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Abstract— This paper deals with the design of a third order
Sliding Mode Control (SMC) algorithm for a perturbed chain
of integrators with box constraints on state variables. The
proposed strategy takes into account a robust generalization
of the so-called Fuller’s Problem, which is a standard optimal
control problem for a chain of integrators under critical uncer-
tainty condition, and proves to steer the system trajectories to
the origin of the state space in finite time, while satisfying
the imposed constraints. The proposed algorithm is tested
in simulation to solve a trajectory-tracking problem for a
nonholonomic car.

I. INTRODUCTION

Control systems often need to cope with constraints on state
variables, in order to avoid failures or critical conditions of
the process. Such constraints are typical of various application
contexts, including robots [1], automotive systems [2], and
industrial processes like chemical plants or oil refineries [3].

The most well-known control methodology able to manage
state constraints is Model Predictive Control (MPC) [4], [5].
MPC algorithms can provide an optimal control solution
while satisfying constraints, and can be easily applied to
multivariable plants with coupled dynamics. The drawback
is typically an increased computation time with respect to
explicit control laws, which in some cases makes MPC not
suitable when very fast systems need to be controlled, at the
same time using inexpensive hardware for implementing the
control law. In order to guarantee the robustness of the control
systems with respect to unavoidable modeling uncertainties
or external disturbances, robust MPC laws have also been
developed [6]–[10].

In many nonlinear control problems, especially those
considering discontinuous control laws such as Sliding Mode
Control (SMC), the objective is often to steer the state
to the origin in finite time, in spite of uncertain terms
affecting the systems dynamics, but the possible presence
of state constraints is rarely taken into account. SMC is
a powerful tool which can ensure the convergence of the
system trajectories in finite time onto a suitably defined
surface (the so-called sliding manifold), and, under suitable
design conditions, make the origin of the state space an
asymptotically stable equilibrium point for the closed-loop
system. Moreover, SMC guarantees beneficial effects by
making the systems, while in sliding mode, insensitive with
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respect to the so-called matched disturbances [11], [12].
Finally, SMC laws typically have a very low computation
burden.

The main drawback of SMC is the so-called chattering
phenomenon, which is the high-frequency oscillatory motion
around the sliding manifold due to the discontinuity of the
control law. Higher Order Sliding Mode (HOSM) proves
to strongly reduce the chattering phenomenon: also for this
reason, several HOSM algorithms have been proposed [13]–
[19]. Among these, the algorithm obtained as solution of the
so-called Fuller’s Problem is presented in [20], where different
HOSM algorithms are discussed to stabilize in finite time a
perturbed chain of integrators with bounded control, while
guaranteeing an optimal reaching of the sliding manifold.
In case of second order HOSM algorithms, a solution to
the problem of stabilizing the system to the origin, while
satisfying box state constraints is proposed in [21], while a
more general formulation in case of polyhedral constraints
has been provided in [22]. To the best of our knowledge,
for the third-order case no analogous solutions have been
provided to cope with state constraints.

In this paper, the connection between the construction of
a third order SMC with optimal reaching and the problem
of satisfying box state constraints is studied. The sliding
manifold is suitably designed and a switched control law is
applied in order to maintain the state trajectory within the
admissible region of the state space. Preliminary theoretical
results are presented and the performance of the proposed
algorithm are assessed in simulation on a benchmark example.

The paper is organized as follows. Section II reports basic
elements of HOSM control theory. In Section III the control
problem is formulated, while in Section IV the proposed
solution is described. Section V describes the application of
the proposed control law in simulation, and conclusions are
discussed in Section VI. For the sake of readability, the proof
of the main theoretical result of the paper is moved to the
Appendix section.

II. BASIC CONCEPTS

Consider the nonlinear uncertain dynamics{
ẋ(t) = a(x, t)+b(x, t)u(t)
y(t) = σ(x(t)) (1)

where x ∈Rn is the state vector, u ∈R is the control variable,
σ : Rn→ R is a smooth output function, denoted as sliding
variable, while a(·) and b(·) are unknown vector functions.
The relative degree of the system, i.e. the minimum order r
of the time derivative σ (r) of the sliding variable in which the
control u explicitly appears, is assumed well defined, uniform
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and time invariant. In the following, the dependence of σ on
x(t) and of all the variables on t is omitted in some cases,
when obvious, for the sake of simplicity.

For the readers’ convenience, some basic notions of higher
order sliding mode control theory are hereafter reported, along
with a brief overview of the Robust Fuller’s Problem and the
third order sliding mode with optimal reaching published in
the literature.

