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ABSTRACT

Dynamic economic dispatch of a microgrid is better suited to the requirements of a system in actual oper-
ation because it not only considers the lowest cost in a scheduling cycle but also coordinates between
different distribution generations (DGs) over many periods. So it is very significant to research the
dynamic economic dispatch of a microgrid. Since wind energy and solar energy are subject to random
variations and intervals, there is great difficulty in solving the dynamic economic dispatch. In this paper,
we establish a combined heat and power (CHP) microgrid system which includes wind turbines (WT),
photovoltaic arrays (PV), diesel engines (DE), a micro-turbine (MT), a fuel cell (FC) and a battery (BS).
Comprehensively considering the operation cost and the pollutant treatment cost of the microgrid
system, we choose the maximum comprehensive benefits as the objective function for the dynamic
economic dispatch. At the same time, we establish the spinning reserve probability constraints of the
microgrid considering the influence of uncertainty factors such as the fluctuation of the renewable
energy, load fluctuation error, and fault shutdown of the unit. Also researched are four different operation
scheduling strategies under grid-connected mode and island mode of the microgrid. An improved particle
swarm optimization (PSO) algorithm combined with Monte Carlo simulation is used to solve the
objective function. With the example system, the proposed models and improved algorithm are verified.
When the microgrid is running under the grid-connected mode, we discuss the influence of different
scheduling strategies, optimization goals and reliability indexes on the dynamic economic dispatch.
And when the microgrid is running under the island mode, we discuss the influence of the uncertainty
factors and the capacity of the battery on the dynamic economic dispatch. The presented research can
provide some reference for dynamic economic dispatch of microgrid on making full use of renewable
energy and improving the microgrid system reliability.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

The dynamic economic dispatch is better suited to the require-
ments of a system in actual operation because it not only considers

In recent years, the whole world has been paying more and
more attention to developing renewable energy sources such as
wind energy and solar energy owing to the serious global depletion
of energy and environmental problems. With the development of
distribution technology, the microgrid [1-6] provides an effective
way for the comprehensive use of renewable energy.

The economic dispatch of power system can be divided into
static dispatch and dynamic dispatch [7-10]. Static economic
dispatch determines the priority and operation mode of the power
generating equipment based on the operating conditions of the
system in each independent period.

* Corresponding author. Tel.: +86 13856013658; fax: +86 05512903929.
E-mail address: hfwuhongbin@163.com (H. Wu).
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the lowest cost in a scheduling cycle but also coordinates between
the different distribution generations (DGs) over several periods.
So it is very significant to research the dynamic economic dispatch.
Renewable energy sources [11] are subject to randomness and
interruptions, which makes it very difficult to solve the dynamic
economic dispatch.

The power system which includes wind energy and solar energy
have been developed so far in terms of dynamic economic load
dispatch problem. An optimal economical dispatch model was
established in [12], it developed a method to estimate the risk
and to manage conventional power systems with wind power
systems for the short-term operation. [13] proposed a stochastic
model and a solution technique for optimal scheduling of the
generators in a wind integrated power system considering the
demand and wind generators uncertainties. The research in [14]

www.Matlabiiir


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2014.06.002&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2014.06.002
mailto:hfwuhongbin@163.com
http://dx.doi.org/10.1016/j.ijepes.2014.06.002
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes
http://www.Matlabi.ir

H. Wu et al./Electrical Power and Energy Systems 63 (2014) 336-346 337

proposed a new real-time dynamic economic dispatch method to
meet the requirements of power system based on investigation
of future circumstance, the research in [15] proposed dynamic eco-
nomic dispatch based on the market price of power system, consid-
ering the uncertainties in deregulated energy and reserve markets.
Recently, some studies about the dynamic economic dispatch of a
microgrid have been published. Online optimization method
developed in [16] used particle swarm optimization (PSO),
however some issues need to be further investigated regarding
the optimal operation for a number of DGs such as the WT, FC
and BS. A dynamic economic dispatch model was proposed in
[17], it compared the dynamic dispatch results with those of static
dispatch, and reached the conclusion that dynamic economic dis-
patch for a microgrid could reduce the operation costs, however
gas turbines and the randomness of renewable resources were
not taken into account. On the other hand, they did not take into
account that a microgrid has distinct operation modes, namely
the grid-connected mode and the island mode. Generally, without
the support of the grid, the effect of uncertainty factors on the
operation of the system under island mode is more obvious than
that under grid-connected mode, and the generating units
participating in the economic scheduling are different. Therefore
the study of dynamic economic dispatch should take into account
the two different operation modes.

In fact, there are many kinds of DGs in a microgrid. The DGs will
show different features in the dynamic economic dispatch under
different operation modes and scheduling strategies. Randomness
and interruptions will increase the difficulty of the economic dis-
patch. In this paper, mathematical models and an algorithmic solu-
tion of dynamic economic dispatch on a microgrid are presented.
After formulating a combined heat and power (CHP) microgrid sys-
tem which including wind turbines (WT), photovoltaic arrays (PV),
diesel engines (DE), a micro turbine (MT), a fuel cell (FC) and a
battery (BS), we choose the maximum comprehensive benefits as
the objective function for dynamic economic dispatch. We also
establish the spinning reserve probability constraints on the
microgrid taking uncertainty into account. An improved particle
swarm optimization (PSO) algorithm combined with Monte Carlo
simulation is used to solve the objective function. Using an
example, we discuss the various influences on the dynamic
economic dispatch of different scheduling strategies, optimization
goals, reliability indexes, uncertainty factors and the capacity of
the battery.

