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A new design approach of a multiple-input–multiple-output (MIMO) adaptive fuzzy termi-
nal sliding-mode controller (AFTSMC) for robotic manipulators is described in this article. A
terminal sliding-mode controller (TSMC) can drive system tracking error to converge to
zero in finite time. The AFTSMC, incorporating the fuzzy logic controller (FLC), the TSMC,
and an adaptive scheme, is designed to retain the advantages of the TSMC while reducing
the chattering. The adaptive law is designed on the basis of the Lyapunov stability criterion.
The self-tuning parameters are adapted online to improve the performance of the fuzzy
terminal sliding-mode controller (FTSMC). Thus, it does not require detailed system param-
eters for the presented AFTSMC. The simulation results demonstrate that the MIMO
AFTSMC can provide a reasonable tracking performance.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that robotic manipulators have to encounter nonlinearities and various uncertainties in their dynamic
models, such as friction, disturbance, and load changing, and it is very difficult to reach excellent performance when the con-
trol algorithm is completely based on the robotic plant model. Thus, designing a robotic manipulator controller is a serious
challenge for engineers. In the last few decades, the sliding-mode control strategy has received special attention [3,8,10–
12,14,17,18,20,24,37,45,46] because this method provides a systematic approach to retaining asymptotic stability and robust
performance. However, chattering is a drawback of the sliding-mode control. While fuzzy logic has been applied to nonlinear
systems with uncertainties [1,2,9,13,19,21,22,26–29,35,36,38,42,43,47,50,51], the large number of fuzzy rules makes the de-
sign complex.

Recently, the concept of integrating fuzzy logic control and sliding-mode control has become a popular research subject
[3,8,10,11,17,18,20,24,37,45,46]. Fuzzy sliding-mode control can reduce the rule number in FLC, eliminate the chattering of
sliding-mode control, and possess robustness in the presence of model uncertainty and disturbances. Hsu et al. [11]
presented a fuzzy adaptive control law using the concept of variable structure, a control algorithm that does not require
a system model. Guo and Woo [8] proposed an adaptive fuzzy sliding-mode control algorithm based on model information
that is partially known. In [24], a T-S fuzzy-model-based SMC scheme is presented, and it does not assume that the control
matrices of each T-S local linear model are identical. In [4,6,16,23,30,48], fuzzy neural networks are combined with the slid-
ing-mode algorithm to control nonlinear systems. These controllers are used to reduce the chattering of the sliding-mode
control and improve the tracking performance based on the system parameters that are partially known.

Another approach, called the terminal sliding-mode control, has been developed in [7,15,25,41,44,49,52,53]. Different
from the classical sliding-mode, the terminal sliding-mode has a nonlinear sliding surface. While reaching the terminal
. All rights reserved.
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sliding-mode, the system tracking error can be converged to zero in finite time. However, the system tracking error con-
verges to zero asymptotically in the classical sliding-mode. That is, the system tracking error converges to zero in infinite
time.

In this study, a new MIMO AFTSMC is proposed for robotic manipulators, which combines the MIMO FLC, the TSMC, and
the adaptive scheme. The control algorithm is developed by combining the fuzzy method with the TSMC approach, which
provides a simple way to design the fuzzy controller systematically and drives the system tracking error to converge to zero
in finite time. The fuzzy terminal sliding-mode controller (FTSMC) can not only reduce the rule number in the FLC, but also
reduce the chattering in the TSMC. The parameters of the normalization factor of output variable in the fuzzy mechanism
and the output of the compensator are adapted online to improve the performance of the fuzzy terminal sliding-mode con-
trol system. The adaptive scheme does not require prior knowledge of dynamic parameters and can adjust the parameters of
the controllers to reduce the error between the plant and the desired trajectories. This control algorithm can be applied to n-
link robotic manipulators with unmodeled dynamics, unstructured uncertainties, and external disturbances. There are sev-
eral advantages to the proposed control algorithm. First, it does not require system parameters. Second, the control input
chattering is reduced. Third, the system tracking error converges to zero in finite time. Finally, the normalization factor of
the output variable in the fuzzy mechanism and the output value of the compensator are adapted online.

This study is organized as follows. In Section 2, the TSMC for robotic manipulators is proposed. In Section 3, we propose a
design method for MIMO AFTSMC for robotic manipulators. Section 4 gives the simulation example, and the conclusions are
given in Section 5.

