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Optimal Planning of a Smart Microgrid Including
Demand Response and Intermittent Renewable

Energy Resources
S. M. Hakimi and S. M. Moghaddas-Tafreshi

Abstract—Heating/cooling systems have played an important
role in building energy and comfort management. There have
been intensive discussions about the integration of heating/cooling
systems into the smart grid infrastructure over the past decade,
yet controlling the operation of heating/cooling systems in a smart
grid with high penetration of renewable resources has not been
addressed clearly. This study has investigated the suitability of a
novel active controller applied to heating/cooling systems in the
context of smart grid with high penetration of renewable energies.
The proposed controller operates by responding to a combination
of internal set points and external signals (e.g. the availability
of renewable energy resources and welfare of customers) from a
single local controller. The heating/cooling systems management
minimizes the overall cost of the simulated smart microgrid, the
size of smart microgrid units, and the imported energy from
the distribution grid through an optimization process. It also at
the same time maximizes the reliability of the smart microgrid.
Demonstrated results confirm the capability of the proposed
heating/cooling system controller on the planning of a smart
microgrid.

Index Terms—Active controller, heating/cooling system, renew-
able energy, smart microgrid.
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Standard deviation of surplus power
corresponding to .

Standard deviation of surplus power
corresponding to .

Signal representing the surplus of power.

24 hour average of the surplus power
signal.

The thermal transfer from the
heating/cooling system.

The thermal loss between the indoor and
outdoor environment.

m The air mass of building area.

The air specific heat.

Temperature variation at the time step i.

The air density.

The volume of the domestic space.

Latent load.

The air specific humidity.

The conduction heating load.

U The heat transmission coefficient.

A The Construction layer area.

CMH The air flow infiltration rate.

R The thermal resistance of structure layers.

X The layer thickness.

K The layer conductivity.

Rated power of each PV array.

Efficiency of PV’s DC/DC converter.

Cut in wind speed.

Cut out wind speed.

V Wind speed.

Nominal wind speed.

Maximum power of wind turbine.

1949-3053 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SMART GRID

Power of wind turbine in cut out wind
speed.

The best ever position of particle at time .

The global best position in the swarm at
time .

Inertia coefficient.

and Represent uniform random numbers
between 0 and 1.

The net present cost of component .

The cost of loss of load and is calculated
by.

The cost of buying energy from distribution
grid.

The cost of selling energy to distribution
grid.

,
and

Optimal size of fuel cell, wind turbine,
electrolyzer and photovoltaic panel,
respectively.

I. INTRODUCTION

T ODAY in the majority of power systems operation tech-
niques, the generation is controlled to supply the predicted

network load. The direct control of loads are rare, except for the
cases when insufficient generation is available on peak days, at
which point the load may be reduced through demand response
programs. The overall approach is that generation is controlled
or dispatched to follow the load.
The load-following policy becomes more complicated as

more renewable production is added to the grid [1]. In micro-
grids, intermittent renewable energy sources, such as wind and
solar energies, are not dispatchable and predictable with an
adequate assurance. Solar energy generation can alter rapidly
due to passing clouds. Wind energy also has a different pattern
every day with rapid daily changes. As a result, increase in
the renewable generation capacity has to be accompanied with
increase in conventional sources like peaking gas turbines
[1]. With more and more intermittent renewable generation, it
will become ever more complex for the residual dispatchable
generation capacity to supply the required services and quick
ramping to ensure that the generation follows the load. Fortu-
nately, there is a novel opportunity brought forward by smart
grid, which utilizes the direct control of loads [2]. As genera-
tion becomes less dispatchable in general, it can be somewhat
compensated by making loads more dispatchable. Demand
dispatch and demand response are alike in a way that demand
response also involves turning loads on or off. Nevertheless,
not like the demand response, which is used infrequently and
typically for load shedding purposes during peak demand,
demand dispatch is planned to be used enthusiastically at all
times to be incorporated into services operating the grid [3].
It is called demand dispatch due to the fact that the loads
are dispatched in real time, much as today’s grid dispatches