A. Higher Order Sliding Modes
The Higher Order Sliding Mode (HOSM) control problem

is based on the regularization of an auxiliary system associated
with the uncertain system (1), i.e., by posing σ (i) , diy/dt i

and zi , σ (i−1),{
żi(t) = zi+1(t), i = 1, . . . ,r−1
żr(t) = f (x, t)+g(x, t)u(t) (2)

which is a perturbed chain of integrators built starting from
the sliding variable and its time derivatives, with f (·) =
σ (r)|u=0 and g(·) = (∂σ (r)/∂u) 6= 0 being unknown functions.
Moreover, it is assumed that there exist positive constants
Gm, GM, F , such that

0 < Gm ≤ g(x(t))≤ GM (3)
| f (x(t),u(t))| ≤ F (4)

The control objective for an r-th order sliding mode control
law is to force the system state to reach in finite time and
remain on the r-sliding manifold σ = σ̇ = · · ·= σ (r−1) = 0.
The latter can be made finite-time attractive by using any
r− th-order sliding mode controller of the type

u(t) = αΨ

(
σ , σ̇ , . . . ,σ (r−1)

)
(5)

where Ψ is a discontinuous function, and α > 0 is chosen so
as to enforce a sliding mode [15]–[17].

B. Third Order Sliding Modes with Optimal Reaching
Taking into account the results presented in [20] and

referring to the auxiliary system (2), the so-called Robust
Fuller’s Problem can be formulated as follows

min
u(·), T∈R+

[
max

f (·), g(·)

∫ T

t0
|σ(t)|ν dt

]
subject to (2)-(4), σ(t0) = σ0, and bounded control ‖u‖

∞
≤ α .

The time interval [t0, T ] is compact, ν is a positive constant,
and ‖·‖

∞
denotes the norm of the Banach space L∞. The

underlying idea is that the control law guarantees the best
control action for the worst-case realization of the uncertain
terms.

Let αr , (αGm−F) > 0 denote the so-called “reduced
control amplitude”, i.e. the minimum possible amplitude
|żr|, for any possible realization of the uncertain terms. The
solution to the Robust Fuller’s Problem with ν = 0 in the
third order case is given by

uor =−α


u0 , 0, (σ , σ̇ , σ̈) ∈M0

u1 , sgn(σ̈), (σ , σ̇ , σ̈) ∈M1 \M0

u2 , sgn
(

σ̇ + σ̈2u1
2αr

)
, (σ , σ̇ , σ̈) ∈M2 \M1

u3 , sgn(s(σ , σ̇ , σ̈)), otherwise

(6)

where

s(σ , σ̇ , σ̈), σ +
σ̈3

3α2
r
+u2

 1
√

αr

(
u2σ̇ +

σ̈2

2αr

) 3
2

+
σ̇ σ̈

αr


(7)

while M0, M1, M2 are defined as

M0 ,
{
(σ , σ̇ , σ̈) ∈ R3 : σ = σ̇ = σ̈ = 0

}
M1 ,

{
(σ , σ̇ , σ̈) ∈ R3 : σ − σ̈3

6α2
r
= 0, σ̇ + σ̈ |σ̈ |

2αr
= 0
}

M2 ,
{
(σ , σ̇ , σ̈) ∈ R3 : s(σ , σ̇ , σ̈) = 0

} (8)

The surface M2 is referred to as switching manifold.

III. PROBLEM FORMULATION

Consider the auxiliary third order system (2), expressed asż1(t) = z2(t)
ż2(t) = z3(t)
ż3(t) = f (x, t)+g(x, t)u(t)

(9)

where zT = [z1 z2 z3] ∈ R3 is the auxiliary state vector, the
initial condition of which is z(t0) = z0. Note that the uncertain
functions f (·) and g(·) are bounded as stated in (3)-(4).
Moreover, the state z satisfies the constraints

z(t) ∈ Z ∀t ≥ t0 (10)

Z being a compact set containing the origin defined as

Z ,
{
(z1,z2,z3) ∈ R3 : z1,m ≤ z1 ≤ z1,M,

z2,m ≤ z2 ≤ z2,M, z3,m ≤ z3 ≤ z3,M

} (11)

where z1,m, z2,m, z3,m < 0 and z1,M, z2,M, z3,M > 0 are
constant values. Then, with reference to (1), the problem
faced in the present paper is that of zeroing the state of
the auxiliary system in finite time while satisfying the state
constraints (10) and (11), in spite of the presence of the
uncertain terms.

