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This paper presents a practical variation of extremum seeking (ES) that guarantees asymptotic conver-
gence through a Lyapunov-based switching scheme (Lyap-ES). Traditional ES methods enter a limit cycle
around the optimum. Lyap-ES converges to the optimum by exponentially decaying the perturbation
signal once the system enters a neighborhood around the extremum. As a case study, we consider
maximum power point tracking (MPPT) for photovoltaics. Simulation results demonstrate how Lyap-ES
is self-optimizing in the presence of varying environmental conditions and produces greater energy
conversion efficiencies than traditional MPPT methods. Experimentally measured environmental data is
applied to investigate performance under realistic operating scenarios.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Problem statement

Extremum seeking (ES) deals with regulating an unknown
system to its optimal set-point. To this end, a periodic perturbation
signal is typically used to probe the space. Once the optimal set-
point has been identified, most methods enter a limit cycle around
this point as opposed to converging to it exactly. Hence, one of
the main challenges with ES is eliminating the limit cycle and
converging to the optimal set-point asymptotically. This paper
investigates a novel Lyapunov-based switched extremum seeking
(Lyap-ES) approach that supplies asymptotic convergence to
the optimal set-point. The proposed concept is demonstrated on
a well-studied yet important problem: maximum power point
tracking (MPPT) in photovoltaic (PV) systems.

1.2. Literature review

Two bodies of literature form the foundation of this work:
MPPT in PVs and extremum seeking control.

1.2.1. MPPT in PVs
The MPPT literature is extremely broad, and contains techniques

that range in complexity, hardware, performance, and popularity,
among other characteristics. The survey paper by Esram and
ll rights reserved.

+1 858 822 3107.
Chapman (2007) provides a comprehensive comparative analysis
of over 90 publications on MPPT techniques. The most popular
technique, perturb & observe (P&O), perturbs the input voltage to
determine the direction of the maximum power point (MPP), and
moves the operating point accordingly. However, the controller
eventually enters a periodic orbit about the MPP. This approach
does not require a priori knowledge of the PV system and is
simple to implement. However, P&O can diverge from the MPP
under certain variations in the environmental conditions (Femia,
Petrone, Spagnuolo, & Vitelli, 2005; Kwon, Kwon, & Nam, 2008).
Recently, an exponentially decaying adaptive version of P&O has
been developed (Buyukdegirmenci, Bazzi, & Krein, 2010), which
has conceptual similarities to our proposed method. An alternative
method, incremental conductance (IncCond), seeks to correct this
issue by leveraging the fact that the slope of PV array power
output is zero at the MPP. As a result, this algorithm estimates the
slope of the power curve by incrementing the terminal voltage
until the estimated slope oscillates about zero (Hussein, Muta,
Hoshino, & Osakada, 1995). A drawback of P&O and IncCond
methods is that both stabilize to limit cycles. Ideally, one desires
a peak seeking scheme that is asymptotically convergent and self-
optimizing with respect to shifts in the MPP. This motivates a
control-theoretic approach to MPPT. A recent paper examined an
adaptive backstepping approach, for which convergence to the
MPP is theoretically proven under a persistency of excitation
condition (El Fadil & Giri, 2011). This paper examines an alter-
native non-model-based approach, extremum seeking.

Extremum seeking control and its application to photovoltaic
systems represent an important and relevant subset of MPPT
literature. Specifically, Leyva et al. (2006) and Bratcu, Munteanu,
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Bacha, and Raison (2008) utilize extremum seeking for PVs by
injecting an exogenous periodic signal. A separate research group
developed ripple correlation control (RCC), which utilizes the
signal ripple that inherently exists in systems with switching
power electronics as the perturbation signal (Esram, Kimball,
Krein, Chapman, & Midya, 2006). The stability and optimality of
this approach has been established in Logue and Krein (2001). RCC
has the critical advantage of utilizing existing signal ripples,
instead of injecting artificial perturbations. As such, RCC is only
applicable to systems which inherently contain ripple character-
istics. Recently, Brunton, Rowley, Kulkarni, and Clarkson (2010)
utilized the 120 Hz inverter ripple in a PV system within the
context of an extremum seeking control theoretic approach
to MPPT. Consequently this work established an important
link between extremum seeking control and ripple-based MPPT
(Bazzi & Krein, 2011).