generation. Turning on a load or raising the demand on the
grid creates similar results on the power balance of the grid as
reducing the generation does. In a same way, turning off a load
has the identical outcome as increasing the generation. Under
demand dispatch, loads become generation- following [1].
Among all building services and electric appliances, the

energy consumed by heating/cooling systems has the highest
percentage [4]. Therefore, effective demand dispatch of the
heating/cooling system can play an important role in creating
the power balance.
In the present paper, the simulated smart microgrid contains

wind turbines, solar panel, fuel cells, electrolyzer and smart
heating/cooling systems. Heating/cooling systems are consid-
ered to be a flexible load which can be managed to follow the
renewable energy generation as it allows increasing the penetra-
tion of renewable energy resources, thereby reducing the total
cost of smart microgrid. This smart microgrid is connected to
a distribution network. Consequently, the microgrid can sell its
surplus power to the connected distribution network operator
and buy shortage power from them whenever is needed.
The concept of the microgrid was first proposed by the Con-

sortium for Electric Reliability Technology Solutions (CERTS)
in America; it is a new type of distributed generation network
structure with a wide range of development prospects [5]. Mi-
crogrids comprise low-voltage distribution systems with dis-
tributed energy sources, storage devices, and controllable loads,
which operate either islanded or connected to the main power
grid in a controlled, coordinated way. The authors in [6], [7] in-
troduced the benefits of the microgrid, such as enhanced local
reliability, reduced feeder losses, and local voltage support, pro-
viding increased efficiency using waste heat as combined heat
and power, voltage sag correction, or providing uninterruptible
power supply functions. The steady progress in the development
of distributed power generation, such as microgrids and renew-
able energy technologies, is providing new opportunities for the
utilization of energy resources.
Reference [8] shows that the intra-hour load balancing

service supplied by HVAC loads meets the performance re-
quirements and can become a main resource of income for
load-serving entities where the two-way communication smart
grid infrastructure enables direct load control over the HVAC
loads. Reference [9] evaluates the performance of a centralized
load controller designed to provide intra-hour load balancing
services using air conditioning (A/C) units in their cooling
modes. Reference [10] provides an optimization algorithm to
manage a virtual power plant consisting of a large number of
consumers with thermostatically controlled appliances. Ref-
erence [11] presents an intelligent residential air-conditioning
(A/C) system controller that has smart grid functionality. Ref-
erence [12] investigates the demand response achieved by the
smart energy management system in a smart home, and it aims
to find the optimal temperature scheduling for air-conditioning
according to the day-ahead electricity price and outdoor tem-
perature forecasts.
Previous researches on comfort and energy management

issues have mostly focused on large building environments
with many occupants [13]–[16]. As detailed in the 2009 survey
by Dounis and Caraiscos [17], these studies consider not only

www.Matlabi.irwww.Matlabi.ir

http://www.Matlabi.ir


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAKIMI AND MOGHADDAS-TAFRESHI: OPTIMAL PLANNING OF A SMART MICROGRID 3

heating and cooling systems but also other building design fea-
tures such as window placements, window shading, mechanical
ventilation systems, and lighting systems. Occupant comfort
in these studies is typically a complex multi-faceted concept
encompassing thermal comfort, visual comfort, and indoor
air quality, in keeping with ASHRAE standards [18]. Various
control methods are explored in these studies, including fuzzy
controllers [19], fuzzy adaptive controllers [15], [20], and
neural network controllers [21].
In recent years, the increasing interest in advanced metering

infrastructure for households has encouraged researchers to
focus more carefully on the energy usage choices for residential
homeowners [22]. For example, a residential demand model,
without consideration of price signals, proposed by Rogers et
al. [23]. Guttromson et al. [24] and Chassin et al. [25] have fo-
cused on the modeling of price-responsive residential demands
constrained by internal and external state conditions. The latter
studies are anchored by an Olympic Peninsula pilot project
[26]. However, residential energy demands in these studies
are modeled by means of pre-specified behavioral rules rather
than as solutions to residential optimization problems. More
recent researches have set forth formulations of the residential
A/C control problem as an optimization problem. However the
current work has attempted to minimize the combination of
thermal discomfort and energy usage under varying electricity
prices [27]–[32].
The contributions of this paper are as follows:
1) In the assumed smart microgrid, the penetration of the in-
termittent renewable generation is high, and consequently
the generation is less dispatchable. In this study, a new op-
tion is proposed to match load and generation by making
loads more dispatchable. Previous studies can be extended
to investigate the value of flexible loads in system with
high renewable energy penetration.

