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Abstract— Design methods of adaptive H∞ formation control
of multi-agent systems composed of Euler-Lagrange systems
are presented in this paper. The proposed control schemes are
derived as solutions of certain H∞ control problems, where
estimation errors of tuning parameters and error terms in
potential functions are regarded as external disturbances to
the process. It is shown that the resulting control systems are
robust to uncertain system parameters and that the desirable
formations are achieved asymptotically via adaptation schemes.

I. INTRODUCTION

Recently, formation control problems of multi-agent sys-
tems have attracted much attentions, and several formation
control schemes were proposed based on various strategies
(for example, leader-follower [1], behavior-based [2], virtual
structure [3], and potential functions approaches [4], [5], [6]).
Among those, the potential functions approaches seemed
to be useful tools from the view points of flexibility of
configurations of swarms, automatic avoidance of collisions
of agents, and stability of maintaining formations. In those
research works, adaptive control or sliding mode control
methodologies were applied in order to deal with uncertain-
ties of agents, and stability of control systems was assured
via Lyapunov function analysis. Furthermore, robustness
properties of the control schemes were also discussed in
those works. However, so much attention has not been paid
on control performance such as optimal property or transient
performance in those approaches.

On the contrary, in recent decades, stable controller de-
signs for nonlinear and adaptive control systems have been
investigated from the view point of inverse optimality [7],
[8]. In those research works, the resulting control systems are
shown to be optimal to certain meaningful cost functionals,
and stability of the overall systems is also assured. Those
approaches are extended to the design of inverse optimal
H∞ adaptive control systems, and various adaptive control
systems are derived from those strategies together with addi-
tional control performances such as robustness to uncertain
time-varying elements of system parameters [9], [10].

The purpose of the present paper is to present design
methods of adaptive formation control of multi-agent sys-
tems composed of Euler-Lagrange systems based on the
notion of inverse optimality. The proposed control schemes
are derived as solutions of certain H∞ control problems,
where estimation errors of tuning parameters and artificial
error terms in potential functions are regarded as external
disturbances to the process. It is shown that the resulting
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control systems are robust to uncertain system parameters
and that the desirable formations are achieved asymptotically
via adaptation schemes.

II. PROBLEM STATEMENT

We consider a multi-agent system composed of N fully
actuated mobile robots which are described as a class of
Euler-Lagrange systems [4], [5] written as follows:

Mi(yi)ÿi + Ci(yi, ẏi)ẏi = τi, (i = 1, · · · , N), (1)

where yi ∈ Rn is an output (a generalized coordinate), τi ∈
Rn is a control input (a force vector), Mi(yi) ∈ Rn×n is an
inertia matrix, and Ci(yi, ẏi) ∈ Rn×n is a matrix of Coriolis
and centripetal forces. Each component has the following
properties as a Euler-Lagrange system.

Properties of Euler-Lagrange Systems [11]
1) Mi(yi) is a bounded, positive definite, and symmetric

matrix.
2) Ṁi(yi) − 2Ci(yi, ẏi) is a skew symmetric matrix.
3) The left-hand side of (1) can be written into

Mi(yi)ai + C(yi, ẏi)bi = −Yi(y, ẏi, ai, bi)θi, (2)

where Yi(yi, ẏi, ai, bi) is a known function of yi, ẏi, ai,
bi (a regressor matrix), and θi is an unknown system
parameter vector.

The control objective is to construct an adaptive forma-
tion control system for a swarm of mobile robots (1) in
which desirable configurations are achieved asymptotically
via adaptation schemes.

Remark More generalized Euler-Lagrange systems
which include damping terms and gravitational forces, can
be also considered in the present framework, since those are
written in the similar form to (2). However, for simplicity of
notations, the description (1) is to be employed hereafter.

III. FLOCKING CONTROL

First, we consider a particular flocking control problem [4]
in which all agents stop at a desirable relative configuration
defined by

∥yi(t) − yj(t)∥ = dij , (dij = dji, i ̸= j), (3)
ẏi(t) = 0. (4)

A. Adaptive Flocking Control

We introduce a positive potential function J(y) ∈ R
(y = [yT

1 , · · · , yT
N ]T ∈ RnN ) in order to handle the desired

configuration (3), where the minimal point of J(y) such as

J(y) → min,

(
∂J(y)
∂yi

= 0, (1 ≤ i ≤ N)
)

, (5)
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corresponds to the relative configuration (3). It is assumed
that J(y) is twice differentiable.

