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Infrared Patch-Image Model for Small Target
Detection in a Single Image

Chenqiang Gao, Deyu Meng, Yi Yang, Yongtao Wang, Xiaofang Zhou, Senior Member, IEEE,
and Alexander G. Hauptmann

Abstract— The robust detection of small targets is one of the
key techniques in infrared search and tracking applications.
A novel small target detection method in a single infrared image
is proposed in this paper. Initially, the traditional infrared image
model is generalized to a new infrared patch-image model using
local patch construction. Then, because of the non-local self-
correlation property of the infrared background image, based
on the new model small target detection is formulated as an
optimization problem of recovering low-rank and sparse matri-
ces, which is effectively solved using stable principle component
pursuit. Finally, a simple adaptive segmentation method is used
to segment the target image and the segmentation result can
be refined by post-processing. Extensive synthetic and real data
experiments show that under different clutter backgrounds the
proposed method not only works more stably for different target
sizes and signal-to-clutter ratio values, but also has better detec-
tion performance compared with conventional baseline methods.

Index Terms— Infrared image, small target detection, low-rank
matrix recovery.

I. INTRODUCTION

INFRARED small target detection is one of the key tech-
niques in infrared search and track (IRST) systems. The

performance of the whole IRST system depends on the
accuracy of detection results. When there exists heavy noise
and clutter such as cloud clutter and sea clutter, small tar-
gets are usually buried in a complex background with low
signal-to-clutter ratio (SCR). Moreover, small targets have
no concrete shape and texture because of the long imaging
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distance. Therefore, small target detection in complex infrared
background is considered a difficult and challenging problem.
Although many research efforts have been focused on this area
in past decades, it still remains an open problem.

For static background or consistent targets in adjacent
frames, given some prior knowledge on targets, sequential
detection methods can perform well, such as 3D matched
filtering [1], improved three dimensional filter [2], multiscan
adaptive matched filter [3], and so on, since spatial-temporal
information of targets can be used. However, on one hand, in
practical applications where the IRST systems need to search
and track the targets, the imaging backgrounds usually change
fast since many targets, such as anti-ship missiles, high speed
airplanes and so on, have very high velocities. On the other
hand, the applications with fast moving sensor platforms such
as airplane based and missile based IRST systems also lead
to fast changing backgrounds even though the interest targets
may remain static most of the time. In addition, these appli-
cations usually make motion traces of the targets inconsistent.
As a result, the performance of sequential detection methods
could degrade rapidly. Therefore, detecting small targets in a
single image is often necessary in such applications, and this
problem is attracting much attention in recent years [4]–[6].

Generally, the infrared image model can be formulated as
follows [6]:

fD(x, y) = fT (x, y) + fB(x, y) + fN (x, y), (1)

where fD , fT , fB , fN , and (x, y) are the original infrared
image, the target image, the background image, the random
noise image and the pixel location, respectively. Depending on
whether the focus is on the target image fT , the background
image fB or both of them leads to different methods.

Reference [7] pointed out that small target shapes were
roughly circular, and there were no anisotropy and prevailing
orientations. Some methods [8], [9] modeled a small target by
using a 2D Gaussian function:

s(x, y) = γ e
− 1

2

(
( x

σx
)2+( y

σy
)2

)
, (2)

where the target is completely defined by its peak height γ ,
horizontal and vertical extent parameters σx and σy , respec-
tively. Actually, the target may have a “flat top” shape like
Fig. 1(d) or sometimes its shape is different from a single
Gaussian shape like Fig. 1(b). In addition, the target size may
vary from 2 × 2 to more than 10 × 10 pixels and its brightness
also varies from dim to bright due to different types of targets,
imaging distances, environments and so on (Please see Fig. 1).
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Fig. 1. Representative targets (upper) and the corresponding 3D surfaces (lower) in different backgrounds (normalized). (a) A dim small ship target in sea-sky
background. (b) A bright ship target in sea-sky background. (c) A dim aeroplane target in sky cloud background. (d) A bright vehicle target in sky-ground
background.

Thus sometimes it may be invalid to directly model the small
target using a 2D Gaussian function.

Some conventional small target detection methods, such as
TopHat filtering [10], [11] and so on, focused on background
image fB and used filters to predict the background image in
order to suppress the background clutter. These methods can
usually achieve good performance in applications. However,
they are sensitive to noise and usually could not work stably
when the target size varies within a somewhat large range [4].

Generally speaking, small target detection methods are usu-
ally based on some assumptions on the target, the background
or both of them. The suitability of the assumption would
determine the robustness of the corresponding method in
applications.

In this paper, a novel small target detection technique
in a single infrared image is presented. We generalize the
traditional infrared image model (1) to a new infrared patch-
image (IPI) model (4) by using local patch construction. All
images in (1) are transformed into corresponding patch-images
in (4) and the traditional model corresponds to a specific case
of the new model. In the new model, we assume that the target
patch-image is a sparse matrix and the background patch-
image would be a low-rank matrix. The small target detection
task is then transformed into an optimization problem of
recovering the low-rank and sparse matrices. Our motivation
is mainly based on the observation that the local patches in
distant regions in an infrared background image are usually
approximately linearly correlated with each other. Thus the
background patch-image constructed from the local patches
tends to be a low-rank matrix.

Our method has two advantages. The first is that our
assumption fits the reality well. The assumption for the target
patch-image is valid for almost all cases because the target
size is very small with respect to the original image size.
The assumption for the background patch-image would be
commonly valid as mentioned above, which will be further
discussed in detail in Section IV-B. The second advantage is
that the proposed IPI model can be solved effectively by the
low-rank matrix recovery techniques [12]–[15]. These recently
proposed techniques can guarantee to exactly recover the

target patch-image and the background patch-image without
information about the rank of the background patch-image and
the support of the target patch-image. We use synthetic and
real data to test the proposed method and extensive experimen-
tal results show that under different clutter backgrounds our
method can not only work more stably for different target sizes
and SCR values, but also has better detection performance
compared to conventional baseline methods.

The remainder of this paper is organized as follows.
In Section II we review related work. In Section III, we present
construction and reconstruction of a patch-image and then pro-
pose our new IPI model. In Section IV, we explain the small
target detection based on IPI model in detail. In Section V,
we give extensive synthetic and real data experimental results
and discussions. Conclusions and perspectives are given in
Section VI.

