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a b s t r a c t

An analysis of the diffusion and kinetics in amperometric immobilized enzyme electrodes is pre-
sented for reactions of the enzyme and substrate. This analysis contains a non-linear term related to
Michaelis–Menten kinetics. In this paper, we obtain approximate analytical solutions for the non-linear
equations that describe diffusion and the reaction within the film by employing the homotopy perturba-
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tion method (HPM). The obtained analytical results are compared with the available limiting case results
and found to be in satisfactory agreement.

© 2010 Elsevier Ltd. All rights reserved.
ichaelis–Menten kinetics
omotopy perturbation method

. Introduction

Recently, there has been much interest in the development
f amperometric enzyme electrodes [1,2]. Rahmathunissa and
ajendran [3] obtained the analytical solutions for substrate
oncentration and transient current for both steady-state and non-
teady-state amperometric polymer-modified electrodes using
anckwerts’ relation. Andrieux et al. [4] and Albery and Hillman

5] analyzed the kinetics of reactions at polymer-modified elec-
rodes. During these reactions, species from the solution react with
mediator that was bound in a film at the electrode surface. The

pproximate analytical solutions can be obtained for limiting cases
y linearizing the non-linear term [6]. In the case of an immobi-

ized enzyme, the problem is further complicated by the non-linear
nzyme kinetics. For the enzyme kinetics problem, approximate
nalytical solutions have been developed by Blaedel et al. [7], Kulys
t al. [8] and Bartlett and Whitaker [9] for the only the limiting
ases (saturated and unsaturated). The applications of numerical
nd approximate analytical methods can be seen in Bartlett and
ratt [10]. The numerical simulation can be found in Bartlett and co-
orkers [11]. Senthamarai and Rajendran derived the approximate
nalytical expressions for the substrate, mediator concentrations
nd current for the non-linear Michaelis–Menten kinetic scheme
n a system of coupled non-linear reaction-diffusion processes
t conducting polymer-modified ultramicroelectrodes [12] using

∗ Corresponding author. Tel.: +91 0452 2673354; fax: +91 0452 2675238.
E-mail address: raj sms@rediffmail.com (L. Rajendran).

013-4686/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.electacta.2010.04.050
the variational iteration method. In this paper, we present the
approximate analytical expressions for the concentrations of the
mediator and substrate. These concentrations were determined
using homotopy perturbation method (HPM) [13,14]. The current
was determined corresponding to all possible values of the param-
eters aε, �, � , �, and �. These parameters are explained below in Eq.
(10).

2. Mathematical formulation of the problem and analysis

2.1. Mathematical formulation

Fig. 1 shows the general kinetic scheme for an enzyme-
membrane/electrode. A and B are the oxidized and reduced forms of
the mediator, respectively. E1 and E2 are the oxidized and reduced
forms of the enzyme, respectively. S and P are the substrate and
the product of the enzymatic reaction, respectively. Diffusion of
mediator A and substrate S occurs within the film with diffu-
sion coefficients DA and DS, respectively. Partition of the substrate
between the film and the bulk solution is described by the parti-
tion coefficient KS. The mediator partition is described by KA. The
reactions that occur within the film (Fig. 1) in the kinetic scheme
can be written as follows:
A + E2
kA−→B + E1 (1)

E1 + S
kE−→E2 + P, (2)

and the reaction at the electrode is B → A.

http://www.sciencedirect.com/science/journal/00134686
http://www.elsevier.com/locate/electacta
mailto:raj_sms@rediffmail.com
dx.doi.org/10.1016/j.electacta.2010.04.050
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ig. 1. Schematic representation of a typical enzyme-membrane|electrode showing
he processes considered in the model. The homogenous enzyme kinetics that occurs
hroughout the film is described by Eqs. (1)–(3).

