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C. Fuel Cell

Fuel cell output power can be defined as a function of its input
and efficiency , which is assumed to be constant (here,
50%) [35]

(31)

V. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization was introduced in 1995 by
Kennedy and Eberhart [38]. Although several modifications
to the original algorithm have been made to improve its per-
formance [39]–[43] and adapt it to specific types of problems
[44]–[46], a parallel version has not been previously imple-
mented. The following is a brief introduction to the operation
of the PSO algorithm. Consider a swarm of p particles, with
each particle’ s position representing a possible solution point
in the design problem space D. For each particle i, Kennedy
and Eberhart proposed that its position is updated in the
following manner:

(32)

with a pseudo-velocity calculated as follows:

(33)

Here, subscript k indicates a pseudo-time increment, and is
the inertia coefficient which is employed to manipulate the im-
pact of the previous history of velocities on the current velocity.
To allow the product or to have amean of 1, Kennedy
and Eberhart proposed that the cognitive and social scaling pa-
rameters and are selected such that . Fig. 4
depicts the optimization flowchart of PSO algorithm.

VI. OBJECTIVE FUNCTION

The objective function of this paper is

(34)

(35)

where is the number (unit) or capacity (kW or kg), CC is cap-
ital cost ($/unit), RC is cost of replacement ($/unit), and O&M
is annual operation and maintenance cost ($/unit-yr) of the com-
ponents:

(36)

Fig. 4. Optimization flowchart of PSO algorithm.

where is the real interest rate (here 6%) which is a function of
nominal interest rate and annual inflation rate ( ).

(37)

(38)

is the useful lifetime of the project (here 20 years). and
are useful lifetime and number of replacement of the component
during useful lifetime of the project, respectively.

is calculated by

(39)

(40)

where is the expected value of loss of energy or
energy not supplied, at time step t defined by

(41)

Here, is the amount of loss of energy (kWh) when system
encounters state , and is the probability that system encoun-
ters in state .
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Fig. 5. Flowchart of the proposed optimization methodology.

and are described by the following equa-
tions:

(42)

(43)

is the power which purchased from the grid, and
is the power which sold to grid. and are the
prices of buying and selling power, respectively.
The optimization problem is subject to the following con-

straints:

(44)

where is the number of time steps in which system’s relia-
bility is evaluated (here, ). The equivalent load factor
(ELF) is the ratio of the effective forced outage hours to the total
number of hours. In fact, it contains information about both the
numbers and magnitudes of the outages [47]. Therefore, ELF is
chosen as the main reliability index of this study:

(45)

(46)

(47)

(48)

(49)

VII. SIMULATION RESULT

In this study, Ekbatan residential area (Tehran, Iran) has been
selected as a case study. The peak load of the considered smart
microgrid, phase A of Ekbatan complex, is 500 kW (the overall
load curve without heating and cooling load), and the number
of houses are 200. Ekbatan has three separate sets of buildings
called respectively phase A, B, and C. Each phase has isolated
buildings called a block. The architecture in the first and the
third phase is similar and different from the phase B. All of these
phases contain 1, 2, 3, or 4-bedroom apartments occupying an
area within the range of 50 to 240 .The size of each wind
turbine and other units (Photovoltaic, Fuel cell, electrolyzer, and
hydrogen tank) are considered 7.5 kW and 1 kW, respectively.
Fig. 5 shows the system flowchart.
This paper determines the optimal size of units for the

smart microgrid considering intelligent management of
heating/cooling loads. Air conditioning system has been used
in order to provide heating/cooling inside the houses. Also, the
requirement of heat water is supplied by the output heat water
generated by fuel cell and municipal waste. If the mentioned
sources are not able to supply sufficient heat water, the natural
gas will be purchased as a replacement. This paper intends to
investigate the effect of heating and cooling management on
optimal size of smart microgrid units, the reliability of loads,
the amount of purchased natural gas from utility, and the total
cost of the smart microgrid. The management of heating and
cooling loads is performed by considering renewable energy
production including wind and solar resources, smart microgrid
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TABLE I
THE ELECTRICAL ENERGY TARIFFS OF RESIDENTIAL CONSUMPTION

load curves, the outside temperature, and the desired inside
temperature of the consumers.
In order to achieve optimal sizing of smart microgrid units,

the following parameters should be determined as the program
inputs:
— Characteristic of generation units of smart microgrid, i.e.
wind and solar resources.