IV. THE PROPOSED SOLUTION

In order to solve the problem formulated in Section III,
consider a switching manifold M2 defined as in (8), and
represented in Fig. 1 together with the constrained subspace.
The proposed control law is defined as a modification of the

third order sliding mode law with optimal reaching (6), as
follows

usc =−α


u0 , 0, z ∈ Z0

u1 ,−1, z ∈ (Z1∩Z3)\Z0

u2 , 1, z ∈ (Z2∩Z4)\Z0

u3 , sgn(s(z1,z2,z3)), otherwise

(12)
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Fig. 1. Switching manifold s(z1,z2,z3) for the proposed third order controller
with the state constraints.
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Fig. 2. Switching regions according to the proposed third order controller
with the state constraints.

where the regions (see Fig. 2) in the auxiliary state space are
the following

Z0 ,
{
(z1, z2, z3) ∈ R3 : z1 = z2 = z3 = 0

}
Z1 ,

{
(z1, z2, z3) ∈ R3 : z3 ≤ z3,m

}
Z2 ,

{
(z1, z2, z3) ∈ R3 : z3 ≥ z3,M

}
Z3 ,

{
(z1, z2, z3) ∈ R3 : z3 ≥ z3,m, z1 <−

z3
3

3α2
r

−u2

[
1√
αr

(
u2z2 +

z2
3

2αr

) 3
2
+ z2z3

αr

]}

Z4 ,

{
(z1, z2, z3) ∈ R3 : z3 ≤ z3,M, z1 >−

z3
3

3α2
r

−u2

[
1√
αr

(
u2z2 +

z2
3

2αr

) 3
2
+ z2z3

αr

]}

(13)

Fig. 3. Region of attraction applying the unconstrained control law (top)
and the constrained control law (bottom).

In order to address the stability properties of the proposed
control law, it is necessary to introduce the definition of the
following sets.

Definition 1: Ωor , {z̄ ∈ Z : (z(t0) = z̄) ∧ (u(t) ≡
uor(t) ∀ t ≥ t0)⇒ z(t) ∈ Z ∀ t ≥ t0}, where the state-space
equations and the definition of the control law are defined in
(9) and (6), respectively.

Definition 2: Ωsc , {z̄ ∈ Z : (z(t0) = z̄) ∧ (u(t) ≡
usc(t) ∀ t ≥ t0)⇒ z(t) ∈ Z ∀ t ≥ t0}, where the state-space
equations and the definition of the control law are defined in
(9) and (12), respectively.

Notice that, by construction, the sets Ωor and Ωsc are
invariant.

Proposition 1: Given system (9), with the state con-
straints (10)-(11), then, applying the control law (12), one has
Ωor ⊂Ωsc, ∀ t ≥ t0. Moreover, applying the control law (12),
given any initial condition z(t0) ∈ Ωsc there exists a finite
time instant t̄ ≥ t0 such that z(t̄) = 0 for all t ≥ t̄.

Sketch of the proof: see Appendix.
Remark 1: Note that, because of the complexity of the

problem, we did not focus on obtaining analytical expressions
of sets Ωor and Ωsc. However, approximated numerical

4729

Downloaded from http://iranpaper.ir
http://tarjomano.com



evaluations of such sets can be easily obtained, as shown in
Fig. 3. It is possible to compute that, for an example system,
the volume of Ωsc is larger than the volume of Ωor by 50%.

V. SIMULATION EXAMPLE

In this section an illustrative example is presented to show
the effectiveness of the proposed control law. The system
models the kinematics of a nonholonomic car (see Fig. 4),
and has already been considered as a benchmark for the
application of higher-order SMC laws [16], [20], [23], [24].
The nonlinear state-space model of the system is

Fig. 4. Schematic view of the car model.


ẋ(t) = vcosϕ(t)
ẏ(t) = vsinϕ(t)
ϕ̇(t) = v

l tanθ(t)
θ̇(t) = u(t)

(14)

where x and y denote the cartesian coordinates of the rear-axle
middle point, ϕ is the orientation angle, θ is the steering
angle and u is the control variable. The longitudinal velocity
is chosen as v = 10ms−1, while the distance between the
two axles is l =5m. The sliding variable σ is defined as

σ(t) = y(t)− yd(t) (15)

with yd(t) = 10sin(x(t)/20)+5 being the desired trajectory,
and it can be shown that the relative degree of the system
is r =3 (see, e.g., [20]). Following the same approach as in
[20] for the sake of simplicity, we consider the case in which
ϕ ≈ 0 and θ ≈ 0, so that

σ
(3)(t)≈ 50cos

(
z1(t)
20

)
+20u(t) (16)

and by posing zi = σ (i−1), i = 1,2,3 one has
ż1(t) = z2(t)
ż2(t) = z3(t)

ż3(t) = 50cos
(

z1(t)
20

)
+20u(t)

(17)

subject to the following constraints

|z1| ≤ 7, |z2| ≤ 7, |z3| ≤ 7 (18)
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Fig. 5. State trajectories in the state space {z1,z2,z3}.