Here, kE and kA are second-order rate constants that describe
he reaction between the enzyme and the substrate and
etween the enzyme and the mediator, respectively. According to
ichaelis–Menten kinetics, the following is true:

E = kcat

KM + [S]
, (3)

here kcat denotes the catalytic rate constant, and KM denotes
he Michaelis–Menten constant. The homogenous enzyme kinet-
cs described by Eqs. (1)–(3) occurs throughout the film from x = 0
o x = l, where l is the thickness of the membrane. We consider a
ituation in which the mediator is entrapped within the film. This
ituation does not include a separate soluble redox mediator that
s re-oxidized on a conducting entrapment matrix. Here, the rate
onstants for a heterogeneous reaction on the supporting matrix
ust be considered. The differential equations that quantify the

iffusion and reaction within the film may be written as follows
6]:

∂[S]
∂t

= DS
∂2[S]
∂x2

− kcat [E1][S]
KM + [S]

(4)

∂[A]
∂t

= DA
∂2[A]
∂x2

− kA [E2][A] (5)

∂[E1]
∂t

= kA[A][E2] − kcat[E1][S]
KM + [S]

(6)

Assuming that the enzyme is bound within the film, is not free
o diffuse and is in the steady-state d[E1]/dt = 0, Eq. (6) leads to the
ollowing:

E2] = kcat[E˙][S]
kA[A](KM + [S]) + kcat[S]

, (7)

here [E˙] = [E1] + [E2] denotes the total concentration of the
mmobilized enzyme. Then, in the steady-state, Eqs. (4) and (5) are
educed to the following:

A
d2[A]
dx2

= kA kcat[A][S][E˙]
kA[A](KM + [S]) + kcat[S]

(8)

S
d2[S]
dx2

= kA kcat[A][S][E˙]
kA[A](KM + [S]) + kcat[S]

. (9)
Eqs. (8) and (9) are solved for the following boundary conditions:

= l, [S] = [S]∞ KS (9a)

= 0,
d[S]
dx

= 0 (9b)
mica Acta 55 (2010) 5230–5238 5231

x = 0, [A] = [A]ε (9c)

and

x = l,
d[A]
dx

= 0 (9d)

We make the non-linear differential Eqs. (8) and (9) dimension-
less by defining the following parameters:

a = [A]
KA[B˙]∞

, s = [S]
KS[S]∞

, � = x

l
, � = l

(
kA[E˙]

DA

)1/2

,

� = DS kA KM

DA kcat
, � = kA KA[B˙]∞ KM

kcat KS[S]∞
, � = KS[S]∞

KM

(10)

where a is the dimensionless concentration of the mediator and s is
the dimensionless concentration of the substrate. � is the normal-
ized distance from the electrode/membrane interface. � describes
the equilibrium constant between the diffusion of B within the film
and its reaction with the enzyme. � denotes the relative amount of
depletion of the substrate and oxidized mediator within the film.
The parameter � represents the equilibrium constant between the
two forms of the enzyme. The ratio of the substrate concentra-
tion within the film to the Michaelis constant is described by �.
The subscript ∞ denotes the concentration in the bulk solution.
a and s are normalized with respect to the total concentrations
KA[B˙] and KS[S]∞ of the two species within the film, where [B˙] =
[A] + [B], KA[B˙]∞ = [B˙], and KS[S]∞ = [S] + [P]. When � � 1, B
can diffuse across the film before it reacts with the enzyme.
For � � 1, consumption of the substrate is greater than mediator
reduction, and for � � 1, the mediator reduction is greater than
consumption of the substrate. For � � 1, all of the enzymes are in
the E2 form. For unsaturated Michaelis–Menten kinetics, � � 1. For
saturated kinetics, � � 1. Eqs. (8) and (9) reduce to the following
dimensionless forms:

d2s

d�2
= � �−1 �2 as

� a(1 + �s) + s
(11)

d2a

d�2
= �2 as

� a(1 + � s) + s
(12)

The dimensionless boundary conditions for Eqs. (11) and (12)
are as follows:

� = 1, s = 1 (12a)

� = 0,
ds

dx
= 0 (12b)

� = 0, a = aε (12c)

and

� = 1,
da

dx
= 0. (12d)

The parameter ε is the dimensionless potential, which can be
defined as:

ε = (E − E0)n F

RT
(13)

where E is the potential of an electrode, E0 is the standard
potential of an electrode, n is the number of electrons, F is the
Faraday constant, R is the universal gas constant and T is the
absolute temperature. Combining the Nernst equation E = E0 +
(RT/nF) ln ([A]0/[B]0) and Eq. (13) gives the dimensionless oxidized
mediator concentration aε at the electrode surface:
aε =
1 + exp(−ε)

(14)

Here [A]0 and [B]0 denote the concentration of the two forms of
the mediator at the electrode surface. Eq. (14) gives the bound-
ary condition for a at the electrode surface. The dimensionless flux
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Table 1
Various expressions of the mediator concentration a and the substrate concentration s (Pratt et al. [6]).

Limiting cases Pratt’s work Fig no.

a s a s

Mediator-limited
kinetics a

s < 1
�(1+� s)

a = aε [cosh(� �) − tanh(�) sinh(� �)] (23) – Fig. 2 (� < 1) (Eqs. (17)
and (23))
� = 0.1, � = 0.001, � = 10,
� = 0.001, aε = 1

Fig. 3 (� < 1) (Eq. (20))
� = 0.1, � = 0.01, � = 0.1,
� = 0.1, aε = 1

Fig. 2 (� > 1) (Eqs. (17)
and (23))

Fig. 3 (� > 1) (Eq. (20))
� = 10, � = 0.01, � = 0.1,
� = 0.1, aε = 1

� = 5,
� = 0.001,
� = 10,
� = 0.01,
aε = 1

� = 10,
� = 0.001,
� = 10,
� = 0.001,
aε = 1

Substrate-limited
kinetics a

s > 1
� (1+� s)

– s =
cosh(� �/�1/2)
cosh(�/�1/2)(24)

Fig. 5 (� < 1) (Eq.
(17))
� = 0.1, � = 2, � = 4,
� = 0.001, aε = 1

Fig. 6 (� < 1)
� = 0.1, � = 100, � = 105,
� = 0.01, aε = 0.01

Fig. 5 (� > 1) (Eq.
(17))
� = 5, � = 2, � = 4,
� = 0.001, aε = 1

Fig. 6 (� > 1) (Eqs. (20)
and (24))

� = 5, � = 100,
� = 105,
� = 0.01,
aε = 0.01

� = 10,
� = 100,
� = 105,
� = 0.01,
aε = 0.01
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Table 2
Expression for the concentration of the mediator in the thin film approximation (Pratt et al. [6]).

Conditions Pratt’s work for thin film approximation Fig no.

�2

�
< 1

and
s = 1

a = [aε + �(1 + �)]

{
cosh

[
� �

1 + �(1 + �)

]

− tanh

[
�

1 + �(1 + �)

]
sinh

[
� �

1 + �(1 + �)

]}
5)

Fig. 8 (� < 1) (Eqs. (19) and (25)) � = 0.1, � = 10−5, � = 0.1, aε = 1
Fig. 8 (� > 1) (Eqs. (19) and (25))
� = 5, � = 10−5, � = 0.1, aε = 1 � = 10, � = 10−5, � = 0.1, aε = 1
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T
V

−�(1 + �) (2

f substrate (JS) consumed at the electrode is considered as the
ollowing:

S = l jS
DA[B˙]∞KA

= �

�

(
ds

d�

)
�=1

=
(

da

d�

)
�=1

−
(

da

d�

)
�=0

, (15)

nd that of the mediator (Jobs) measured at the electrode is as fol-
ows:

obs = l jobs

DA[B˙]∞KA
= −

(
da

d�

)
�=0

. (16)

With respect to the boundary condition, the flux of the substrate
eacting within the film is equal to the observed flux: Jobs = Js.