2) In the previous works, peak shaving, displacing of control-
lable loads based consumption curves and electricity tariff
have been proposed for load management. The present re-
search has introduced a method to manage flexible loads
using their consumption curves, generation side conditions
and the welfare of consumers simultaneously.

3) Recent papers on heating/cooling systems management
have only considered short time studies. To provide a more
comprehensive study, this paper studies heating/cooling
management over a longer time period. The economic and
systematic impact of the proposed management method-
ology can be used in energy planning of a residential
complex.

II. ACTIVE CONTROLLER

In the smart microgrid, the signal representing the surplus
of power, Psurplus, is generated by a local controller and sent
via a communication system to all end user active controllers.
The surplus of power is the difference between renewable en-
ergy generation and load curve of smart microgrid. Ideally, the
surplus power signal will be sent to the metering system of
end users or Home EnergyManagement (HEM) systems, which
then relay the information to the active controller(s) located in-
side the house. The surplus power signal is an indication of the

availability of the renewable energy during a given time period.
In addition to the surplus power signal, a rolling 24 hour av-
erage of the surplus power signal, , and a rolling 24
hour standard deviation of surplus power, are trans-
mitted to the active controllers. The inclusion of the mentioned
three signals allows for a comparison of the power signal over
the past 24 hours. In order for an end use residential load to re-
spond to the received signals, it is necessary to have an active
controller on place.
This section examines the suggested solution for the active

controller. An active controller operates by responding to a
combination of internal set points and the external signal from
the local control entity. Although the active controller can be
connected to most end user loads, a residential heating/cooling
system has been investigated in this paper.

A. Cooling Mode

The surplus power signal, , and, , are
transmitted to the controller as additional information which
can be displayed for the end use on a HEM. When the surplus
power signal is equal to the 24 hour average then the active
controller will set the real temperature set point, , to
the . When the surplus power signal and the 24 hour
average are not equal, will be shifted away from the

. If the surplus power signal is lower than the 24 hour
average, the controller will move the real cooling set point,

, higher than the desired temperature set point, ,
The maximum allowable temperature will not exceed .
On the other hand, when the surplus power signal is higher
than the 24 hour average, the controller will reduce the real
cooling set point lower than the desired temperature, with the
minimum value of . The difference between the desired
and real set point is given by . Any positive value of

indicates that the real set point is higher than
the desired set point. In effect the cooling system allows the
temperature set point to increase as the surplus power signal is
lower than the average value. Conversely, any negative value of

indicates that the controller has moved the real
set point lower than the desired set point. In effect, the cooling
system preemptively continues to cool down the temperature
because of the surplus power signal is higher than average
value.
While and are used for conceptual and

informational purposes, the active controller will operate based
on . Since is a function of the current
surplus power and the average surplus power for the past 24
hours, and are operationally redundant
values. A graphical representation of the correlation between

and the temperature set points can be seen in Fig. 1.
From Fig. 1 it can be seen that and can have

different values, indicating different end use preferences for
heating and cooling response. For example, a customer may be
willing to have their house temperature increased above the de-
sired cooling set point but they are reluctant to allow tempera-
ture to decrease below the cooling set point. Additionally,
and do not need to be symmetric around the desired tem-
perature set point. The real temperature set point of the active
controller is determined by (1) and is subject to constraints of
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Fig. 1. Active controller for a cooling system.

(2). , , 24 hour average surplus power and
are determined by ((3)–(6)), respectively.

(1)

(2)

(3)

(4)

(5)

(6)

In order to determine the real value of at any given time,
initially it is necessary to determine if the present surplus power
signal is higher or lower than the 24 hour average. This will be
known by the sign of (5). For a residential cooling
system a positive value indicates that the current surplus power
is lower than the 24 hour average and a negative sign indicates
that it higher. Assuming a zero value does not gen-
erate any , the value of for a cooling system where

is given by (7) and is given
by (8).

