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Abstract: The problem of sliding-mode control for a class of neutral delay systems with
uncertainties in both the state matrices and the input matrix is considered. By selecting a sliding
surface depending on the current state and delayed state, the paper gives a sufficient condition in
terms of linear matrix inequalities (LMIs) such that the closed-loop system is guaranteed to be
asymptotically stable. When LMIs are feasible, the design of the sliding surface and the sliding-
mode control law can be easily obtained by convex optimisation. State trajectories are attracted
onto the sliding surface in a finite time and remain there for all subsequent time. A simulation
illustrates the application of the method.

1 Introduction

Dynamic systems with time delays are commonly encoun-
tered in various areas, such as chemical processes, aircraft
stabilisation, manual control, electrical heater and long
transmission lines in pneumatic, hydraulic and rolling-mill
systems. Over the past decades considerable research effort
has been undertaken on time-delay systems, since the
existence of a delay in a physical system is often a source of
instability or poor performance.

On the other hand, the problem of stability and
stabilisation for neutral delay systems has attracted
considerable attention. A neutral delay system is one
depending not only on state delays, but also on the
derivatives of the delayed state [1, 2]. There have recently
been a number of developments in the search for a control
mechanism for uncertain neutral delay systems [3–7].
Xu et al. [4] considered the H1 and positive-real control
problem for linear neutral delay systems, and presented
sufficient conditions for the solvability of these two
problems by means of an LMI approach. Wang et al. [7]
dealt with the problem of robust reliable control for a class
of uncertain neutral systems with actuator faults. Xu et al.
[6] proposed a guaranteed cost controller for uncertain
neutral delay systems such that the closed-loop system is not
only stable but also guarantees an adequate level of
performance for all admissible uncertainties.

Since its early appearance in the 1950 s, sliding-mode
control (SMC) has proven to be an effective robust control
strategy for incompletely modelled or uncertain systems. An
SMC system has various attractive features such as fast
response, good transient performance, and robustness with
respect to uncertainties and external disturbance. Recently,
SMC involving time-delay systems has received increasing

attention [8–14]. Niu et al. [14] proposed a neural network
based sliding-mode control approach to solve the problem
of robust control for nonlinear uncertain state-delayed
systems. Gouaisbaut et al. [13] considered the sliding-mode
control of uncertain systems with multiple and time-varying
state delays. Yang et al. [9] gave an output feedback sliding-
mode control law for uncertain systems with unmeasurable
states. However, due to the complexity of neutral delay
systems, there has been very little work to date on the
problem of SMC for uncertain neutral delay systems.

In this paper we deal with the design of SMC for
uncertain neutral delay systems. The uncertain system under
consideration has mismatched uncertainties in the state
matrices, and matching norm-bounded uncertainties in the
input matrix. The sliding surface is chosen as a function
depending on the current state and delayed state. By
utilising a Lyapunov approach a sufficient condition in
terms of linear matrix inequalities is derived to guarantee
the asymptotic stability of the closed-loop system. Thus
when LMIs are feasible, the design of a sliding surface and
sliding-mode controller can be constructed. It is also shown
that the sliding motion is attained within a region in the state
space in finite time.

Throughout, Rn denotes the real n-dimensional linear
vector space. k·k denotes the Euclidean norm of a vector or
the spectral norm of a matrix. For a real symmetric matrix,
M > 0 ð<0Þ means that M is positive definite (negative
definite). I is used to represent an identity matrix of
appropriate dimensions. Matrices, if their dimensions are
not stated, are assumed to have compatible dimensions.

