC performs superiority over other algorithms
obviously.

Table 6
Comparison of mean running time between SCC and PSOSLCC1.

Dataset SCC PSOSLCC1

Thyroid 1.2659eþ004 56.94
Wine 5.1919þ003 49.59
Iris 4.7762eþ003 32.89
Lung_cancer 1.0596eþ003 29.94
Diabetes 3.5956þ004 223.57
Balance_scale 2.4454eþ004 130.31
Bupa 1.3326eþ004 72.69

Table 7
Comparison of mean classification accuracy between PSOSLCC1 and PSOSLCC.

Dataset PSOSLCC1 PSOSLCC

Thyroid 95.70 96.07
Wine 95.34 95.90
Iris 95.27 96.13
Lung_cancer 46.15 50.77
Diabetes 75.36 76.09
Balance_scale 89.17 88.36
Bupa 62.3 65.81

Table 8
Comparison of mean running time between PSOSLCC1 and PSOSLCC.

Dataset PSOCAC1 PSOCAC

Thyroid 56.94 179.39
Wine 49.59 170.57
Iris 32.89 32.89
Lung_cancer 29.94 210.43
Diabetes 223.57 751.76
Balance_scale 130.31 371.23
Bupa 72.69 199.72

Table 9
Comparison of classification accuracy between different algorithms.

Dataset FRC VQþLVQ3 RBFNN SCC PSOSLCC1 PSOSLCC

Thyroid 80.93 88.53 44.30 93.27 95.70 96.07
Wine 94.31 95.11 90.11 92.27 95.34 95.90
Iris 93.89 89.07 95.33 95.20 95.27 96.13
Lung_cancer 34.61 48.57 43.84 42.31 46.15 50.77
Diabetes 65.10 65.98 61.40 74.17 75.36 76.09
Balance_scale 46.15 66.42 49.60 89.77 89.17 88.36
Bupa 59.94 57.80 58.08 65.52 62.3 65.81
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Fig. 2. Artificial texture images and their true partitioning: (a) original Image 1; (b) true partitioning of image 1; (c) original image 2; (d) true partitioning of image 2;
(e) original image 3; (f) true partitioning of image 3.

Fig. 3. Segmentation results by three classification algorithms for text image 1. (a) True partitioning of texture image 1; (b) FRC; (c) VQLVQ3; (d) PSOSLCC.

Fig. 4. Segmentation results by three classification algorithms for text image 2. (a) True partitioning of texture image 2; (b) FRC; (c) VQLVQ3; (d) PSOSLCC.

Fig. 5. Segmentation results by three classification algorithms for text image 3. (a) True partitioning of texture image 2; (b) FRC; (c) VQLVQ3; (d) PSOSLCC.
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4. Conclusions

In this paper, a novel PSOSLCC is proposed. The main ideas of
the proposed algorithm include three aspects. Firstly, an automatic
clustering algorithm (namely automatic clustering using improved
differential evolution algorithm (ACDE) is performed for 40 runs to
find out the distribution structure of data, the optimal cluster
number and the corresponding clustering centers are obtained.
Then for the training data selected, an improved PSO by using a
global factor is used to optimize a special single objective function
so as to find an optimal cluster center, by using a relational matrix
established through Bayesian theorem, the relationship between
the different cluster centers and classes is determined. Finally, the
test dataset is classified by using the relational matrix obtained.
Experimental results show that by using the automatic clustering
algorithm rather than the trial and error or selecting from the
range of ½lmax; cmax� not only reduces the computation complexity,
but also reveals the natural distribution of the data and a global
factor adopted in the process of PSO can improve the performance
of the algorithm compared with SCC. It is worth noting that the
time cost of the proposed algorithm can be decreased greatly
compared to SCC, which makes it possible to deal with such
problem with large scale as the texture images segmentation.
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Comparison of classification accuracy between FRC, VQLVQ3, and PSOSLCC.
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