(7)

(8)

Combining (1), (7), and (8) yield (9) and (10) which are still
subject to the constraint determined by (2). When

, yields a , the real temperature set
point is given by (9) and when , yields a

, the real temperature set point is given by (10).

(9)

(10)

A key observation from Fig. 1 and (9) and (10) is that there
are no absolute surplus power values or temperature set points.

Fig. 2. Active controller for a heating system.

The active controller operates to adjust the real temperature set
point based on a standard deviation of the surplus power signal
and internal set points, which indicate the end users willingness
to have their cooling set point adjusted from the desired value.
Additionally, absolute temperature set points would mean that
the controller would not have the flexibility to provide demand
response when end users changed their desired temperature set
points. The flexibility of being able to operate in different sur-
plus power levels is essential for a device which is designed for
residential application in smart microgrid with high penetration
of the renewable energy.

B. Heating Mode

If the surplus power signal is higher than the 24 hour average,
the controller will tend to move the real heating set point higher
than the desired temperature set point, but it will not exceed

. Conversely, when the surplus power signal is lower than
the 24 hour average, the controller will tend to move the real
heating set point lower than the desired temperature, but it will
not exceed . For an active controller operating on a heating
system, indicates that the real set point is higher than
the desired set point. In effect, the heating system is allowing the
temperature set point to increase because of the surplus power
signal being higher than average. Conversely, indicates
that the controller has moved the real set point lower than the
desired set point. In effect, the heating system is preemptively
heating because of the surplus power signal being lower than
average.
A graphical representation of the correlation between

and the temperature set points can be seen in
Fig. 2. The real temperature set point of the active controller is
determined by (1) and subject to the constraints of (2).
In heating mode and are calculated as follows:

(11)

(12)

For a residential heating system, a positive value indicates that
the current surplus power is higher than the 24 hour average,
and a negative sign indicates that it lower. Then, assuming that
a of 0 generates a of 0, the value of for
a heating system where is given by (7), and

is given by (8).
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When , yielding a ,
the real temperature set point is given by (9), and when

, yielding a , the real
temperature set point is given by (10).

III. DETERMINE POWER CONSUMPTION OF

HEATING/COOLING SYSTEM

According to the proposed method in previous section, the
indoor temperature variation is calculated as follows:

(13)

where is the actual temperature at time i, and is
the actual temperature at time i-1. The heating/cooling system
should supply the temperature variation of .
In order to satisfy the deviation of the pointed temperature,

(14) should be established.

(14)

is the thermal loss between the indoor and outdoor envi-
ronment through the wall, window, and ceiling surfaces and the
sum of internal loads.
Equation (14) can be rewritten as follows:

(15)

The heating/cooling efficiency is often rated by the Seasonal En-
ergy Efficiency Ratio (SEER). The SEER rating of a unit is the
heating/cooling output during a typical cooling (heating) season
divided by the total electric energy input during the same period.
The higher the unit’s SEER rating, the more energy efficient it
is [32].
Equation (15) can be rewritten as follows:

(16)

(17)

where is the power consumption of the heating/cooling
system at time i, and t is time interval (one hour in this study).
1) for Cooling System: The following parameters have

to be considered for evaluating the the cooling load [18]:
1) Solar and transmission heat gain through the exterior walls,
roofs and glasses.

2) Heat gain due to the ventilation or infiltration.
3) Heat gain through interior partitions.
4) Internal load, including heat rejection from equipment,
lighting and occupants.

Cooling load is the sum of radiation, conduction, convection,
and internal loads. Radiation is related to the sunshine and the
sun energy absorbed by the building construction. Conduction
load is calculated as heating but by cooling data. The convection
load contains the sensible load as heating and the latent load of
the air infiltrated by the formula below [18].