II. RELATED WORK

There exists a number of approaches for detecting small
targets in infrared images. These methods can be generally
categorized into two groups: the sequential detection methods
and the single-frame detection methods. The sequential detec-
tion methods usually process a number of frames to estimate
targets. One of early classical method is the 3D matched
(directional) filtering [1] which is a so-called track-before-
detection (TBD) technique. This method can detect moving
constant-velocity targets, where the knowledge of the target
shape and velocity is required. Parallel banks of directional
filters using 3D fast Fourier transform was suggested in [16].
In order to further improve the ability of detecting weaker
targets, a new 3D double directional filter was presented
in [2]. Compared to the conventional 3D matched filter, this
method can further increase the target energy accumulation
ability. Recently, an improved 3D directional filter method
was proposed in [17]. This method firstly employed a dual-
diffusion partial differential equation (DFPDE) to pre-whiten
each image and then used a wide-to-exact search technique
to improve the speed of filtering. The wide-to-exact search
technique was also used in [18]. While the 3D directional
filter method can be considered as a path-based statistic, a
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pixel-based statistic for the analysis of multiframe target
detection was proposed in [19]. This method needs to assume
a known knowledge of the maximum target velocity.

Instead of considering the small target detection problem in
a 3D spatial-temporal space as the above sequential detection
methods, the idea of the temporal profile method proposed
in [20] considered this problem in a 1D signal space. This
method can reduce the computational complexity dramatically.
Based on this line of research, many improved methods were
prompted. Temporal hypothesis testing was used to distin-
guish target temporal profile from background temporal profile
in [21]. The variance of the temporal profile was used to
discriminate the target and background in [22]. The connecting
line of the stagnation points (CLSP) of the temporal profile
was utilized well to design the small moving target detection
algorithm in [23]. The temporal profile was combined with
spatial bilateral filter (BF) to detect small targets in [24].

Furthermore, some other sequential detection methods
firstly focused on suppressing the background clutter or
enhancing the small targets in a single image and then used
multiframe accumulation, autocorrelation or other techniques
to suppress random noise or delete false alarms. The per-
formance of these methods greatly relies on the processed
result of each frame. A method of small infrared target
fusion detection based on support vector machines (SVM)
in the wavelet domain was presented in [25]. This method
applied SVM to extract feature images in wavelet domain for
each frame and then used a fusion strategy for consecutive
frames to enhance small targets. An adaptive anisotropic filter
based on a modified partial differential equation (AFMPDE)
is proposed in [18]. The key step of this method is back-
ground clutter suppression and target enhancement for each
frame.

The sequential methods usually depends on some certain
assumptions of consistent information of targets and back-
ground between frames, as well as the prior knowledge of
target shape and velocity. These preset assumptions and prior
knowledge could hardly be attained in applications. Thus,
single-frame based small target detection has been attracting
much attention [4]–[6], [26]–[28].

The typical single-frame detection methods are listed as
follows. The method presented in [27] investigated the perfor-
mance of two dimensional least mean square (TDLMS) adap-
tive filters as whitening filters for the small target detection.
Along this line, some new related methods have been pre-
sented, such as two-dimensional block diagonal LMS adap-
tive filtering [29], improved 2D adaptive lattice algorithm
(2D AL) [30], TDLMS filter based on neighborhood analy-
sis [31] and so on.

Based on the local difference between the background and
the small target, some single-frame detection methods have
been presented. Probabilistic PCA (PPCA) was used to detect
small targets in [31] and this method is similar to the face
detection scheme using PCA. A new technique based on
empirical mode decomposition (EMD) and modified local
entropy was proposed for small target detection in [32]. The
kernel-based nonparametric regression technique was applied
to background prediction and clutter removal in [6]. Motivated

Fig. 2. Constructing the patch-image from a original image by using image
patches. (left) An original image. (right) The patch-image.

Fig. 3. Reconstructing the image from a patch-image. (left) The patch-image.
(right) The reconstructed image.

by the robust properties of the human visual system (HVS), a
scale invariant small target detection method for incoming tar-
get detection was presented in [4]. A sparse ring representation
model was proposed to describe small targets in [33].

More commonly used single-frame detection methods
including TopHat filtering [10], [11] and so on, focused on
background clutter suppression. Based on TopHat filtering,
some related methods have been presented. In [34], neural
network and genetic algorithm were used to develop optimal
TopHat filtering parameters. According to the property of
the target region, a modified Top-hat transformation based
on contour structuring element was proposed to enhance and
detect the infrared small target in [35]. The relationships
of different modified top-hat transformations were analyzed
in [5].

III. INFRARED PATCH-IMAGE MODEL

A. Construction and Reconstruction of a Patch-Image

Fig. 2 shows the construction of a patch-image from an
image. Firstly, a series of local image patches can be obtained
by using a sliding window from left and top to right and down
in an image. Then we vectorize each patch as a column of a
new image (matrix). In this way, we can convert an image
to a new image which is called a patch-image in this paper.
Obviously the size of the patch-image depends not only on
the size of the original image, but also on both the size of
the sliding window and the horizontal and vertical sliding
steps. For some special cases, such as when the size of the
sliding window is the same as the original image or the sliding
window equals the column of the original image and the
horizontal sliding step is 1, the patch-image is the same as
the original image. How to choose the sliding steps and the
sliding window, namely the patch size, depends on the specific
applications which will be discussed in Section V-B.2.

Fig. 3 shows the reconstruction of an image from a patch-
image. Because the local patches usually overlap each other,
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Fig. 4. The low-rank property of the background patch-images. The first row are four representative background images and the second one are the singular
values of the corresponding background patch-images.

a pixel location in reconstructed image would correspond to
several values from different patches. Thus, we should define
a 1D filter function to determine the pixel value v:

v = f (x), (3)

where v ∈ R, x ∈ Rp is a vector containing the correspond-
ing values from p patches. The definition of the 1D filter
function f depends on the practical applications and we can
define it as v = median(x), v = mean(x), v = max(x), or
v = min(x) and so on.

B. Infrared Patch-Image Model

Given the original image fD , the background image fB ,
the target image fT and the noise image fN in (1), we can
construct the corresponding patch-images D, B , T and N ,
respectively. Then the traditional infrared image model (1)
is converted to a new one called Infrared Patch-image (IPI)
model:

D = B + T + N. (4)

Obviously, the traditional infrared image model (1) is a spe-
cific case of our new IPI model (4) under certain construction
parameter configurations as mentioned before. In Section IV,
we will see that our new IPI model can make use of the current
research achievements of the low-rank matrix recovery that are
well suited to the problem of small target detection.

IV. SMALL TARGET DETECTION BASED ON IPI MODEL

In this section, we first discuss the properties of the pro-
posed IPI model in detail. Then we formulate the small target
detection task as an optimization problem of recovering the
low-rank and sparse matrices, and the corresponding algorithm
is explained in detail. Furthermore, we present the whole
method of small target detection. Finally, we analyze the
computational complexity of the proposed method.