Define a control error si by
si = ẏi + gi(y), (6)

gi(y) =
∂J(y)
∂yi

. (7)

Then, we obtain the next relation.
Miṡi + Cisi = Mi(ÿi + ġi) + Ci(ẏi + gi)

= τi − Yi(yi, ẏi, ġi, gi)θi. (8)

The control law and adaptation law are determined such as
τi = Yi(yi, ẏi, ġi, gi)θ̂i − Kpisi − kggi, (9)
d

dt
θ̂i = −ΓiYi(yi, ẏi, ġi, gi)Tsi, (10)

(Kpi = KT
pi > 0, kg > 0, Γi = ΓT

i > 0),

where θ̂i is a current estimate of θi, and is tuned by the
adaptation law (10). For stability analysis, we introduce a
positive function V

V =
1
2

N∑
i=1

(
sT

i Misi + θ̃T
i Γ−1

i θ̃i

)
+ kgJ(y), (11)

θ̃i = θ̂i − θi, (12)

and take the time derivative of V along the trajectory of si,
θ̂i and y.

V̇ (t) =
N∑

i=1

(
−sT

i Kpisi − kgs
T
i gi + kgg

T
i ẏi

)
=

N∑
i=1

{
−sT

i Kpisi − kgs
T
i gi + kgg

T
i (si − gi)

}
= −

N∑
i=1

(
sT

i Kpisi + kgg
T
i gi

)
≤ 0. (13)

Then, it follows that si ∈ L∞ ∩ L2，θ̂i ∈ L∞, J(y) ∈ L∞,
and that gi ∈ L∞ ∩L2 by considering twice differentiability
of J(y). Hence it is shown that ẏi ∈ L∞, ġi ∈ L∞, and that
τi ∈ L∞, and finally it holds that ṡi ∈ L∞. Therefore, the
following relation is deduced from Barbalat Lemma

lim
t→∞

si(t) = lim
t→∞

gi(t) = 0, (14)

and furthermore it follows that
lim

t→∞
ẏi(t) = 0. (15)

It is also shown that the relative configuration (3) is achieved
asymptotically, since gi → 0 (14).

The present control scheme (9) is similar to the ones
discussed in [4], if we choose kg = 0 in (9).

B. Adaptive H∞ Flocking Control

Next, we propose an adaptive H∞ control scheme where
an estimation error of the tuning parameter and an artificial
additive error to the potential function J(y) are regarded
as external disturbances to the processes. We consider the
following positive function V0.

V0 =
1
2

N∑
i=1

sT
i Misi + (kg + δ)J(y), (16)

where kg, δ > 0, and δ is an artificial error added to J(y).
We determine the control law such as

τi = Yi(yi, ẏi, ġi, gi)θ̂i − kggi + vi, (17)

where vi is a stabilizing signal to be determined later based
on an H∞ criterion. We take the time derivative of V0 along
the trajectory of si and y.

V̇0 =
N∑

i=1

{
sT

i (τi − Y
(ġ,g)
i θi) + (kg + δ)gT

i ẏi

}
=

N∑
i=1

{
sT

i (vi + Y
(ġ,g)
i θ̃i)

−(kg + δ)gT
i gi + δgT

i si)
}

, (18)

Y
(ġ,g)
i ≡ Yi(yi, ẏi, ġi, gi). (19)

From the evaluation of V̇0, we introduce the following virtual
system.

ṡi = fi + gi1θ̃i + gi2δ + gi3vi, (20)

fi = 0, gi1 = Y
(ġ,g)
i , gi2 = gi, gi3 = 1. (21)

We are to stabilize the virtual system via a control input
vi by utilizing H∞ criterion, where θ̃i and δ are regarded
as external disturbances to the process [9], [10]. For that
purpose, we introduce the next Hamilton-Jacobi-Isaacs (HJI)
equation and its solution Vi.

