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Abstract—Recently, an emerging numerical controller design based on
Tensor-Product model transformation has proven to work on a number
of nonlinear systems by both simulations and practical implementations.
In this paper, aiming at fully utilizing the power of approximation of TP
model transformation, a new control stability analysis is proposed in a
probabilistic framework. We utilize the matrix 2-norm to characterize
the maximum deviation of the approximated system from the actual
one. However, the theoretical boundary of the maximum deviation is
hard to determine. Therefore, probabilistic error bound estimation is
introduced with the aid of Chebyshev inequality to define a practical
bound of deviation for the approximated system. This new analysis
technique allows practical controller design for approximated TP system
model by solving a set of Linear Matrix Inequalities (LMI). Examples
using the benchmark Translational Oscillator with Rotational Actuator
(TORA) system are presented to illustrate our formulation, showing that
the designed controller can guarantee asymptotic stability with sufficiently
high probability.

Index Terms—Nonlinear Control, TP Model Transformation, LMI

I. INTRODUCTION

Nonlinear control design has been developed for several decades

and many theoretical design methods have been introduced, such as

feedback linearization, backstepping, etc [1]. These methods have

proven to be practical in many real plants. However, when the plants

are very complex, the derivations using analytical design could be

extremely complicated. To overcome this kind of complication, it

is natural to seek for a computational approach for the controller

design. Recently, Tensor-Product (TP) model based control design

methodology has become a promising candidate for the computational

approach, which allows automatic controller design using efficient

algorithms even for complex systems [2], [3], [4], [5], [6], [7], [8],

[9].

TP control system design can be applied to a class of nonlinear

systems expressing in quasi-Linear Parameter-Varying (qLPV) state-

space form [2]. The procedures involve two steps. First, the qLPV

model is transformed into affine or convex polytopic representation

with the aid of Singular Value Decomposition (SVD)-based algorithm

first proposed in [10] and [11]. This TP model transformation can

either be exact or approximated. Upon the TP model of the system, a

LMI based optimization is executed for multi-objective control design.

Both steps can be done without analytical derivation and thus are fully

automated.

There are many successful examples such as the benchmark

Translational Oscillator with Rotational Actuator (TORA) system [12]

where exact TP model of system exists. However in practice, some

classes of systems may not have an exact TP representation [13]. Or

even in those cases with exact TP representation, if the order of the

expression is too high, it is still undesirable to use it in designing a

controller since the computational cost will explode exponentially in

terms of the order [14]. Fortunately, the SVD-based transformation

process enables approximation of the LPV model using a lower order

TP representation. If the existing LMI design approach is applied,

the stability and control specification are only guaranteed for the

approximated model but not for the original plant. In the present

paper, a set of LMI conditions ensuring the stability of original plant

is derived by exploiting probabilistic error bound. The upper bound of

deviation of the TP system model from the original plant is estimated

by the well-known Chebyshev inequality [15]. As a result, the stability

of closed loop system is guaranteed up to a certain required confidence

in probability sense.

The structure of the paper is organized as follows. Section II

introduces the numerical TP model transformation. Section III de-

scribes our LMI design for approximated TP system model. Section

IV introduces the idea of probabilistic error bound estimation. Section

V presents the simulation results that verify our proposed methods.

II. NUMERICAL TP MODEL TRANSFORMATION

In order to automatically design a controller for a given dynamical

model using TP model, one has to begin with the numerical TP model

transformation. The following description is based on [2] and [12].

Given a dynamical system in the following state-space representation:

ẋ(t) = A
(
p(t)

)
x(t) + B

(
p(t)

)
u(t) (1)

where x(t) ∈ R
n, A ∈ R

n×n and B ∈ R
n×m. The above

representation is generally recognized as the LPV model with a time

varying parameter p(t) ∈ R
q in input u(t) ∈ R

m. A special case of

(1) is a class of nonlinear systems where the parameter p(t) includes

some elements of the state x(t). This is sometimes referred as the

qLPV model.