1.2.2. Extremum seeking control theory
Prior to the nonlinear and adaptive control theory develop-

ments in the 1970s and 1980s, extremum seeking was proposed as
a method for identifying the optimum of an equilibrium map.
Since then, researchers have extended extremum seeking to the
general class of nonlinear dynamical plants (see e.g. DeHaan &
Guay, 2005; Krstic & Wang, 2000) and applied the algorithm to a
wide variety of applications (e.g. air flow control in fuel cells
Chang & Moura, 2009, wind turbine energy capture, Creaby, Li, &
Seem, 2008, ABS control, and bioreactors, Ariyur & Krstić, 2003).
During this period there have been several innovations that have
improved the practicability of ES. For example, convergence speed
can be enhanced by adding dynamic compensators (Krstić, 2000)
or applying alternative periodic perturbation signals (Tan, Nešić, &
Mareels, 2008). A Newton-based algorithm can also be developed
by estimating the Hessian of the unknown nonlinear map (Nešić,
Tan, Moase, & Manzie, 2010).

1.3. Contributions

This study focuses on a general problem—asymptotic conver-
gence to the extremum of a static nonlinear unknown function. As
such, this paper extends the aforementioned research and builds
on the authors' previous work (Moura & Chang, 2010) to add the
following two new contributions to the ES control and MPPT
bodies of literature. First, we introduce a switching method for
ensuring asymptotic convergence to the optimal operating point,
based on Lyapunov stability theory. Second, we demonstrate this
algorithm in simulation for MPPT problems in PV systems—a novel
and control theoretic alternative to traditional MPPT methods.

1.4. Paper outline

This paper is organized as follows: Section 2 describes the
extremum seeking control design and our novel Lyapunov-based
switching strategy. Section 3 discusses a case study of the
proposed ES method on MPPT for PV systems. Finally, Section 4
presents the main conclusions.
2. Extremum seeking control

In this section we introduce and expand upon a simple yet
widely studied extremum seeking (ES) scheme (Ariyur & Krstić,
2003; Krstic & Wang, 2000) for static nonlinear maps, shown in
Fig. 1. Since the case study on photovoltaic systems involves a
static plant model (albeit parameterized by time-varying distur-
bances), the scope of our analysis is limited to static plants. One
may also consider the more general singular perturbation analysis
for dynamic plant models presented in Krstic and Wang (2000).

Before embarking on a detailed discussion of this method, we
give an intuitive explanation of how extremum seeking works,
which can also be found in Krstic and Wang (2000) and Ariyur and
Krstić (2003), but is presented here for completeness. Next, we
design the Lyapunov-based switching extremum seeking control
to eliminate limit cycles.

2.1. An intuitive explanation

The control scheme applies a period perturbation a0 sinðωtÞ to
the control signal û, whose value estimates the optimal control
input un. This control input passes through the unknown static
nonlinearity f ðû þ a0 sinðωtÞÞ to produce a periodic output signal y.
The high-pass filter s=ðsþ ωhÞ then eliminates the DC components
of y, and will be in or out of phase with the perturbation signal
a0 sinðωtÞ if û is less than or greater than un, respectively. This
property is important because when the signal y−η is multiplied
by the perturbation signal sinðωtÞ, the resulting signal has a DC
component greater than or less than zero if û is less than
or greater than un, respectively. This DC component is extracted
by the low-pass filter ωl=ðsþ ωlÞ and represents the sensitivity
ða20=2Þð∂f =∂uÞðûÞ. We may use a gradient update law _̂u ¼ kða20=2Þ
ð∂f =∂uÞðûÞ or a quasi-Newton method (Ghaffari, Krstić, & Nesic,
2011) to force û to converge to un. Next we rigorously develop the
ES algorithm.

2.2. Averaging stability analysis

Extremum seeking systems generally enter a limit cycle around
the optimum, as opposed to converging to it asymptotically. To
eliminate this drawback we propose a switching control scheme.
This scheme decays the periodic perturbation's amplitude once
the system has converged within the interior of a ball around the
optimum. The switch criterion is determined using Lyapunov
stability methods. Allowing the perturbation to decay exponen-
tially is not new (Buyuk et al., 2010; DeHaan & Guay, 2005);
however, it is the first application in a switched scheme, to the
authors’ knowledge.

In the following derivations, the Lyapunov function is ideally
calculated with respect to a coordinate system centered at the
extremum. However, the extremum is unknown a priori. In the
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case of MPPT for photovoltaics, we assume knowledge of a
“nominal” MPP, provided by the manufacturer under ideal condi-
tions. The Lyapunov function will be evaluated with respect to a
coordinate system centered at this nominal extremum. An analysis
in Section 3.4 evaluates the impact of errors between the nominal
and true extrema.

We start with a proof modified from Krstic and Wang (2000),
which uses averaging theory to approximate the ES system
behavior, linearizes it about the equilibrium, and then shows the
resulting Jacobian is Hurwitz. From this proof, our new contribu-
tion is to develop a Lyapunov function that senses proximity to the
equilibrium point.