2. TSMC for robotic manipulators

This section describes the TSMC that is applied to robotic manipulators. The TSMC design can be decoupled in two steps.
The first step is the selection of an appropriate terminal sliding surface. The second step, a discontinuous control law, is de-
signed so that it will drive the system state toward terminal sliding surface and guarantee the stability of the system.

Consider the dynamic equation of general n-link robotic manipulators [40]
HðqÞ€qþ Cðq; _qÞ _qþ GðqÞ þ Td ¼ s; ð1Þ
where

q 2 Rn is the joint angular position vector;
_q 2 Rn is the joint angular velocity vector;
€q 2 Rn is the joint angular acceleration vector;

s 2 Rn is the vector of the control input;
H(q) 2 Rn�n is the inertia matrix;
Cðq; _qÞ 2 Rn�n is the matrix of Coriolis and centrifugal forces;
G(q) 2 Rn is the gravity vector; and
Td 2 Rn is the vector of generalized input due to disturbances or unmodeled dynamics.

The inertia matrix H(q) is symmetric and positive definite, and it is bounded as m1 6 kH(q)k 6m2 where m1 and m2 are
positive constants. The matrix _HðqÞ � 2Cðq; _qÞ is a skew symmetric and satisfies xT ½ _HðqÞ � 2Cðq; _qÞ�x ¼ 0 where x is an n � 1
nonzero vector. The gravity vector is bounded as kG(q)k 6 gb, where gb is a positive function of q. For simplification,
HðqÞ;Cðq; _qÞ, and G(q) are written as H, C, and G, respectively.

Let the tracking error
e ¼ q� qd; ð2Þ
where q is the joint position and qd is the desired position.
To obtain the finite time convergence of the system tracking error, the terminal sliding surface is defined as
s ¼ _eþ aeq=p; ð3Þ
where a = diag[a1, . . . ,ai, . . . ,an] in which ai (i = 1, . . . ,n) is a positive constant, p and q are positive odd integers and satisfy the
following conditions [53],
p > q and 2q > p: ð4Þ
The terminal sliding-mode is then defined as s = 0 or
_eþ aeq=p ¼ 0: ð5Þ
Note that the control output of TSMC can be written as
uðe; tÞ ¼
uþðe; tÞ; when sðeÞ > 0;

u�ðe; tÞ; when sðeÞ < 0:

(
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The terminal sliding surface s can be driven to the terminal sliding-mode s = 0 [53].
In the linear sliding-mode, the sliding surface is defined as
s ¼ _eþ ke; ð6Þ
where k = diag[k1, . . . ,ki, . . . ,kn] in which ki (i = 1, . . . ,n) is a positive constant. Then, the system tracking error converges to zero
asymptotically.

However, in the terminal sliding-mode, the system tracking error can be expressed in the following form
_ei ¼ �aie
q=p
i ; i ¼ 1; . . . ; n: ð7Þ
The solution of Eq. (7) for the convergence time ti (i = 1, . . . ,n) is given by
ti ¼ �
Z 0

eið0Þ

dei

aie
q=p
i

¼ eið0Þj j1�
q
p

ai 1� q
p

� � ; ð8Þ
where p and q are selected to satisfy (4); the initial value of ei at t = 0 is ei(0). Thus, ti is the convergence time of the tracking
errors to zero after the terminal sliding-mode is attained.

We may interpret s of (3) as a ‘‘velocity error” term [39]
s ¼ _eþ aeq=p ¼ _q� _qd þ aeq=p ¼ _q� _qr; ð9Þ
_s ¼ €eþ aðeq=pÞ0 ¼ €q� €qd þ aðeq=pÞ0 ¼ €q� €qr; ð10Þ
where
_qr ¼ _qd � aeq=p; ð11Þ
€qr ¼ €qd � aðeq=pÞ0: ð12Þ
When the system is in the terminal sliding-mode, €qr can be written as
€qr ¼ €qd � a
d
dt

eq=p
� �

¼ €qd �
q
p

diag aie
ðq�pÞ=p
i

� �
� _e ¼ €qd þ a2

1
q
p

eð2q�pÞ=p
1 ; . . . ;a2

i
q
p

eð2q�pÞ=p
i ; . . . ;a2

n
q
p

eð2q�pÞ=p
n

� �T

; ð13Þ
where p and q satisfy 2q > p, and then the vector €qr should be bounded as the tracking error ei converges to zero in the ter-
minal sliding-mode.