Let S(p(t)) =
[
A
(
p(t)

)
B
(
p(t)

)]
, then (1) can be written as:

ẋ = S(p)
[

x
u

]
(2)

TP model transformation basically involves three major steps: dis-

cretization of parameter space, application of Higher Order Singular

Value Decomposition (HOSVD) [16] and convex hull manipulation

[17]. For discretization, first we have to define the operation range

of the parameter p. Let Ω be a bounded hyper rectangular parameter

space with p ∈ Ω : [a1, b1] × [a2, b2] × · · · × [aq, bq]. Then for the

(i1, i2, . . . , iq)
th grid point there is a corresponding position vector

gi1,i2,...,iq
. We define a (q+2) tensor SD ∈ R

I1×I2×...×Iq×n×(n+m)

by

Si1,i2,...,iq = S(gi1,i2,...,iq
) (3)

for in = 1, . . . , In, n = 1, . . . , q.
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In fact, the tensor consists of numerical values of S(p) sampled

at every grid point which stores the information about the system

matrix S in a numerical form. Thus a denser grid captures more

system information, but at the same time increases the size of the

tensor. However, since the system is known to be continuous with

respect to the parameter space, and suppose the grid is dense enough,

we would expect the tensor may have excess information about the

system. Here HOSVD [16] is applied to extract the low-rank tensor

product structure from the system tensor.

HOSVD is a purely computational method to obtain a low-rank

approximation of a tensor. Loosely speaking, the process is similar

to doing ordinary Singular Value Decomposition (SVD) for each

dimension of parameter p. Hence, a decreasing sequence of singular

values can be obtained for each dimension. There are two types of

HOSVD. The first type is called Compact HOSVD (CHOSVD) where

the zero singular values and their corresponding singular vectors

are discarded. The second type is the Reduced HOSVD (RHOSVD)

where some nonzero but small singular values and their corresponding

singular vectors are discarded as well.

From a system point of view, the above TP model transformation

process can be comprehended as follows. Through discretization, the

system matrix S(p) is approximated by a finite element TP type

polytopic model:

STP (p) =
I1∑

i1=1

· · ·
Iq∑

iq=1

q∏
n=1

wn,in(pn)Si1,...,iq (4)

where Si1,...,iq ∈ R
n×(n+m) and wn,iq (pn) are interpolating func-

tions corresponding to nth entry of p at the grid point in. For linear

interpolation, wn,in(pn) are overlapped triangular-shaped functions.

After applying CHOSVD, (4) can be extracted to the Exact TP

(ETP) model:

SETP (p) =
R1∑

i1=1

· · ·
Rq∑

iq=1

q∏
n=1

w̄n,in(pn)S̄i1,...,iq
def
=

R∑
r=1

wr(p)Sr

(5)

where S̄i1,...,iq are the extracted Linear Time-Invariant (LTI) matrix

and w̄n,in(pn) are the extracted weighting functions. We further

define

Sr
def
= [Ar Br]

def
= S̄i1,...,iq , (6)

wr(p)
def
=

q∏
n=1

w̄n,in(pn), (7)

and R = R1R2 · · ·Rq . Since this ETP model SETP is exactly the

same as STP , this is referred as the exact model. If RHOSVD is

applied, then (4) will be approximated by the Reduced TP (RTP)

model:

SRTP (p) =
R′

1∑
i1=1

· · ·
R′

q∑
iq=1

q∏
n=1

w̄n,in(pn)S̄i1,...,iq
def
=

R′∑
r=1

wr(p)Sr

(8)

where R′n < Rn for n = 1, . . . , q and R′ = R′1R
′
2 . . . R

′
q .

The final step of TP model transformation is the convex hull

manipulation. Since we would like to design the controller by solving

LMI, the system is required to be convex. Convex hull manipulation

allows (5) and (8) to possess the convex property. In this paper, we

simply focus on Close to NOrmal (CNO) type convex TP model

whose weighting functions satisfy the following conditions for all

p ∈ Ω:

(Non-negativeness condition) ∀n, i, pn : wn,i(pn) ∈ [0, 1]

(Sum Normalized condition) ∀n, pn :

In∑
i=1

wn,i(pn) = 1

(CNO condition) ∀n, i, pn : max(wn,i(pn)) ≈ 1

This CNO type convex TP model is found to be suitable for designing

state feedback controller [18]. For properties of different types of

convex hulls and computational details of convex hull manipulation,

readers may refer to [11], [4], [17]. Note that the whole process of TP

model transformation is numerical computation and can be executed

automatically without human intervention.