(18)

where latent load (W), CMH (Cubic Meter per Hour)
is infiltration air flow (m3/hour), 0.82 is the latent heat factor
(at sea level), and is the air specific humidity difference
between inside and outside the space (gr/kg of dry air).
Internal loads include, heat dissipation of equipments, peo-

ples, and lights.
Conduction heating load is calculated by (19) [18]:

(19)

where is the conduction heating load (W), U is the
heat transmission coefficient (W/m2C), A is the Construction
layer area (m2), and is the air temperature difference be-
tween outside and inside the space .
The heat transmission coefficient (U) can be calculated as

follows:

(20)

(21)

where R is the thermal resistance of structure layers (m2c/w),
x is the layer thickness (mm), and k is the layer conductivity
(W.mm/m2c).
Convection heating load can be calculated as follows [18]:

(22)

where is convection heating load (W), 0.335 is sen-
sible heat factor (at see level), CMH is the air flow infiltration
rate (m3/hour), and is the air temperature difference be-
tween outside and inside the space .
Therefore for cooling system, can be calculated as fol-

lows:

(23)

2) for Heating System: Heating load estimation in-
volves the following [18]:
(a) Heat loss through exterior walls, roofs, glasses, doors, and

floor.
(b) Ventilation or infiltration loss.
Heating load is the sum of conduction and convection heat trans-
mission rates. Conduction heating load and convection heating
load are calculated by (19) and (22), respectively. Therefore for
heating system, can be calculated as follows:

(24)

Fig. 3 shows a flowchart of the proposed method.

IV. RENEWABLE ENERGY AND STORAGE MODELING

A. Photovoltaic Array

The output power of each PV array, with respect to the solar
radiation power, can be calculated through (25).

(25)
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Fig. 3. Flowchart of proposed method.

where, G is perpendicular radiation at array’s surface (W/m2),
is rated power of each PV array at W/m ,

and is the efficiency of PV’s DC/DC converter and
Maximum Power Point Tracking System (MPPT). PV systems
are usually equipped with MPPT systems to maximize the
power output. Therefore, it is reasonable to believe that the PV
array working states stay around the maximum power point
[33].

B. Wind Turbine Generator

The power curve versus wind speed is approximated by (26),
shown at the bottom of the next page.
Hydrogen Tank: By adding output powers of wind turbine

and photovoltaic, injected power to the DC bus, generated by
renewable sources, is calculated as:

(27)

where , , , and are numbers of installed
and failed WG turbines and PV arrays, respectively. The avail-
ability and unavailability of system components significantly
affect reliability of the system. Components may be unavail-
able because of scheduled (like maintenance program) or forced

(like component failure) outages [34]. Generated power by re-
newable sources flows through two streams. First stream goes
to the inverter to supply the load , and the second one
delivers the surplus power to the electrolyzer for hydrogen pro-
duction .

(28)

(29)

where is electrolyzer’s efficiency which is assumed to be
constant for whole operational range [35]. is the
transferred power from the hydrogen tank to the FC. Storage
efficiency may present losses resulted from leakage
or pumping, and it is assumed to be equal to 95% for all
working states [36]. The mass of stored hydrogen, at any time
step t, is calculated as follows:

(30)

where the higher heating value (HHV) of hydrogen is equal to
39.7 kWh/kg [37].

(26)
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C. Fuel Cell

Fuel cell output power can be defined as a function of its input
and efficiency , which is assumed to be constant (here,
50%) [35]

(31)

V. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization was introduced in 1995 by
Kennedy and Eberhart [38]. Although several modifications
to the original algorithm have been made to improve its per-
formance [39]–[43] and adapt it to specific types of problems
[44]–[46], a parallel version has not been previously imple-
mented. The following is a brief introduction to the operation
of the PSO algorithm. Consider a swarm of p particles, with
each particle’ s position representing a possible solution point
in the design problem space D. For each particle i, Kennedy
and Eberhart proposed that its position is updated in the
following manner:

(32)

with a pseudo-velocity calculated as follows:

(33)

Here, subscript k indicates a pseudo-time increment, and is
the inertia coefficient which is employed to manipulate the im-
pact of the previous history of velocities on the current velocity.
To allow the product or to have amean of 1, Kennedy
and Eberhart proposed that the cognitive and social scaling pa-
rameters and are selected such that . Fig. 4
depicts the optimization flowchart of PSO algorithm.