2 Problem formulation

Consider the following uncertain neutral delay system:

_xxðtÞ � Ad _xxðt � dÞ ¼ ðA þ DAðtÞÞxðtÞ

þ ðAh þ DAhðtÞÞxðt � hÞ

þ ðB þ DBðtÞÞuðtÞ ð1Þ

xð�Þ ¼ ’ð�Þ; � 2 ½�t; 0
 ð2Þ
where xðtÞ 2 Rn is the state, uðtÞ 2 Rm is the control input,
A, Ah, Ad and B are known real constant matrices of
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appropriate dimension, DAðtÞ;DAhðtÞ and DBðtÞ are
unknown time-varying system parameter uncertainties,
and h > 0 and d > 0 are constant time delays (d may not
equal h). Let t ¼ maxðd; hÞ: ’ðtÞ is a continuous vector-
valued initial function. Without loss of generality, matrix
B is assumed to have full column rank and (A, B) is
stabilisable, i.e. there exists K 2 Rm�n such that A � BK is
stable. Moreover, the uncertainty DBðtÞ is assumed to be
matched, i.e. there exists a matrix dðtÞ 2 Rm�m such that
DBðtÞ ¼ BdðtÞ with kdðtÞk� rB < 1; where rB is a positive
constant. The admissible parameter uncertainties are of the
norm-bounded form

DAðtÞ ¼ EFðtÞH; DAhðtÞ ¼ EhFhðtÞHh ð3Þ
where E, Eh, H and Hh are known constant matrices, and
F(t) and Fh(t) are unknown time-varying matrices with
Lebesgue measurable elements bounded by

FTðtÞFðtÞ � I; FT
h ðtÞFhðtÞ � I; 8t

The objective is to design an SMC law such that the state
trajectories are driven onto the specified sliding surface and
remain there in subsequent time. To this end we choose the
sliding surface s(t) as

sðtÞ¼G½xðtÞ�Adxðt�dÞ
 ¼GBT X½xðtÞ�Ad _xxðt�dÞ
 ¼ 0

ð4Þ
where G 2 Rm�n;X 2 Rn�n is a positive definite matrix to
be designed. G 2 Rm�m is some nonsingular matrix: For
simplicity, G is chosen as the identity matrix in this work.

We present an SMC design method and investigate the
reachability of the sliding surface and the stability of the
closed-loop systems. The following matrix inequalities
are useful for the development of our result.

Lemma 1: (i) Let X and Y be real matrices of appropriate
dimensions, for any scalar e > 0;

XY þ YT XT � e�1XXT þ eYT Y

(ii) Let E, H, and F(t) be real matrices of appropriate
dimensions with F(t) satisfying

FTðtÞFðtÞ � I

then, for any e > 0;

EFðtÞH þ HT FTðtÞET � e�1EET þ eHT H

3 Sliding-Mode control design

Let the SMC strategy be given as follows:

uðtÞ ¼ �KxðtÞ þ urðtÞ ð5Þ

urðtÞ¼
�BT X½AxðtÞþAhxðt�hÞ
�rðx;tÞ sðtÞ

ksðtÞk; ksðtÞk6¼0

�BT X½AxðtÞþAhxðt�hÞ
; ksðtÞk¼0

(

ð6Þ
where K 2 Rm�n is chosen such that A � BK is stable,
and

rðx; tÞ ¼ 1

1 � rB

ð2ðkBT XAk kxðtÞk

þ kBT XAh k kxðt � hÞkÞ þ gÞ
ð7Þ

with g > 0 constant. Then we obtain the following result.

Theorem 1: For uncertain neutral systems (1), (2), if there
exist matrices X > 0;Q1 > 0;Q2 > 0; and scalars e1 > 0;
e2 > 0 and e3 > 0 satisfying the following LMIs

Q PAd XAh XB XE XEh

AT
dP

T �W1 0 0 0 0

AT
h X 0 �W2 0 0 0

BT X 0 0 �e1I 0 0

ET X 0 0 0 �e2I 0

ET
h X 0 0 0 0 �e3I

2
666666664

3
777777775
< 0 ð8Þ

W1 ¼ Q1 � AT
d ðQ1 þ Q2 þ e2HTH þ e1r

2
BKT KÞAd > 0

ð9Þ

W2 ¼ Q2 � e3HT
h Hh > 0 ð10Þ

with

Q ¼ XðA � BKÞ þ ðA � BKÞT X þ Q1 þ Q2 þ e2HT H

þ e1r
2
BKT K

P ¼ Q1 þ Q2 þ e2HTH þ e1r
2
BKT K þ XðA � BKÞ

then the SMC law (5)–(7) with sliding surface (4) can
guarantee that the closed-loop system is globally
asymptotically stable.