The state equations for the closed-loop ES system are

_̂u ¼ kξ ð1Þ

_ξ ¼−ωlξ−ωlη sinðωtÞ þ ωlf ðuÞ sinðωtÞ ð2Þ

_η ¼−ωhηþ ωhf ðuÞ ð3Þ

u¼ û þ a0 sinðωtÞ ð4Þ
where each equation, respectively, represents the integrator, low-
pass filter, high-pass filter, and perturbed control input. Now
define a new coordinate system that shifts the nominal optimal
operating point, denoted u0, to the origin

~u ¼ û−u0 ð5Þ

~η ¼ η−f ðu0Þ ð6Þ
resulting in the following translated system:

_~u ¼ kξ ð7Þ

_ξ ¼−ωlξ−ωl ~η sinðωtÞ þ ωl½f ð ~u þ u0 þ a0 sinðωtÞÞ−f ðu0Þ� ð8Þ

_~η ¼ −ωh ~η−ωh½f ð ~u þ u0 þ a0 sinðωtÞÞ−f ðu0Þ� ð9Þ
Now we scale time τ¼ωt:

d
dτ

~u
ξ

~η

2
64

3
75¼ δ

K′ξ
−ω′Lξ−ω′L ~η sinðτÞ þ ω′Lhð ~u þ a0 sin τÞ sin τ

−ω′H ~η−ω′Hhð ~u þ a0 sinðωtÞÞ

2
64

3
75

where the parameters are normalized as follows:

k¼ωδK′¼OðωδÞ ð10Þ

ωl ¼ωδω′L ¼OðωδÞ ð11Þ

ωh ¼ωδω′H ¼OðωδÞ ð12Þ
and K′, ω′L, ω′H are Oð1Þ positive constants. The function hðθÞ ¼
f ðu0 þ θÞ−f ðu0Þ satisfies the following properties in photovoltaic
systems:

hð0Þ ¼ 0 ð13Þ

h′ð0Þ ¼ f ′ðu0Þ ð14Þ

h″ð0Þ ¼ f ″ðu0Þo0 ð15Þ

h‴ð0Þ ¼ f‴ðu0Þo0 ð16Þ
These properties will be useful in our calculations later. Also note
that (14) is equal to zero when the u0 ¼ un.

To investigate the stability properties of this system, we
consider the averaged system—the standard approach for analyz-
ing periodic systems. The averaged state variables are defined as
follows (Nešić et al., 2010):

xa ¼ 1
2π

Z τ

τ−2π
xðsÞ ds ð17Þ
where the period of the signal is 2π. Hence, our immediate goal is
to use the notion of an averaged system to investigate the stability
properties of the closed loop system. Applying the definition of
averaging yields the following system:

d
dτ

~ua

ξa
~ηa

2
64

3
75¼ δ

K′ξa
−ω′Lξa þ ω′L

2π

R 2π
0 hð ~ua þ a0 sin sÞ sin s ds

−ω′H ~ηa þ ω′H
2π

R 2π
0 hð ~ua þ a0 sin sÞ ds

2
664

3
775 ð18Þ

Now we must determine the equilibrium ð ~ue
a; ξ

e
a; ~η

e
aÞ of this non-

linear system which satisfies

0¼
K′ξea

−ω′Lξea þ ω′L
2π

R 2π
0 hð ~ue

a þ a0 sin sÞ sin s ds

−ω′H ~ηea þ ω′H
2π

R 2π
0 hð ~ue

a þ a0 sin sÞ ds

2
664

3
775 ð19Þ

Let us postulate that ~ue
a takes the form ~ue

a ¼ b1a0 þ b2a20 þ Oða30Þ
and use a Maclaurin series expansion of hð ~ue

a þ a0 sin sÞ. Following
several algebraic calculations that use (13)–(16), one may show the
equilibrium is given by

~ue
a ¼ b0−

h‴ð0Þ
h″ð0Þ þ b0h‴ð0Þ

a20 þ Oða30Þ ð20Þ

where b0 solves h‴ð0Þb20 þ 4h″ð0Þb0 þ 2h′ð0Þ ¼ 0.