VI. OBJECTIVE FUNCTION

The objective function of this paper is

(34)

(35)

where is the number (unit) or capacity (kW or kg), CC is cap-
ital cost ($/unit), RC is cost of replacement ($/unit), and O&M
is annual operation and maintenance cost ($/unit-yr) of the com-
ponents:

(36)

Fig. 4. Optimization flowchart of PSO algorithm.

where is the real interest rate (here 6%) which is a function of
nominal interest rate and annual inflation rate ( ).

(37)

(38)

is the useful lifetime of the project (here 20 years). and
are useful lifetime and number of replacement of the component
during useful lifetime of the project, respectively.

is calculated by

(39)

(40)

where is the expected value of loss of energy or
energy not supplied, at time step t defined by

(41)

Here, is the amount of loss of energy (kWh) when system
encounters state , and is the probability that system encoun-
ters in state .
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Fig. 5. Flowchart of the proposed optimization methodology.

and are described by the following equa-
tions:

(42)

(43)

is the power which purchased from the grid, and
is the power which sold to grid. and are the
prices of buying and selling power, respectively.
The optimization problem is subject to the following con-

straints:

(44)

where is the number of time steps in which system’s relia-
bility is evaluated (here, ). The equivalent load factor
(ELF) is the ratio of the effective forced outage hours to the total
number of hours. In fact, it contains information about both the
numbers and magnitudes of the outages [47]. Therefore, ELF is
chosen as the main reliability index of this study:

(45)

(46)

(47)

(48)

(49)

VII. SIMULATION RESULT

In this study, Ekbatan residential area (Tehran, Iran) has been
selected as a case study. The peak load of the considered smart
microgrid, phase A of Ekbatan complex, is 500 kW (the overall
load curve without heating and cooling load), and the number
of houses are 200. Ekbatan has three separate sets of buildings
called respectively phase A, B, and C. Each phase has isolated
buildings called a block. The architecture in the first and the
third phase is similar and different from the phase B. All of these
phases contain 1, 2, 3, or 4-bedroom apartments occupying an
area within the range of 50 to 240 .The size of each wind
turbine and other units (Photovoltaic, Fuel cell, electrolyzer, and
hydrogen tank) are considered 7.5 kW and 1 kW, respectively.
Fig. 5 shows the system flowchart.
This paper determines the optimal size of units for the

smart microgrid considering intelligent management of
heating/cooling loads. Air conditioning system has been used
in order to provide heating/cooling inside the houses. Also, the
requirement of heat water is supplied by the output heat water
generated by fuel cell and municipal waste. If the mentioned
sources are not able to supply sufficient heat water, the natural
gas will be purchased as a replacement. This paper intends to
investigate the effect of heating and cooling management on
optimal size of smart microgrid units, the reliability of loads,
the amount of purchased natural gas from utility, and the total
cost of the smart microgrid. The management of heating and
cooling loads is performed by considering renewable energy
production including wind and solar resources, smart microgrid
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TABLE I
THE ELECTRICAL ENERGY TARIFFS OF RESIDENTIAL CONSUMPTION

load curves, the outside temperature, and the desired inside
temperature of the consumers.
In order to achieve optimal sizing of smart microgrid units,

the following parameters should be determined as the program
inputs:
— Characteristic of generation units of smart microgrid, i.e.
wind and solar resources.

— Characteristic of energy storage, i.e. fuel cell, electrolyzer,
and hydrogen tank.

— Hourly wind speed and solar irradiation in order to specify
the production of wind and solar units.

— Outside temperature.
— Desired temperature, maximum and minimum acceptable
temperature.

— The price of energy purchased and bought from and to
distribution grid.

— The price of natural gas.
— Hourly load curve.
— The minimum and maximum power consumptions of a
typical air conditioner.

— The required parameters of optimization algorithm, i.e.
Particle Swarm Optimization (PSO).

— The features of mentioned buildings such as wall material,
windows, and etc.

The insertion of above-mentioned parameters and running the
program will result in the following output:
— The optimal size of smart microgrid elements.
— The rate of energy generated by wind and solar resources
and fuel cell.

— The rate of hydrogen storage in related tank.
— The rate and the cost of energy transfer between the con-
sidered smart microgrid and distribution grid.

— The rate of heating/cooling system power consumption.
— The hourly real inside temperature.
— The not-supply load, load reliability, and penalty of not-
supply load.