LfiVi +
1
4

{
∥Lgi1Vi∥2

γ2
i1

+
∥Lgi2Vi∥2

γ2
i2

−(Lgi3Vi)R−1
i (Lgi3Vi)T

}
+ qi = 0, (22)

Vi =
1
2
∥si∥2, (23)

where qi and Ri are a positive function and a positive
definite matrix, respectively, and those are derived from HJI
equation based on inverse optimality [7], [8], [9], [10] for
the given solution Vi and the positive constants γi1, γi2. The
substitution of the solution Vi (23) into HJI equation (22)
yields

1
4

{
sT

i Y
(ġ,g)
i Y

(ġ,g)T
i si

γ2
i1

+
sT

i gig
T
i si

γ2
i2

− sT
i R−1

i si

}
+ qi = 0. (24)

Then, qi and Ri are given as follows:

qi =
1
4
sT

i Kisi, (25)

Ri =

(
Y

(ġ,g)
i Y

(ġ,g)T
i

γ2
i1

+
gig

T
i

γ2
i2

+ Ki

)−1

, (26)

Ki = KT
i > 0, (Ki ∈ Rn×n), (27)

where Ki(= KT
i > 0) is a free parameter. By utilizing Ri,

vi is deduced as a solution for the corresponding H∞ control
problem.
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vi = −1
2
R−1

i Lgi2Vi = −1
2
R−1

i si

= −1
2

(
Y

(ġ,g)
i Y

(ġ,g)T
i

γ2
i1

+
gig

T
i

γ2
i2

+ Ki

)
si. (28)

Then, we obtain the following theorems for the multi-agent
system (1).

Theorem 1 The H∞ flocking control system composed
of (1), (17) and (28) is uniformly bounded for an arbitrary
bounded design parameter θ̂i. Furthermore, vi is an optimal
control solution which minimizes the following cost func-
tional Jcost.

Jcost = sup
θ̃1,···,θ̃N ,δ∈L2

{
N∑

i=1

∫ t

0

(qi + vT
i Rivi)dτ + V0(t)

−
N∑

i=1

γ2
i1

∫ t

0

∥θ̃i∥2dτ −
N∑

i=1

γ2
i2

∫ t

0

δ2dτ

}
. (29)

Additionally, the next inequality holds for any finite t.
N∑

i=1

∫ t

0

(qi + vT
i Rivi)dτ + V0(t)

≤
N∑

i=1

{
γ2

i1

∫ t

0

∥θ̃i∥2dτ + γ2
i2

∫ t

0

δ2dτ

}
+ V0(0). (30)

Theorem 2 The adaptive H∞ flocking control system
composed of (1), (17), (28) and the adaptation law (10) is
uniformly bounded, and the following relation holds

lim
t→∞

si(t) = lim
t→∞

ẏi(t) = lim
t→∞

gi(t) = 0, (31)

and the desirable relative configuration (3) is achieved
asymptotically.

Proof: By considering HJI equation, we take the time
derivative of V0(t) (16) along the trajectories of the multu-
agent system (1) and the H∞ flocking control scheme.

V̇0 =
N∑

i=1

{
sT

i (vi + Y
(ġ,g)
i θ̃i) − (kg + δ)gT

i gi + δgT
i si)

}
−

N∑
i=1

[
1
4

{
sT

i Y
(ġ,g)
i Y

(ġ,g)T
i si

γ2
i1

+
sT

i gig
T
i si

γ2
i2

− sT
i R−1

i si

}
+ qi

]
=

N∑
i=1

(
vi +

1
2
R−1

i si

)T

Ri

(
vi +

1
2
R−1

i si

)

−
N∑

i=1

vT
i Rivi −

N∑
i=1

qi −
N∑

i=1

(kg + δ)gT
i gi

−
N∑

i=1

γ2
i1

∥∥∥∥∥θ̃i −
Y

(ġ,g)T
i si

2γ2
i1

∥∥∥∥∥
2

+
N∑

i=1

γ2
i1∥θ̃i∥2

−
N∑

i=1

γ2
i2

∣∣∣∣δ − gT
i si

2γ2
i2

∣∣∣∣2 +
N∑

i=1

γ2
i2δ

2. (32)

Similarly, we take the time derivative of V (t) (11) along
the trajectory of the multu-agent system (1) and the adaptive
H∞ flocking control scheme.