A. Target Patch-Image T

In practical applications, a small target usually keeps chang-
ing all the time. The brightness may vary from dim to bright

(as shown in Fig. 1) and its size may vary from 2 × 2 to more
than 10 × 10 (in pixel). However, it is small with respect to the
whole image, thus the target image fT can be considered as
a sparse matrix, which makes the corresponding target patch-
image T still be a sparse matrix. That is:

‖T ‖0 < k, (5)

where ‖ · ‖0 denotes the �0-norm which counts the number of
nonzero entries, and k is determined by the number of small
targets and their sizes (support), and apparently k � m × n
(m ×n is the size of T ), which means that most of the entries
of the matrix T are zero. Besides this sparseness property, we
do not make any additional assumption on the target image.

B. Background Patch-Image B

Due to atmospheric refraction, dispersion, optical defocus-
ing, lens aberration, diffraction, deformation of mirror, and
detector tilt, the original infrared background image fB tends
to be slightly blurred [7], [36] and many local patches are
approximately linearly correlated with each other even though
the pixel distance between two patches may be large in
an image. This property of non-local self-correlation exists
commonly in infrared background images.

The first row of Fig. 4 shows four representative infrared
background images with the same size of 256 × 200. We
construct four corresponding patch-images, where the patch
size is 50 × 50 and the horizontal and vertical sliding steps
are 10. As a result, the sizes of all corresponding patch-images
are 2500 × 336. The singular values of corresponding patch-
images are shown in the second row of Fig. 4, from which we
can see that the singular values of all four patch-images rapidly
decrease to zero though their original background images are
different.

Based on the above discussion, we can consider the back-
ground patch-image B as a low-rank matrix. That is:

rank(B) ≤ r, (6)

where r is a constant. Intrinsically, r constrains the complexity
of the background image and the value of r is larger for the
complex background than for the uniform background.
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Similar to non-local self-correlation, the property of
non-local self-similarity also exists commonly in natural
images, which motivates many well-known non-local methods,
such as the non-local method for texture synthesis [37], the
non-local algorithm for image denoising [38]– [40], the non-
local sparse models for image restoration [41], and so on.

It should be noted that we can also employ a recently pro-
posed more general low-rank assumption that all background
patches come from a mixture of low-rank subspace clusters
while not only one [42]. When the small target is located in
highly heterogeneous background, this multi-subspace-cluster
assumption might be possibly more appropriate. In our con-
text, however, the background is generally with a non-local
self-correlation configuration, as easily seen in Fig. 4. In such
cases, one low-rank subspace cluster is generally enough to
model the background situations. We thus only employ one
low-rank subspace assumption in our model to make it with a
more concise form.

C. Noise Patch-Image N

In this paper, we just assume that the random noise is i.i.d.
and ‖N‖F ≤ δ for some δ > 0. Thus we have:

‖D − B − T ‖F ≤ δ, (7)

where ‖ · ‖F is the Frobenius norm (i.e. ‖X‖F =
√∑

i j X2
i j ).

Although the parameters k, r and δ in (5), (6) and (7) vary
for different infrared images, it is not necessary to compute
their values directly, which will be discussed in the following
Section.

D. Formulation of Small Target Detection and Solution

In order to detect small targets in a single image fD ,
we need to obtain the target image fT . Because fT can be
reconstructed from the target patch-image T , it is a key step
to effectively estimate the target patch-image T .

Firstly, we assume that an infrared image contains no noise.
Thus (4) is changed into D = B + T . As afore discussed,
the background patch-image B is a low-rank matrix and the
target patch-image T is a sparse matrix. Thus the small
target detection task is intrinsically a typical problem of
recovering a low-rank component and a sparse component
from a data matrix. This problem can be effectively solved
via Principal Component Pursuit (PCP) to solve the following
convex optimization problem [12]:

min
B,T

‖B‖∗ + λ‖T ‖1 s.t. D = B + T, (8)

where ‖ · ‖∗ is the nuclear norm of a matrix (i.e. the sum of
singular values), ‖ ·‖1 is the �1-norm (i.e. ‖X‖1 = ∑

i j |Xij |),
and λ is a positive weight constant. Here, ‖B‖∗, ‖T ‖1 replace
rank(B) in (6) and ‖T ‖0 in (5), respectively, for tractable
computation.

It has been shown in [12] that under rather broad conditions
(some entries of T may be arbitrarily large and no other
information about the rank of B and/or the support of T
is given), PCP (8) can accurately and efficiently recovers
B and T . This will bring our method at least two advantages:

(i) The parameters k, r in (5), (6) do not need to be estimated
in advance according to different images, which is not a trivial
problem; (ii) The robustness of small target detection would
be guaranteed since the above convex optimization can be
suitable not only for variable sizes (support of T ) and variable
brightness (entries of T ) of small targets, but also for different
clutter backgrounds (rank of B).

Now we return to the IPI model (4) considering the situation
of noise in an image. It has been shown in [13] that under the
same conditions as PCP (8), B and T can be stably estimated
when ‖N‖F ≤ δ for some δ > 0 and the PCP is relaxed to the
following version called Stable Principal Component Pursuit:

min
B,T

‖B‖∗ + λ‖T ‖1 s.t. ‖D − B − T‖F ≤ δ. (9)

Solving the above optimization (9) can estimate the target
patch-image T and the background patch-image B , simulta-
neously, from the noisy image. Although the main objective
is usually to estimate the target image, for some applications
it is still important to estimate the background image which
can be reconstructed from the background patch-image B . For
example, we can use the complexity of the background image
to automatically evaluate the reliability of detection results.
In addition, a good background estimation can be used to
image registration for the motion imaging system.

Instead of directly solving (9), the following dual problem
is solved:

min
B,T

‖B‖∗ + λ‖T ‖1 + 1

2μ
‖D − B − T ‖2

F , (10)

where μ is a positive weight parameter and it is well estab-
lished that (9) is equivalent to (10) for some value μ(δ) [13].
However, μ is varied during solving the above optimization in
this paper. This continuation technique [43] can greatly reduce
computation and the experiments show it works well.

The optimization problem (10) is convex and can be
solved by applying the Accelerated Proximal Gradient (APG)
approach proposed in [43]. The solution via APG is described
in Algorithm 1 (for details please see [43]), where V t is the
transpose of the matrix V and Sε[·] is a soft-thresholding
operator [44]:

Sε[x] =
⎧⎨
⎩

x − ε, if x > ε,
x + ε, if x < −ε,
0, otherwise,

(11)

where x ∈ R and ε > 0. For the cases of matrices
in Algorithm 1, this operator is extended by applying it
element-wise.