III. LMI-BASED CONTROLLER DESIGN FOR REDUCED TP SYSTEM

MODEL

Since our goal is to design a desirable controller for the dynamical

system in the convex TP model, it is natural to define our controller

to be also in the TP model representation [2]. One way to achieve

this is by Parallel Distributed Compensation (PDC) framework [19].

As observed in (5), there is a sequence of LTI subsystems inside the

summation. The concept of PDC is to design a linear state feedback

controller for every subsystem. The resulting nonlinear controller

u = K(p)TP x (9)

would have the same set of weighting functions as the convex TP

model of the system. The nonlinear gain becomes

KTP (p) = −
R1∑

i1=1

· · ·
Rq∑

iq=1

q∏
n=1

w̄n,in(pn)Ki1,...,iq

def
= −

R∑
r=1

wr(p)Kr

(10)

where Ki1,...,iq are the LTI gain for the subsystems and w̄n,in(pn)

are the same weighting functions in (5). We further define Kr
def
=

Ki1,...,iq . [2] has shown that such framework can be used for

controller design by solving LMI using efficient algorithms. However,

existing literatures only discuss the case for ETP model of SETP .

If the same design methodology is used for RTP model SRTP , as

the RTP model is just an approximation of the original model, the

designed controller does not guarantee the same stability performance

if it is applied to the original system.

In the following, RTP model of system (8) with CNO properties

is considered. To simplify the notation, let

ATP (p)
def
=

R′∑
r=1

wr(p)Ar (11)

BTP (p)
def
=

R′∑
r=1

wr(p)Br (12)

KTP (p)
def
= −

R′∑
r=1

wr(p)Kr (13)

and

ΔA(p) def
= A(p)− ATP (p) (14)

ΔB(p) def
= B(p)− BTP (p) (15)

where R′ is the same as that in (8). Given the original dynamical

system of the form (1), the ETP model of system can be defined as

ẋTP =

R′∑
r=1

wr(p) (Aix + Biu) = ATP (p)x + BTP (p)u (16)
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Using PDC as in (10), the TP controller is defined as:

uTP (p)
def
= −

R′∑
r=1

wr(p)Krx = KTP (p)x (17)

Lyapunov direct method is employed to derive the LMI for designing

a desirable controller that can stabilize the original system (1). Let

the Lyapunov candidate for system (1) and controller (17) be

V = xT Px (18)

Then the time derivative of V is

V̇ =xT
((

ATP (p) + BTP (p)KTP (p)
)T P

+ P
(
ATP (p) + BTP (p)KTP (p)

)
+ΔA(p)T P + PΔA(p)

+
(
ΔB(p)KTP (p)

)T P + P
(
ΔB(p)KTP (p)

))
x

(19)

Since

(ΔA(p)x− Px)T (ΔA(p)x− Px) ≥ 0

⇔ xT
(
ΔA(p)T P + PΔA(p)

)
x ≤ xT

(
ΔA(p)TΔA(p) + PT P

)
x

(20)

and ((
ΔB(p)KTP (p)

)
x− Px

)T((
ΔB(p)KTP (p)

)
x− Px

)
≥ 0

⇔ xT
((

ΔB(p)KTP (p)
)T P + P

(
ΔB(p)KTP (p)

))
x

≤ xT
((

ΔB(p)KTP (p)
)T (

ΔB(p)KTP (p)
)
+ PT P

)
x

(21)

Then

V̇ ≤xT
((

ATP (p) + BTP (p)KTP (p)
)T P

+ P
(
ATP (p) + BTP (p)KTP (p)

)
+ΔA(p)TΔA(p)

+
(
ΔB(p)KTP (p)

)T (
ΔB(p)KTP (p)

)
+ 2PT P

)
x

(22)

It is known that ΔA(p) and ΔB(p) are finite for all p and thus

their norms are bounded. To define the upper bound, we introduce the

matrix 2-norm which is defined as ‖A‖2 = max‖x‖2=1 ‖Ax‖2. Let

‖ΔA(p)‖2 ≤ εA and ‖ΔB(p)‖2 ≤ εB for all p ∈ Ω. The detailed

of estimating the norm upper bounds using probabilistic approach is

discussed in Section IV.