Applying (9) and (10) into (1) leads to
H _s ¼ s�H€qr � Cs� C _qr � G� Td: ð14Þ
To prove the stability of the system, we choose the Lyapunov function as
V ¼ 1
2

sT Hs: ð15Þ
The derivative of V becomes
_V ¼ sT s�H€qr � C _qr � G� Tdð Þ: ð16Þ
Choose the control input s
s ¼ �KsgnðsÞ; ð17Þ
where K = diag[K11, . . . ,Kii, . . . ,Knn] is a diagonal positive definite matrix and Kii (i = 1, . . . ,n) is a positive constant.
Substituting (17) into (16) yields
_V ¼ sT ½B� KsgnðsÞ� ¼
Xn

i¼1

si½Bi � KiisgnðsiÞ�; ð18Þ
where
B ¼ �H€qr � C _qr � G� Td: ð19Þ

(a) When si – 0 and any ei – 0.

From (13) and (19), it is easy to see that if e and _e are bounded, then B is bounded. Assuming jBij < jBij*, where jBij* is
the upper boundary of jBij. If K is chosen such that
Kii > jBij�; ð20Þ
this guarantees that the system tracking error is quickly convergent, and each Kii should be chosen to be sufficiently large.
When si > 0, from (20) we get
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si½Bi � KiisgnðsiÞ� < 0: ð21Þ
When si < 0, from (20) we get
si½Bi � KiisgnðsiÞ� < 0: ð22Þ
Thus
_V ¼
Xn

i¼1

si½Bi � KiisgnðsiÞ� < 0: ð23Þ
(b) When system si – 0 and ei = 0.
From (11), we obtain
_qr ¼ _qd � aeq=p ¼ _qd � a1eq=p
1 ; . . . ;aie

q=p
i ; . . . ;aneq=p

n

h iT
¼ _qd � a1eq=p

1 ; . . . ;0; . . . ;aneq=p
n

h iT
: ð24Þ
From (12), we obtain
€qr ¼ €qd � a
d
dt

eq=p
� �

¼ €qd1 � a1
q
p

eðq�pÞ=p
1 � _e1; . . . ; €qdi � ai

q
p

eðq�pÞ=p
i � _ei; . . . ; €qdn � an

q
p

eðq�pÞ=p
n � _en

� �T

; ð25Þ
where €qri ¼ €qdi � ai
q
p eðq�pÞ=p

i � _ei.

In this case si – 0 and ei ¼ 0; €qri exists the singularity problem.
Refs. [44,53] addressed an approach to avoid the singularity. In the proposed method, singularity is avoided by switching

from a terminal sliding surface to a general sliding surface. In this review, singularity is avoided by switching to a nonsin-
gular terminal sliding surface (NTSS) [7]. The NTSS is described as follows:
si ¼ _ep=q
i þ aei; ð26Þ
where a, p and q have been defined in (3) and (13).
The derivative of si becomes
_si ¼
p
q

_eðp�qÞ=q
i � €ei þ a _ei: ð27Þ
It can be seen that _si does not result in negative powers. Thus, it is able to avoid the singularity problem.

Remark 1. In this article, singularity is avoided by switching, as follows:
si ¼
_ei þ aeq=p

i ; if si ¼ 0 or si – 0; eij j > e;
_ep=q

i þ aei; if si – 0; jeij 6 e;

(
ð28Þ
where e is a positive constant.
It can be seen from (24) and (25) that if e and _e are bounded, then B is bounded. Choose K such that Kii > jBij*, then
_V ¼
Xn

i¼1

si½Bi � KiisgnðsiÞ� < 0: ð29Þ
It is easy to verify that the terminal sliding condition can be satisfied under the condition si – 0.

3. MIMO AFTSMC for robotic manipulators

In this section, the MIMO AFTSMC for robotic manipulators is developed, which combines the advantages of the terminal
sliding-mode control, the fuzzy inference mechanism, and the adaptive algorithm. First, the SISO FTSMC for robotic manip-
ulators is derived, which establishes the FLC for proposed TSMC. Second, the MIMO FTSMC is proposed to deal with the mod-
el coupled of manipulators. Finally, a new MIMO AFTSMC method is presented. In this section, the adaptive law is designed
and the stability of the overall system is proved based on the Lyapunov method.