V̇ (t) = −
N∑

i=1

(
sT

i R−1
i si + kgg

T
i gi

)
≤ 0. (33)

Then, Theorem 1 and Theorem 2 are derived from the
evaluations of V̇0(t) (32) and V̇ (t) (33).

Remark In the proposed adaptive control system, it is
also shown that J(y) is uniformly bounded. Therefore, the
collision of agents (yi = yj (i ̸= j)) is avoided automatically,
if we choose J(y) with the property such that J(y) → ∞
as yi → yj [4], [5], [6]．

IV. FORMATION CONTROL I

Secondly, we consider a formation control problem [4], [6]
in which all agents continue to move with a desired velocity
ẏr (34) and with a desired relative configuration defined by
(35).

ẏi(t) = ẏr(t), (34)
∥yi(t) − yj(t)∥ = dij , (dij = dji, i ̸= j), (35)

where yr is a reference point of the agents.

A. Adaptive Formation Control I

We introduce a positive potential function J(y) ∈ R,
which has the same property as the previous one (5), in order
to handle the desired relative configuration (35). Define a
control error si by

si = ∆ẏi + gi(y), (36)
∆yi = yi − yr, (37)

where gi is defined by (7). Then, we obtain the next relation.

Miṡi + Cisi = Mi(ÿi − ÿr + ġi) + Ci(ẏi − ẏr + gi)
= τi − Yi(yi, ẏi, ai, bi)θi, (38)

where ai and bi are determined such as
ai = ġi − ÿr, bi = gi − ẏr. (39)

The control law and adaptation law are determined such as
τi = Yi(yi, ẏi, ai, bi)θ̂i − Kpisi − kggi, (40)
d

dt
θ̂i = −ΓiYi(yi, ẏi, ai, bi)Tsi, (41)

(Kpi = KT
pi > 0, kg > 0, Γi = ΓT

i > 0).

We take the time derivative of the positive function V (11)
along the trajectories of si and θ̂i, where si is defined by
(36).

V̇ (t) =
N∑

i=1

(
−sT

i Kpisi − kgs
T
i gi + kgg

T
i ẏi

)
=

N∑
i=1

{
−sT

i Kpisi − kgs
T
i gi + kgg

T
i (si − gi + ẏr)

}
= −

N∑
i=1

(
sT

i Kpisi + kgg
T
i gi

)
+

N∑
i=1

gT
i ẏr. (42)

Here, we assume that
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N∑
i=1

gi = 0. (43)

It should be noted that the potential function J(y) satisfying
(43), is realized by choosing dij = dji and by adjusting other
parameters. Then, the following relation holds,

V̇ (t) = −
N∑

i=1

(
sT

i Kpisi + kgg
T
i gi

)
≤ 0, (44)

and similarly to the previous case, it is shown that the control
system is uniformly bounded, and that

lim
t→∞

si(t) = lim
t→∞

gi(t) = 0, (45)

and furthermore it follows that
lim

t→∞
∆ẏi(t) = 0, (46)

and the tracking of the velocity (34) is achieved asymptot-
ically. Additionally, since gi → 0 (45), the desired relative
configuration (35) is also attained asymptotically.

B. Adaptive H∞ Formation Control I

Next, we propose an adaptive H∞ control scheme where
an estimation error of the tuning parameter and an artificial
additive error to the potential function J(y) are regarded
as external disturbances to the processes. We consider the
positive function V0 (16), where si is defined by (36). We
determine the control law such as

τi = Yi(yi, ẏi, ai, bi)θ̂i − kggi + vi, (47)

where vi is a stabilizing signal to be determined later based
on an H∞ criterion. We take the time derivative of V0 along
the trajectory of si and y.

V̇0 =
N∑

i=1

{
sT

i (τi − Y
(a,b)
i θi) + (kg + δ)gT

i ẏi

}
=

N∑
i=1

{
sT

i (vi + Y
(a,b)
i θ̃i)

−(kg + δ)gT
i gi + δgT

i si)
}

, (48)

Y
(a,b)
i ≡ Yi(yi, ẏi, ai, bi), (49)

where it is assumed that gi satisfies the condition (43). From
the evaluation of V̇0, we introduce the following virtual
system.