The mathematical model of DGs
The model of an MT
The exhaust emissions of NO, and CO, of MT is much lower than

traditional technologies used in centralized power plants [18]. The
mathematical model of an MT can be shown as follows:

QMT:PGT(‘l _”e_nl)/”e (1)
Qhe = QMTKhe (2)
Cur = Cu x (Y ParAt/n,L) 3)

where Qur is the residual heat of the exhaust, 7. is the generating
efficiency of the MT, #, is the heat loss coefficient, Psr is the output
power of the MT during the calculation period At in kW, Qe is the
heat provided by the MT, K, is the heat coefficient of the cooler, Cy;r
is the gas consumption cost of the MT, L is the net thermal value of
the gas, 9.7 g/kW, and Gy, is the price of the gas, 2.05 ¥/m°.

The model of the FC

The mathematical model of the FC can be shown as follows:
Cre = Cu x () PreAt/nL) (4)

where Cgc is the gas consumption cost of the FC, Pgc is the output
power of the FC during the calculation period At in kW, #; is the
efficiency of the FC, L is the net thermal value of gas, 9.7 g/kW,
and C,; is the price of gas, 2.05 ¥/m>.

The model of the BS

The state of charge (SOC) of the battery refers to the ratio of the
residual energy to the rated energy. It is very important to predict
the SOC of the battery accurately for controlling the charging/
discharging process and the system economic dispatching.

The charging formula of the battery is described as follows:

SOC(t) = (1 - 8)SOC(t — 1) — P.At, /Ec (5)

where P. is negative, it represents the charging power, #. is the
charging efficiency, Ec is the total capacity of the BS during the
calculation period At in kW, SO(C(t) is the SOC of the BS in period t,
and SOC(t — 1) is the SOC of the BS in period t — 1.

The discharging formula of the battery is described as follows:

SOC(t) = (1 — 8)SOC(t — 1) — PgAt/(Eci,) (6)

where P, is positive, it represents the discharging power, 74 is the
discharging efficiency, and ¢ is the self-discharge rate of storage
in%/h.

The mathematical model for the dynamic economic dispatch of
a microgrid

The objective function for the dynamic economic dispatch of a
microgrid

The operating cost of the microgrid system
For the microgrid, the operating cost C; of the system can be
described as follows:

C1 = Cruet + Com + Coc + M(D_ 447 + Cerin) (7

where Cgy is the fuel consumption cost of the DGs, Coy, is the oper-
ation and management cost of the DGs, Cpc is the depreciation cost
of the DGs, M indicates whether the microgrid is connected with the
grid or not: when the microgrid is connected with the grid, M =1,
when the microgrid is in island mode, M =0, Cggjp is the cost of
interaction between the microgrid and the grid: it is being positive,
represents that the microgrid is purchasing power from the grid,
when it is negative, that represents that the microgrid is selling
power to the grid. And because there are some uncertain factors,
the spinning reserve capacity of the microgrid is limited by the
DGs, so the microgrid needs to purchase some spinning reserve
power from the grid, 4{ is the price of the spinning reserve, and 7
is the purchasing power of the spinning reserve.
Cruet, Com and Cpc can be described as follows:

CFuel = Kfc * P

COM:Kom*P 3
Coc = 2B x P ®)

ADCC = InCost x d(1 +d)'/[(1 + d)' — 1]

where P is the output power of the DGs, K. is the coefficient of fuel
consumption, K, is the coefficient of operation and management.
Prhax is the maximum power of the DGs, cf is a capacity factor, ADCC
is the depreciation cost per kilowatt-hour of the DGs, InCost is the
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installation cost per capacity of the DGs, d is the interest rate, set at
8%, l is the lifetime of the DGs.

The pollutant treatment cost of the microgrid system
For the microgrid, the pollutant treatment cost C; of the system
can be described as follows:

N
C2= % (CyiPi+ Y (Ckgriae)Pera )
i1k k

where i is the number of DGs, N is the total number of the DGs in
the microgrid, k is the type of pollutant emission (CO,, SO,, NOX),
Cy is the treatment cost of the k" class of pollutants per kilogram,
Yi is the coefficient of pollutant emissions in g/kW, P; is the output
power of DG i in kW, 7Ygiax is the coefficient of pollutant emissions
of the grid in g/kW, Pgq4 is the output power of the grid in kW.