ξea ¼ 0 ð21Þ

~ηea ¼ h′ð0Þb0 þ h″ð0Þb20 þ 1
6 h‴ð0Þb

3
0 þ ½h′ð0Þb2 þ 1

4h″ð0Þ
þ2b0b2h″ð0Þ þ 1

4 b0h‴ð0Þ þ 1
2b

2
0b2h‴ð0Þ�a20 þ Oða30Þ ð22Þ

and b2 ¼−h‴ð0Þ=ðh″ð0Þ þ b0h‴ð0ÞÞ.
The Jacobian of (18) evaluated at ð ~ue

a; ξ
e
a; ~η

e
aÞ is

Ja ¼ δ

0 K′ 0
ω′L
2π

R 2π
0 h′ð ~ue

a þ a0 sin sÞ sin s ds −ω′L 0
ω′H
2π

R 2π
0 h′ð ~ue

a þ a0 sin sÞ ds 0 −ω′H

2
664

3
775 ð23Þ

Inspection reveals the Jacobian has a block-lower-triangular struc-
ture. As a result, Ja is Hurwitz if and only ifZ 2π

0
h′ð ~ue

a þ a0 sin sÞ sin s dso0 ð24Þ

We apply (13)–(16) to show thatZ 2π

0
h′ð ~ue

a þ a0 sin sÞ sin s ds¼ πh″ð0Þa0 þ Oða20Þ ð25Þ

Using the property (15), we conclude the Jacobian is Hurwitz for
sufficiently small a0. Since the Jacobian is Hurwitz, the averaged
system is locally exponentially stable according to Theorem 4.7 of
Khalil (2002). This also satisfies the conditions of Theorem 10.4 of
Khalil (2002), which states that the original system has a unique
exponentially stable periodic orbit about ð ~ue

a; ξ
e
a; ~η

e
aÞ. Therefore the

ES control system is stable in the sense that the averaged system
converges exponentially for sufficiently small a0. We leverage this
fact to design the Lyapunov-based switching criterion, described
next.

2.3. Lyapunov-based switching scheme

The Jacobian (23) approximates the system dynamics near the
equilibrium ð ~ue

a; ξ
e
a; ~η

e
aÞ. We now use this Jacobian to develop a

quadratic Lyapunov function for the switching control. First,
we use (25) and similar calculations for

R 2π
0 h′ð ~ue

a þ a0 sin sÞ ds to
write the Jacobian as

Ja ¼ δ

0 K′ 0
ω′L
2 h″ð0Þa0 −ω′L 0
ω′Hh′ð0Þ 0 −ω′H

2
64

3
75 ð26Þ
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where we use estimates for h′ð0Þ and h″ð0Þ which satisfy (14)–(15).
Next we solve the following Lyapunov equation for P:

PJa þ JTaP ¼ −Q ð27Þ
which has a unique solution under the conditions Q ¼QT 40. This
results in the following quadratic Lyapunov function:

VðxaÞ ¼ 1
2x

T
aPxa where xa ¼ ½ ~ua ξa ~ηa�T ð28Þ

which we use for the following switched control law:

uðtÞ ¼
û þ a0 sinðωtÞ if V ðxaÞ4ε

û þ a sinðωtÞ
daðtÞ
dt ¼−ρaðtÞ; að0Þ ¼ a0

(
otherwise

8>><
>>: ð29Þ

whose conditions are evaluated only when sinðωtÞ equals zero to
ensure the control signal remains continuous in time.

Remark 1 (ES re-engagement property). The quadratic Lyapunov
function in (28) estimates the averaged system's proximity to the
equilibrium. That is, VðxaÞ-0 as xa-0. Once Lyap-ES converges
sufficiently close to the optimum, the sinusoidal perturbation
decays exponentially to zero and the control input arrives at un.
If external disturbances cause the Lyapunov function value to
increase above the threshold value ε, then the original amplitude
a0 is used until the system converges to the new extremum.
Hence, the proposed switched control scheme is self-optimizing
with respect to disturbances. This situation is illustrated in the
case study on PV systems in Section 3.

Remark 2 (Positive invariance property). Note that the sub-level
set Ωc ¼ fxa∈R3jV ðxaÞ≤cg which VðxaÞ≤0 is positively invariant,
meaning a solution starting in Ωc remains in Ωc for all t≥0. In other
words, the Lyapunov function will be decreasing monotonically in
time, therefore eliminating chattering behavior.

Remark 3 (Convergence speed). During the case of constant per-
turbation amplitude, the convergence speed to the invariant set
Ωε ¼ fxa∈R3jVðxaÞ≤εg is characterized by the eigenvalues of (26).
Once the perturbation amplitude switches to an exponential
decay, the convergence is characterized by the decay parameter
ρ in (29). In practice, one would use the algorithm parameters to
compute convergence speeds from these relations.