Proof: Define a difference operator D as

Dð�Þ ¼ �ð0Þ � Ad�ð�dÞ ð11Þ
From (9) it is easily seen that

AT
d Q1Ad � Q1 < 0

Thus the operator D is stable. Now choose a Lyapunov
functional candidate as follows:

VðxtÞ ¼ ½xðtÞ � Adðt � dÞ
T X½xðtÞ � Adxðt � dÞ


þ
Z t

t�d
xTðtÞQ1xðtÞdtþ

Z t

t�h
xTðtÞQ2xðtÞdt

ð12Þ
where xt ¼ xðt þ �Þ; � 2 ½�t; 0
: It can be shown that there
exist scalars c1 > 0 and c2 > 0 such that the following
holds:

c1 kDð�Þk2� Vð�Þ � c2 sup
�2½�t;0


k�ð�Þk2 ð13Þ

Differentiating V(xt) along the solution of neutral system
(1), (2) with (5) yields

_VVðxtÞ ¼ 2½xðtÞ � Adxðt � dÞ
TXðA � BK þ DAðtÞ

� DBðtÞKÞxðtÞ

þ 2½xðtÞ � Adxðt � dÞ
T XðAh þ DAhðtÞÞxðt � hÞ

þ 2ðxðtÞ � Adxðt � dÞÞT XðB þ DBðtÞÞurðtÞ

þ xTðtÞðQ1 þ Q2ÞxðtÞ � xTðt � dÞQ1xðt � dÞ

� xTðt � hÞQ2xðt � hÞ
ð14Þ

Noting the definitions of the operator D and sliding variable
s(t), (14) can be rewritten as
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_VVðxtÞ¼DTðxtÞðXðA�BKÞþðA�BKÞT XþQ1þQ2ÞDðxtÞ
þ2DTðxtÞXDAðtÞxðtÞ�2DTðxtÞXDBðtÞKxðtÞ
þ2DTðxtÞXðAhþDAhðtÞÞxðt�hÞ
þ2sTðtÞðIþdðtÞÞurðtÞ
�xTðt�dÞðQ1�AT

d ðQ1þQ2ÞAdÞxðt�dÞ
þ2DTðxtÞðQ1þQ2þXðA�BKÞÞAdxðt�dÞ
�xTðt�hÞQ2xðt�hÞ

ð15Þ

By lemma 1 (i), one can obtain for e1 > 0,

�2DTðxtÞXDBðtÞKxðtÞ � e�1
1 DTðxtÞXBBT XDðxtÞ
þ e1r

2
BxTðtÞKT KxðtÞ ð16Þ

Similarly it follows from (3) and lemma 1 (ii) that for e2 > 0
and e3 > 0;

2DTðxtÞXDAðtÞxðtÞ � e�1
2 DTðxtÞXEET XDðxtÞ
þ e2xTðtÞHT HxðtÞ ð17Þ

2DTðxtÞXDAhðtÞxðt � hÞ � e�1
3 DTðxtÞXEhET

h XDðxtÞ
þ e3xTðt � hÞHT

h Hhxðt � hÞ
ð18Þ

Utilising (6) and (7), for kdðtÞk� rB < 1 and ksðtÞk6¼ 0;
one can obtain

2sTðtÞðI þdðtÞÞurðtÞ
¼�2sTðtÞðIþdðtÞÞBTXðAxðtÞþAhxðt� hÞÞ

� 2rðx; tÞ ksðtÞk �2sTðtÞdðtÞrðx; tÞ sðtÞ
ksðtÞk

� 2 ksðtÞk ð1þrBÞðkBT XAkkxðtÞk
þ kBT XAhkkxðt� hÞkÞ

� 2rðx; tÞ ksðtÞk þ rðx; tÞ
ksðtÞk sTðtÞdðtÞdTðtÞsðtÞþ sTðtÞsðtÞ

	 