With the above upper bounds, (22) can be simplified into

V̇ ≤xT
((

ATP (p) + BTP (p)KTP (p)
)T P

+ P
(
ATP (p) + BTP (p)KTP (p)

)
+ ε2AI

+ ε2BKT
TP KTP + 2PT P

)
x

(23)

It can be proved that xT
(
KTP (p)T KTP (p)

)
x has the following

upper bound:

xT
(

KTP (p)T KTP (p)
)

x ≤
R′∑
i=1

wi(p)xT KT
i Kix (24)

Then we can get a sufficient condition for asymptotically stability

of the control system in Theorem 1.

Theorem 1. Assume that the TP controller (17) is applied to the
original LPV system (1), the closed loop system is asymptotically

stable for p ∈ Ω if there exists a positive definite matrix P such that
the following inequalities are satisfied:

(Ai − BiKj)
T P + P (Ai − BiKj)

+ ε2AI + ε2BKT
j Kj + 2P2 < 0

(25)

for i, j = 1, . . . , R′.

Proof: By substituting (11) into (23), we get

V̇ ≤
R′∑
i=1

R′∑
j=1

wi(p)wj(p)

xT
(
(Ai − BiKj)

T P + P (Ai − BiKj)

+ ε2AI + ε2BKT
j Kj + 2P2

)
x

(26)

If the inequalities (25) are satisfied, V̇ < 0 and hence the closed loop

system is asymptotically stable as the weighting functions wr(p) are

non-negative for all p ∈ Ω.

Notice that the inequalities (25) are difficult to solve analytically.

Fortunately, they can be reformulated into LMI problems in which

the solution is equivalent to solving (25). It is well known that LMI

problems can be solved efficiently through some convex optimization

algorithms such as the interior point method. One way to formulate

the LMI problem for our controller design is to introduce new

variables X = P−1 and Yj = KjX. Then (25) becomes

XAT
i + AiX− YT

j BT
i − BiYj + ε2AX2 + ε2BYT

j Yj + 2I < 0 (27)

Using the idea of Schur complements, (25) is equivalent to the

following LMI:

⎡
⎣ XAT

i + AiX− YT
j BT

i − BiYj + 2I εBỸT
j εAX

εBỸj −I 0
εAX 0 −I

⎤
⎦ < 0

(28)

where Ỹj
def
= [Yj 0]T ∈ R

n×n. By solving for X and Yj j =
1, . . . , R′, the LTI gains Kj can be obtained by Kj = YjX−1.

The above LMI can be the foundation of our TP controller design.

However, the information of weighting functions is not utilized.

Exploiting the fact that the controller has the same set of weighting

functions as the system, it is possible to reduce the number of LMI

using Theorem 2.

Theorem 2. Assume that the TP controller (17) is applied to the
original LPV system (1), the closed loop system is asymptotically
stable for p ∈ Ω if there exists a positive definite matrix X such that
the following LMI are satisfied:
⎡
⎣ XAT

i + AiX− YT
i BT

i − BiYi + 2I εBỸT
i εAX

εBỸi −I 0
εAX 0 −I

⎤
⎦ < 0 (29)

for i = 1, . . . , R′ and
⎡
⎢⎢⎣

Gij + Gji + 4I εBỸT
i εBỸT

j εAX
εBỸi −I 0 0
εBỸj 0 −I 0
εAX 0 0 − 1

2
I

⎤
⎥⎥⎦ < 0 (30)

for i < j < R′, where Gij
def
= XAT

i + AiX − YT
j BT

i − BiYj and

Ỹj
def
= [Yj 0]T ∈ R

n×n.
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Proof: Start from (26),

V̇ ≤
R′∑
i=1

w2
i (p)x

T
(
(Ai − BiKi)

T P + P (Ai − BiKi)

+ ε2AI + ε2BKT
i Ki + 2P2

)
x

+

R′∑
i=1

∑
i<j

wi(p)wj(p)xT
(
(Ai − BiKj)

T P + P (Ai − BiKj)

(Aj − BjKi)
T P + P (Aj − BjKi)

+ 2ε2AI + ε2B(K
T
i Ki + KT

j Kj) + 4P2
)

x
(31)

If Yj and X satisfying (29) and (30) are found, by letting P = X−1

and Kj = YjX−1, (29) and (30) are equivalent to:

(Ai − BiKi)
T P + P (Ai − BiKi)

+ ε2AI + ε2BKT
i Ki + 2P2 < 0

(32)

and

(Ai − BiKj)
T P + P (Ai − BiKj)

+(Aj − BjKi)
T P + P (Aj − BjKi)

+ 2ε2AI + ε2B(K
T
i Ki + KT

j Kj) + 4P2 < 0

(33)

Thus, V̇ < 0 and Theorem 2 is valid.