.2. Solution of boundary value problem using the HPM

Recently, many authors have applied the HPM to various prob-
ems and demonstrated the efficiency of the HPM for handling
on-linear structures and solving various physics and engineering
roblems [15–18]. This method is a combination of homotopy in
opology and classic perturbation techniques. Ji-Huan He used the
PM to solve the Lighthill equation [19], the Duffing equation [20]
nd the Blasius equation [21]. The idea has been used to solve non-
inear boundary value problems [22], integral equations [23–25],
lein–Gordon and Sine–Gordon equations [26], Emden–Flower

ype equations [27] and many other problems. This wide variety
f applications shows the power of the HPM to solve functional
quations. The HPM is unique in its applicability, accuracy and effi-
iency. The HPM [28] uses the imbedding parameter p as a small
arameter, and only a few iterations are needed to search for an
symptotic solution. Using this method (see Appendix B), we can
btain the following solution to Eq. (11):
= W1 cosh � [cosh(2�(1 − �)) − 3]

+ cosh(�(1 − �)) [W2 + W1(3 − cosh 2 �)]

−W3(W4 + W5 + W6) (2� − �2) (17)

able 3
arious expressions of the dimensionless current (Pratt et al. [6]).

Limiting cases Pratt’s work
Flux Jobs = Js

Mediator-limited kinetics
a/s < 1/�(1 + � s)

Jobs = � aε tanh(�), Jobs = �2 aε , for � < 1,

Substrate-limited kinetics
a/s > 1/�(1 + � s)

JS = �1/2�

�
tanh

[
�

�1/2(1 + �)

]
, Jobs = �

�(1

for � < �1/2 (1 + �), Jobs = �1/2�

�
, for �

Thin film approximation
�2

� < 1
Jobs = � [aε + �(1 + �)]

1 + �(1 + �)
tanh

[
�

1 + �(1 + �)

]

where

W1 = � a2
ε(1 + �)

6 cosh3 �
, W2 = aε

cosh �
, W3 = (� �)2a3

ε

2(e2� + 1)�
,

W4 = 1 − 2e� + � + �, W5 = (1 + e2�)� �(2 + �),

W6 = e2�(1 − � + �) (18)

Eq. (17) represents the analytical expression of the mediator
concentration for all values of the parameters �, � , �, �, and aε. Eq.
(17) satisfies the boundary conditions at � = 0, a = aε and at � = 1,
da/d� = 0. In the thin film approximation case in which �2/� < 1 and
the substrate can diffuse much further than the thickness of the film
before it reacts with the enzyme, the result is s ≈ 1. Therefore, the
expression of the mediator concentration becomes the following:

a = W1 cosh � [cosh(2�(1 − �)) − 3]

+ cosh(�(1 − �)) [W2 + W1(3 − cosh 2�)] (19)

The solution to Eq. (12) is as follows:

s = 1 − W8(1 + � sinh �) + W7(1 + 2� sinh 2�) + 6W7 �2

+ [W8 � sinh � − 2W7 � sinh 2�] � − 6�2W7�2

+W8 cosh(�(1 − �)) − W7 cosh(2�(1 − �)) (20)

where

W7 = W1 � cosh �

2�
, W8 = �

�
[W1(3 − cosh 2�) + W2] (21)

Eq. (20) represents the analytical expression of the substrate
concentration for all values of the parameters �, � , �, �, and aε.
Eq. (20) satisfies the boundary conditions at � = 1, s = 1 and � = 0,

ds/d� = 0. From Eqs. (15) and (19), we can obtain the dimensionless
flux, which is as follows:

JS = Jobs = �

�
(W8 sinh � − 2W7 sinh 2� − 12W7 �) (22)

Fig no.

Jobs = � aε , for � > 1 (26) Fig. 9 (Eqs. (22) and (26))
� = 0.01, � = 0.001, � = 0.1, � = 0.01

2

+ �)
,

> �1/2 (1 + �) (27)

Fig. 10 (Eqs. (22 and 27))
� = 10, � = 0.01, � = 0.01, aε = 0.01

(28) Fig. 11 (Eqs. (22 and 28))
� = 0.01, � = 0.01, � = 0.1, aε = 0.01
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ig. 2. Plot of the two-dimensional comparative case diagram of the mediator con-
entration a versus the normalized distance � when � a < s/(1 + � s) for � = 0.001,
= 10, � = 0.001 and aε = 1 and various values of �. — is plotted according to Eq. (17),
nd · · · is plotted according to Eq. (23).

here W7 and W8 are given by Eq. (21). Eq. (17) and Eq. (20) are
he closed forms of the approximate analytical expressions of the
oncentrations of the mediator and substrate for all values of the
arameters �, � , �, �, and aε. Eq. (22) is the new approximate
xpression of the flux.