E. The Whole Method of Small Target Detection

Fig. 5 shows the whole method of small target detection
proposed in this paper. First, the patch-image D is constructed
from the original infrared image fD which is obtained from
an image sequence. Second, Algorithm 1 is applied to the
patch-image D to estimate simultaneously the low-rank back-
ground patch-image B and the sparse target patch-image T .
Third, we reconstruct the background image fB and target
image fT from the patch-images B and T , respectively.
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Fig. 5. The overview of the proposed method in this paper.

Algorithm 1 Solution via Accelerated Proximal Gradient

Fourth, we use a simple segmentation method to segment
adaptively the target image fT since it contains some errors
with small values. Finally, by post-processing, we refine the
segmentation result to obtain the final detection result.

In the second step, for Algorithm 1, we choose λ = 1/√
max(m, n) , η = 0.99 and μ0 = s2, μ̄ = 0.05s4, where s2,

s4 are the second and the fourth largest singular values of D
in our implementation, respectively.

In the third step, we choose the 1D median filter function,
namely v = median(x), to implement the mapping (3):
Rp → R. We also test the 1D mean filter function and

the experimental results show that the 1D median filter
function is more robust than the 1D mean filter function.
If the background image is not used in the applications, we
can just reconstruct the target image, which can reduce the
computation.

In the fourth step, the adaptive threshold tup is deter-
mined by:

tup = max(vmin , μ + kσ), (12)

where μ and σ are the mean value and standard deviation
of the target image fT , respectively, k and vmin are constants
determined experientially. vmin is to delete false targets. In this
paper, we focus on so-called “bright” targets. Therefore,
we can segment a pixel at (x, y) as the target pixel if
fT (x, y) > tup , otherwise it is a background pixel.

If “bright” and “dark” targets need to be detected simulta-
neously, we can use double thresholds (tup, tdown) to segment
the target image fT . The other threshold tdown can be obtained
by modifying (12) as following:

tdown = min(vmax , μ − kσ), (13)

where vmax is also a constant determined experientially, which
can delete false targets like vmin in (12). Then we can judge
a pixel at (x, y) as the target pixel if fT (x, y) > tup or
fT (x, y) < tdown, otherwise it is a background pixel.

In the final step, some post-processing techniques can be
used to refine the segmentation results. For example, we can
use region analysis techniques to delete false detections or use
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morphological techniques to refine the target regions. In addi-
tion, for any detected target we can use statistical techniques
to estimate the complexity of its corresponding local region in
the reconstructed background image, and then the estimated
result can be used to evaluate its reliability. For example, if
the corresponding local background of a target is simple, we
could believe that the detection target is more reliable and
vice versa. Generally speaking, the post-processing is still an
important step to achieve good detection results. However,
for fair comparison with the baseline methods, we do not
perform post-processing and directly use the segmentation
results to evaluate the performance in our experiments in
Section V.

F. Computational Complexity

We briefly discuss the complexity of the proposed method
for small target detection. As shown in Fig. 5, it is easy to see
that the computational time of our method mainly consists of
three parts: the PCP computation (Algorithm 1), the median
operation for reconstruction and the target segmentation.

The computational complexity of the PCP computation
(please see Algorithm 1) is essentially determined by the
truncated SVD computation on G B

k (Step 5) and the soft
thresholding operators on GT

k (Step 7). By utilizing the current
fast SVD technique (e.g., QUIC-SVD [45]), the truncated
SVD in step 5 can be implemented in O(kmn) time, where
k is the number of nonzero singular values (rank) of GT

k .
By employing the well-known heap sort algorithm [46], the
soft thresholding operation in step 7 can be computed in
O(mn log(mn)) time. So the entire computational complexity
of Algorithm 1 is around O(Nkmn log(mn)), where N is the
iteration number of the algorithm.

For reconstruction, we need to implement the median oper-
ations across all pixels. For each pixel, the median operation
needs O(p) cost [46], where p the overlapping pixel number
during the transformation from the target/background patch-
image to the reconstruction image. Thus the total computa-
tional complexity of this step is around O(rcp), where r and
c are the row and column numbers of the original image,
respectively.

For target segmentation, an adaptive threshold (or double
thresholds) is used. For each pixel, only a simple comparison
operator is implemented. The entire cost of this step is thus
around O(rc).

Based on the aforementioned analysis, the entire compu-
tational complexity of the proposed method is thus around
O(Nkmn log(mn) + rc(p + 1)).

V. EXPERIMENTS

In this section, we firstly introduce the evaluation metrics
and the baseline methods for comparison in this paper. Then
we perform simulation experiments to evaluate the effects of
parameters of the proposed method and its performances with
respect to target sizes, SCR values and target numbers. Finally,
we use the real image sequences to test the proposed method.

Fig. 6. The external rectangle and neighboring background rectangle of a
small target.

A. Metrics and Baseline Methods

The most important metrics of evaluating the detection
performance are the probability of detection Pd and false-
alarm rate Fa which are defined as following [7]:

Pd = # number of true detections

# number of actual targets
, (14)

Fa = # number of false detections

# number of images
. (15)

The detected result is considered correct if it simultaneously
meets two requirements: (i) The result and a ground truth have
overlap pixels; (ii) The pixel distance between centers of the
ground truth and the result is within a threshold (4 pixels).

Signal-to-clutter ratio (SCR) can also be used to describe
the difficulty of small target detection. Generally speaking,
the higher the SCR of a small target is, the easier it can be
detected. Since the target size is small, the local SCR is used
in this paper which is defined as follows [33], [47]:

SC R = |μt − μb|
σb

, (16)

where μt is the average pixel value of the target, μb and σb

are the average pixel value and the standard deviation of the
pixel values in neighboring area around the target, respectively.
Because the small target size varies within a range, we use a
variable neighboring area with respect to the target. As shown
in Fig. 6, if the size of a small target is a × b, the size of its
background rectangle is (a + 2d) × (b + 2d), where d is a
constant which equals to 20 pixels in this paper.

Based on the Equation (16), the average SC R value
(denoted as SC R ) of targets is defined as follows:

SC R = 1

N

N∑
i=1

SC Ri , (17)

where N is the number of targets and SC Ri is the SC R of
the i th target. In this paper, we use the SC Rd and SC Rl to
denote SC Rs of detected true targets and lost true targets,
respectively. The smaller the SC Rd and SC Rl are, the better
the performance of one method is to some extent when fixing
the Fa .

The same as the recent work [4], we choose the TopHat
filtering method [10], [11] as one baseline method. Moveover,
MaxMean and MaxMedian filtering methods [48] are also
chosen as the baseline methods in this paper since these
methods are well studied and are usually used as baseline
methods for assessing new methods [33], [28].
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B. Simulation

In this section, we perform simulation experiments to evalu-
ate the effects of the parameters, including the sliding step and
the patch size, and the performance of the proposed method
compared to the baseline methods.