IV. PROBABILISTIC ERROR BOUND ESTIMATION

In this section, the idea and procedures of probabilistic error bound

estimation is introduced. In order to correctly and efficiently apply

Theorem 1, we have to get an appropriate estimation of the upper

bounds of ‖ΔA(p)‖2 and ‖ΔB(p)‖2 for p ∈ Ω. If the estimates are

much larger than the actual maximum, Theorem 1 will become more

conservative. Unfortunately, the theoretical least upper bounds are

difficult to obtain analytically since two types of approximation errors

may effectuate the deviation in the extracted RTP model. The first one

is the error as a result of grid point sampling and linear interpolation

while the other is the approximation error due to discarding some

singular values and singular vectors in HOSVD.

Instead of theoretically calculating the least upper bound, we

seek a numerical way to estimate an effective upper bound which

may not be the least upper bound but sufficient for us to design

a stable controller. Since the norms are not globally concave, it is

impossible to get the global maximum via iterative algorithms. We

propose a statistical way to get an effective upper bound. Because the

original plant and RTP model are known, it is possible to sample a

large number of the norms ‖ΔA(p)‖2 and ‖ΔB(p)‖2 by picking a

large number of p within the range of Ω uniformly at random. For

simplicity, consider the norm ‖ΔX(p)‖2 where X can either be A
or B. Therefore, the norm can be viewed as a continuous random

variable with a finite maximum.

The above problem can be simplified as follows. Let X be a

continuous random variable with a probability distribution function is

f(x) for x ∈ [0, θ] where θ is a finite real number, and 0 elsewhere.

Our objective is to estimate θ through sampling.

The basic idea is to find the distribution of the largest order

statistics estimator (i.e. the maximum of samples). First, we sam-

ple N sets of X . Each set consists of M random numbers, i.e.

{X1, . . . , XM}. Let Y be the largest order statistics of the set,

i.e. Y = max {X1, . . . , XM}, which is also a continuous random

variable.

Assume f(x) is known, then we have the following theorem:

Table 1. Procedures for probabilistic error bound estimation

Step 1: Uniformly generate M sample of points p. Find the largest
‖ΔA(p)‖2 and ‖ΔB(p)‖2 among those sample points and record
them.

Step 2: Repeat step 1 for N times. Now there should be N maxima
of ‖ΔA(p)‖2 and ‖ΔB(p)‖2. Get the averages μA, μB and standard
deviation σA, σB of the N maxima.

Step 3: For 95% confidence level, set εA = μA +4.36σA and εB =
μB +4.36σB respectively, while for 99% confidence, set εA = μA+
9.95σA and εB = μB + 9.95σB repectively.

Theorem 3. The probability density function g(y) of random variable
Y defined above is given by

g(y) =

{
M

(∫ y

0
f(x)dx

)M−1
f(y) if 0 < y < θ

0 otherwise
(34)

Proof: Since Y is less than x only when all X in the set is less than

x, i.e.

Pr{Y ≤ x} = (Pr{X ≤ x})M (35)

which can also be expressed as

∫ y

0

g(x)dx =

(∫ y

0

f(x)dx

)M

(36)

By the fundamental theorem of calculus, (36) implies (34).

As M → ∞, the term
(∫ y

0
f(x)dx

)M−1
is 0 except for y = θ.

And when y = θ,
(∫ θ

0
f(x)dx

)M−1

= 1 and hence g(θ) =

Mf(θ) → ∞ as M → ∞ if f(θ) �= 0. This implies that the

probability density function of Y will converge to the shifted Dirac

delta function peaked at θ.

In our formulation, we obtain N samples of the random variable

Y . If N → ∞, the sampling distribution will converge to g(y).
However, f(x) is unknown and N is finite in our problem. Therefore,

we can only estimate the mean μ and standard deviation σ of the

distribution g(y) using the sample average and standard deviation

with the N samples of Y .