Although we refrain from stating theorems and proofs in this
paper, stability can be established by considering three points.
First, the dynamics of a, which are in a cascade with the ES
dynamics, are trivially stable. Second, u(t) is continuous across
the switching times since the conditions of (29) are evaluated
only when sinðωtÞ ¼ 0. Given these two points, stability of the
complete closed-loop system can be established by studying the
ES dynamics augmented with the decaying amplitude state in
(29). Unfortunately, the linearization test applied in Krstic and
Wang (2000) fails in this case because the Jacobian contains a zero
eigenvalue. However, it may be possible to use an appropriately
selected Lyapunov function or the Center Manifold Theorem
(Khalil, 2002, Section 8.1) to prove local asymptotic stability.
Isc Vd

+

-

Rp

Rs

Vcell

+

-

S

Fig. 3. Equivalent circuit model of PV cell (Masters, 2004; Vachtsevanos &
Kalaitzakis, 1987).
3. Case study: MPPT in photovoltaic systems

Next we examine the proposed Lyapunov-based switched
extremum seeking scheme on the MPPT problem for PV systems.
Solar energy represents a key opportunity for increasing the role
of renewable energy in the electric grid. However, high manufac-
turing and installation costs have limited the economic viability of
PV-based energy production (Bull, 2001). Therefore, it is vitally
important to maximize the energy conversion efficiency of PV
arrays. This problem is particularly difficult because maximizing
energy capture in PVs can depend on varying incident solar
radiation, temperature, shading, system degradation, etc. As such,
we desire control theoretic techniques that mathematically guar-
antee asymptotic convergence to the MPP, while rejecting dis-
turbances due to changing environments.

We consider a PV system comprised a PV array, switching
DC/DC boost converter, and the proposed Lyap-ES control algo-
rithm, as depicted in Fig. 2. The DC/DC converter serves as the
control actuator, which can impose various voltages across the PV
array terminals. At the output-end of the converter, the voltage is
fixed where it interfaces with the external system (e.g. DC/AC
inverter and AC grid). To study this system we first summarize an
established equivalent circuit model for PV arrays and a switching
DC/DC boost converter model.

Next we apply Lyap-ES to the PV system and analyze the
following: (i) the asymptotic convergence and self-optimizing
behavior under external disturbances due to varying environmen-
tal effects, (ii) the algorithms merits and drawbacks versus tradi-
tional ES and MPPT algorithms, (iii) results from the application of
experimentally measured transient solar irradiance and tempera-
ture data, and (iv) the impact of errors between the nominal and
optimal MPP.

3.1. PV system model development

For the purposes of MPPT we consider an equivalent circuit
model (Masters, 2004; Vachtsevanos & Kalaitzakis, 1987) of a PV
cell shown in Fig. 3. Within the PV control system literature, this
model has been established as a sufficiently accurate representa-
tion of the physical system, for MPPT control design purposes
(Chan & Phang, 1987; El Fadil & Giri, 2011; Gow & Manning, 1999;
Masters, 2004; Vachtsevanos & Kalaitzakis, 1987); Villalva and
Gazoli, 2009. In particular, this model consists of an ideal current
source Isc in parallel with a diode and resistance Rp, all together in
series with resistor Rs, which models contactor and semiconductor
material resistance. The ideal current source delivers current in
proportion to solar flux S, and is also a function of temperature T.
The diode models the effects of the semiconductor material, and
also depends on temperature. In total, the PV cell model equations
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are given by

Vd ¼ Vcell þ IRs ð30Þ

I ¼ Isc−I0 exp
qVd

AkT

� �
−1

� �
−
Vd

Rp
ð31Þ

Isc ¼ ½Isc;r þ kIðT−TrÞ� S
1000

ð32Þ

I0 ¼ I0;r
T
Tr

� �3

exp
qESi
Ak

1
Tr

−
1
T

� �� �
ð33Þ

Vpv ¼ ncellVcell ð34Þ
The cell model is scaled to an array by considering ncell cells

in series (34). Parameters are adopted from Vachtsevanos and
Kalaitzakis (1987).

The PV model is parameterized by environmental conditions—
incident solar irradiation S and temperature T. Fig. 4 demonstrates
that current and power increase linearly with solar irradiation.
Temperature has a more complex effect on current and power. The
short circuit current increases with temperature; however, the
power decreases as temperature increases. Consequently, PV cells
operate best in full sunlight and cold temperatures. Our goal is
to design a control loop that automatically tracks the MPP under
changing environments.

A DC/DC boost converter steps up the PV array voltage and
provides a control actuator for MPPT, via PWM on the switches.
At the boost converter's output, a capacitor maintains a roughly
constant voltage and is typically interfaced with the electric grid
using a three-phase DC/AC inverter (Kwon et al., 2008). In this
paper, we focus on the boost converter only for the purposes of
MPPT, and assume the capacitor maintains a constant 120 V at the
output. In the following, we analyze the dynamics of a switching
DC/DC boost converter model. Namely, we find the equilibrium of
this system and show that it is locally exponentially stable. This
analysis enables us to use the equilibrium as a reduced DC/DC
model for the purposes of MPPT.