— Characteristic of energy storage, i.e. fuel cell, electrolyzer,
and hydrogen tank.

— Hourly wind speed and solar irradiation in order to specify
the production of wind and solar units.

— Outside temperature.
— Desired temperature, maximum and minimum acceptable
temperature.

— The price of energy purchased and bought from and to
distribution grid.

— The price of natural gas.
— Hourly load curve.
— The minimum and maximum power consumptions of a
typical air conditioner.

— The required parameters of optimization algorithm, i.e.
Particle Swarm Optimization (PSO).

— The features of mentioned buildings such as wall material,
windows, and etc.

The insertion of above-mentioned parameters and running the
program will result in the following output:
— The optimal size of smart microgrid elements.
— The rate of energy generated by wind and solar resources
and fuel cell.

— The rate of hydrogen storage in related tank.
— The rate and the cost of energy transfer between the con-
sidered smart microgrid and distribution grid.

— The rate of heating/cooling system power consumption.
— The hourly real inside temperature.
— The not-supply load, load reliability, and penalty of not-
supply load.

— The optimal cost of the smart microgrid.
In the performed simulations, a transformer with a capacity of
100 kVA and 90% efficiency provides a bidirectional connec-
tion between the smart microgrid and the distribution grid. The
considered electrical energy tariffs within this study refer to the
residential subscriber in the range of consumption more than
30 kW and less than 30 kW in Iran. The tariffs are shown in
Table I.

TABLE II
OPTIMAL COST AND SIZE OF EACH UNIT IN SMART MICROGRID WITHOUT

MANAGING THE HEATING/COOLING SYSTEMS

TABLE III
THE AMOUNT AND COST OF BUYING AND SELLING ENERGY, THE AMOUNT
AND COST OF BUYING NATURAL GAS, INTERRUPTED LOADS AND PENALTY

FOR THEM WITHOUT MANAGING THE HEATING/COOLING SYSTEMS

Regarding the price of produced electricity in non-govern-
mental sections out of new energies resources and with regard
to the positive environmental aspects and economies by lack
of consumption of fossil energy resources and in order to en-
courage any investment in this type of production, it is appli-
cable for one kwh for peak & normal hours at least 0.13$ and for
low-load hours at least 0.09$ (Maximum 4 hours per day/night)
in production place [48].
In order to implement the heating/cooling system load con-

trol method, the area of houses (where heating/cooling system
is installed) is considered with dimensions of 10 m 16 m. It
is assumed that the thermal interchange is accrued with the side
walls, i.e. . 20% of the
front and back side walls are being made of double glazed win-
dows with 1 cm thicknesses and 5% of them of fiber glazed win-
dows. Based on the calculation, the factor of window equals
to 0.05 (w/m.k), and walls thickness is 30 cm.
The optimal numbers of smart microgrid units before man-

aging the power consumption of heating and cooling system are
demonstrated in Table II. The optimal amount and cost of pur-
chased power from the distribution grid, the optimal amount and
cost of sold power to distribution grid, the optimal cost of the
smart microgrid, interrupted loads, penalty for interrupted loads,
the optimal amount and cost of purchased natural gas and smart
microgrid reliability are depicted in Table III.
This section investigates the effect of management of heating

and cooling loads on optimal sizing of smart microgrid units.
The proposed control methodology requires the following pa-
rameters to be determined:
— The desired temperature in hot season, i.e. summer: 23
— The desired temperature in cold season, i.e. winter: 21
— The minimum and maximum temperature in summer:
19–26

— The minimum and maximum temperature in winter:
18–22

—Maximum power consumption of each heating/cooling
system is assumed to be 1.7 kW.
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Fig. 6. The surplus power of renewable energy sources, adjusted temperature
and the cooling system power.