1) Data Setup: Test images are synthesized by using
100 real infrared background images and 80 targets. The back-
ground images are chosen from several real image sequences
with different clutters and the targets are obtained by using the
bicubic interpolation method to resize four real targets from
Fig. 1, where the original sizes of four targets are 5 × 4, 8 × 4,
5 × 3 and 6 × 4, respectively. Suppose that the original size
of a target is m × n, we resize the target to αm × αn, where
α ∈ ( 2

min(m,n) ,
3

min(m,n) , . . . ,
i

min(m,n) , . . . ,
21

min(m,n) ). In this
way we can obtain 20 targets with different sizes for each
original target. For example, the second target with size of
8 × 4 can produce 20 targets with sizes of 4 × 2, 6 × 3,
8 × 4, 10 × 5, . . ., 38 × 19, 40 × 20 and 42 × 21, respectively,
where the target with size of 8 × 4 is the same as the original
target. For convenience of synthesizing images below, the pixel
values of all target images are normalized to (0, 1).

A synthesized image fD can be achieved by embedding a
target image fT with size of m × n into a background image
fB by the following way:

fD(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max
(

r fT (x − x0, y − y0),

fB(x, y)
)

x ∈ (1 + x0, n + x0),

y ∈ (1 + y0, m + y0)

fB(x, y) Otherwise,

(18)

where (x0, y0) is a randomly produced pixel location which
the left upper corner of the image fT corresponds to in the
image fB , r is also produced randomly within the range of
[h, 255], here h is the maximum pixel value of the background
image patch covered by the image fT (note that the target
image fT is the same size as the images fD and fB except for
Equation (18) in this paper). Finally we use a Gaussian filter
to blur the synthesized target to make it close to a real one.
This way, targets in the synthesized image are usually smaller
than their original sizes. Actually, the same target usually have
different sizes and SCR values in different locations even in
the same synthesized image.

In the above simulation method, four image sequences are
synthesized and all images in the same sequence have the
same number of embedded targets which are 1, 4, 7 and 10,
respectively. We choose 1676 targets from 2200 targets which
meet the requirements of the area and SCR value (please
see Table I). Here, the area of a target is the actual number
of pixels. According to the areas of targets, we divide all
targets into 10 groups and every group contains more than
90 targets. This division strategy can evaluate objectively the
performance of the proposed method in term of different target
sizes. The details of targets are listed in Table I. In total, the
target areas range from 4 (about 2 × 2) to 130 pixels (about
11.4 × 11.4); The average area of all 1676 targets is
37.5 pixels and their average size is 6.1 × 6.1; The SCR

Fig. 7. The representative synthetic images for three sequences. Images in
each column are from the same sequence and images in each row have the
same background.

values range from 0.4 to 18.2 and their average is 3.2 (please
see Table I). Fig. 7 shows the representative images from
three image sequences (the fourth image sequence is not given
because of the spacial limitation). The first column images are
chosen from the first image sequence (denoted as Sequence 1)
and are arrayed according to SCR values in ascending order,
where the frame numbers, target regions (rectangles), group
numbers, SCR values and their 3D surfaces are overlaid. The
other two column images are chosen from the second and third
image sequences (denoted as Sequence 2 and Sequence 3)
according to the frame numbers in Sequence 1. In the second
and third column images all target locations are denoted by
arrows, and the corresponding group numbers and SCR values
are denoted by the form of (# group number, SCR value). The
group numbers denoted as “D” mean that the corresponding
targets do not meet the requirements of the area or SCR value
as mentioned above.

From the Fig. 7, we can see that the targets in synthetic
images vary from the small dim ones to the large bright ones.
In addition, the different numbers of targets are contained in
a single image. Thus it is reasonable to use these synthetic
images to test the proposed method.

2) Effects of Parameters: In this section, we perform two
experiments to discuss the effects of the patch size and the
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TABLE I

THE DETAILS FOR TARGETS IN SYNTHETIC IMAGES. THE AREA OF A TARGET IS THE

NUMBER OF ITS PIXELS AND THE Ntarget IS THE NUMBER OF TARGETS

TABLE II

THE DETECTION PERFORMANCE OF THE PROPOSED METHOD WITH RESPECT TO DIFFERENT SLIDING STEPS AND HERE stepm MEANS

THAT THE HORIZONTAL AND VERTICAL SLIDING STEPS ARE m PIXELS (Fa = 2.5/IMAGE AND THE PATCH SIZE IS 50 × 50)

sliding step, respectively. For quantitative analysis, both exper-
iments have fixed false-alarm rates Fa (2.5/image) by changing
the segmentation thresholds for each group. In addition, we
give the receiver operating characteristic (ROC) curves of the
whole for different parameters in Fig. 8, where the whole
means that targets includes from Group 1 to Group 10.

In the first experiment, we fix the patch size as 50 × 50 and
set the sliding step as 6, 8, 10, 12, 14 and then test the proposed
method, respectively. Here, we keep the column and row steps
the same. The evaluation results are shown in Table II. Here,
the images used to compute the false-alarm rate Fa of group #i
are those which contain at least one true target of group #i .

From Table II, we can see that the performance of small
sliding steps is better than that of big ones when the targets are
small. In our method (please see the Fig. 5), every pixel value
in the reconstructed image is obtained by using the 1D median
filter for a serial of values from overlapped image patches. The
smaller the sliding step is, the more the values are used for
the 1D median filter. This would make the proposed method
more robust. As the targets become bigger, the larger sliding
steps have better performance. However, from the last column
in Table II and the ROC curves in Fig. 8(a), we can see that
the performance for different steps is close to each other when
considering all targets together, although the performance with
sliding step 8 is slightly better than other sliding steps.

In the second experiment, we use the square patch size
m × m and set it as 30 × 30, 40 × 40, 50 × 50, 60 × 60,
70 × 70, 80 × 80, 81 × 81, 82 × 82, 83 × 83, respectively,

and the corresponding horizontal and vertical sliding steps
(0.17m) are 5, 7, 9, 10, 12, 14, 14, 14 and 14. The evaluation
results of the proposed method are shown in Table III and in
Fig. 8(b).

It can be seen from Table III that up to the patch size of
80 × 80, the larger the patch size is, the better the proposed
method is likely to perform. This is because the target patch-
image tends to be sparser when using a bigger patch size.
However, when the patch size is bigger than 80 × 80, the
performance begins to degrade. This indicates that there is
an appropriate patch size in a reasonable range for specific
test data and this appropriate patch size can be obtained by
empirical experiments. Through the ROC curves in Fig. 8(b),
we can see that for the fixed probability of detection Pd , the
false-alarm rate Fa of patch size 80 × 80 is smallest and
when the patch sizes are bigger or smaller than 80 × 80,
the corresponding false-alarm rates Fa inclines to decrease.
Comparing Fig. 8(a) to Fig. 8(b), it can be seen that the
parameter of patch size has more influence on the performance
than the sliding step.