3.1. SISO FTSMC for robotic manipulators

Although the aforementioned terminal sliding-mode controller can drive the system tracking error to converge to zero in
finite time, it has several drawbacks. To guarantee that the system tracking error is convergent, each Kii must be chosen so
that it is very large. Unfortunately, this large control gain may cause undesired chattering. In this section, a single-input–sin-
gle-output (SISO) FTSMC is developed to reduce the chattering.

From Eq. (17), choose the fuzzy logic controller gain u to replace the control input Ksgn(s). The new control input can be
expressed as
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s ¼ �u; ð30Þ
where u = [u1, . . . ,ui, . . . ,un]T. Therefore, the sign of ui is chosen, which is the same as that of si. Substituting (30) into (18)
leads to
_V ¼ sT ½B� u� ¼
Xn

i¼1

si½Bi � ui�: ð31Þ
Therefore, when jsij is large, from (19) jBij is also large so that juijmust be given a large value. When jsij is small, from (19) jBij
is also small so that juij can be of a smaller value. Then small juij will reduce the chattering. When si is zero, ui can be zero;
therefore, _V ¼ 0. From these analyses, it is easy to make _V 6 0 and guarantee the terminal sliding-mode of FTSMC. The fuzzy
rules can be determined as follows:

IF si is NB, THEN ui is NB
IF si is N, THEN ui is N
IF si is Z, THEN ui is Z
IF si is P, THEN ui is P
IF si is PB, THEN ui is PB

where si is the input variable of the fuzzy system and ui is the output variable of the fuzzy system. Both are partitioned into five
fuzzy subsets: negative big (NB), negative (N), zero (Z), positive (P), and positive big (PB). The triangular shape membership
function of si is shown in Fig. 1a. The singleton membership function of ui is shown in Fig. 1b. The main reasons of using trian-
gular membership functions are adopted from literature [31–34]. First, under some assumptions about the probability density
function of the input space, fuzzy partitions with triangular membership functions bring about entropy equalization. Second,
the triangular membership functions with the 1/2 overlap between neighboring fuzzy sets lead to an error-free reconstruction.
It is also worth noting that any deviation from the 1/2 overlap or modifications in the functional shape results in a nonzero
reconstruction error. These characteristics are commonly used when interfacing fuzzy sets construct with numerical datum.

Choosing the weighted average defuzzification, the output of the fuzzy inference system can be written as
uic ¼
PM

R¼1hiRlRðsiÞPM
R¼1lRðsiÞ

; ð32Þ
( 
 ) is

μ

(  )is

( 
 ) iu

μ

(  )iu

a

b

Fig. 1. (a) Input membership function; (b) output membership function.



4646 T-H.S. Li, Y.-C. Huang / Information Sciences 180 (2010) 4641–4660
where M is the number of rules, hiR is the associated singleton membership function of ui and lR(si) is the strength of the Rth
rule. Then, the output of the FTSMC for the robotic manipulators is
ui ¼ fi � uic ð33Þ
where fi is the normalization factor of output variable.
The fuzzy terminal sliding condition can be satisfied as long as each fi is chosen to be large enough such that
fi � uicj j > Bij j�; ð34Þ
then
_V ¼
Xn

i¼1

si½Bi � ui� ¼
Xn

i¼1

si½Bi � fi � uic� < 0: ð35Þ
Thus, there is a guarantee that the system tracking error is quickly convergent under the condition si – 0.

3.2. MIMO FTSMC for robotic manipulators

In the SISO fuzzy system, each ui is inferred by only an individual fuzzy system. To obtain a good performance, the cou-
pling effect cannot be neglected, especially in robotic manipulators. In this section, the structure of MIMO fuzzy control
scheme provides the ability not only to deal with the model coupled but also to enhance the system performance and robust-
ness. The control diagram of the MIMO FTSMC is shown in Fig. 2.