Fig. 5 provides a schematic of a typical switching DC/DC boost
converter. The input side interfaces with the PV array, represented
by the static relation VpvðI; S; TÞ which verifies (30)–(34). The
output side interfaces with a DC/AC inverter, which is modeled
C
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as a fixed voltage source Vinv and equivalent series resistance. The
dynamics of this switched system, after applying the state-space
averaging approach (Sanders, Noworolski, Liu, & Verghese, 1991),
are

d
dt

iL ¼
1
L
VpvðiL; S; TÞ−

1−d
L

vc ð35Þ

d
dt

vc ¼
1−d
C

iL−
1
RC

ðvc−VinvÞ ð36Þ

where d∈ð0;1Þ is the duty ratio. The equilibrium for this nonlinear
system ðieqL ; veqc Þ satisfies
veqc ¼ ð1−dÞRieqL þ Vinv ð37Þ

0¼ VpvðieqL ; S; TÞ−ð1−dÞ2RieqL −ð1−dÞVinv ð38Þ
Now we analyze the stability of this equilibrium. First, we

linearize (35)–(36) around ðieqL ; veqc Þ, producing the Jacobian

1
L
∂Vpv

∂iL
ðieqL ; S; TÞ −ð1−dÞ 1L

ð1−dÞ 1C − 1
RC

2
4

3
5 ð39Þ

The eigenvalues λ of (39) satisfy the characteristic equation:

0¼ λ2 þ 1
RC

−
1
L
∂Vpv

∂iL
ðieqL ; S; TÞ

� �
λ−

1
RLC

∂Vpv

∂iL
ðieqL ; S; TÞ þ ð1−dÞ2 1

LC
ð40Þ

Observe that ∂Vpv=∂iLðieqL ; S; TÞo0 over its entire domain, for all
physically meaningful values of S; T . Therefore, all the coefficients
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Fig. 6. Trajectories of current and power on PV array characteristic curves for
1000 W/m2 to 500 W/m2 step change in solar irradiation.
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of λ in (40) are positive. By the Routh–Hurwitz stability criterion,
Re½λ�o0. Consequently, the equilibrium ðieqL ; veqc Þ is locally expo-
nentially stable.

For the proposed MPPT algorithm, we impose the condition
that the switching converter dynamics are notably faster than the
Lyap-ES loop dynamics. This enables us to use the stable equili-
brium to model the DC/DC boost converter dynamics as

0¼ VpvðI; S; TÞ−ð1−dÞ2RI−ð1−dÞVinv ð41Þ
where Vpv is the PV array voltage, Vinv is the constant 120 V DC/AC
inverter voltage, and d is the duty ratio control input.

3.2. Concept demonstration

In this section we demonstrate Lyap-ES by (i) analyzing the
impact of varying environmental conditions, and (ii) comparing it
to P&O and traditional ES methods. In the first part we impose
1000 W/m2 of solar irradiation and then provide a 500 W/m2 step
change at 200 ms. This might model the transient effect of a
passing cloud blocking incident sunlight. The duty ratio is initi-
alized at 0.9. The control parameters for Lyap-ES are provided in
Table 1. Remarks on control parameter selection are included in
Appendix A.

3.2.1. Impact of varying environmental conditions
Fig. 6 demonstrates the current and power trajectories super-

imposed on the PV array's characteristic I–V and P–V curves
(S¼1000 W/m2). Lyap-ES indeed achieves the maximum power
of 38 W at voltage and current values of 17 V and 2.24 A for
S¼1000 W/m2, and maximum power of 17.3 W at voltage and
current values of 18 V and 1.09 A for S¼500 W/m2. Moreover, one
can see how the operating point jumps from the 1000 W/m2 char-
acteristic curve to the 500 W/m2 curve during the step change.
Immediately after the step change, the operating point is no longer
at the MPP. The algorithm senses this change and reengages the
perturbation to find the new MPP.

Time responses of power, duty ratio, and Lyapunov function
value are provided in Fig. 7. This figure demonstrates how Lyap-ES
injects sinusoidal perturbations into the duty ratio to determine
the MPP un ¼ 0:859 for S¼1000 W/m2 and 0.868 for S¼500 W/m2.
Note the perturbations begin to decay exponentially at 7.5 ms and
u(t) converges to un. Once the irradiation changes at 200 ms, the
perturbation re-engages to search for the new MPP. Once it
converges sufficiently close to the optimal duty ratio, the pertur-
bation amplitude decays exponentially once again.
Table 1
Lyap-ES controller parameters.