3) Comparison to Baseline Methods: Table IV and Fig. 8(c)
give comparisons between the proposed method with two
parameter configurations (denoted as “Our method 1” and
“Our method 2” and the corresponding patch sizes and sliding
steps are configurations of the (50 × 50, 9) and (80 × 80),
14, respectively) and the baseline methods TopHat, MaxMean
and MaxMedian whose filter sizes are 15 × 15, and in
Table IV all four methods have the same false-alarm rate
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TABLE III

THE DETECTION PERFORMANCE OF THE PROPOSED METHOD WITH RESPECT TO DIFFERENT PATCH SIZES AND HERE sizem MEANS

THAT THE PATCH SIZE IS m × m AND THE CORRESPONDING SLIDING STEPS (0.17m) OF FIVE PATCH SIZES

ARE 5, 7, 9, 10, 12, 14, 14, 14, AND 14, RESPECTIVELY (Fa = 2.5/IMAGE)

TABLE IV

THE PERFORMANCE COMPARISON OF DIFFERENT METHODS (Fa = 2.5/IMAGE, THE FILTER SIZES OF TopHat, MaxMean AND MaxMedian ARE

15 × 15, THE PARAMETERS OF Our Method 1 AND Our Method 2 ARE SET AS (50 × 50, 9) AND (80 × 80, 14), RESPECTIVELY)

Fig. 8. The receiver operating characteristic (ROC) curves of simulation experiments with respect to sliding steps, patch sizes and comparison, where
the ROC curves are computed on the whole, namely all targets including from Group 1 to Group 10. (a) Different sliding steps. (b) Different patch sizes.
(c) Comparison to baseline methods.

(Fa = 2.5/image). From Table IV, we can obviously see that
the proposed method has better detection performance ranging
from the small dim targets to the large targets compared

to the baseline methods TopHat, MaxMean and MaxMedian.
Table IV also shows that the TopHat method has superior
detection capability for large targets than small ones, and
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Fig. 9. The representative images of the six real image sequences and the corresponding processed results of different methods.

TABLE V

THE DETAILS OF THE SIX REAL SEQUENCES

the MaxMean and MaxMedian methods are the opposite.
By contrast, the proposed method can work stably from small
targets to large targets (from Group1 to Group10). Especially,
our method with the patch size of 80 × 80 and the sliding
step of 14 improves the probability of detection Pd by more
than 0.15 (15%) for Group 1, 2, 6, 7, 8, 9 and 10 compared
to both MaxMean and MaxMedian methods. From the last
column in Table IV, we can see that when considering all
targets as the whole, our method for two parameter configu-
rations improves the probability of detection Pd by more than
0.1 (10%) compared to all three baseline methods. Through
the ROC curves in Fig. 8(c), we can see that when the

false-alarm is bigger than 1.5, the patch size of 50 × 50
has better probability of detection Pd compared to all three
baseline methods. When the patch size is 80 × 80, the
probability of detection Pd of the proposed method is the best
for different false-alarm rates and the false alarm rates are the
smallest for fixed the probabilities of detection Pd .

C. Real Images

We use six real image sequences to test the proposed
methods. The first column in Fig. 9 are representative images
of six sequences denoted as Real Sequence 1 to 6, respectively
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Fig. 10. The receiver operating characteristic (ROC) curves of four methods for the six real image sequences. (a) Real Sequence 1. (b) Real Sequence 2.
(c) Real Sequence 3. (d) Real Sequence 4. (e) Real Sequence 5. (f) Real Sequence 6.

and their details are listed in Table V. Although the proposed
method with size 80 × 80 in simulation experiments has
better performance than that with size 50 × 50 (please see
Table IV), we use the latter parameter configuration based on
the consideration of computational cost. Because the target
varies from a small size to a large one, the filter sizes of
baseline methods are still set as 15 × 15 which is the same
as in our simulation experiments.

The columns from the third to the sixth in Fig. 9 show
processed results of four methods before segmentation. It can
be seen that our method has less clutter and noise residual for
different clutter backgrounds compared to baseline methods,
which is the key to keep lower false-alarm rates (Fa) under the
same probability of detection (Pd ). From the second column
we can see that our method could recover the background
images effectively. This is very useful for some applica-
tions. For example, we can use the recovered background
to estimate the reliability of detection results as discussed
before.

Fig. 10 shows the ROC curves of the four methods for six
real image sequences. It can be seen that the proposed method
has better performance than baseline methods. Especially for
Real Sequence 2 to 6, our method has higher probabilities
of detection (Pd ) compared to baseline methods while the
false-alarm rates (Fa) are low. For the Real Sequence 1, the
MaxMean method has a little better performance than our
method when Fa ≤ 1.5, but our method can reach 1 (100%)
faster than the MaxMean method when Fa > 1.5. Fig. 10
also shows that the MaxMean method has better performance
than the other baseline methods for Real Sequence 1, 4
and 5. For Real Sequence 2, 3 and 6, the MaxMedian has
better performance than other baseline methods. However,

our method can obtain the best performance for all six real
sequences, which means that our method can work more stably
for different clutter and noisy backgrounds and target types.

VI. CONCLUSION

A new infrared image model called IPI model for small
target detection is presented based on the non-local self-
correlation property of the infrared image in this paper. Then
the small target detection task is transformed into an opti-
mization problem of recovering low-rank and sparse matrices,
which can be effectively solved by using Stable Principal
Component Pursuit. Extensive synthetic and real data exper-
iments show that under different backgrounds the proposed
method can not only work more stably for different target sizes
and SCR values, but also has better detection performance
compared to conventional baseline methods. In the future,
we will investigate faster version of the current algorithm.
In addition, we will further generalize our 2D patch model
into 3D or more dimensions and investigate applications of the
N-D patch model. We will also try recent multi-subspace
cluster strategies [42] to further improve the flexibility of
our method in highly variant background cases in our future
investigation.

REFERENCES

[1] I. S. Reed, R. M. Gagliardi, and L. B. Stotts, “Optical moving target
detection with 3D matched filtering,” IEEE Trans. Aerosp. Electron.
Syst., vol. 24, no. 4, pp. 327–336, Jan. 1988.

[2] M. Li, T. Zhang, W. Yang, and X. Sun, “Moving weak point target
detection and estimation with three-dimensional double directional filter
in IR cluttered background,” Opt. Eng., vol. 44, pp. 107007-1–107007-4,
Oct. 2005.