The ith-output of the fuzzy inference system can be written as
uic ¼
PM

R¼1hiRlRðsiÞPM
R¼1lRðsiÞ

¼WT
i hi; ð36Þ
where M is the number of rules and hi = [hi1, . . . ,hii, . . . ,hiM] is the consequent parameter; and WT
i ¼ ½wi1; . . . ;wiR; . . . ;wiM�T with

each variable wiR as the fuzzy basis function is defined as
wiR ¼
lRðsiÞPM
R¼1lRðsiÞ

: ð37Þ
Then, the ith-output of the MIMO FTSMC for robotic manipulators can be expressed as
ui ¼
Xn

j¼1

fij � ujc; ð38Þ
where fij is the normalization factor of the jth-output of the fuzzy inference system for ith-output variable. The fuzzy termi-
nal sliding condition can be satisfied as long as each fij is chosen to be large enough such that
Xn

j¼1

fij � ujc

�����
����� > Bij j�; ð39Þ
T
i iW θ

1 1
TW θ

T
n nW θ

∑

∑

1s

ns

is

1u

nu

iu

11f

iif

nnf

1if

1nf

1nf

inf

nif

1if

∑

Fig. 2. The structure of a MIMO FTSMC.
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then
_V ¼
Xn

i¼1

si½Bi � ui� ¼
Xn

i¼1

si Bi �
Xn

j¼1

fij � ujc

" #
< 0: ð40Þ
Thus, there is a guarantee that the system tracking error is quickly convergent under the condition si – 0.

3.3. MIMO AFTSMC for robotic manipulators

Although MIMO FTSMC is an effective method, its major disadvantage is that the output normalization factor of the out-
put of the fuzzy controller should have been previously tuned by trial-and-error procedures. To overcome this problem, this
subsection presents a new MIMO AFTSMC for robotic manipulators. The adaptive law is designed on the basis of the Lyapu-
nov stability criterion. The normalization factor of output variable in the fuzzy mechanism and the output value of the com-
pensator are adapted online to improve the performance of the FTSMC. The basic architecture of the MIMO AFTSMC is shown
in Fig. 3.

Let the output of the MIMO AFTSMC for robotic manipulators be
s ¼ �u� qs: ð41Þ
ρs

TW θdq e s u τ

ρ

f
q

Fig. 3. The architecture of MIMO AFTSMC for robotic manipulators.

eδ

Fig. 4. An articulated two-link manipulator.
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The adaptive fuzzy controller output is u = f � uc in which uc is output of the fuzzy inference system and f is the normalization
factor of output variable. The output value of the compensator is qs, where q = diag[a1 + r1, . . . ,ai + ri, . . . ,an + rn] is a diag-
onal positive definite matrix in which ai is a positive constant, and ri is a positive value.

Substituting (41) into (1) yields
H _s ¼ �Csþ B� u� qs: ð42Þ
Define f* as the optimal estimation normalization factor for B. Then, there exists the optimal estimation error wi > 0
(i = 1, . . . ,n) satisfying
Bi �
Xn

j¼1

f �ij � ujc

�����
����� 6 wi ði ¼ 1; . . . ; nÞ: ð43Þ
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Fig. 5. (a) The disturbance profiles; (b) the uncertain mass of the joints.
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Define the error of the normalization factor of the fuzzy output variable as
Table 1
The con

Cont

MIM

MIM

SISO

SISO
~f ij ¼ fij � f �ij : ð44Þ
Then
Xn

j¼1

fij � ujc ¼
Xn

j¼1

~f ij � ujc þ
Xn

j¼1

f �ij � ujc: ð45Þ
Define r�i sij j as the upper boundary of the compensation for optimal estimation error wi. That is
wi 6 r�i sij j ði ¼ 1; . . . ; nÞ: ð46Þ
And let rijsij be the compensation value for optimal estimation error wi.
trol parameters.

roller Control law Adaptive law Sliding surface q p a, k cij, ri e

O AFTSMC s = �u � qs _f ij ¼
_~f ij ¼ cijsiujc

s ¼ _eþ aeq=p 5 7 20 0
0 20

� �
c11 = c22 = 100 0.01

ui ¼
Pn

j¼1fij � ujc _ri ¼ _~ri ¼ gis
2
i
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qi = ai + ri c21 = 800
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Define
~ri ¼ ri � r�i ði ¼ 1; . . . ; nÞ: ð47Þ

Choose the Lyapunov function candidate as
V ¼ 1
2
ðsT HsÞ þ 1

2

Xn

i¼1

Xn

j¼1

1
2cij

~f 2
ij þ

Xn

i¼1

1
2gi

~r2
i ; ð48Þ
where H is a symmetric positive definite matrix, ~f 2
ij > 0 and ~r2

i > 0; cij and gi are positive constants; therefore, V is positive
definite. Consider the derivative of V
_V ¼ 1
2