� 2 ksðtÞk ð1þrBÞðkBT XAkkxðtÞk
þ kBT XAhkkxðt� hÞkÞ�rðx; tÞð1�r2

BÞ ksðtÞk
��gð1þrBÞ ksðtÞk

ð19Þ

Thus substituting (16)–(19) into (15) results in

_VVðxtÞ � DTðxtÞðXðA � BKÞ þ ðA � BKÞT X

þ Q1 þ Q2 þ e�1
2 XEET X þ e�1

1 XBBT X

þ e�1
3 XEhET

h X þ e2HT H þ e1r
2
BKT KÞDðxtÞ

� xTðt � dÞðQ1 � AT
d ðQ1 þ Q2

þ e2HT H þ e1r
2
BKT KÞAdÞxðt � dÞ

þ 2DTðxtÞðQ1 þ Q2 þ e2HTH þ e1r
2
BKT K

þ XðA � BKÞÞAdxðt � dÞ
þ 2DTðxtÞXAhxðt � hÞ
� xTðt � hÞðQ2 � e3HT

h HhÞxðt � hÞ
ð20Þ

By considering (9) and (10), it follows from (20) that

_VVðxtÞ � DTðxtÞSDðxtÞ � ðxTðt � dÞ � DTðxtÞPAdW�1
1 Þ

� W1ðxðt � dÞ � W�1
1 AT

dP
T DðxtÞÞ

� ðxTðt � hÞ � DTðxtÞXAhW�1
2 ÞW2ðxðt � hÞ

� W�1
2 AT

h XDðxtÞÞ
ð21Þ

with

S ¼ XðA � BKÞ þ ðA � BKÞT X þ Q1 þ Q2þe�1
2 XEET X

þ e�1
1 XBBT X þ e�1

3 XEhET
h X þ e2HT H þ e1r

2
BKT K

þPAdW�1
1 AT

dP
T þ XAhW�1

2 AT
h X

Thus it can be seen from (21) that if S < 0; there exists a
scalar c > 0 such that

_VVðxtÞ � �ckDðxtÞk2

Moreover, noting the stability of the operator D and this
inequality and (13), it follows from theorem 7.1 in [1] that
the closed-loop system (1), (2) with sliding-mode controller
(5)–(7) is globally asymptotically stable.

Finally, by Schur’s complement, it is easily shown that
the matrix inequality S < 0 is equivalent to LMI (8). A

Corollary 1: Suppose that there exists no uncertainty in the
input matrix, that is rB ¼ 0: Then, if there exist matrices
X > 0;Q1 > 0;Q2 > 0; and scalars e1 > 0; e2 > 0 satisfy-
ing LMIs

Q̂Q P̂PAd XAh XE XEh

AT
d P̂P

T �ŴW1 0 0 0

AT
h X 0 �ŴW2 0 0

ET X 0 0 �e1I 0

ET
h X 0 0 0 �e2I

2
66666664

3
77777775
< 0 ð22Þ

ŴW1 ¼ Q1 � AT
d ðQ1 þ Q2 þ e1HT HÞAd > 0 ð23Þ

ŴW2 ¼ Q2 � e2HT
h Hh > 0 ð24Þ

with

Q̂Q ¼ XðA � BKÞ þ ðA � BKÞT X þ Q1 þ Q2 þ e1HT H

P̂P ¼ Q1 þ Q2 þ e1HT H þ XðA � BKÞ

the SMC law (5)–(7) with sliding surface (4) guarantees
that the closed-loop system is globally asymptotically
stable.

Now, consider the special case that both DAðtÞ and
DAðtÞ are matched, i.e.

DAðtÞ ¼ BdAðtÞ; DAhðtÞ ¼ BdhðtÞ ð25Þ

where kdAðtÞk� rA; and kdhðtÞk� rh with rA and rh

known constants. The following result can easily be
obtained from theorem 1.