The objective function for the dynamic economic dispatch of a
microgrid

After comprehensively considering C; and C;, we choose the
maximum comprehensive benefits C (the minimum total cost) as
the objective function for the dynamic economic dispatch of the
microgrid:

minC = C; + C, (10)

The constraints of the system

(1) Power balance of the microgrid system

N

> "Pi + Pgig + Ps = Pioa (11)
i1

where Pj,qq is the system load, P; is the output power of DG i, and
Pgrig is the output power of the grid—if Pgg is positive, the grid
transmits power to the microgrid, if Pgiq is negative, the grid
absorbs power from the microgrid. Py is the output of the battery:
when Py is positive, the battery is discharging, if Pg is negative,
the battery is charging.

(2) Power limits of the DGs
Pimingpigpimax (12)

where Pjin is the lower limit of DG i and Pimax is the upper limit of
DG i.

(3) Ramp rate limits of DE
Taowni X At < Pei(t) — Pei(t — 1) < rypi x At (13)

where rgown; is the lower limit of DE i ramp rate and r; is the upper
limit of DE i ramp rate in kW/min, At is the calculation period, P¢;(t)
is the output of DE i in period t, and Pgi(t — 1) is the output of DE i in
period t — 1.

(4) Operation constraints of the battery

SOCmin < SOC([) < sOCmax (14)

*PBmax ngngmax (15)
n-1

SOcend = SOCstart + ZPBAt = SOCstart (16)
t=0

where we set SOCp, to be 0.1, which represents the lower limit of
the SOC, and we set SOCy,.x to be 0.9, which represents the upper
limit of the SOC, Pgmax is the maximum power of charging and dis-
charging the battery. Considering that the dynamic economic dis-
patch scheme for the microgrid is executed in cycles, it may be
assumed that the final SOC value SOC,.,4 of the battery is equal to
the starting SOC value SOCsyq, of the battery, as shown in formula
(16), n is the total number of calculation periods in the whole day.

(5) Constraints of the line transmission capacity between the
microgrid and the grid

—PI™ < Pgig < PI™ (17)

where Pgiq is the transmission power between the microgrid and
the grid and P[™* is the upper limit of the transmission power.

Spinning reserve under uncertain conditions
Spinning reserve constraints

It is necessary to schedule a spinning reserve to maintain the
system’s reliability, due to power fluctuations of the renewable
energy, load fluctuations, and unit outage or failure. But in fact
the cost will be very high if we consider all the uncertainty factors.
Based on various kinds of uncertain factors, we adopt probability
constraints for the spinning reserve for a given confidence level o
to meet the system’s requirements so as to achieve a balance
between reliability and economy.

0 g Tit g Tit max (18)
Pgir + Tie < Pgimax (19)
Tit < rup,- x At (20)

Ny A Ng
P{ZU[‘A,-’(Pwﬁ +Owi) + Zufi(Psn' +0ti) + Prc + Per + Zuti(PGri +14)
i1

i=1 i=1

+Pgriac + 11 + Pyt >Pu+0u} > (21)

where G, O, 0r¢ are, respectively, the fluctuation of the wind
engine i, the photovoltaic array i and the load in period t. uf and
uj; are, respectively, the state of startup or shutdown of wind engine
i and of the photovoltaic array i; and uy; is the state of startup or
shutdown of the diesel engine; P, Psi, Pg:i are, respectively, the
output of wind turbine i, photovoltaic array i, and diesel engine
DE i in period t. Py, is the load in period ¢, rf is the spinning reserve
power provided by the grid, ry; is the spinning reserve power pro-
vided by diesel engine DE i in period ¢, it is less than the maximum
of spinning reserve rimax I iS determined by the surplus capacity
and ramp rate of diesel engine DE i, Ny is the number of DEs, « is
the confidence level, and 1 — « can be thought of as the upper limit
of the probability of load loss.

The simulation of the uncertainty factors

The simulation of uncertainty in the load and renewable resources

Research has shown that the load fluctuation of a power system
obeys the normal distribution. The probability density function is
shown as follows:

f(Pa) = (1/V/27 % 5, )e PraP)/20] (22)

where J; is the standard deviation of load forecasting, P; is the value

of load forecasting, and P, is the value of the actual load.
Similarly, the fluctuations of renewable energy follow the nor-

mal distribution model, 6;/P; is 0.1, dw/Pw, Js/Ps both are 0.05.

The simulation of unit fault shutdown

We set the forced outage rate of DG i as f;. According to the 0-1
uniformly distribution, if a number ¢ which randomly generated is
less than the forced outage rate f;, u; equals 0 and the DG exits the
operation. Otherwise u;, equals 1, the DG is in normal operation.
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An improved PSO algorithm combined with Monte Carlo
simulation

The standard PSO algorithm

Dynamic economic dispatching of a microgrid is an optimiza-
tion problem with nonlinear, high dimensionality, multi-index
constraints, which is also a typical optimization problem in a
power system. There are many modern heuristics stochastic
optimization techniques in recent years, such as Hopfield neural
networks [19,20], evolutionary program [21-23], genetic algo-
rithm [24,25], differential evolution algorithm [26,27]. Compared
with other algorithms, the PSO algorithm [28,29] has easier imple-
mentation, fewer parameter settings, and stronger optimization
capability, but it may easily plunge into a local optimum and it
finds it hard to deal with equality constraint conditions.