_sT Hsþ sT _Hsþ sT H _s
� �

þ
Xn

i¼1

Xn

j¼1

1
cij

~f ij
_~f ij þ

Xn

i¼1

1
gi

~ri
_~ri ¼ sT ½H _sþ Cs� þ

Xn

i¼1

Xn

j¼1

1
cij

~f ij
_~f ij þ

Xn

i¼1

1
gi

~ri
_~ri

¼ sT ½�Csþ B� u� qsþ Cs� þ
Xn

i¼1

Xn

j¼1

1
cij

~f ij
_~f ij þ

Xn

i¼1

1
gi

~ri
_~ri ¼ sT ½B� u� qs� þ

Xn

i¼1

Xn

j¼1

1
cij

~f ij
_~f ij þ

Xn

i¼1

1
gi

~ri
_~ri

¼
Xn

i¼1

si Bi �
Xn

j¼1

f ijujc � aisi � risi

" #
þ
Xn

i¼1

Xn

j¼1

1
cij

~f ij
_~f ij þ
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As
Pn

j¼1fijujc ¼
Pn

j¼1
~f ijujc þ

Pn
j¼1f �ij ujc , then Eq. (49) becomes
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Xn
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Xn

j¼1
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f �ij ujc
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Xn

i¼1

1
gi

~ri
_~ri

¼
Xn

i¼1

�si aisi þ
Xn

i¼1

si Bi �
Xn

j¼1

f �ij ujc

 !
� sir�i si

" #
þ
Xn

i¼1

Xn

j¼1

1
cij

~f ij
_~f ij � si
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: ð50Þ

� � �

As si Bi �

Pn
j¼1f �ij ujc

�
6 sij j Bi �

Pn
j¼1f �ij � ujc

�� �� 6 sij jwi, the equation becomes
_V 6
Xn

i¼1

�siaisi þ
Xn

i¼1

sij jwi � sir�i si
� �

þ
Xn

i¼1

Xn

j¼1

~f ij
1
cij

_~f ij � siujc

 !
þ
Xn

i¼1

~ri
1
gi

_~ri � s2
i

	 

: ð51Þ
As wi 6 r�i sij j
sij jwi 6 r�i sij j sij j ¼ r�i sij j2 ¼ r�i s2
i : ð52Þ
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Fig. 7. Responses of the joint angles under MIMO AFTSMC. (Dotted line: desired trajectory, solid line: actual trajectory).
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Therefore
Fig. 8.
line: SI
_V 6
Xn
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�siaisi þ
Xn

i¼1

Xn

j¼1

~f ij
1
cij

_~f ij � siujc

 !
þ
Xn

i¼1

~ri
1
gi

_~ri � s2
i

	 

: ð53Þ
If the adaptive laws are chosen as
_f ij ¼
_~f ij ¼ cijsiujc; ð53aÞ

_ri ¼ _~ri ¼ gis
2
i ; ð53bÞ
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(a) Tracking errors of joint 1; (b) tracking errors of joint 2. (Solid line: MIMO AFTSMC, dashed line: MIMO AFSMC, dotted line: SISO AFTSMC, dash-dot
SO AFSMC).
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then
Fig. 9.
trajecto
_V 6
Xn

i¼1

�siaisi 6 0: ð54Þ
Because ai (i = 1, . . . ,n) is a positive constant, _V < 0 when s – 0. Thus, the controller with the adaptive law in (53) can drive
the system tracking error to converge to zero in finite time, which is _eþ aeq=p ! 0 as t ? t0 where t0 can be any finite time. In
other words, q! qd; _q! _qd, as t ? t0. Therefore, it is proved that, with the MIMO adaptive fuzzy terminal sliding-mode con-
trol input (41), the actual joint positions reach the desired trajectory in finite time.
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(a) Joint 1 velocity under MIMO AFTSMC; (b) joint 2 velocity under MIMO AFTSMC. (Dotted line: desired velocity trajectory, solid line: actual velocity
ry).
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Remark 2 ([5,7,38]). For evaluating the performance of the controller, we can use the performance criteria as follows:

(a) Integral of the absolute value of the error (IAE)
Fig. 10.
AFSMC)
IAE ¼
Z tf

0
eðtÞj jdt: ð55Þ
(b) Integral of the time multiplied by the absolute value of the error (ITAE)
ITAE ¼
Z tf