ṡi = fi + gi1θ̃i + gi2δ + gi3vi, (50)

fi = 0, gi1 = Y
(a,b)
i , gi2 = gi, gi3 = 1. (51)

We are to stabilize the virtual system via a control input
vi by utilizing H∞ criterion, where θ̃i and δ are regarded
as external disturbances to the process [9], [10]. For that
purpose, we introduce the following Hamilton-Jacobi-Isaacs
(HJI) equation and its solution Vi.

LfiVi +
1
4

{
∥Lgi1Vi∥2

γ2
i1

+
∥Lgi2Vi∥2

γ2
i2

−(Lgi3Vi)R−1
i (Lgi3Vi)T

}
+ qi = 0, (52)

Vi =
1
2
∥si∥2, (53)

where qi and Ri are a positive function and a positive
definite matrix, respectively, and those are derived from HJI
equation based on inverse optimality [7], [8], [9], [10] for
the given solution Vi and the positive constants γi1, γi2. The
substitution of the solution Vi (53) into HJI equation (52)
yields

1
4

{
sT

i Y
(a,b)
i Y

(a,b)T
i si

γ2
i1

+
sT

i gig
T
i si

γ2
i2

− sT
i R−1

i si

}
+ qi = 0. (54)

Then, qi and Ri are given as follows:

qi =
1
4
sT

i Kisi, (55)

Ri =

(
Y

(a,b)
i Y

(a,b)T
i

γ2
i1

+
gig

T
i

γ2
i2

+ Ki

)−1

, (56)

Ki = KT
i > 0, (Ki ∈ Rn×n), (57)

where Ki(= KT
i > 0) is a free parameter. By utilizing Ri,

vi is deduced as a solution for the corresponding H∞ control
problem.

vi = −1
2
R−1

i Lgi2Vi = −1
2
R−1

i si

= −1
2

(
Y

(a,b)
i Y

(a,b)T
i

γ2
i1

+
gig

T
i

γ2
i2

+ Ki

)
si. (58)

Then, we obtain the following theorems for the multi-agent
system (1).

Theorem 3 It is assumed that J(y) satisfies the condition
(43). Then, the H∞ formation control system composed of
(1), (47) and (58) is uniformly bounded for an arbitrary
bounded design parameter θ̂i. Furthermore, vi is an optimal
control solution which minimizes the following cost func-
tional Jcost.

Jcost = sup
θ̃1,···,θ̃N ,δ∈L2

{
N∑

i=1

∫ t

0

(qi + vT
i Rivi)dτ + V0(t)

−
N∑

i=1

γ2
i1

∫ t

0

∥θ̃i∥2dτ −
N∑

i=1

γ2
i2

∫ t

0

δ2dτ

}
. (59)

Additionally, the next inequality holds for any finite t.
N∑

i=1

∫ t

0

(qi + vT
i Rivi)dτ + V0(t)

≤
N∑

i=1

{
γ2

i1

∫ t

0

∥θ̃i∥2dτ + γ2
i2

∫ t

0

δ2dτ

}
+ V0(0). (60)

Theorem 4 On the same assumption (43), the adaptive
H∞ formation control system composed of (1), (47), (58)
and the adaptation law (41) is uniformly bounded, and the
following relation holds

lim
t→∞

si(t) = lim
t→∞

∆ẏi(t) = lim
t→∞

gi(t) = 0, (61)

and the desirable configuration (35) together with the desired
velocity tracking (34) is achieved asymptotically.
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Proof: Similarly to the previous flocking control case,
Theorem 3 and Theorem 4 are deduced from the evaluation
of V̇0(t) and V̇ (t) along the trajectory of the multi-agent
system (1), where HJI equation (52) is also considered.

V. FORMATION CONTROL II

Finally, we generalize the previous two cases (flocking
control and formation control I), and consider a formation
control problem of the leader-follower type [5], where all
agents continue to move with a desired velocity ẏr

ẏi(t) = ẏr(t), (62)

and also satisfy the formation constraints on the maximum
distance from the reference point yr and on the minimum
relative distance from other agents written as below:

∥yi − yr∥ ≤ ri, (ri > 0, 1 ≤ i ≤ N), (63)
∥yi − yj∥ ≥ dij , (dij = dji > 0, 1 ≤ i ̸= j ≤ N). (64)

Instead of (64), the relative configuration (3), (35) can be
also adopted as a specified case of the constraint on relative
distances from other agents.