. Results and discussion

Pratt and co-worker [6] derived the approximate analytical
olutions of the mediator and the substrate concentrations and
he current for different limiting cases. Various analytical expres-
ions for the concentration of the mediator and substrate for
/s < 1/�(1 + � s) and a/s > 1/�(1 + � s) are given in Table 1. The ana-

ytical expression for the thin film approximation is given in Table 2.
he analytical expressions for the dimensionless current derived
y Pratt and co-worker [6] for various limiting cases are given in
able 3.

ig. 3. Plot of the two-dimensional diagram of the substrate concentration s versus
he normalized distance � when � a < s/(1 + � s) for � = 0.01, � = 0.1, � = 0.1 and aε = 1
nd various values of �. — is plotted according to Eq. (20).
Fig. 4. The normalized three-dimensional mediator concentration profiles of a cal-
culated using Eq. (17) for � in the range of 0–100.

3.1. Comparison with the work of Pratt and co-worker [6]

3.1.1. Mediator-limited kinetics (a/s < 1/�(1 + � s))
In this case, the mediator–enzyme reaction is the rate-

determining step. Figs. 2 and 3 represent the concentration profiles
of the mediator and the substrate for various values of the param-
eters �, � , �, �, and aε, respectively. The concentration of the
mediator a is closer to unity when the values of all of the parame-
ters are less than 0.4. The concentration of the substrate s is equal to
unity when the values of all of the parameters are less than 1. When
� > 1, the concentration of the mediator a decreases quickly when
� ≤ 0.5, and a reaches the steady-state value zero when � ≥ 0.5
(Fig. 2). However, the concentration of the substrate increases grad-
ually (Fig. 3). Fig. 4 shows the normalized mediator concentration
profiles of a for various values of � and �. This data confirm that the

concentration profiles of the mediator a decrease when � increases
for all values of distance �.

Fig. 5. Plot of the two-dimensional diagram of the mediator concentration a versus
the normalized distance � when � a > s/(1 + � s) for � = 2, � = 4, � = 0.001 and aε = 1
and various values of �. — is plotted according to Eq. (17).
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Fig. 6. Plot of the two-dimensional comparative case diagram of the substrate
concentration s versus the normalized distance � when � a > s/(1 + � s) for � = 100,
� = 105, � = 0.01 and aε = 0.01 and various values of �. — is plotted according to Eq.
(20), and · · · is plotted according to Eq. (24).

Fig. 7. The normalized three-dimensional substrate concentration profiles s calcu-
lated using Eq. (20) for � in the range of 0–100.

Fig. 8. Plot of the two-dimensional comparative case diagram of the mediator con-
centration a versus the normalized distance � for the thin film approximation for
� = 10−5, � = 0.1 and aε = 1 and various values of �. — is plotted according to Eq. (19),
and · · · is plotted according to Eq. (25).

Fig. 9. Comparison of the dimensionless current against ε in the range of 10−1 to 10
for � = 0.01, � = 0.001, � = 0.1, and � = 0.01. — is plotted according to Eq. (22), and · · ·
is plotted according to Eq. (26).

Table 4
Comparison of the mediator concentration a for various values of � and � when � = 0.001, � = 10, � = 0.001 and aε = 1.