— The optimal cost of the smart microgrid.
In the performed simulations, a transformer with a capacity of
100 kVA and 90% efficiency provides a bidirectional connec-
tion between the smart microgrid and the distribution grid. The
considered electrical energy tariffs within this study refer to the
residential subscriber in the range of consumption more than
30 kW and less than 30 kW in Iran. The tariffs are shown in
Table I.

TABLE II
OPTIMAL COST AND SIZE OF EACH UNIT IN SMART MICROGRID WITHOUT

MANAGING THE HEATING/COOLING SYSTEMS

TABLE III
THE AMOUNT AND COST OF BUYING AND SELLING ENERGY, THE AMOUNT
AND COST OF BUYING NATURAL GAS, INTERRUPTED LOADS AND PENALTY

FOR THEM WITHOUT MANAGING THE HEATING/COOLING SYSTEMS

Regarding the price of produced electricity in non-govern-
mental sections out of new energies resources and with regard
to the positive environmental aspects and economies by lack
of consumption of fossil energy resources and in order to en-
courage any investment in this type of production, it is appli-
cable for one kwh for peak & normal hours at least 0.13$ and for
low-load hours at least 0.09$ (Maximum 4 hours per day/night)
in production place [48].
In order to implement the heating/cooling system load con-

trol method, the area of houses (where heating/cooling system
is installed) is considered with dimensions of 10 m 16 m. It
is assumed that the thermal interchange is accrued with the side
walls, i.e. . 20% of the
front and back side walls are being made of double glazed win-
dows with 1 cm thicknesses and 5% of them of fiber glazed win-
dows. Based on the calculation, the factor of window equals
to 0.05 (w/m.k), and walls thickness is 30 cm.
The optimal numbers of smart microgrid units before man-

aging the power consumption of heating and cooling system are
demonstrated in Table II. The optimal amount and cost of pur-
chased power from the distribution grid, the optimal amount and
cost of sold power to distribution grid, the optimal cost of the
smart microgrid, interrupted loads, penalty for interrupted loads,
the optimal amount and cost of purchased natural gas and smart
microgrid reliability are depicted in Table III.
This section investigates the effect of management of heating

and cooling loads on optimal sizing of smart microgrid units.
The proposed control methodology requires the following pa-
rameters to be determined:
— The desired temperature in hot season, i.e. summer: 23
— The desired temperature in cold season, i.e. winter: 21
— The minimum and maximum temperature in summer:
19–26

— The minimum and maximum temperature in winter:
18–22

—Maximum power consumption of each heating/cooling
system is assumed to be 1.7 kW.
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Fig. 6. The surplus power of renewable energy sources, adjusted temperature
and the cooling system power.

Fig. 7. The actual inside temperature of the house and the outside temperature
in summer.

Based on these assumptions, the above mentioned control
method is applied in order to model and manage the heating
and cooling system.
Fig. 6 shows the smart microgrid’s extra power for three days

of a hot season, adjusted temperature inside the house
and managed (controlled) power of the cooling system on a
same time scale. As can be seen in Fig. 6, during hours which
we have extra power the house temperature is adjusted to be
less than the desired temperature (within the constraints). This
will change the behaviour (consumption) of the cooling system
to match the available the extra power. Also, during the hours
when the surplus of power is negative the temperature is tuned
for a value higher than desired one, to minimize the consump-
tion of the cooling system. Fig. 7 shows the actual inside tem-
perature of the house and the outside temperature in
summer. The inside temperature of the house will be changed
according to the surplus power, i.e. when surplus power is low,
the inside temperature will be set to an upper point and vice
versa.
In the proposed method, using the active controller, con-

sumers choose a temperature as the desired temperature, and
then, the active controller will calculate a temperature for
the internal space based on the desired temperature and the
mentioned extra power. Finally, the controller set the power
consumption of heating/cooling system according to the outside
temperature in order to reach the calculated temperature which
is nominated with actual temperature. This temperature should
satisfy the following conditions,
• To decrease the power consumption heating/cooling
system while the surplus power is low.

• Not to interfere with the thermal comforts of the con-
sumers.