The traditional PSO algorithm forms a particle community by a
random initialization [30]. The position of each particle is
expressed by X;= (i1, Xp2,. .., Xiq)', and the speed is expressed by
Vi=(v1, V..., vq)', where i=1, 2,...,n, and n is the size of the
population. Through the analysis and statistics of the individual
optimal value pbest and the optimal value of group gbest, it adjusts
the particle’s position and speed until it meets the termination
conditions, according to the following formula.

k+1 K k
{Xﬁ =Xiat Vig
k k k k
vfy= vk, +ci-rand; - (pbest; ; — Xf,) + ¢, -rand, - (gbest; ; — x{ )
(23)

where 2, is the speed along dimension d of particle i in iteration
k, x¥, is the position along dimension d of particle i in iteration k,
w is the inertia weight factor, c; and ¢, are learning factors, pbestﬁfd
is the local best value of coordinate d of particle i in iteration k,
gbestﬁ is the global best value of coordinate d in iteration k, and
rand; and rand are random numbers uniformly distributed in
(0,1).

The updated value x¥, takes its boundary value, such as formula
(24) when it is beyond its scope of the particle position.

Xf_d Xdmin < Xﬁd < Xdmax
K
x,‘fd = Xdmin Xﬁd < Xdmin (24)
Xd max Xff_d > Xdmax

where Xy, is the minimum value in dimension d and Xg.x iS the
maximum value of dimension d.

The present paper implements some improvements on the
standard PSO algorithm to make it more suitable for solving
the mathematical model for dynamic economic dispatch of the
microgrid model in this paper. In addition, due to the introduc-
tion of the random variables and probability constraints, the
present paper adopts the Monte Carlo method to simulate the
variables, and transform it into a deterministic optimization
model. And then we adopt the improved PSO algorithm com-
bined with Monte Carlo simulation to solve the objective
function.

The improved PSO algorithm

To make PSO more suitable for solving the model, this paper
improved it in two aspects.

Variable weighting factor and learning factors

At first, this paper assumes that the weighting factor and
learning factor are not fixed, but change along with the number
of iterations for getting better results. The formula are shown as
follows:

@ = Wmax — Wmax — (a)min/ltermax)lter
€1 = (Cip — Cui)lter/Itermax + C1i (25)
C2 = (Cop — Caj)Iter/Itermay + Cai

where Iter is the number of iterations, Iter,ax is the total number of
iterations, ¢iy and cyf are the stop values of ¢; and ¢, set to 2.5 and
0.5. cq; and cy; are set to 2.5 and 0.5: they represent the initial values
of ¢; and ¢3. Wpax is 0.8 and wpiy, is 0.2.

Dynamic processing strategy for the equality constraints

In addition, how to deal with various equality constraints is a
challenge for traditional PSO. Now, many scholars have introduced
a penalty function into the objective function to render obsolete
infeasible solutions and get the optimal solution [31], but the
proportion of the feasible part in the solution space is small for
dynamic economic dispatch, and the value of the punishment
factor can only been determined by experience: but there is no
definitive theory to prove whether it is optimal or not. Using the
penalty function method alone will result in a slow calculation
rate, and the optimal solution cannot be found and equality con-
straint cannot be satisfied, which leads to a lot of power deficiency
Or excess.

In order to solve this problem, this paper adopts a dynamic
strategy which can deal with equality constraints in the process
of initialization and updating of the particle swarm. The particles
always satisfy the equality constraint conditions in the process of
optimization. The processes of particle initialization and updating
combined with this strategy are as follows:

(1) Dealing with equality constraints in the process of
initialization

Set the dimension of the particles to N. This indicates the num-
ber of generator units in the system.

Step 1: Produce the position and velocity of the first N —1
dimensions of the particle randomly, and satisfy their inequal-
ity constraints.

Step 2: The final dimension is determined by the equality con-
straint (11). If this value is within its range, it then goes to Step
3, otherwise proceeding to Step 1.

Step 3: The end of initialization. (2) Dealing with equality con-
straints in the process of updating

Step 1: Employing formulas (23)-(25), update the position and
velocity of the first N — 1 dimensions of each particle.

Step 2: The final dimension is determined by the equality con-
straint (11). If this value is within its range, then go to Step 5. If
it is above the boundary value, we make its value equal to the
boundary value, as in formula (24), and proceed to Step 3.
Step 3: Set [=1.

Step 4: The value of dimension [ is determined by the equality
constraint (11). If it is within its range, we turn to Step 5. If it
is above boundary value, we make its value equal to the bound-
ary value, as in formula (24), set [ = [ + 1, then proceed to Step 4.
Step 5: Stop the update process.

Monte Carlo simulation

For a given set of decision variables, the Monte Carlo stochastic
simulation method is applied to test whether the spinning reserve
probability constraint satisfies the inequality (21), then we use
penalty function to deal with it if it is unsatisfied. The steps are
as follows:

Step 1: Set the spinning reserve probability constrained counter
K =0.
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Step 2: Produce load fluctuation parameters which obey the
normal distribution N(0, ?), wind turbine output power fluctu-
ation parameters using N(0,03), and PV array output power
fluctuation parameters using N(0, 52).