By applying the one-sided Chebyshev inequality [15], it is pos-

sible to obtain the effective upper bound. The one-sided Chebyshev

inequality is applicable for any probability distribution and is given

as:

Pr{Y − μ ≥ kσ} ≤ 1

1 + k2
(37)

where μ and σ are average and standard deviation of the random

variable Y respectively. The effective upper bound can be set as

kσ under the required confidence. For instance, if we want 95%

confidence, we can set k = 4.36, while for 99% confidence, we can

set k = 9.95. In the present paper, 99% confidence is considered in

the examples. The procedures of probabilistic error bound estimation

are summarized in Table 1.

V. SIMULATIONS

In this section, the TORA system appeared in [12] is demonstrated

to verify our LMI-based controller design for reduced TP system

model. All simulations are done in MATLAB. TP Tool is used for

TP model transformation while the YALMIP is applied as the LMI

solver.
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A. Example: TORA

The dynamical equations of TORA system are given by [20]:

(M +m)q̈ + kq = m−me(θ̈ cos θ − θ̇2 sin θ) (38)

(I +me2)θ̈ = −meq̈ cos θ +N (39)

With the normalization ξ =
√

M+m
I+me2

q, τ =
√

k
M+m

t, u =
M+m

k(I+me2)
N and ρ = me√

(I+me2)(M+m)
, the equations of motion

of TORA can be written in the LPV form (1) with the state

x = [x1(t) x2(t) x3(t) x4(t)]
T =

[
ξ ξ̇ θ θ̇

]T
,

A(p) =

⎡
⎢⎢⎢⎣

0 1 0 0

− 1
1−ρ2 cos2(x3)

0 0 ρx4 sin(x3)

1−ρ2 cos2(x3)

0 0 0 1
ρ cos(x3)

1−ρ2 cos2(x3)
0 0 ρ2x4 sin(x3) cos(x3)

1−ρ2 cos2(x3)

⎤
⎥⎥⎥⎦ (40)

and

B(p) =

⎡
⎢⎢⎢⎣

0

− ρ cos(x3)

1−ρ2 cos2(x3)

0
1

1−ρ2 cos2(x3)

⎤
⎥⎥⎥⎦ (41)

where p def
= [x3 x4]

T ∈ Ω.

In our simulation, we define the parameter space Ω = [−a, a] ×
[−0.5, 0.5] where a = 45

180
π and ρ = 0.2. The density of the

discretization grid is 137× 137. By using TP Tool, result shows that

the above TORA system can be exactly transformed into the convex

TP model with 10 LTI subsystems:

ẋ(t) =
5∑

i=1

2∑
j=1

w̄1,i

(
x3(t)

)
w̄2,j

(
x4(t)

)(
Āi,jx(t) + B̄i,ju(t)

)
(42)

The LMI-based control design of this exact system has already

been discussed in [12]. The problem we are interested is whether the

reduced TP model can also be used for design. Here we consider

the case where only 3 singular values of parameter x3 are kept,

i.e. discarding the 2 smallest nonzero singular values and their

corresponding singular vectors. For parameter x4, all singular values

are kept. After the convex hull manipulation to CNO, the TORA

can be approximated by a convex TP model with 4 × 2 = 8 LTI

subsystems:

A1,j =

⎡
⎢⎢⎣

0 1 0 0
−1.0629 0 0 −1.4498× 10−5

0 0 0 1
0.2893 0 0 (−1)j+12.3908× 10−6

⎤
⎥⎥⎦

A2,j =

⎡
⎢⎢⎣

0 1 0 0
−1.0509 0 0 (−1)j+11.8270× 10−5

0 0 0 1
0.2350 0 0 −3.0128× 10−6

⎤
⎥⎥⎦

A3,j =

⎡
⎢⎢⎣

0 1 0 0
−1.0198 0 0 (−1)j0.0733

0 0 0 1
0.1426 0 0 (−1)j+10.0121

⎤
⎥⎥⎦

A4,j =

⎡
⎢⎢⎣

0 1 0 0
−1.0198 0 0 (−1)j+10.0733

0 0 0 1
0.1425 0 0 (−1)j0.0121

⎤
⎥⎥⎦

(a)