Fig. 8. The surplus power of renewable energy sources and the heating system
power.

Fig. 9. The actual inside temperature of the house and the outside temperature
in winter.

TABLE IV
OPTIMAL COST AND SIZE OF EACH UNIT IN SMART MICROGRID WITH

MANAGING THE POWER CONSUMPTION OF HEATING AND COOLING SYSTEM

In other words, the controller decides on heating or cooling
the inside with regards to the thermal comfort of consumers and
the surplus power.
The proposed method also is applied to power consumption

of heating systems. Fig. 8 shows the smart microgrid’s extra
power for three days of a cold season, adjusted temperature in-
side the house and managed (controlled) power of the
heating system on a same time scale. In this figure, during hours
when the surplus of power is positive the home temperature
is adjusted higher than the desired value in order to match the
heating system consumption with the extra available power. On
the other hand, during the hours when the surplus of power is
negative, the temperature will be lower than the desired to re-
duce the cooling system consumption and consequently better
matching the consumed power with the available extra power.
Fig. 9 shows the actual inside temperature of the

house and the outside temperature in winter.
The optimal numbers of smart microgrid units after man-

aging the power consumption of heating and cooling systems
are demonstrated in Table IV. The optimal amount of purchased
power from distribution grid, the optimal amount of sold power
to distribution grid and the not-supply loads, considering related
costs and smart microgrid reliability are depicted in Table V.
By comparing n Tables II and IV it can be noted that utilizing

the proposed method to manage the power consumption of
heating and cooling system will decrease the size of renewable
energy generators (wind and solar) and increase the amount
of stored hydrogen in the hydrogen tank. Also the comparison
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TABLE V
THE AMOUNT AND COST OF BUYING AND SELLING ENERGY, THE AMOUNT
AND COST OF BUYING NATURAL GAS, INTERRUPTED LOADS AND PENALTY

FOR THEM WITH MANAGING THE HEATING/COOLING SYSTEMS

of Tables III and V illustrates that the proposed method will
result in reduction of the purchased power from distributed
grid, thereby increasing the power sold to the distributed grid
as well as decreasing non-supply loads and purchased gas from
the utility.
To verify the presented cooling/heating system management

method, the correlation of cooling system loads prior to and
after application of the loadmanagement methodwith the power
surplus curve has been investigated. The correlation values are
as follows:

(50)

(51)

The resulted values show that employing the proposed load
management method will increase the correlation between
cooling system loads and surplus power of renewable energy
sources. In other words, the rate of change of cooling system
power usage gets closer to the rate of change of the surplus
energy produced by renewable sources. This in turn creates the
capacity for higher renewable energy penetration.
The total load in consists of two parts:
1) The base load Pbase(i) represents the all electricity loads
within a smart microgrid except cooling and heating loads.

2) Pcooling(i) and Pheating(i) represent the load of cooling
and heating systems respectively.

The measurement interval is recorded hourly and denoted by .
It is assumed that the base loadPbase(i) remains constant during
the measured interval .

(52)

(53)

(54)

(55)

where and represent
the cooling and heating load values before the application of
the proposed load management method, and
and denote the cooling and heating loads

after applying the load management strategy. The presented
load management method increases the correlation between
total load curve of the smart grid and the generated surplus
power by renewable energy sources. This is shown by (53) and
(54).

VIII. CONCLUSION

This paper sets forth a novel intelligent residential heating/
cooling system controller that has smart grid functionality. In
this paper, a possible implementation of an active controller will
be examined. The optimization objective of the heating/cooling
systems management is to minimize the cost of smart micro-
grid, the size of renewable energy resources, imported energy
from distribution grid, and improve reliability of smart micro-
grid. Simulation studies show that managing the power con-
sumption of heating and cooling systems based on the proposed
method will decrease the size of renewable energy generators
(wind and solar), increase the amount of stored hydrogen in the
hydrogen tank, reduce the purchased power from distributed
grid, increase the sold power to distributed grid, decrease the
non-supply loads, purchased gas from utility and the total cost
of smart microgrid.
The results demonstrate that smart heating/cooling system

and renewable energy can work well together, and their indi-
vidual benefits can be added together when used in combination.
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