Corollary 2: Suppose that DAðtÞ and DAhðtÞ are matched
such that (25) holds. If there exist matrices X > 0; Q1 > 0;
Q2 > 0; and scalar e > 0 satisfying the following LMIs:
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~QQ ~PPAd XAh XB

AT
d
~PPT � ~WW 0 0

AT
h X 0 �Q2 0

BT X 0 0 �eI

2
6664

3
7775 < 0 ð26Þ

~WW ¼ Q1 � AT
d ðQ1 þ Q2 þ e1r

2
BKT KÞAd > 0 ð27Þ

with

~QQ ¼ XðA � BKÞ þ ðA � BKÞT X þ Q1 þ Q2 þ er2
BKT K

then the SMC strategy (5), (6) with

rðx; tÞ ¼ 1

1 � r2
B

ð2½rA þ ð1 þ rBÞ
 kBT XAkk xðtÞk

þ 2½rh þ ð1 þ rBÞ
 kBT XAhkkxðt � hÞk þgÞ
ð28Þ

can guarantee that the closed-loop system is globally
asymptotically stable.

Proof: By selecting a Lyapunov functional candidate as
(12) it is easily shown that

_VVðxtÞ¼DTðxtÞðXðA�BKÞþðA�BKÞT XþQ1 þQ2ÞDðxtÞ
þ2DTðxtÞXAh �2DTðxtÞXDBðtÞKxðtÞ
þ2sTðtÞdAðtÞxðtÞþ2sTðtÞdhðtÞxðt�hÞ
þ2sTðtÞðIþdðtÞÞurðtÞ
�xTðt�dÞðQ1 �AT

d ðQ1 þQ2ÞAdÞxðt�dÞ
þ2DTðxtÞðQ1 þQ2 þXðA�BKÞÞAdxðt�dÞ
�xTðt�hÞQ2xðt�hÞ

ð29Þ
By (6) and (28) it is seen that

2sTðtÞdAðtÞxðtÞþ2sTðtÞdhðtÞxðt�hÞþ2sTðtÞðIþdðtÞÞurðtÞ
� 2 k sðtÞ k ðrA k xðtÞ kþrh k xðt�hÞ k

þð1þrBÞ kBT XA kk xðtÞ k
þð1þrBÞ kBT XAh kk xðt�hÞ kÞ
�rðx; tÞð1�r2

BÞ k sðtÞ k
� � g k sðtÞ k

ð30Þ
Thus, with a similar argument to theorem 1 one can
obtain that if there exist matrices X > 0; Q1 > 0; Q2 > 0;
and scalar e > 0 satisfying the following LMIs (26) and
(27), then it follows from (29) and (30) that

_VVðxtÞ � DTðxtÞ ~SSDðxtÞ � xTðt � dÞ � DTðxtÞ ~XXAd
~WW
�1

� �
� ~WW xðt � dÞ � ~WW

�1
AT

d
~XXT DðxtÞ

� �
� ðxTðt � hÞ

� DTðxtÞXAhQ�1
2 ÞQ2ðxðt � hÞ � Q�1

2 AT
h XDðxtÞÞ

� � ckDðxtÞk2

where c > 0 is some scalar constant, and

~SS ¼ XðA � BKÞ þ ðA � BKÞTX þ Q1 þ Q2 þ er2
BKT K

þ e�1XBBT X þ ~XXAd
~WW
�1

Ad
~XXT þ XAhQ�1

2 AT
h X

This means that the uncertain neutral delay system (1),
(2) with SMC law composed of (5), (6) and (28) is
globally asymptotically stable. A

At the second step of the sliding-mode control design,
in the following, we investigate the reachability of
sliding surface.

Theorem 2: Suppose that there exist matrices X > 0;
Q1 > 0;Q2 > 0; and scalars e1 > 0; e2 > 0; and e3 > 0
satisfying LMIs (8)–(10), and the sliding surface is given by
(4). Then, for neutral delay system (1), (2) with SMC (5)–
(7), every state trajectory is attracted towards the sliding
surface sðtÞ ¼ 0 in a finite time and once the trajectory hits
the sliding surface it remains there for all subsequent time.