Produce a random number which obeys the 0-1 distribution, if
it is less than the forced outage rate, u; equals 0 and the unit exits
the operation; otherwise u;, equals 1 and the unit is under normal
operation.

Step 3: Put the random value and decision variables into the
probability constraint inequalities for the spinning reserve. If
the inequality can be satisfied, set K' =K' + 1.

Step 4: Repeat K times. If K is big enough and K'/K > o, we con-
sider the inequality (21) can be satisfied, otherwise the inequal-
ity (21) cannot be satisfied. We will use a penalty function to
deal with this inequality.

The process of the algorithmic solution

The improved PSO algorithm combined with the Monte Carlo
simulation can solve the dynamic economic dispatch model very
well in this paper. The algorithm process is shown as Fig. 1.

The specific steps are as follows:

Step 1: Initialize the particle swarm, dealing with the equality
constraints as in the process of initialization in 5.2.

Step 2: Simulate the uncertainty values of the microgrid with a
Monte Carlo simulation.

Step 3: Calculate the objective function for the fitness of the
current particle. Through putting the uncertainty values into
the spinning reserve probability constraints, judge whether
the system meets the inequality constraints or not. If the sys-
tem does not meet the inequality constraints, deal with it in
the form of a penalty function.

Step 4: Update the local optimum value and the global
optimum value of particle swarm.

Step 5: Update the particle position and velocity, dealing with
the equality constraints as in the process of updating in 5.2.

Initialize particle swarm

v

Monte Carlo simulation
v
Deal with probability constrained by
penalty function
v

| Compare the fitness |

Y

Update the local best value and
global best value
v
Update particle position and
velocity

if reach the maximum
number of iterations?

Output the result

Fig. 1. Flow chart of the algorithm.

Step 6: If the maximum number of iterations has been reached,
stop the search and output the result. Otherwise return to step
2 and continue the iterations.

Operation scheduling strategies for the microgrid system

In this paper, the microgrid includes WT, PV, MT, FC, DE and
battery.

When the microgrid is running under the grid-connected mode,
the battery neither charges nor discharges, owing to the support
from the grid. When the microgrid is running under the island
mode, the battery will participate in the operation dispatch.

And because the wind and solar energy are clean and renewable
energy, they will be utilized the maximum scheduling in this
paper. At the same time, the MT has been ordered to give priority
to supplying the heat power.

So considering the two different operation modes, the four
different operation scheduling strategies for dynamic economic
dispatch are researched.

Running under the grid-connected mode

According to whether the DGs will use priority scheduling and
the interactive mode between the grid and the microgrid, the oper-
ation scheduling strategies of dynamic economic dispatch on the
grid-connected mode can be divided into three kinds.

Scheduling strategy 1:

The microgrid cannot output power to the grid.

The DGs are priority scheduled. When they cannot meet the
load demand, the microgrid system will purchase power from
the grid.

Scheduling strategy 2:

The microgrid still cannot output power to the grid.

The grid and the microgrid both participate in economic opera-
tion. If the cost of power generation of the DGs is cheaper, the DGs
will receive priority scheduling. If the cost of power generation of
the DGs is more expensive, the microgrid will absorb power from
the grid.

Scheduling strategy 3:

The grid and the microgrid both participate in economic opera-
tion. And the grid and the microgrid can freely exchange power. If
the cost of power generation of the DGs is higher than the purchas-
ing cost, the DGs will be given priority. If the cost of power gener-
ation of the DGs is less than the purchasing cost, the grid will be
given priority in the scheduling. And the microgrid can also sell
redundant power to the grid in order to obtain profits.

Running under the island mode

When the microgrid is in the island mode, we design the fourth
scheduling strategy.

Scheduling strategy 4:

The DGs will contribute according to optimal scheduling. If the
output power of the DGs is greater than the load demand, the bat-
tery will be charged within its range. If the output power of the
DGs is less than the load demand, the battery will be discharged
within its range, and if a power shortage still exists in the
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microgrid, the system have to interrupt part of the unimportant
load to ensure the power supply.

Numerical examples
The example system

Visual C++ is adopted for the simulation calculation in this
paper. In order to suit the actual power grid scheduling and reflect
the dynamic scheduling of microgrid better, this paper set the cal-
culation cycle as 1 d, setting 5 min as a calculation period, then the
whole day could be divided into 288 periods. The related parame-
ters about PSO were set as follows: particle population size was 60,
and the largest number of iteration was 100. The output power of
renewable energy, heat load, power load, real-time price, spinning
reserve price are presented with the system data in Fig. 2. The cost
parameters of the DGs are shown as Table 1. And the parameters of
the pollutant discharge coefficient and the treatment cost of the
pollutant are shown as Table 2.

The capacity of the battery was 150 kW/h, and the initial state of
SOC was 50%. When it was in island mode, without the support of a
large power grid, the DE3 was increased to ensure meeting the load
demand. The compensation cost of load loss is 1.458 ¥/kW h. The
parameter table of the DGs is shown in Table 3, and the exchange
power limit value between the grid and microgrid is 80 kW.