Fig. 7. The actual inside temperature of the house and the outside temperature
in summer.

Based on these assumptions, the above mentioned control
method is applied in order to model and manage the heating
and cooling system.
Fig. 6 shows the smart microgrid’s extra power for three days

of a hot season, adjusted temperature inside the house
and managed (controlled) power of the cooling system on a
same time scale. As can be seen in Fig. 6, during hours which
we have extra power the house temperature is adjusted to be
less than the desired temperature (within the constraints). This
will change the behaviour (consumption) of the cooling system
to match the available the extra power. Also, during the hours
when the surplus of power is negative the temperature is tuned
for a value higher than desired one, to minimize the consump-
tion of the cooling system. Fig. 7 shows the actual inside tem-
perature of the house and the outside temperature in
summer. The inside temperature of the house will be changed
according to the surplus power, i.e. when surplus power is low,
the inside temperature will be set to an upper point and vice
versa.
In the proposed method, using the active controller, con-

sumers choose a temperature as the desired temperature, and
then, the active controller will calculate a temperature for
the internal space based on the desired temperature and the
mentioned extra power. Finally, the controller set the power
consumption of heating/cooling system according to the outside
temperature in order to reach the calculated temperature which
is nominated with actual temperature. This temperature should
satisfy the following conditions,
• To decrease the power consumption heating/cooling
system while the surplus power is low.

• Not to interfere with the thermal comforts of the con-
sumers.

Fig. 8. The surplus power of renewable energy sources and the heating system
power.

Fig. 9. The actual inside temperature of the house and the outside temperature
in winter.

TABLE IV
OPTIMAL COST AND SIZE OF EACH UNIT IN SMART MICROGRID WITH

MANAGING THE POWER CONSUMPTION OF HEATING AND COOLING SYSTEM

In other words, the controller decides on heating or cooling
the inside with regards to the thermal comfort of consumers and
the surplus power.
The proposed method also is applied to power consumption

of heating systems. Fig. 8 shows the smart microgrid’s extra
power for three days of a cold season, adjusted temperature in-
side the house and managed (controlled) power of the
heating system on a same time scale. In this figure, during hours
when the surplus of power is positive the home temperature
is adjusted higher than the desired value in order to match the
heating system consumption with the extra available power. On
the other hand, during the hours when the surplus of power is
negative, the temperature will be lower than the desired to re-
duce the cooling system consumption and consequently better
matching the consumed power with the available extra power.
Fig. 9 shows the actual inside temperature of the

house and the outside temperature in winter.
The optimal numbers of smart microgrid units after man-

aging the power consumption of heating and cooling systems
are demonstrated in Table IV. The optimal amount of purchased
power from distribution grid, the optimal amount of sold power
to distribution grid and the not-supply loads, considering related
costs and smart microgrid reliability are depicted in Table V.
By comparing n Tables II and IV it can be noted that utilizing

the proposed method to manage the power consumption of
heating and cooling system will decrease the size of renewable
energy generators (wind and solar) and increase the amount
of stored hydrogen in the hydrogen tank. Also the comparison
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TABLE V
THE AMOUNT AND COST OF BUYING AND SELLING ENERGY, THE AMOUNT
AND COST OF BUYING NATURAL GAS, INTERRUPTED LOADS AND PENALTY

FOR THEM WITH MANAGING THE HEATING/COOLING SYSTEMS

of Tables III and V illustrates that the proposed method will
result in reduction of the purchased power from distributed
grid, thereby increasing the power sold to the distributed grid
as well as decreasing non-supply loads and purchased gas from
the utility.
To verify the presented cooling/heating system management

method, the correlation of cooling system loads prior to and
after application of the loadmanagement methodwith the power
surplus curve has been investigated. The correlation values are
as follows:

(50)

(51)

The resulted values show that employing the proposed load
management method will increase the correlation between
cooling system loads and surplus power of renewable energy
sources. In other words, the rate of change of cooling system
power usage gets closer to the rate of change of the surplus
energy produced by renewable sources. This in turn creates the
capacity for higher renewable energy penetration.
The total load in consists of two parts:
1) The base load Pbase(i) represents the all electricity loads
within a smart microgrid except cooling and heating loads.