Proof: By using (1), (4) and (5), one can obtain for
ksðtÞk 6¼ 0

_ssðtÞ ¼ BT Xf½A � BK þ DAðtÞ � DBðtÞK
xðtÞ
þ ½Ah þ DAhðtÞ
xðt � hÞg � BTXBðI þ dðtÞÞ

�



BT X½AxðtÞ þ Ahxðt � hÞ
 þ rðx; tÞ sðtÞ
ksðtÞk

�

which leads to

sTðtÞðBT XBÞ�1_ssðtÞ
¼ sðtÞðBT XBÞ�1BT X½A � BK þ DAðtÞ � DBðtÞK
xðtÞ

þ sTðtÞðBT XBÞ�1BT X½Ah þ DAhðtÞ
xðt � hÞ
� sTðtÞðI þ dðtÞÞBT X½AxðtÞ þ Ahxðt � hÞ


� rðx; tÞksðtÞk � rðx; tÞ
ksðtÞk sTðtÞdðtÞsðtÞ

ð31Þ
By noting that for kdðtÞk � rB

rðx; tÞ
ksðtÞk sTðtÞdðtÞsðtÞ

� 0:5
rðx; tÞ
ksðtÞk sTðtÞdðtÞdTðtÞsðtÞ þ sTðtÞsðtÞ

	 

� 0:5rðx; tÞksðtÞkð1 þ r2

BÞ

one can obtain that

�rðx; tÞksðtÞk � rðx; tÞ
ksðtÞk sTðtÞdðtÞsðtÞ

� �0:5rðx; tÞð1 � r2
BÞksðtÞk ð32Þ

Thus it follows from (7), (31) and (32) and that

sTðtÞðBT XBÞ�1_ssðtÞ
�ksðtÞkð½kRðA�BKÞkþkRDAðtÞkþkRBdðtÞKk
kxðtÞk

þksðtÞkðkRAhkþkRDAhðtÞkÞkxðt�hÞk
þksðtÞkð1þrBÞðkBT XAkkxðtÞkþkBT XAhkkxðt�hÞkÞ
�0:5rðx;tÞð1�r2

BÞksðtÞk
�ksðtÞkðkRðA�BKÞkþkREkkHkþrBkRBkkKkÞkxðtÞk

þksðtÞkðkRAhkþkREhkkHhkÞkxðt�hÞk
�0:5gð1þrBÞksðtÞk

ð33Þ
where R ¼ ðBT XBÞ�1BT X:

In the state space, define the following domain:

Og ¼ xðtÞ: zkxðtÞk þ �kxðt � hÞk � 0:5gf g
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where

z ¼ kRðA � BKÞk þ kREkkHk þ rBkRBkkKk
� ¼ kRAhk þ kREhkkHhk

Hence in the domain Og we have from (33)

sTðtÞðBT XBÞ�1_ssðtÞ � � 0:5grBksðtÞk þ zkxðtÞkð

þ �kxðt � hÞk � 0:5gÞksðtÞk

� � 0:5grBksðtÞk

It is seen that the reachability of sliding mode is satisfied
within the domain Og: Since according to theorem 1 the
closed-loop system is globally asymptotically stable, the
state trajectories of closed-loop system will enter Og in a
finite time and remain there. A

Remark 1: The sliding motion is attained only when the
state trajectories enter the domain Og: The region in which
the sliding motion takes place is usually referred to as the
sliding patch [15]. It is seen that the size of the sliding patch
depends on the design parameter g.