The bounds in (3) and (4) are F ≈ 50 and G ≈ 20. We
conservatively consider F = 90 and Gm = 5, GM = 5000,
and choose the control amplitude as α = 20, from which
αr = 10. The evolution of the system states has been simulated
over a time interval Ts =30s, with initial condition z(0) =[
−5 −5 0

]T .
Fig. 5 reports the auxiliary state trajectories, which are

steered to zero while satisfying the constraints, in the state
space. In Fig. 6 the time evolution of the auxiliary state is
reported. Fig. 7, Fig. 8 and Fig. 9 report the projections of
the state trajectories on planes {z1,z3}, {z2,z3} and {z1,z2},
respectively. Fig. 10 illustrates the time evolution of the car
trajectory y.
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Fig. 6. Time evolution of the auxiliary state trajectories (z1, z2, z3: solid
black line) and the corresponding constraints (solid red line).
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Fig. 7. Time evolution of the auxiliary state in the switching regions on
the plane {z1,z3} with z2 =−7.
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Fig. 8. Time evolution of the auxiliary state in the switching regions on
the plane {z2,z3} with z1 = 7.

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

z 1

z
2

Fig. 9. Time evolution of the auxiliary state in the switching regions on
the plane {z1,z2} with z3 = 7.
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Fig. 10. Time evolution of car trajectory y (solid black line) with respect
to the desired trajectory yd (dashed blue line).

VI. CONCLUSIONS

This paper has addressed the problem of finite-time
regulation to the origin of a perturbed third order chain
of integrators, while satisfying box state constraints. Also
taking into account recently-published results on sliding mode
control with optimal reaching, it is shown that the set of
points that can be steered to the origin without violating
the constraints is enlarged with respect to using the original
(unconstrained) control law. The effectiveness of the proposed
strategy is finally assessed in simulation on a benchmark
problem.

APPENDIX

Sketch of the proof of Proposition 1. As a preliminary
consideration, one can notice that, when z(t0)∈Ωor ⊂Z , then
uor(z) = usc(z) by construction. As a consequence, Ωor ⊆Ωsc.
Therefore, according to [20], if z(t0) ∈Ωor, the convergence
in finite time to the origin is ensured also satisfying the state
constraints. In the following, we prove that there exists a set
of points which belong to Ωsc but not to Ωor, and for which
the finite-time convergence to the origin is obtained, which
would prove the proposition.

Define Π as the plane perpendicular to the z3 axis with z3 =
z3,m, i.e., Π includes the lower face of the box which defines
the constraints (the case with z3 = z3,M is specular). Assume,
without loss of generality, that z3,m =−1. The intersection
of Π with the switching surface defined in (7) is a curve
(referred to as S∗), each point of which satisfies

z1−
1

3α2
r
+u2

[
1
√

αr

(
u2z2 +

1
2αr

) 3
2
− z2

αr

]
= 0 (19)

u2 being defined in (6). The intersection of the switching line
defined by M1 in (8) with Π is a point, with coordinates

z∗1 =−
1

6α2
r
, z∗2 =

1
2αr

, z∗3 =−1 (20)
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Now, consider the set P , {z ∈ R3 : z ∈ s∗(z)∩Z ∧ z2 >
z∗2}. One can observe that, if z ∈ P, then uor = −α . As a
consequence, ż3≤−αr < 0, which implies that the vector field
at z is directed out of Z . Therefore, P∩Ωor = /0. By definition
of usc, z ∈ P implies usc(z) = α . The components of the
vector field are such that ż3 ≥ αr > 0, and ż2 = z3 =−1 < 0.
However, as z3 increases of an infinitesimal quantity, one can
observe that the value of usc(z) switches to uor =−α , which
implies ż3 ≤ αr < 0, and ż2 = z3 = −1 < 0. The direction
of the resulting vector field, obtained by merging these two
components can be generated as the Filippov solution of the
state-space equation, which is a vector field having the same
components of the two component vectors as for ż1 and ż2,
while ż3 = 0. As a consequence, the state will move along
the plane Π with decreasing values of z2: by definition of
usc, the state will move along P. If we consider equation (19)
as a function relating z2 to z1, it is possible to observe that
such function has a monotonic behavior. As a consequence,
also due to the fact that αr > 0, the point Q ,M1 ∩Π is
reached in finite time without violating the box constraints.
After Q is reached, since Q ∈ Ωor, the state vector will be
steered to the origin in finite time, again without violating
the box constraints. �
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