� � = 0.1 � = 5 � = 10

This work
Eq. (17)

Pratt’s
work Eq.
(23)

% deviation
of Eq. (17)

This work
Eq. (17)

Pratt’s
work Eq.
(23)

% deviation
of Eq. (17)

This work
Eq. (17)

Pratt’s
work Eq.
(23)

% deviation
of Eq. (17)

0 1 1 0 1 1 0 1 1 0
0.2 0.9982 0.9982 0 0.3680 0.3679 −0.0272 0.1353 0.1353 0
0.4 0.9968 0.9968 0 0.1356 0.1357 −0.0737 0.0183 0.0183 0
0.6 0.9958 0.9958 0 0.0507 0.0507 0 0.0025 0.0025 0
0.8 0.9952 0.9952 0 0.0208 0.0208 0 0.0003 0.0003 0
1 0.9950 0.9950 0 0.0135 0.0135 0 0 0 0

Average deviation 0 Average deviation 0.0168 Average deviation 0



5236 S. Loghambal, L. Rajendran / Electrochimica Acta 55 (2010) 5230–5238

Table 5
Comparison of the substrate concentration s for various values of � and � when � = 100, � = 105, � = 0.01 and aε = 0.01.

� � = 0.1 � = 5 � = 10

This work Eq.
(20)

Pratt’s work Eq.
(24)

% deviation of
Eq. (20)

This work Eq.
(20)

Pratt’s work Eq.
(24)

% deviation of
Eq. (20)

This work Eq.
(20)

Pratt’s work Eq.
(24)

% deviation of
Eq. (20)

0 1 0.9999 0.01 0.9999 0.9998 0.01 0.9999 0.9995 0.04
0.2 1 0.9999 0.01 0.9999 0.9998 0.01 0.9999 0.9995 0.04
0.4 1 0.9999 0.01 0.9999 0.9998 0.01 0.9999 0.9995 0.02
0.6 1 0.9999 0.01 1 0.9999 0.01 0.9999 0.9997 0.02
0.8 1 0.9999 0.01 1 0.9999 0.01 0.9999 0.9998 0
1 1 1 0 1 1 0 1 1 0

Average deviation 0.008 Average deviation 0.008 Average deviation 0.0266

Table 6
Comparison of the mediator concentration a for the thin film approximation for various values of � and � when � = 10−5, � = 0.1 and aε = 1.

� � = 0.1 � = 5 � = 10

This work Eq.
(19)

Pratt’s work Eq.
(25)

% deviation of
Eq. (19)

This work Eq.
(19)

Pratt’s work Eq.
(25)

% deviation of
Eq. (19)

This work Eq.
(19)

Pratt’s work Eq.
(25)

% deviation of
Eq. (19)

0 1 1 0 1 1 0 1 1 0
0.2 0.9982 0.9982 0 0.3680 0.3680 0 0.1353 0.1353 0
0.4 0.9968 0.9968 0 0.1357 0.1357 0 0.0183 0.0183 0
0.6 0.9958 0.9958 0 0.0507 0.0507 0 0.0025 0.0025 0
0.8 0.9952 0.9952 0 0.0208 0.0208 0 0.0003 0.0003 0
1 0.9950 0.9950 0 0.0135 0.0135

3

W
s
t
v
s
t
�
t
t

3

i

F
1
·

centration s (Eq. (20)) are compared with Pratt’s work [6] in
Tables 4 and 5. For the thin film approximation, the comparison
of the mediator concentration a (Eq. (19)) with Pratt’s result [6] is
Average deviation 0 Average deviation

.1.2. Substrate-limited kinetics (a/s > 1/�(1 + � s))
In this case, the enzyme–substrate kinetics is rate limiting.

hen � is small, the concentrations of the mediator and the
ubstrate are always close to 1 (Fig. 5). When � > 1 and � ≥ 0.5,
he concentration of the mediator a reaches the steady-state
alue. When � > 1, the concentration of the substrate increases
lowly and reaches the steady-state value 1 (Fig. 6). Fig. 7 shows
he three-dimensional concentration profile of the substrate in

and � space calculated using Eq. (20). This figure shows
hat the concentration of the substrate is inversely proportional
o �.
.1.3. Thin film approximation
In this case, �2/� < 1 and s = 1. The concentration of the mediator

s equal to 1 when � and � are both less than 1 (Fig. 8). When � or

ig. 10. Comparison of the dimensionless current against � in the range of 10−1 to
0 for � = 10, � = 0.01, � = 0.01, and aε = 0.01. — is plotted according to Eq. (22), and
· · is plotted according to Eq. (27).
0 0 0 0

0 Average deviation 0

� increases, the concentration of the mediator slowly decreases.
Figs. 9–11 show the dimensionless current for various values

of �, � , �, �, and aε. The current increases as ε increases in the
region −4 < ε < 2, and a steady-state appears when ε > 2 and ε < −4
(Fig. 9). The value of the current increases in direct proportion to the
values of � (Fig. 10). The value of the current increases in indirect
proportion to the value of � (Fig. 11).