A. Adaptive Formation Control II

We introduce a positive potential function JG(∆y) ∈ R
(∆y = [∆yT

1 , · · · , ∆yT
N ]T) in order to handle the formation

constraint on the maximum distance from the reference point
yr (63), and introduce another positive potential function
JL(y) to handle the formation constraint on the minimum
relative distance from other agents (64). It is assumed that
JG(∆y) and JL(y) are twice differentiable, and that the
desired total configurations (63), (64) correspond to the
minimal points of JG(∆y) and JL(y) such as

JG(∆y) → min,

(
∂JG(∆y)

∂∆yi
= 0 (1 ≤ i ≤ N)

)
, (65)

JL(y) → min,

(
∂JL(y)

∂yi
= 0 (1 ≤ i ≤ N)

)
. (66)

Or equivalently, (65), (66) hold uniformly in the appropriate
region defined by (63), (64).

Define a control error si by (36), (37) and
gi(y) = ξi + ρi, (67)

ξi(y) =
∂JG(∆y)

∂∆yi
, ρi(y) =

∂JL(y)
∂yi

. (68)

Then, we obtain the following relation.
Miṡi + Cisi = Mi(ÿi − ÿr + ġi) + Ci(ẏi − ẏr + gi)

= τi − Yi(yi, ẏi, ai, bi)θi, (69)

where ai and bi are defined by (39) and (67). We utilize
the control law (40) and the adaptive law (41), where gi is
defined by (67). We introduce a positive function V

V =
1
2

N∑
i=1

(
sT

i Misi + θ̃T
i Γ−1

i θ̃i

)
+kg{JG(∆y) + JL(y)}, (70)

and take the time derivative of V along the trajectory of si

and θ̂i.

V̇ (t) =
N∑

i=1

(
−sT

i Kpisi − kgs
T
i gi + kgξ

T
i ∆ẏi + kgρ

T
i ẏi

)
=

N∑
i=1

{
−sT

i Kpisi − kgs
T
i gi + kgξ

T
i (si − gi)

+kgρ
T
i (si − gi + ẏr)

}
= −

N∑
i=1

(
sT

i Kpisi + kgg
T
i gi

)
+

N∑
i=1

ρT
i ẏr. (71)

Here, we assume that
N∑

i=1

ρi = 0. (72)

Similarly to (43), the potential function JL(y) satisfying
(72), is realized by choosing dij = dji and by adjusting
other parameters. Then, the following relation holds,

V̇ (t) = −
N∑

i=1

(
sT

i Kpisi + kgg
T
i gi

)
≤ 0, (73)

and it is shown that the control system is uniformly bounded,
and that

lim
t→∞

si(t) = lim
t→∞

gi(t) = 0, (74)

and furthermore it follows that
lim

t→∞
∆ẏi(t) = 0, (75)

and the tracking of the velocity (62) is achieved asymptot-
ically. On the contrary, since gi = ξi + ρi → 0, it follows
that

N∑
i=1

gi =
N∑

i=1

ξi +
N∑

i=1

ρi → 0, (76)

and the next relation is derived from the assumption (72).
N∑

i=1

ξi → 0. (77)

Here we consider the case where all agents do not satisfy
the formation constraint related to JG(∆), and several agents
are outside the desired region defined by (63). It should be
noted that ξi = 0 for the agents inside the desired region. If
those agents outside the desired region are on the one side
of the region, then the corresponding ξi have the same sign
along one axis, and this shows that (77) means the relation
ξi → 0 (1 ≤ i ≤ N). Therefore, it follows that ρi → 0
(1 ≤ i ≤ N). Next, we consider the case where several
agents are on the opposite sides outside the desired region.
If we choose a sufficient large region related to JG(∆), then
it follows that ρi → 0 for the agents outside the region.
Hence, ξi → 0 holds for the corresponding ξi. In the end,
by choosing appropriate formation constraints, such as an
appropriate desired region related to JG(∆y) and appropriate
relative distances related to JL(y), the next equation holds
for all agents

lim
t→∞

ξi(t) = lim
t→∞

ρi(t) = 0, (78)

and the desired formation of the leader-follower type is
achieved asymptotically [5].
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B. Adaptive H∞ Formation Control II

Next, we propose an adaptive H∞ control scheme where
an estimation error of the tuning parameter and an artificial
additive error to the potential functions JG(∆y), JL(y)
are regarded as external disturbances to the processes. We
consider the following positive function V0.