0
t � eðtÞj jdt: ð56Þ
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(a) The control input 1; (b) the control input 2. (Solid line: MIMO AFTSMC, dashed line: MIMO AFSMC, dotted line: SISO AFTSMC, dash-dot line: SISO
.
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(c) Integral of the square value (ISV) of the control input
Table 2
The per

Cont

MIM
AFTS
MIM
AFSM
SISO
AFTS
SISO
AFSM
ISV ¼
Z tf

0
u2ðtÞdt: ð57Þ
Both IAE and ITAE are used as objective numerical measures of tracking performance for an entire error curve, where tf

represents the total running time. The criterion IAE will give an intermediate result. In ITAE, time appears as a factor; it will
heavily emphasize errors that occur late in time. The criterion ISV shows the consumption of energy.

4. Simulation examples

Consider the two-link manipulators, as shown in Fig. 4. The dynamical equation of the manipulators can be described as
[39,40]
H11 H12

H21 H22

� �
€q1

€q2

� �
þ
�h _q2 �hð _q1 þ _q2Þ
h _q1 0

� �
_q1

_q2

� �
þ

G1

G2

� �
þ

Td1

Td2

� �
¼

s1

s2

� �
;

where
H11 ¼ c1 þ 2c3 cos q2 þ 2c4 sin q2; H12 ¼ H21 ¼ c2 þ c3 cos q2 þ c4 sin q2; H22 ¼ c2;

h ¼ c3 sin q2 � c4 cos q2; G1 ¼ b1 cos q1 þ b2 cosðq1 þ q2Þ; G2 ¼ b2 cosðq1 þ q2Þ
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Fig. 11. Curves of estimated parameters.

formance indices.

roller Joint Example 1 Example 2

IAE (rad) ITAE (rad-s) ISV (N-m)2 IAE (rad) ITAE (rad-s) ISV (N-m)2

O Joint 1 0.4325 2.2045 85,392 0.5256 3.6151 113,030
MC Joint 2 0.1889 0.8472 16,772 0.1235 0.4425 11,909
O Joint 1 1.0809 8.1813 74,148 1.3626 11.4203 103,790
C Joint 2 0.5385 4.1116 13,008 0.3188 1.9016 9064

Joint 1 0.4329 2.2062 85,806 0.5305 3.6913 109,680
MC Joint 2 0.2369 1.1414 13,854 0.2613 1.6754 10,072

Joint 1 1.0711 8.1282 76,099 1.3926 11.5821 101,350
C Joint 2 0.6719 5.2541 11,013 0.8069 6.4714 8177
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with
c1 ¼ I1 þm1l2
c1 þ Ie þmel2

ce þmel2
1; c2 ¼ Ie þmel2

ce; c3 ¼ mel1lce cos de; c4 ¼ mel1lce sin de;

b1 ¼ m1glc1 þmegl1; b2 ¼ meglce:
The nominal parameters of the two-link manipulators are chosen as follows:
m1 ¼ 5kg; me ¼ 2:5kg; l1 ¼ 1:0m; lc1 ¼ 0:5m; lce ¼ 0:5m; de ¼ 0�; I1 ¼ 0:36Kgm2; I2 ¼ 0:24Kgm2:
The disturbance Td is a random signal; Fig. 5a depicts the disturbance profiles. The uncertain mass of joints 1 and 2 is illus-
trated in Fig. 5b; it can be seen that the load of the manipulators is changed at t = 5, 8, 12, 16 s, respectively.

Two examples, both periodic and nonperiodic trajectories, are given in this section to illustrate the effectiveness of the
proposed approach. All the control laws and the parameters of these four controllers are listed in Table 1. The initial esti-
mated parameters are chosen as f11 = f12 = f21 = f22 = 0, a1 = a2 = 1, r1 = r2 = 0. The sampling time used in the simulation is
5 ms.

4.1. Example 1

The desired joint trajectories for tracking are
qd1

qd2

� �
¼
�2 sin 1

3 pt
� �

2 sin 1
2 pt
� �

" #
rad:
In this example, we apply the proposed MIMO AFTSMC, the SISO AFTSMC, the classical MIMO AFSMC, and the classical SISO
AFSMC to the robotic manipulator, respectively. The system initial states are chosen as q1ð0Þ ¼ �1; q2ð0Þ ¼ 1; _q1ð0Þ ¼
_q2ð0Þ ¼ 0.