Downloaded form http://iranpaper.ir



5008 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

[3] K. Melendez and J. Modestino, “Spatiotemporal multiscan adaptive
matched filtering,” Proc. SPIE, vol. 2561, pp. 51–65, Sep. 1995.

[4] S. Kim and J. Lee, “Scale invariant small target detection by optimizing
signal-to-clutter ratio in heterogeneous background for infrared search
and track,” Pattern Recognit., vol. 45, pp. 393–406, Jan. 2012.

[5] X. Bai and F. Zhou, “Analysis of different modified top-hat transfor-
mations based on structuring element construction,” Signal Process.,
vol. 90, pp. 2999–3003, Nov. 2010.

[6] Y. F. Gu, C. Wang, B. X. Liu, and Y. Zhang, “A kernel-based nonpara-
metric regression method for clutter removal in infrared small-target
detection applications,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3,
pp. 469–473, Jul. 2010.

[7] J. F. Rivest and R. Fortin, “Detection of dim targets in digital infrared
imagery by morphological image processing,” Opt. Eng., vol. 35,
pp. 1886–1893, Jul. 1996.

[8] K. L. Anderson and R. A. Iltis, “A tracking algorithm for infrared images
based on reduced sufficient statistics,” IEEE Trans. Aerosp. Electron.
Syst., vol. 33, no. 2, pp. 464–472, Apr. 1997.

[9] X. Yan, P. Jia-Xiong, D. Ming-yue, and X. Dong-Hui, “An extended
track-before-detect algorithm for infrared target detection,” IEEE Trans.
Aerosp. Electron. Syst., vol. 33, no. 3, pp. 1087–1092, Jul. 1997.

[10] V. Tom, T. Peli, M. Leung, and J. Bondaryk, “Morphology-based
algorithm for point target detection in infrared backgrounds,” Proc.
SPIE, vol. 1954, pp. 25–32, Oct. 1993.

[11] A. Toet and T. Wu, “Small maritime target detection through false color
fusion,” Proc. SPIE, vol. 6945, pp. 69450V–69453V, Apr. 2008.

[12] E. J. Candés, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, pp. 1–37, May 2011.

[13] Z. Zihan, L. Xiaodong, J. Wright, E. Cande, and M. Yi, “Stable principal
component pursuit,” in Proc. IEEE ISIT, Jun. 2010, pp. 1518–1522.

[14] D. Meng and F. De la Torre, “Robust matrix factorization with unknown
noise,” in Proc. ICCV, 2013.

[15] D. Meng, Z. Xu, L. Zhang, and J. Zhao, “A cyclic weighted median
method for l1 low-rank matrix factorization with missing entries,” in
Proc. AAAI, 2013.

[16] B. Porat and B. Friedlander, “A frequency domain algorithm for mul-
tiframe detection and estimation of dim targets,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 12, no. 4, pp. 398–401, Apr. 1990.

[17] X. Liu and Z. Zuo, A Dim Small Infrared Moving Target Detection
Algorithm Based on Improved Three-Dimensional Directional Filtering
Communications in Computer and Information Science, vol. 363, New
York, NY, USA: Springer-Verlag, 2013, pp. 102–108, ch. 13.

[18] B. Zhang, T. Zhang, Z. Cao, and K. Zhang, “Fast new small-target
detection algorithm based on a modified partial differential equation in
infrared clutter,” Opt. Eng., vol. 46, no. 10, pp. 106401-1–106401-4,
2007.

[19] P. Wei, B. Zeidler, and W. Ku, “Analysis of multiframe target detection
using pixel statistics,” IEEE Trans. Aerosp. Electron. Syst., vol. 31, no. 1,
pp. 238–247, Jan. 1995.

[20] J. Silverman, J. M. Mooney, and C. E. Caefer, “Tracking point targets
in cloud clutter,” Proc. SPIE, vol. 3061, pp. 496–507, Aug. 1997.

[21] A. P. Tzannes and D. H. Brooks, “Detecting small moving objects
using temporal hypothesis testing,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 38, no. 2, pp. 570–586, Apr. 2002.

[22] E. T. Lim, L. Shue, and R. Venkateswarlu, “Adaptive mean and variance
filter for detection of dim point-like targets,” Proc. SPIE, vol. 4728,
pp. 492–502, Aug. 2002.

[23] D. Liu, J. Zhang, and W. Dong, “Temporal profile based small moving
target detection algorithm in infrared image sequences,” Int. J. Infr.
Millimeter Waves, vol. 28, no. 5, pp. 373–381, 2007.

[24] T.-W. Bae, “Small target detection using bilateral filter and tempo-
ral cross product in infrared images,” Infr. Phys. Technol., vol. 54,
pp. 403–411, Sep. 2011.

[25] Z. Wang, J. Tian, J. Liu, and S. Zheng, “Small infrared target fusionde-
tection based on support vector machines in the wavelet domain,” Opt.
Eng., vol. 45, no. 7, pp. 076401-1–076401-3, 2006.

[26] D. Chan, D. Langan, and D. Staver, “Spatial-processing techniques for
the detection of small targets in IR clutter,” Proc. SPIE, vol. 1305,
pp. 53–62, Oct. 1990.

[27] T. Soni, J. R. Zeidler, and W. H. Ku, “Performance evaluation of 2D
adaptive prediction filters for detection of small objects in image data,”
IEEE Trans. Image Process., vol. 2, no. 3, pp. 327–340, Jul. 1993.

[28] X. P. Wang and T. X. Zhang, “Clutter-adaptive infrared small target
detection in infrared maritime scenarios,” Opt. Eng., vol. 50, no. 6,
pp. 067001-1–067001-12, Jun. 2011.

[29] M. R. Azimi-Sadjadi and P. Hongye, “Two-dimensional block diagonal
LMS adaptive filtering,” IEEE Trans. Signal Process., vol. 42, no. 9,
pp. 2420–2429, Sep. 1994.

[30] P. A. Ffrench, J. R. Zeidler, and W. H. Ku, “Enhanced detectability of
small objects in correlated clutter using an improved 2D adaptive lattice
algorithm,” IEEE Trans. Image Process., vol. 6, no. 3, pp. 383–397,
Mar. 1997.

[31] Y. Cao, R. Liu, and J. Yang, “Small target detection using two-
dimensional least mean square (TDLMS) filter based on neighborhood
analysis,” Int. J. Infr. Millimeter Waves, vol. 29, no. 2, pp. 188–200,
2008.

[32] H. Deng, J. G. Liu, and Z. Chen, “Infrared small target detection based
on modified local entropy and EMD,” Chin. Opt. Lett., vol. 8, pp. 24–28,
Jan. 2010.