V0 =
1
2

N∑
i=1

sT
i Misi + (kg + δ)JG(∆y)

+(kg + δ)JL(y), (79)

where kg, δ > 0, and δ is an artificial error added to JG(∆y)
and JL(y). We utilize the control law (47) where gi is
defined by (67), and take the time derivative of V0 along
the trajectory of si, ∆yi and y.

V̇0 =
N∑

i=1

{
sT

i (τi − Y
(a,b)
i θi) + (kg + δ)ξT

i ∆ẏi

+(kg + δ)ρT
i ẏi

}
=

N∑
i=1

{
sT

i (vi + Y
(a,b)
i θ̃i)

−(kg + δ)gT
i gi + δgT

i si)
}

, (80)

where it is assumed that ρi satisfies the condition (72). From
the evaluation of V̇0, we introduce the virtual system (50),
(51) in which gi is defined by (67), and are to stabilize the
virtual system via a control input vi by utilizing H∞ crite-
rion, where θ̃i and δ are regarded as external disturbances to
the process [9], [10]. Then, by repeating the same discussion
as the previous case, for qi, Ri and vi determined such as

qi =
1
4
sT

i Kisi, (81)

Ri =

(
Y

(a,b)
i Y

(a,b)T
i

γ2
i1

+
gig

T
i

γ2
i2

+ Ki

)−1

, (82)

Ki = KT
i > 0, (Ki ∈ Rn×n), (83)

vi = −1
2
R−1

i Lgi2Vi = −1
2
R−1

i si

= −1
2

(
Y

(a,b)
i Y

(a,b)T
i

γ2
i1

+
gig

T
i

γ2
i2

+ Ki

)
si. (84)

we obtain the last theorems of the present manuscript.
Theorem 5 It is assumed that JL(y) satisfies the

condition (72). Then, the H∞ formation control system
composed of (1), (47), (67) and (84) is uniformly bounded for
an arbitrary bounded design parameter θ̂i. Furthermore, vi

is an optimal control solution which minimizes the following
cost functional Jcost.

Jcost = sup
θ̃1,···,θ̃N ,δ∈L2

{
N∑

i=1

∫ t

0

(qi + vT
i Rivi)dτ + V0(t)

−
N∑

i=1

γ2
i1

∫ t

0

∥θ̃i∥2dτ. −
N∑

i=1

γ2
i2

∫ t

0

δ2dτ

}
. (85)

Additionally, the next inequality holds for any finite t.

N∑
i=1

∫ t

0

(qi + vT
i Rivi)dτ + V0(t)

≤
N∑

i=1

{
γ2

i1

∫ t

0

∥θ̃i∥2dτ + γ2
i2

∫ t

0

δ2dτ

}
+ V0(0). (86)

Theorem 6 On the same assumption (72), the adaptive
H∞ formation control system composed of (1), (47), (67),
(84) and the adaptation law (41) is uniformly bounded, and
the following relations hold

lim
t→∞

si(t) = lim
t→∞

∆ẏi(t) = lim
t→∞

gi(t) = 0, (87)

and the desired velocity tracking (62) is achieved asymp-
totically. Furthermore, by choosing appropriate formation
constraints, such as an appropriate desirable region related
to JG(∆y) and appropriate relative distances related to
JL(y), the desired formation of the leader-follower type is
achieved asymptotically (ξi → 0, ρi → 0).

Proof: The proof is carried out similarly to Theorem 3
and Theorem 4.

VI. CONCLUDING REMARKS
Design methodologies of adaptive H∞ formation control

of multi-agent systems composed of Euler-Lagrange systems
have been proposed in the present paper. The resulting con-
trol strategies are derived as solutions of certain H∞ control
problems, where estimation errors of tuning parameters and
error terms in potential functions are regarded as external
disturbances to the process. It is shown that the resulting
control systems are robust to uncertain system parameters
and that the desirable formations are achieved asymptotically
via adaptation schemes.
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