The curves of the estimated parameters are shown in Fig. 6. The responses of the joint angles under the proposed MIMO
AFTSMC are illustrated in Fig. 7, and one can find that the proposed controller provides a reasonable tracking capability in the
various uncertainties. The tracking errors of joints 1 and 2 under these four controllers are depicted in Fig. 8; the tracking
error convergence speed for the proposed MIMO AFTSMC is faster than that of the three other controllers. The joint velocities
under the proposed MIMO AFTSMC are shown in Fig. 9, while the corresponding control inputs are shown in Fig. 10. The
performance indices are tabulated in Table 2.
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Fig. 12. Responses of the joint angles under MIMO AFTSMC. (Dotted line: desired trajectory, solid line: actual trajectory).
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4.2. Example 2

The nonperiodic trajectories for tracking are shown in Fig. 12. In this example, the system initial states are chosen as
q1ð0Þ ¼ �0:5; q2ð0Þ ¼ 0:5; _q1ð0Þ ¼ _q2ð0Þ ¼ 0.

The curves of the estimated parameters are shown in Fig. 11. The responses of the joint angles under the proposed MIMO
AFTSMC are illustrated in Fig. 12, and one can find that the proposed controller provides a fast tracking capability in the var-
ious uncertainties. The tracking errors of joints 1 and 2 under these four controllers are depicted in Fig. 13. The joint veloc-
ities under the proposed MIMO AFTSMC are shown in Fig. 14, while the corresponding control inputs are shown in Fig. 15.
The performance indices are tabulated in Table 2.
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Fig. 13. (a) Tracking errors of joint 1; (b) tracking errors of joint 2. (Solid line: MIMO AFTSMC, dashed line: MIMO AFSMC, dotted line: SISO AFTSMC, dash-
dot line: SISO AFSMC).
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From Figs. 6, 7, 11 and 12, without any expert knowledge, one can see that the MIMO AFTSMC possesses an excellent
tracking performance after a short learning period. By comparing to Figs. 8 and 13 and Table 2, one can conclude that the
tracking performance of the proposed MIMO AFTSMC is superior to that of the three other controllers. From Figs. 9 and
14, one can find that the proposed controller shows the joint movement with high acceleration. It is obvious from Figs.
10 and 15 and Table 2 that the magnitude of control torques are almost the same.

5. Conclusions

In this study, a MIMO AFTSMC for robotic manipulators has been developed, which integrates the MIMO FLC, the TSMC,
and the adaptive scheme. The combined scheme is shown to have the merits of these approaches. This control algorithm is
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Fig. 14. (a) Joint 1 velocity under MIMO AFTSMC; (b) joint 2 velocity under MIMO AFTSMC. (Dotted line: desired velocity trajectory, solid line: actual
velocity trajectory).



0 2 4 6 8 10 12 14 16 18 20
-300

-200

-100

0

100

200

300

time (sec)

To
rq

ue
 o

f j
oi

nt
 1

 (N
-m

)

MIMO AFTSMC
MIMO AFSMC
SISO AFTSMC
SISO AFSMC

a 

0 2 4 6 8 10 12 14 16 18 20
-200

-150

-100

-50

0

50

100

150

200

time (sec)

To
rq

ue
 o

f j
oi

nt
 2

 (N
-m

)

MIMO AFTSMC
MIMO AFSMC
SISO AFTSMC
SISO AFSMC

b 

Fig. 15. (a) The control input 1; (b) the control input 2. (Solid line: MIMO AFTSMC, dashed line: MIMO AFSMC, dotted line: SISO AFTSMC, dash-dot line: SISO
AFSMC).
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designed on the basis of the Lyapunov stability criterion, which can be applied to n-link robotic manipulators with unmod-
eled dynamics and uncertainties. The proposed MIMO AFTSMC is shown to have the following four characteristics. First, the
scheme presented can drive the system tracking error to converge to zero in finite time. Second, the proposed scheme can
eliminate the chattering of the TSMC schemes and reduce the rule number of the FLC. Third, the adaptive scheme does not
require prior knowledge of dynamic parameters. Finally, the control algorithm can be applied to n-link robotic manipulators
with unmodeled dynamics, unstructured uncertainties, and external disturbances. The effectiveness and the validity of the
MIMO AFTSMC have been demonstrated by computer simulations. The proposed control can achieve the best performance in
comparison with the SISO AFSMC, the SISO AFTSMC, and the MIMO AFSMC.
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