[33] C. Q. Gao, T. Q. Zhang, and Q. Li, “Small infrared target detection
using sparse ring representation,” IEEE Aerosp. Electron. Syst. Mag.,
vol. 27, no. 3, pp. 21–30, Mar. 2012.

[34] M. Zeng, J. Li, and Z. Peng, “The design of top-hat morphological filter
and application to infrared target detection,” Infr. Phys. Technol., vol. 48,
pp. 67–76, Apr. 2006.

[35] X. Bai, F. Zhou, Y. Xie, and T. Jin, “Modified top-hat transformation
based on contour structuring element to detect infrared small target,” in
Proc. 3rd IEEE Conf. ICIEA, Jun. 2008, pp. 575–579.

[36] J. Ardouin, “Point source detection based on point spread function
symmetry,” Opt. Eng., vol. 32, pp. 2156–2164, Sep. 1993.

[37] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2. Sep. 1999,
pp. 1033–1038.

[38] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. CVPR. Soc. Conf., vol. 2. Jun. 2005,
pp. 60–65.

[39] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-
based image denoising,” IEEE Trans. Image Process., vol. 15, no. 10,
pp. 2866–2878, Oct. 2006.

[40] A. Buades, B. Coll, and J.-M. Morel, “Nonlocal image and movie
denoising,” Int. J. Comput. Vis., vol. 76, no. 2, pp. 123–139, 2008.

[41] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep. 2009, pp. 2272–2279.

[42] L. Guangcan, L. Zhouchen, Y. Shuicheng, S. Ju, Y. Yong, and M. Yi,
“Robust recovery of subspace structures by low-rank representation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184,
Jan. 2013.

[43] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast
convex optimization algorithms for exact recovery of a corrupted low-
rank matrix,” in Proc. CAMSAP, 2009, pp. 1–18.

[44] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier method
for exact recovery of corrupted low-Rank matrices,” UIUC, Champaign,
IL, USA, Tech. Rep. UILU-ENG-09-2215, 2009.

[45] M. P. Holmes, J. Isbell, C. Lee, and A. G. Gray, “QUIC-SVD: Fast
SVD using cosine trees,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 673–680.

[46] D. Knuth, The Art of Computer Programming, 3rd ed. Reading, MA,
USA: Addison-Wesley, 1997.

[47] M. Li, T. X. Zhang, Z. R. Zuo, X. C. Sun, and W. D. Yang,
“Novel dim target detection and estimation algorithm based on dou-
ble threshold partial differential equation,” Opt. Eng., vol. 45, no. 9,
pp. 090502-1–090502-3, 2006.

[48] S. Deshpande, M. Er, V. Ronda, and P. Chan, “Max-mean and max-
median filters for detection of small-targets,” Proc. SPIE, vol. 3809,
pp. 74–83, Oct. 1999.

Chenqiang Gao received the B.S. degree in com-
puter science from the China University of Geo-
sciences, Wuhan, China, in 2004 and the Ph.D.
degree in pattern recognition and intelligence sys-
tems from the Huazhong University of Science and
Technology, Wuhan, China, in 2009. He is currently
an Associate Professor with Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China. His current research interests include image
processing, infrared target detection, and event
detection.

Downloaded form http://iranpaper.ir



GAO et al.: INFRARED PATCH-IMAGE MODEL FOR SMALL TARGET DETECTION 5009

Deyu Meng received the B.Sc., M.Sc., and Ph.D.
degrees in 2001, 2004, and 2008, respectively, from
Xi’an Jiaotong University, Xi’an, China. He is cur-
rently an Associate Professor with the Institute for
Information and System Sciences, Faculty of Sci-
ence, Xi’an Jiaotong University, Xi’an. His cur-
rent research interests include principal component
analysis, nonlinear dimensionality reduction, feature
extraction and selection, compressed sensing, and
sparse machine learning methods.

Yi Yang is a DECRA Fellow with the School of
Information Technology and Electrical Engineering,
The University of Queensland, Queensland, Aus-
tralia. Prior to that, he was a Post-Doctoral Fellow
with the School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA. He received
the Ph.D. degree in computer science from Zhe-
jiang University, Zhejiang, China, in 2010. His cur-
rent research interests include machine learning and
its applications to multimedia content analysis and
indexing.

Yongtao Wang received the Ph.D. degree in pattern
recognition and intelligent system in 2009 from the
Huazhong University of Science and Technology,
Hubei, China. In 2010, he was a Research Scientist
with the Temasek Laboratories, Nanyang Technolog-
ical University, Singapore. He is currently an Assis-
tant Professor with the Institute of Computer Science
and Technology, Peking University, Beijing, China.
His current research interests include wide baseline
matching, motion segmentation, object recognition,
and document image understanding.

Xiaofang Zhou (SM’06) received the B.S. and M.S.
degrees in computer science from Nanjing Univer-
sity, Nanjing, China, in 1984 and 1987, respectively,
and the Ph.D. degree in computer science from The
University of Queensland, Queensland, Australia,
in 1994. He is a Professor of computer science
with The University of Queensland. He is the Head
of the Data and Knowledge Engineering Research
Division, School of Information Technology and
Electrical Engineering, Kharagpur, India. He is the
Director of the Australian Research Council (ARC)

Research Network in Enterprise Information Infrastructure and a Chief
Investigator of the ARC Centre of Excellence in Bioinformatics. He is also
an Adjunct Professor with Renmin University of China, Beijing, China,
appointed under the Chinese National Qianren Scheme. From 1994 to 1999,
he was a Senior Research Scientist and Project Leader in the Commonwealth
Scientific and Industrial Research Organisation. His research was focused
on completing effective and efficient solutions to managing, integrating, and
analyzing very large amounts of complex data for business and scientific
applications. His current research interests include spatial and multimedia
databases, high performance query processing, web information systems, data
mining, bioinformatics, and e-research.

Alexander G. Hauptmann received the B.A. and
M.A. degrees in psychology from Johns Hopkins
University, Baltimore, MD, USA, the degree in
computer science from the Technischen Universität
Berlin, Berlin, Germany, in 1984, and the Ph.D.
degree in computer science from Carnegie Mellon
University (CMU), Pittsburgh, PA, USA, in 1991.
He is currently with the faculty of the Department
of Computer Science and the Language Technolo-
gies Institute, CMU. His current research interests
include man-machine communication, natural lan-

guage processing, speech understanding and synthesis, video analysis, and
machine learning. From 1984 to 1994, he worked on speech and machine
translation, when he joined the Informedia project for digital video analysis
and retrieval and led the development and evaluation of news-on-demand
applications.

Downloaded form http://iranpaper.ir



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