The mediator concentration a (Eq. (17)) and the substrate con-
given in Table 6. In all the cases, the average relative error is less
than 0.02%.

Fig. 11. Comparison of the dimensionless current against � in the range of 10−1 to
10 for � = 0.01, � = 0.01, � = 0.1, and aε = 1. — is plotted according to Eq. (22), and · · ·
is plotted according to Eq. (28).
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. Conclusions

A non-linear time-independent differential equation for the
olymer-modified electrodes has been formulated and solved using
he HPM. The primary result of this work is an approximate cal-
ulation of the concentration and current profiles of the mediator
nd substrate for various values of the parameters �, � , �, �, and
ε. Our results agree well with the previous limiting case results.
his result is very useful for determining the behavior of the sys-
em. The extension of the procedure to systems such as the redox
ydrogel systems [29,30], in which the mediator and the enzymes
re entrapped in a uniform film at the electrode surface, and a study
f the effects of mass transport in the bulk solution both seem pos-
ible. The analytical result presented here can be used with the
pproximate analytical formulae to optimize enzyme electrodes.
he model may be used to optimize the design of a sensor system
y making rational changes to the enzyme loading, film thickness,
hoice and concentration of the mediator and film properties.

cknowledgements

It is our pleasure to thank the referees for their valuable com-
ents. This work was supported by the Department of Science

nd Technology (DST) Government of India. The authors also thank
r. M.S. Meenakshisundaram, Secretary, The Madura College Board

nd Dr. T.V. Krishnamoorthy, Principal, The Madura College, Madu-
ai, India, for their constant encouragement.

ppendix A. Basic concepts of the HPM

The HPM method has overcome the limitations of traditional
erturbation methods. It can take full advantage of the traditional
erturbation techniques, so a considerable deal of research has
een conducted to apply the homotopy technique to solve vari-
us strong non-linear equations [13,14]. To explain this method,
et us consider the following function:

o(u) − f (r) = 0, r ∈ ˝ (A1)

ith the boundary conditions of

o(u,
∂u

∂n
) = 0, r ∈ 	 (A2)

here Do is a general differential operator, Bo is a boundary oper-
tor, f(r) is a known analytical function and 	 is the boundary of
he domain ˝. Generally speaking, the operator Do can be divided
nto a linear part L and a non-linear part N. Eq. (A1) can therefore
e written as:

(u) + N(u) − f (r) = 0 (A3)

y the homotopy technique, we construct a homotopy v(r, p) :
˝ × [0, 1] → � that satisfies:

(v, p) = (1 − p)[L(v) − L(u0)] + p[Do(v) − f (r)] = 0 (A4)

(v, p) = L(v) − L(u0) + p L(u0) + p[N(v) − f (r)] = 0. (A5)

here p ∈ [0,1] is an embedding parameter, and u0 is an initial
pproximation of Eq. (A1) that satisfies the boundary conditions.
rom Eqs. (A4) and (A5), we have

(v, 0) = L(v) − L(u0) = 0 (A6)

(v, 1) = Do(v) − f (r) = 0. (A7)
When p = 0, Eqs. (A4) and (A5) become linear equations. When
= 1, they become non-linear equations. The process of changing
from zero to unity is that of L(v) − L(u0) = 0 to Do(v) − f(r) = 0. We
rst use the embedding parameter p as a “small parameter” and
mica Acta 55 (2010) 5230–5238 5237

assume that the solutions of Eqs. (A4) and (A5) can be written as a
power series in p:

v = v0 + p v1 + p2 v2 + . . . (A8)

Setting p = 1 results in the approximate solution of Eq. (A1):

u = lim
p→1

v = v0 + v1 + v2 + . . . (A9)

This is the basic idea of the HPM.