2) Pcooling(i) and Pheating(i) represent the load of cooling
and heating systems respectively.

The measurement interval is recorded hourly and denoted by .
It is assumed that the base loadPbase(i) remains constant during
the measured interval .

(52)

(53)

(54)

(55)

where and represent
the cooling and heating load values before the application of
the proposed load management method, and
and denote the cooling and heating loads

after applying the load management strategy. The presented
load management method increases the correlation between
total load curve of the smart grid and the generated surplus
power by renewable energy sources. This is shown by (53) and
(54).

VIII. CONCLUSION

This paper sets forth a novel intelligent residential heating/
cooling system controller that has smart grid functionality. In
this paper, a possible implementation of an active controller will
be examined. The optimization objective of the heating/cooling
systems management is to minimize the cost of smart micro-
grid, the size of renewable energy resources, imported energy
from distribution grid, and improve reliability of smart micro-
grid. Simulation studies show that managing the power con-
sumption of heating and cooling systems based on the proposed
method will decrease the size of renewable energy generators
(wind and solar), increase the amount of stored hydrogen in the
hydrogen tank, reduce the purchased power from distributed
grid, increase the sold power to distributed grid, decrease the
non-supply loads, purchased gas from utility and the total cost
of smart microgrid.
The results demonstrate that smart heating/cooling system

and renewable energy can work well together, and their indi-
vidual benefits can be added together when used in combination.

REFERENCES
[1] A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, “Demand

dispatch,” IEEE Power Energy Mag., vol. 8, pp. 20–29, 2010.
[2] S. M. Hakimi and S. M. M. Tafreshi, “Optimization of smart micro-

grid considering domestic flexible loads,” J. Renewable Sustainable
Energy, vol. 4, pp. 1–15, 2012.

[3] S. M. Hakimi and S. M. M. Tafreshi, “Effect of plug-in hybrid electric
vehicles charging/discharging management on planning of smart mi-
crogrid,” J. Renewable Sustainable Energy, vol. 4, pp. 30–45, 2012.

[4] K. F. Fong, V. I. Hanby, and T. T. Chow, “HVAC system optimization
for energy management by evolutionary programming,”Energy Build.,
vol. 38, pp. 220–231, 2008.

[5] W. Deng, W. Pei, and Z. Qi, “Impact and improvement of distributed
generation on voltage quality in micro-grid,” in Proc. 3rd Int. Conf.
Electric Utility Dereg. and Restruct. and Power Technol., 2008, pp.
1737–1741.

[6] R. H. Lasseter, “Microgrids,” in Proc. IEEE Power Eng. Soc. Winter
Meeting, 2002, vol. 1, pp. 305–308.

[7] C. Marnay and G. Venkataramanan, “Microgrids in the evolving elec-
tricity generation and delivery infrastructure,” in Proc. IEEE Power
Eng. Soc. Winter Meeting, 2006, pp. 18–22.

[8] N. Lu, “An evaluation of the HVAC load potential for providing load
balancing service,” IEEE Trans. Smart Grid, vol. 3, pp. 1263–1270,
2012.

[9] Y. Zhang and N. Lu, “Demand-side management of air conditioning
cooling loads for intra-hour load balancing,” in Innovative Smart Grid
Technol. (ISGT), 2013, pp. 1–6.

[10] N. Ruiz, “A direct load control model for virtual power plant manage-
ment,” IEEE Trans. Power Syst., vol. 4, pp. 959–966, 2009.

[11] P. Jahangiri, W. Di, and C. Chengrui, “Intelligent residential air-condi-
tioning systemwith smart-grid functionality,” IEEE Trans. Smart Grid,
vol. 3, pp. 2240–2251, 2012.