Comparative analysis of the PSO algorithm

In this paper, we adopt the dynamic processing strategy of
equality constraint under the scheduling strategy 1 and 2. The
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—=— Wind turbine
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Table 1
Cost parameters of DGs.

Type PV WT GT DE1, DE2  DE3 FC
I (year) 20 10 10 10 10 10
InCost (¥/kW)  66.50 22.35 13.06 16.00 1821  42.75
Kom (¥/kWh)  0.0096 0.0296 0.0648 0.088 0.09 0.0293
Kre (¥/kW h) 0 0 0.695 0.396 0396 0.206
Table 2
Parameters of pollutant discharge.
Pollutant type CO, SO, NO,
Treatment cost (¥/kg) 0.21 14.842 62.964
Pollutant discharge coefficient PV 0 0 0
(g/KW) WT 0 0 0
GT 724 0.0036 0.2
DE1, DE2 649 0.206 9.89
DE3 680 0.306 10.09
FC 489 0.003 0.01
GRID 889 1.8 1.6

results of adopting the traditional PSO algorithm and the improved
PSO algorithm to calculate the model of scheduling strategy 1
when connected to grid are shown in Table 4, and the convergence
curves are shown in Fig. 3.

Table 4 shows that the calculation time of the improved PSO is
longer than the traditional PSO, since the improved PSO adopts the
equality constraint strategy in the process of particle swarm
initialization and update. This strategy adjusts each particle
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(b) Heat load curve of microgrid
1.6

—=— The spinning reserve price
1.4 4/ —=— Thereal time price

The price of electricity/ ¥ /kWh
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t/h
(d) The price curve of electricity

Fig. 2. The microgrid system data.
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Table 3
DGs in microgrid.
Type Power (kW) Ramp rate (kW/min) Forced outage rate Number
Lower limit Upper limit
DE1 0 30 1 0.009 1
DE2 0 30 1 0.008 1
DE3 0 60 2 0.002 1
FC 0 30 - - 1
PV 0 6 - 0.003 1
WT 0 30 - 0.004 1
BS -30 30 - - 1
Table 4 L8200
Results comparison between the traditional PSO and the improved PSO.
S
Algorithm type The traditional PSO The improved PSO > 1760}
8
Calculation time (min) 12.564 30.784 o
Convergence iteration 80 24 ‘g
Convergence value 1838.43 1795.23 > 1680}
Average power shortage (kW) 8.78 0 ﬁ
Average power excess (kW) 10.12 0
1600 T T 1
1 2 3

repeatedly to make it satisfy the equality constraint so the calcula-
tion time is longer than that of the traditional PSO. But the equality
constraints also can be completely satisfied. It can also be seen
from Fig. 3 that the convergence rate of the improved PSO is faster
than the traditional PSO, it converges at about the 20th generation,
but the traditional PSO converges at about the 80th generation.
And the improved PSO obtained better results than the traditional
PSO. Considering the improved PSO algorithm deals with the
equality constraint effectively and the convergence value is better,
we select the improved PSO as the dynamic economic dispatch
algorithm in this paper.

The influence of the scheduling strategy

When different scheduling strategies are adopted, the optimiza-
tion results are shown in Fig. 4.

We can see from Fig. 4, when we adopt scheduling strategy 2,
the total cost is less than scheduling strategy 1, this is because both
the grid and the microgrid participate in scheduling in scheduling
strategy 2, so the load can rely more on the generating units that
have lesser generating costs. And because power can be freely
exchanged between the grid and the microgrid in scheduling strat-
egy 3, when the purchase cost is higher than the generating cost of

32004 . Traditional PSO

—— Improved PSO
3000

2800
2600 |
2400 |

2200 |

Objective function value

2000 |

1800

40 60 80
lteration

Fig. 3. Convergence curve based on the algorithm.

scheduling strategies
Fig. 4. Optimization results under different control strategies.

the other DGs, the redundant output power can be sold to the grid
to obtain economic benefits, so the total cost is lower than the first
two scheduling strategies.

When adopting the three different scheduling strategies, the
economic dispatch results are shown in Fig. 5.

From Fig. 5, when choosing scheduling strategy 1, the DGs can
be prior scheduled, and because the generating cost of an FC is
the least, it is used first and the output is steady. After 6 o‘clock
in the morning, if the DGs cannot satisfy the load demanded, the
microgrid absorbs power from the grid. When choosing scheduling
strategy 2, the grid and the DGs both participate in the scheduling.
We can see that the FC which has the lowest cost is prior sched-
uled, and before 8 o’clock in the morning, the purchase cost is less
than the cost of the DE, so the output of the grid is bigger than the
DE. When choosing scheduling strategy 3, the FC is still prior
scheduled. Before 6 o’clock in the morning, according to the sched-
uling results, the output of the DGs is more than the load met, then
spare energy can be sold to the grid to earn profits. And in periods
of peak load, when the power from the DGs cannot meet the need
of the load, the microgrid will absorb power from the grid.