Appendix B. Approximate analytical solutions of the
mediator and substrate

Using the HPM, we construct a homotopy for Eqs. (11) and (12)
as follows:

(1 − p)

(
d2a

d�2
− �2 a

)
+ p

(
d2a

d�2
+ � a

d2a

d�2
(1/s + �) − �2 a

)
= 0

(B1)

and

(1 − p)

(
d2s

d�2

)
+ p

(
d2s

d�2
+ � a

d2s

d�2
(1/s + �) − � �−1 �2 a

)
= 0

(B2)

The approximate solution of (B1) is

a = a0 + p a1 + p2a2 + . . . (B3)

and the approximate solution of (B2) is

s = s0 + p s1 + p2 s2 + . . . (B4)

Substituting Eq. (B3) into Eq. (B1) and arranging the coefficients
of p powers, we have

p0 :
d2a0

d�2
− �2 a0 = 0 (B5)

p1 :
d2a1

d�2
− �2 a1 + � a0

d2a0

d�2

(
1
s0

+ �
)

= 0 (B6)

p2 :
d2a2

d�2
− �2 a2 + � a1

d2a0

d�2

(
1
s0

+ �
)

+ � a0
d2a1

d�2

(
1
s0

+ �
)

−�
d2a0

d�2
a0

s1

s2
0

= 0 (B7)

Substituting Eq. (B4) into Eq. (B2) and arranging the coefficients
of p powers, we have

p0 :
d2s0

d�2
= 0 (B8)

p1 :
d2s1

d�2
− � �−1 �2 a0 + � a0

d2s0

d�2

(
1
s0

+ �
)

= 0 (B9)

p2 :
d2s2

d�2
− � �−1 �2 a1 + � a0

d2s1

d�2

(
1
s0

+ �
)

+� a1
d2s0

d�2

(
1
s0

+ �
)

− �a0
d2s0

d�2

s1

s2
0

= 0 (B10)
The initial approximations are as follows:

a0(0) = aε, a′
0(1) = 0, a′

i(1) = 0 for all i = 1, 2, 3, . . .

(B11)



5 trochi

s

a

s

s

a

s

a

o

s

c

[

[

[
[

[
[

[
[
[
[
[
[
[
[
[

[

238 S. Loghambal, L. Rajendran / Elec

0(1) = 1, s
′
0(0) = 0, s

′
i(0) = 0, for all i = 1, 2, 3, . . .

(B12)

From Eq. (B5) we get

0 = W2 cosh(�(1 − �)). (B13)

From Eq. (B8) we get

0 = 1. (B14)

Substituting Eq. (B13) and Eq. (B14) into Eq. (B6), we obtain the
olution to Eq. (B6):

1 = W1 [cosh �(cosh(2�(1 − �)) − 3)

+(3 − cosh 2�) cosh(�(1 − �))] . (B15)

Using Eqs. (B13)–(B15) in Eq. (B9) and then solving we get

1 = � W2

�
[−(1 + � sinh �) + (� sinh �)� + cosh(�(1 − �))] . (B16)

Using Eqs. (B13)–(B16) and Eq. (B7) we get

2 = W3(W4 + W5 + W6) (−2� + �2). (B17)

Using Eq. (B13)–(B16) in Eq. (B10) and then solving Eq. (B10) we
btain:

2 = � W1

2�
[2(cosh 2� − 3)[1 + (� sinh �) (1 − �) − cosh(�(1 − �))]

+ cosh �[1 + (1 − �)(2� sinh 2� − 6�2(� + 1))
− cosh(2�(1 − �))]] (B18)

Adding Eqs. (B13), (B15) and (B17), we get Eq. (17) (the con-
entration of the mediator, a) in the text. Similarly, by adding Eqs.

[
[
[
[
[

mica Acta 55 (2010) 5230–5238

(B14), (B16) and (B18) we get Eq. (20) (the concentration of the
substrate, s) in the text.
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