[12] Y. Hong, J. Kai Lin, C. Ping Wu, and C. Chuang, “Multi-objective
air-conditioning control considering fuzzy parameters using immune
clonal selection programming,” IEEE Trans. Smart Grid, vol. 3, pp.
1603–1610, 2012.

[13] E. H. Mathews, C. P. Botha, D. C. Arndt, and A. Malan, “HVAC con-
trol strategies to enhance comfort and minimise energy usage,” Energy
Build., vol. 33, pp. 853–863, 2001.

[14] N. Nassif, S. Kajl, and R. Sabourin, “Evolutionary algorithms for
multi-objective optimization in HVAC system control strategy,” in
Proc. IEEE Fuzzy Inf. Process. Soc. Annu. Meet., 2004, pp. 51–56.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SMART GRID

[15] F. Calvino, M. La Gennusa, G. Rizzo, and G. Scaccianoce, “The con-
trol of indoor thermal comfort conditions: Introducing a fuzzy adaptive
controller,” Energy Build., vol. 36, pp. 97–102, 2004.

[16] S. Ari, I. A. Cosden, H. E. Khalifa, J. F. Dannenhoffer, P. Wilcoxen,
and C. Isik, “Constrained fuzzy logic approximation for indoor comfort
and energy optimization,” in Proc. IEEE Fuzzy Inf. Process. Soc. Annu.
Meet., 2005, pp. 500–504.

[17] A. I. Dounis and C. Caraiscos, “Advanced control systems engineering
for energy and comfort management in a building environment-A re-
view,” Renewable Sustainable Energy Rev., vol. 13, pp. 1246–1261,
2009.

[18] Thermal Environmental Conditions for Human Occupancy, ASHRAE
Std. 55, 2010.

[19] M. Hamdi and G. Lachiver, “A fuzzy control system based on the
human sensation of thermal comfort,” in Proc. IEEE World Congr.
Comput. Intell., 1998, pp. 487–492.

[20] K. Chen, Y. Jiao, and E. S. Lee, “Fuzzy adaptive networks in thermal
comfort,” Appl. Math. Lett., vol. 19, pp. 420–426, 2006.

[21] J. Liang and R. Du, “Thermal comfort control based on neural network
for HVAC application,” IEEE Control Applicat., pp. 819–824, 2005.

[22] A. Faruqui and S. Sergici, “Household response to dynamic pricing of
electricity: A survey of the empirical evidence,” J. Regulatory Econ.,
vol. 38, pp. 193–225, 2010.

[23] A. Rogers, S. Maleki, S. Ghosh, and N. R. Jennings, “Adaptive home
heating control through Gaussian process prediction and mathematical
programming,” Agent Technol. Energy Sys., pp. 71–78, 2010.

[24] R. T. Guttromson, D. P. Chassin, and S. E. Widergren, “Residential
energy resource models for distribution feeder simulation,” in Proc.
IEEE PES General Meeting, 2003, pp. 108–113.

[25] D. P. Chassin, J. M. Malard, C. Posse, A. Gangopadhyaya, N. Lu, S.
Katipamula, and J. V. Mallow, Modeling Power Systems as Complex
Adaptive Systems Pacific Northwest National Laboratory, 2004, Tech.
Rep..

[26] D. Hammerstrom, Pacific Northwest Gridwise Testbed Demonstration
Projects-Part I Olympic Peninsula Project U.S. Department of Energy
at Pacific Northwest National Laboratory, Tech. Rep., PNNL-17167,
2007.

[27] P. Constantopoulos, F. C. Schweppe, and R. C. Larson, “A real-time
consumer control scheme for space conditioning usage under spot elec-
tricity pricing,” Comput. Operat. Res., vol. 18, pp. 751–765, 1991.

[28] D. J. Livengood, “The energy box: Comparing locally automated con-
trol strategies of residential electricity consumption under uncertainty,”
Ph.D. dissertation, Mass. Inst. Technol., Cambridge, MA, 2011.