The influence of the objective functions

To analyze the impact of the optimization goals on the schedul-
ing results, we used the operation cost Cj, the pollutant treatment
cost C; and the maximum comprehensive benefits C respectively as
objection functions under scheduling strategy 1. The scheduling
results are shown in Fig. 6.

From Fig. 6, we find the fuel cell is prior scheduled no matter
which objective function is chosen, and its output is steady
because its operation costs and pollutant treatment costs are the
best. When choosing C; for optimization, the output of the diesel
engine is greater than the fuel cell during some periods, because
there is so little difference in the operating costs between the fuel
cell and the diesel engine; But when choosing C, as the objection
function, the output of the two diesel engines is always less than
the fuel cell, and the output of the fuel cell is almost at its maxi-
mum. This is because the pollution discharge of the diesel engine
is far greater than that of the fuel cell. When choosing C as the
objective function, the difference of total costs is less than the
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Fig. 5. Dispatch results under the different scheduling strategies.

difference of pollutant treatment costs between the diesel engine
and the fuel cell due to a comprehensive consideration of the
operating costs. So during some periods, the output of the diesel
engine is greater than the fuel cell. The grid will supply power to
the microgrid when their output cannot meet the load owing to
the impact of the scheduling strategy,

The influence of the reliability indexes

The confidence level o in the model, the selection of the unit
failure rate and the uncertainty of renewable resources output, will
all affect the optimization results.
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(a) The objective function-the operation cost
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(b) The objective function-the pollutant treatment cost
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20+
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(c) The objective function-the total cost

Fig. 6. Dispatch results under different objective functions.

In order to analyze the influence of the reliability indexes on the
microgrid operation, this paper discusses the changes of total cost
corresponding to different scheduling strategies and different
confidence levels. The results are shown in Fig. 7.

From the analysis of Section ‘The influence of the scheduling
strategy’, the maximum comprehensive benefits of strategy 1 are
always the highest, followed by those of strategy 2 and strategy
3, regardless of the value of the confidence level. From Fig. 7, we
can see that the maximum comprehensive benefits of strategy 1
are also always the highest, followed by those of strategy 2 and
strategy 3 at the confidence level. We can also see that the
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maximum comprehensive benefits always gradually increase as o
increases. And when « is close to 1, the maximum comprehensive
benefits C sharply increase. This is because the higher is the system
reliability level, the more spinning reserve the system needs, and
the more spinning reserve power has to be purchased from the
grid. Therefore the improvement of reliability is at the expense of
higher total costs.

The analysis of the operating results under the island mode

When the microgrid is in island mode, the system load is pro-
vided by the DGs, so the scheduling results are quite different from
those when grid-connected. And without the support of the grid,
the effect of uncertain factors on the operation of the system is
more obvious than that under grid-connected mode. We set the
island operating conditions as an example to analyze its scheduling
results. The load fluctuation and uncertainty of the renewable
resources were also set as examples to analyze the influence of
the uncertainty on the microgrid and the characteristics of the
battery.

Scheduling results analysis

Fig. 8 shows the optimization scheduling results under the
operation condition of the island mode.

We can see from Fig. 8 that the fuel cell FC is prior scheduled,
because the generating cost of the fuel cell is optimal. Following
are the diesel engines DE1 and DE2. Engine DE3 is scheduled last
because its generating cost is greater than that of the others. But
during periods of peak load, the output of DE3 is at its maximum.
This is because its capacity is greater than that of the others. From
midnight to 3 o’clock in the morning, we can see battery BS charges
within its operation period, because the output of the renewable
energy and other micro sources is greater than the load demand.
But it no longer charges after 3 o’clock in the morning owing to
the limitation of the battery capacity and the SOC. From 6 o’clock
in the evening to 9 o’clock at night during the peak load periods,
when the output of other micro sources no longer meets the load
demand, battery BS discharges in its scope. And from 7 o’clock to
8 o’clock at night, when micro sources still cannot meet the load
demand, some unimportant parts of the load LS are interrupted.

The influence of uncertainty under the island mode

(1) The influence of load fluctuation under the island mode

4500
4000
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The total cost/*¥

2000

> :

scheduling strategies - o
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Fig. 7. Optimization results under the different scheduling strategies and confi-
dence levels.
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Fig. 8. Dispatch results in island mode.

The load fluctuation parameter §;/P; reflects the accuracy of
load forecasting. In order to study the influence of load fluctuation
on island operation, this paper assumes that there is no fluctuation
in the renewable energy. The influences on the optimization
results with different 6;/P; values are shown in Fig. 9.

Fig. 9 shows that the total cost increases as the load fluctuation
worsens. For example, when §;/P; = 0.2, the cost increases by 2.5%
more than when 6;/P;=0.18. And when §;/P, =0.18, the cost
increases by 1.8% more than when §;/P; =0.16. This is because
the system needs more spinning reserves from the DE, which
may lead to more compensation costs for load interruption.