Symbol Description Concept
demonstration
study

Experimental
data study

u0 Duty ratio for nominal MPP at
1000 W/m2, 25 1C

0.859 0.859

ω Perturbation frequency 250 Hz 0.2 Hz
ωh High-pass filter cut-off

frequency
50 Hz 0.04 Hz

ωl Low-pass filter cut-off
frequency

50 Hz 0.04 Hz

a0 Perturbation amplitude 0.015 0.01
k Gradient update law gain 1 0.0008
ε Lyapunov function threshold 0.01 20
γ Perturbation amplitude decay

rate
50 0.1

s2P Variance of measured power
noise

0 W 0.2 W
The switch behavior can be understood by analyzing Fig. 7.
At 7.5 ms, V ðxaÞoε and the perturbation decays. Once the solar
flux step change occurs at 200 ms, the averaged states become
excited and VðxaÞ4ε. This resets the amplitude of the perturbation
to a0. Then, as VðxaÞoε, the perturbation amplitude decays
exponentially once again.
3.2.2. Comparative analysis to existing methods
This section compares Lyap-ES to standard ES and a traditional

MPPT technique: perturb & observe (Femia et al., 2005; Kwon
et al., 2008) (P&O). Although some traditional MPPT methods are
somewhat heuristic and may not appeal to the control theorist,
they often produce satisfactory results and are simple to imple-
ment. However, they lack guaranteed stability properties and have
fundamental limitations. First we review the workhorse MPPT
method, P&O.

Perturb & observe algorithms are the most widely used MPPT
control systems, where the basic idea is as follows: periodically
perturb the PV array terminal voltage and measure the resulting
power output. If output power increases, then perturb voltage
in the same direction. If power output decreases, then reverse
the perturbation. Note that when the MPP is reached, the P&O
algorithm oscillates about this value, thus producing suboptimal
energy conversion efficiency. One may reduce the perturbation
size to improve efficiency during steady-state, but this reduces
convergence speed. Moreover, P&O cannot differentiate if a power
increase is due to the voltage perturbation or a disturbance. An
increase in solar irradiation or drop in temperature will confuse
the P&O algorithm.

Fig. 8 compares Lyap-ES to two benchmarks: P&O and basic ES
(sinusoidal perturbation with no switching). The simulated con-
ditions are identical to the previous subsection; however, we do
not consider varying incident solar irradiation. The perturbation
amplitude and frequency of P&O are set equal to the Lyap-ES
parameter values of a0 and ω, respectively, to provide comparable
results.

Several key observations arise from this study. First, ES and
Lyap-ES are identical for the first 40 ms. Afterwards, the switch
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Table 2
Power efficiency comparison

MPPT method P&O ES Lyap-ES

Power efficiency, η: η¼ R T
0 PðtÞ dt= R T

0 PmaxðtÞ dt 0.952 0.946 0.970

Micro SD 
Storage Card

Light Sensor

Temperature 
Sensor

Fig. 9. Data logger for measuring solar irradiation and ambient temperature.
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condition is satisfied and Lyap-ES converges to un. Consequently,
the power output from Lyap-ES upper-bounds the other algo-
rithms. Second, although P&O converges faster than Lyap-ES, for
the parameters considered here, the average output power is less
than ES or Lyap-ES. Alternative parameter choices for ES and Lyap-ES
can increase convergence speed (using the relations described in
Remark 3), but may create bias induced from the high order
harmonics that are insufficiently attenuated by the low pass filter.
Ultimately, differences in convergence on the order of 10 s of
milliseconds are trivial compared to the aggregate energy conver-
sion over the hourly and diurnal time scales relevant to PV
systems. Most importantly, ES and P&O oscillate about the MPP
whereas Lyap-ES converges to it exactly, thus producing greater
energy conversion rates. A comparison of power efficiencies is
provided in Table 2.

3.3. Results with experimental data

In this section we test Lyap-ES with real-world solar irradiation
and temperature data. A measurement and data logging device
was fabricated to obtain real-world light and temperature data,
shown in Fig. 9. This autonomous device records ambient light and
temperature and continuously logs the data onto a MicroSD
storage card. Several data sets were recorded, over multiple days,
in various locations across Southern California. For this study we
cropped out a particularly transient data set with large swings in
temperature and solar irradiance to challenge Lyap-ES, as shown
in Fig. 10. Note that temperature and irradiance sensors are not
required for Lyap-ES. The data logger in Fig. 9 is just used to obtain
realistic disturbance data to test in simulation.