4 Numerical simulation

Consider the uncertain neutral delay systems (1), (2) with

A ¼
1 0:3 0

�3 0:1 0

0:1 0 �2

2
64

3
75; Ad ¼

�0:1 0 0:1

0 0:5 0

0 0 0:02

2
64

3
75;

Ah ¼
0:2 0:1 0:1

0:1 0 0

0:1 �0:1 0

2
64

3
75

B ¼
5 �7

�9 8

3 5

2
64

3
75; dðtÞ ¼ 0:1 0:2

0 0:1

" #
; E ¼

0:1

0

�0:2

2
64

3
75;

Eh ¼
�0:2

0

0:1

2
64

3
75

H ¼ �0:02 0:02 0:10½ 
; Hh ¼ 0:1 0:01 0:02½ 

and d ¼ 2; h ¼ 1: It is easily seen that the matrix A has
eigenvalues 0:55 � 0:8352i and 22, and kdðtÞk � rB ¼
0:1: For this uncertain neutral delay system, it is required to
construct the SMC law as (5)–(7) such that the closed-loop
system is asymptotically stable. To this end, select the
feedback matrix K as

K ¼
0:2 �0:2 �0:05

0 0:1 0:1

" #

such that A � BK is stable. By solving LMIs (8)–(10)

X ¼

0:1407 0:0796 0:0317

0:0796 0:1085 �0:0279

0:0317 �0:0279 0:2686

2
664

3
775

Q1 ¼
0:0384 0:0059 0:0232

0:0059 0:0818 �0:0225

0:0232 �0:0225 0:2343

2
64

3
75

Q2 ¼
0:0589 0:0145 0:0340

0:0145 0:0347 �0:0230

0:0340 �0:0230 0:2317

2
64

3
75

and e1 ¼ 5:5257; e2 ¼ 0:8804; e3 ¼ 0:8496: Hence, by
theorem 1 the sliding surface is given as

sðtÞ ¼ 0:0822 �0:6623 1:2158

�0:1897 0:1711 0:8979


 �
xðtÞ

� �0:0082 �0:3312 0:0325

0:0190 0:0855 �0:0010


 �
xðt � dÞ

and the desired SMC law is given as

uðtÞ ¼ � 0:2 �0:2 �0:05

0 0:1 0:1

� �
xðtÞ þ urðtÞ

where

urðtÞ¼ �
2:1908 �0:0416 �2:4317

�0:6132 �0:0398 �1:7957

� �
xðtÞ

�
0:0718 �0:1134 0:0082

0:0690 �0:1088 �0:0190

� �
xðt�hÞ

�10

9
ð6:8780kxðtÞkþ0:3722kxðt�hÞkþ5Þ sðtÞ

ksðtÞk

First, consider the case with initial function ’ð�Þ ¼
ð 1 0 �1 ÞT ; � 2 ½�2; 0
; xð0Þ ¼ ð 1 0 �1 ÞT : This
implies that ’ð�Þ ¼ xð0Þ for � 2 ½�2; 0
: The simulation
results are given in Figs. 1–4. Furthermore, the case
with xð0Þ 6¼ ’ð�Þ for � 2 ½�2; 0
 is considered. Let
’ð�Þ ¼ ð2 2 2ÞT ; � 2 ½�2;0
; xð0Þ ¼ ð0 �1 1 ÞT : The
simulation results are given in Figs. 5–7. The Figures
demonstrate that the SMC law effectively eliminates the
effect of uncertainties. The state trajectories are attracted
towards the designed sliding surface and the closed-loop
neutral delay system is asymptotically stable. Moreover, it

Fig. 1 Trajectories of state with u(t) ¼ 0
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can be seen from Figs. 2, 3, 5 and 6 that there are notable
variations in the curves of state variables and sliding-mode
variables around t ¼ 2; caused by the effect of the time
delay d ¼ 2 in the derivative term _xxðt � dÞ: Nevertheless,
these undesirable effects are effectively attenuated by the
present method.

5 Conclusions

We have investigated the problem of sliding-mode control
for a class of uncertain neutral delay systems. The neutral
delay systems under consideration may have parameter
uncertainties in the state matrices as well as in the input
matrix. A sufficient condition in terms of LMIs is derived to
guarantee the asymptotic stability of the closed-loop
systems. It was shown that the sliding motion is expected
to happen in the sliding patch which is a subset of the sliding
surface.
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