(2) The influence of renewable energy fluctuations under the
island mode

In order to study the influence of the fluctuation renewable
resources under island mode, this paper assumed that the load
fluctuation parameter J;/P; is 0. Fig. 10 shows the influence of
renewable resource fluctuation parameters dw/Pyw and J&s/Ps on
the total cost of the microgrid.

When 6y/Py is set to a certain value, the total cost increases as
0s/Ps increases. Similarly, when &s/Ps is set to a certain value, the
total cost increases as dy/Py increases. And the increased generat-
ing cost increases as the renewable energy fluctuation worsens.
This is because the system needs more spinning reserve from DE.
Also, there may be more compensation costs for interruption of

2000+
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load fluctuation o, /A,

Fig. 9. Dispatch results under different load fluctuations.
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Fig. 10. The total cost curves with wind turbine éy/Pw and PV arrays fluctuation ds/
Ps.

the load due to fluctuations in the renewable energy, leading to an
increase in the generation costs.

(3) Analysis of battery characteristics
(i) The analysis of battery impact

Uncertainty factors in the microgrid will affect the operation of
the storage battery. This paper has only studied the effect of wind
fluctuations on the battery when the fluctuation parameter éy,/Pw
was set to different values. The impact on the performance of bat-
tery BS is shown in Fig. 11.

We can see from Fig. 11 that while the microgrid is running in
island mode, the battery BS charges within its operating range dur-
ing low load periods, from midnight to 3 o’clock in the morning
when the output of the renewable energy units and other micro
sources in the micro grid is greater than the load demand. And dur-
ing the periods of peak load, from 6 o’clock in the evening until
9 o’clock at night when the output of other micro sources cannot
meet the load demand, the battery BS discharges within its operat-
ing range. Because the SOC of the battery needs to return to the
same value after the dynamic scheduling cycle, namely, the dis-
charge power needs to be equal to the charge power of the battery,
the battery BS no longer discharges after a certain period. And it
does not start charging until the period when the output of the
other micro sources is greater than the load at night. Therefore,
the battery plays the role of peak load shifting in the operation

40 -
—— 8w /Pw=0.05
304 —— &w/Py=0.1

—— 8w /Pw=0.2
20 -

-10 4

Output power/kW

-20 4
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t’h

Fig. 11. The output power curve of the battery.

Table 5

The influence of battery capacity on outage index.
Battery capacity (kW h) Tis (h) LS (kW)
80 2 18.86
120 1.5 10.32
150 1 4.03
200 0.5 1.23

of the microgrid. We also can see the fluctuation of the battery
BS worsens as dy/Py increases. This is because the feature of bat-
tery energy storing makes the battery smooth the power fluctua-
tions in the microgrid.

(ii) Analysis of battery capacity

As a matter of fact, the microgrid may not be able to meet the
load demand when it runs in island mode owing to the existence
of the uncertainty factors. Some unimportant load may be dis-
rupted in the periods of peak load, causing some power loss for
the users. The characteristic of battery energy storing makes the
battery able to discharge power during peak load, reducing the
extent of any interrupted loads. This paper sets the program to
run N times repeatedly, and took the average outage time T;s, aver-
age outage power LS as outage indexes, studying the influence of
the battery capacity on the outage indexes. The results are shown
in Table 5.

Table 5 shows that in this example, the load interruption occurs
from 7 o’clock to 8 o’clock at night, the second peak load. The aver-
age outage time Tjs lasts an hour. The average outage power LS is
4.03 KW. When the capacity of battery is reduced, both the average
outage time T;s and average outage power LS increase. And when
the capacity of the battery is increased, T;s and LS both decrease.
This shows that increasing the capacity of the battery can reduce
the outage power and the power loss of users.

Conclusions

Through establishing a combined heat and power (CHP) micro-
grid system which includes wind turbines, photovoltaic arrays,
diesel engines, a micro turbine, a fuel cell, and a battery, mathe-
matical models and an algorithmic solution of dynamic economic
dispatch for the microgrid were presented in this paper. We choose
the maximum comprehensive benefits as the objective function for
dynamic economic dispatch. At the same time, it establishes the
spinning reserve probability constraints of a microgrid considering
the influence of the uncertainty factors of renewable energy and
load fluctuations. An improved particle swarm optimization algo-
rithm combined with Monte Carlo simulation is used to solve the
objective function. And we research four different operation sched-
uling strategies under the grid-connected mode and the island
mode of the microgrid. The proposed models and algorithm are
verified by case studies based on an example system. When the
microgrid was running under the grid-connected mode, we dis-
cussed the influence of different scheduling strategies, optimiza-
tion goals, and reliability indexes on the dynamic economic
dispatch. And when the microgrid was running under the island
mode, we discussed the influence of the uncertainty factors and
the capacity of the battery on the dynamic economic dispatch.
Through a study of the dynamic economic dispatch of the micro-
grid, it can be concluded that an improvement of the reliability
of the microgrid carries an economic cost, the battery fulfills the
role of peak load shifting and stabilizing power fluctuations, and
increasing the capacity of the battery can reduce system power
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loss. The presented research can provide a reference for the
dynamic economic dispatch of a microgrid in making full use of
renewable energy and improving its reliability.
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