(b)

Fig. 1: Weighting functions (a) w1,j(x3) and (b) w2,j(x4)

B1,1 = B1,2 =

⎡
⎢⎢⎣

0
−0.2893

0
1.0629

⎤
⎥⎥⎦ B2,1 = B2,2 =

⎡
⎢⎢⎣

0
−0.2350

0
1.0509

⎤
⎥⎥⎦

B3,1 = B3,2 =

⎡
⎢⎢⎣

0
−0.1426

0
1.0198

⎤
⎥⎥⎦ B4,1 = B4,2 =

⎡
⎢⎢⎣

0
−0.1425

0
1.0198

⎤
⎥⎥⎦

where j = 1, 2, and the weighting functions are presented in Fig. 1.

To apply Theorem 1 and 2, εA and εB have to be estimated

probabilistic method according to the procedures described in Table

1. By using M = 1000 and N = 1000, it is found that μA and σA

are 0.0012 and 2.1738× 10−4 while μB and σB are 3.9873× 10−6

and 4.2958× 10−8 respectively. For 99% confidence, the εA and εB
are set to be 0.0033 and 4.4148× 10−6 respectively.

Figure 2 shows the locations of the 1000 sample maxima for

‖ΔA(p)‖2 and ‖ΔB(p)‖2 in Ω respectively. More than one local

maximum exist in the figure so it is hard to search for the global

maximum using iterative algorithms.

When the set of LMI in (28) is considered, there are 65 LMI in

our case. Solving with YALMIP, it is found that

P =

⎡
⎢⎢⎣

0.7683 −0.2349 −0.2913 −0.7984
−0.2349 0.1401 0.1364 0.2518
−0.2913 0.1364 01622 0.3104
−0.7984 0.2518 0.3104 0.8575

⎤
⎥⎥⎦ > 0

and Kj = [−6.2388 1.2815 2.6581 6.8429] for j = 1, . . . , 8
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(a) (b)

Fig. 2: Locations of 1000 sample maxima of (a) ‖ΔA(p)‖2 and (b)

‖ΔB(p)‖2 in Ω

satisfy (28). Hence by Theorem 1, the closed loop system is asymp-

totically stable with 99% confidence in terms of probabilistic error

bound estimation.

If the set of LMI in (37) is considered instead, there are altogether

37 LMI. It is found that

P =

⎡
⎢⎢⎣

0.8804 −0.2102 −0.2723 −0.9101
−0.2102 0.1115 0.1040 0.2234
−0.2723 0.1040 0.1264 0.2875
−0.9101 0.2234 0.2875 0.9684

⎤
⎥⎥⎦ > 0

and

K1 = K2 = [−6.7729 0.9128 2.3094 7.3583]
K3 = K4 = [−6.6618 0.8841 2.2733 7.2363]
K5 = K8 = [−6.5976 0.8625 2.2512 7.1689]
K6 = K7 = [−6.7464 0.9053 2.3017 7.3237]

satisfy (37). Hence by Theorem 2, the closed loop system is asymp-

totically stable with 99% confidence in terms of probabilistic error

bound estimation.

To check the efficacy of our controller, we randomly generated 200
initial conditions satisfying the condition of p ∈ Ω. It is found that

the control system converges to the origin asymptotically in all the

200 cases. Hence, our probabilistic error bound estimation is believed

to be sufficiently accurate for this example.

VI. CONCLUSIONS

The control stability of TP model transformation design is intro-

duced with the aid of the probabilistic error bound estimation. This

approach is found to be successful in practice when the difference

between the reduced TP model and the original plant is small, i.e.

the approximation is sufficient close to the original plant. As seen

from the simulations, keeping fewer singular values would lead to

fewer LMI and hence lower the computational cost which is more

desirable. There is always a tradeoff between computational cost and

complexity of TP model. We have provided a method to balance

the two: while using less complex TP structure of controller, we

ensure that it can achieve asymptotic stability with sufficiently high

confidence. The concept of probability is introduced as a numerical

approach to estimate the error bounds which are extremely difficult

to obtain theoretically. Notice that the LMI based design process

can be done fully numerically and automatically, which is one of

the features of TP model transformation. Future researches include

finding less conservative LMI conditions and extending the present

results to observer-based control design.
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