[29] D. Molina, C. Lu, V. Sherman, and R. Harley, “Model predictive and
genetic algorithm based optimization of residential temperature control
in the presence of time-varying electricity prices,” in Industry Applicat.
Soc. Annu. Meeting, 2011, pp. 1–7.

[30] A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin, “Reducing
transient and steady state electricity consumption in HVAC using
learning-based model-predictive control,” IEEE J. Mag., vol. 100, pp.
240–253, 2012.

[31] F. I. Vázquez and W. Kastner, “Thermal Comfort Support Application
for Smart Home Control,” in Ambient Intelligence-Software and Appli-
cations, Advances in Intelligent and Soft Computing. New York, NY,
USA: Springer, 2012, vol. 153, pp. 109–118.

[32] US Department of Energy Framework Public Meeting for Residential
Central Air Conditioners and Heat Pumps pp. 35–36, 2008.

[33] H. Yang, W. Zhou, L. Lu, and Z. Fang, “Optimal sizing method for
stand-alone hybrid solar-wind system with LPSP technology by using
genetic algorithm,” Solar Energy, vol. 82, pp. 354–367, 2008.

[34] R. Billinton and R. N. Allan, Reliability Evaluation of Power Sys-
tems. New York, NY, USA: Plenum, 1984.

[35] M. J. Khan andM. T. Iqbal, “Pre-feasibility study of stand-alone hybrid
energy systems for applications in Newfoundland,”Renewable Energy,
vol. 38, pp. 835–854, 2005.

[36] M. Y. El-Sharkh, M. Tanrioven, A. Rahman, andM. S. Alam, “Cost re-
lated sensitivity analysis for optimal operation of a grid-parallel PEM
fuel cell power plant,” J. Power Sources, vol. 161, pp. 1198–1207,
2006.

[37] K. Strunz and E. K. Brock, “Stochastic energy source access man-
agement: Infrastructure-integrative modular plant for sustainable hy-
drogen-electric cogeneration,” Int. J. J Hydrogen Energy, vol. 31, pp.
1129–1141, 2006.

[38] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in IEEE
Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[39] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
Proc. IEEE Int. Conf. Evolutionary Comput., 1998, pp. 69–73.

[40] Y. Shi and R. C. Eberhart, Parameter Selection in Particle SwarmOpti-
mization. Berlin, Germany: Springer, 1998, vol. 1447, Lecture Notes
in Computer Science, pp. 591–600.

[41] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” Congr. Evolutionary Comput.,
pp. 84–88, 2000.

[42] M. Clerc, “The swarm and the queen: Towards a deterministic and
adaptive particle swarm optimization,” Congr. Evolutionary Comput.,
pp. 1951–1957, 1999.

[43] M. Lzvbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm
optimiser with breeding and subpopulations,” in Genetic and Evolu-
tionary Computation Conf. (GECCO-2001), 2001.

[44] P. C. Fourie and A. A. Groenwold, “Particle swarms in algorithm in
topology optimization,” FourthWorld Congress of Structural and Mul-
tidisciplinary Optimization, pp. 52–53, 2001.

[45] A. Carlisle and G. Dozier, “Adapting particle swarm optimization to
dynamic environments,” in Int. Conf. Artificial Intelligence, 2000, pp.
429–434.

[46] J. Kennedy and R. C. Eberhart, “A discrete binary version of the par-
ticle swarm algorithm,” in Proc. Conf. Syst., Man Cybern., 1997, pp.
4104–4109.

[47] R. S. Garcia and D. Weisser, “A wind-diesel system with hydrogen
storage: Joint optimization of design and dispatch,”Renewable Energy,
vol. 31, pp. 2296–2320, 2006.

[48] [Online]. Available: http://www.suna.org.ir/suna_content/media/
image/2012/02/1455_orig.pdf

S. M. Hakimi, photograph and biography not available at the time of
publication.

S.M.Moghaddas-Tafreshi, photograph and biography not available at the time
of publication.