The highly transient measured solar irradiance and tempera-
ture data set was fed into the PV and DC/DC converter simulation
models, controlled with Lyap-ES. Zero-mean, Gaussian noise with
a variance of 0.2 W was added to the power measurement signal.
Results are provided in Fig. 10. The Lyap-ES controller parameters
are provided in Table 1. Fig. 10 demonstrates how the duty ratio
input evolves as light and temperature change with time. When
the environmental conditions do not change rapidly, the perturba-
tion decays and the power output converges to the MPP. This point
can be seen in the zoomed-in results provided in Fig. 11, where
the perturbation decays in the yellow shaded regions. Throughout
the test, the Lyapunov function output repeatedly falls below
and above the threshold, causing the perturbation to decay and
re-enable, respectively. Under these environmental conditions,
Lyap-ES converts the available power at 98.7% efficiency compared
to 97.9% for basic ES. Although this increase appears relatively
small, it is free in the sense of only requiring changes to the MPPT
controller firmware. Moreover, the algorithm has mathematically
guaranteed stability and convergence properties.
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3.4. Error between nominal and optimal MPP

Next we examine the impact of large errors between the
nominal u0 and optimal un MPPs. Recall that the Lyapunov function
calculated in (28) measures the system's proximity to u0, mea-
sured in the coordinate system defined by (5)–(6). If ju0−unj is
sufficiently large, then the switching criterion V ðxaÞ≤ε may never
be satisfied and the perturbation amplitude will not decay. Fig. 12
demonstrates the Lyapunov function and power trajectories for
various values of u0. In all cases except one ðu0 ¼ 0:85Þ the
switching criterion is not satisfied and the power oscillates around
the true MPP. Under this worst-case scenario Lyap-ES degenerates
into basic ES.

Degeneration of Lyap-ES into ES can be mitigated by appro-
priately selecting the threshold parameter ε and amplitude decay
gain γ. That is, one may select ε sufficiently large and γ sufficiently
small such that the algorithm enters the exponential decay mode
quickly and the perturbation decays slowly. Fig. 13 provides an
example, where the threshold was raised to ε¼ 0:5 and the decay
rate was lowered to γ ¼ 10. Observe that the switching criterion is
satisfied in all cases. Consequently, Lyap-ES converges and decays
to the true MPP.
4. Conclusion

In this paper we propose a novel Lyapunov-based switched
extremum seeking control method (Lyap-ES) that provides a practical
extension to existing research on ES by eliminating limit cycles. Lyap-
ES guarantees asymptotic convergence to the extremum of a static
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map by exponentially decaying the perturbation once the algorithm
reaches a neighborhood of the extremum. This neighborhood is
approximated via Lyapunov stability analysis concepts that extend
the stability proof originally presented in Krstic and Wang (2000).
We apply Lyap-ES to the MPPT problem in a PV system as a case
study to analyze performance. The advantage of Lyap-ES over
traditional MPPT methods, e.g. P&O, is that the algorithm converges
to the MPP asymptotically without entering a limit cycle. Moreover,
the method is self-optimizing with respect to disturbances, such as
varying solar irradiation and temperature shifts. We study Lyap-ES
for MPPT in two steps. First, the concept is demonstrated by applying
step changes in environmental conditions. Second, experimentally
measured light and temperature data is applied to study Lyap-ES
under realistic operating conditions. Future work will involve imple-
mentation into experimental photovoltaic systems. In summary,
Lyap-ES offers a control-theoretic alternative for MPPT problems.
Appendix A. ES control parameter selection

The synthesis process for an extremum seeking controller requires
proper selection of the perturbation frequency ω, amplitude a0,
gradient update law gain k, and filter cut-off frequencies ωh and ωl.
The perturbation frequency must be slower than the slowest plant
dynamics to ensure the plant appears as a static nonlinearity from the
viewpoint of the ES feedback loop. Mathematically, this can be
enforced by ensuring ω5minfeigðAÞg, where A is the state matrix
from linearizing the plant. Large values for a0 and k allow faster
convergence rates, but, respectively, increase oscillation amplitude and
sensitivity to disturbances. More importantly, they can destroy stabi-
lity. Therefore, one typically increases these parameter values to obtain
maximum convergence speed for a permissible amount of oscillation
and sensitivity. The filter cut-off frequencies must be designed in
coordination with the perturbation frequency ω. Specifically, the high-
pass filter must not attenuate the perturbation frequency, but the low-
pass filter should—thus bounding the cut-off frequencies from above.
Mathematically ωhoω and ωloω. Moreover, the filters should have
sufficiently fast dynamics to respond quickly to perturbations in the
control input, thereby bounding the cut-off frequencies from below.
Generally, proper selection of the ES parameters is a tuning process
(Chang & Moura, 2009). However, the above guidelines are valuable
for effective calibration.
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