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The aim of this paper is to minimize the total cost of the system by incorporating wind power and plug-
in-electric vehicles (PEVs) along with demand response (DR) program. The methodologies have proposed
in contrast with the conventional algorithm in which the transmission line investment cost has been
minimized without considering the dynamism of the deregulated environment. Moreover, the transmis-
sion network planning enhances the competitiveness of the power market, where more market players
can participate. In this situation, the network planner has an important role in assessing the needs for
transmission investments. Now-a-days practice of the network planner is to utilize more renewable
power resources, PEVs and implementation of different electricity price tariffs. To achieve more benefits
of PEVs and wind energy, their optimal utilization is a major concern. This paper proposes a mathematical
model for solving the combined effect of PEVs and wind power integration with incentive-based DR
program on static transmission network expansion planning (STNEP) problem. To solve this non-linear
and non-convex problem, a nature-inspired optimization algorithm named gbest-guided artificial bee
colony algorithm (GABC) is applied due to its robustness. The algorithm’s performance is evaluated
through modified IEEE 24-bus, Brazilian 46-bus and Colombian 93-bus system. The test results indicate
that the combined effect of DR, PEVs and wind has reduced the total system cost significantly.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Economic benefits and environmental issues are the two major
concerns of the power system planning and its operations. Several
strategies such as integration of renewable energy resources are
adopted by the network planner to overcome these problems
[1,2]. As there are limitations of conventional energy resources,
major attraction is moving towards the renewable power resources
and other portable power devices. The power system planning is to
be done in an optimized way to prevent the system failure, load
shedding and reliability. However, the transmission expansion
planning (TEP) has an important role to play, as it helps to find
out the new transmission facilities required. TEP determines
‘‘what,” ‘‘where”, and ‘‘when” new transmission facilities to be
installed to the system requirements. Transmission network
expansion planning (TNEP) is categorized as static or dynamic
TNEP problems. The static TNEP problem is a single period plan-
ning, whereas the dynamic TNEP is a multi-period planning [3].
Since 1970’s TNEP problem has been solved as an optimization
problem [4]. Thereafter many researchers have worked to solve the
TEP problem by applying various techniques and the research done
so far on TEP problem has been reported in [1,2]. Starting from the
classical optimization methods [4–6], heuristic methods [7–9] and
population/or nature inspired algorithms [10–18] have been
applied to solve TEP problem.

Generally big vulnerability comes in finding ‘‘optimal solution”
by mathematical optimization methods due to the internal limita-
tions of the optimization techniques itself, such as the presence of
non-linearity and stochastic modeling. Furthermore, this leads to
large computational burden to the TEP planner. Therefore, these
days heuristic and meta-heuristic techniques are used to solve TEP
problems, which provide fast convergence and rapid calculation.

In the literature various issues and difficulties related to TEP
problems have been reported in [13,15–17]. In [13], the multiyear
TEP problem has been solved by considering demand uncertainty
nature to find out the most suitable group of projects, as well as
their scheduling along with the planning horizon. In [15], the TEP
problem has been solved by considering security issue and the
changes in the network configuration and affects in the investment
cost during any line outage has been presented. The multi-stage
atlabi.iratlabi.ir
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Nomenclature

Aj
i incentive price paid to the consumer in jth load period

(US $/MW)
B dj

i

� �
customer’s income in the jth load period (US)

ai; bi; ci; di; ei cost coefficient of the ith generator
c scale factor (units of wind speed)
CDRj cost of demand response for jth load period (US $)
CLikð�Þ cost function of new line added to the i� k right-of-

ways (US $)
Cið�Þ total fuel cost function of the ith generator (US $/h)
CPEVið�Þ cost function of total number of vehicle connected to

bus i (US $)
Cwdið�Þ direct cost function of ith wind farm (US $/h)
Cpwið�Þ and Crwið�Þ underestimation and overestimation cost

functions of the ith wind farm (US $/h)
dwi direct cost coefficient for the ith wind farm (US $/MW h)
d j
oi
and dj

i
new load demand and initial load demand at bus i for

jth load level (MW)
CDR cost of demand response participation (US $)
TWC total wind power utilization cost (US S/h)
E j
i elasticity of jth load level with respect to ith bus

ECV energy cost of the PEV
F fitness function
FC fuel cost (US $/h)
f jik active power flow in the i� k branch for jth load level

(MW)
f V ðvÞ and FV ðvÞ weibull probability and cumulative distribution

function (CDF) density function
f max
ik active power flow limit on the i� k branch (MW)
fW Pwð Þ WECS wind power pdf
TLC transmission line investment cost (US $)
k shape factor
kpi and kri underestimation and overestimation cost coefficient

for the ith wind farm (US $/MW h)
Ld number of load levels

no
ik and n j

ik initial number of lines and new lines added jth load
level to the i� k branch

nmax
ik maximum number of lines that can be added to the i� k

branch
Nlk set of lines connected to bus k
Nmax

PEV maximum number of PEVs
Nv ; Ng and Nw number of PEVs, thermal generators and wind

farms
penj

i penalty at bus i for jth load level (US $/MW)
P j
gi active power generation at the ith bus at load level j

(MW)
Pinc Dd j

i

� �
total payment for incentive (US $)

PEN Ddj
i

� �
total payment for penalty (US $)

Pmin
gi and Pmax

gi active power generation lower and upper limit at
the ith bus (MW)

P j
dk active load at bus k for load level j (MW)

P j
PEVi power generated by the vehicle connected to bus i at

load level j (MW)
P j
wi scheduled wind power from the ith wind farm at load

level j (MW)
P j
wi;av available wind power from the ith wind farm at load le-

vel j (MW)
Pwr and Pw rated wind power and output power of the ith wind

farm (MW)
Probf�g probability of events
TC total cost (US $)
v; vci; vco and vr wind speed, cut-in, cut-out and rated wind

speed m/s
cik susceptance of a branch between buses i� k

h j
m and h j

n
phase angle at buses m and n for load level j (rad)

q j
oi and q j

i original electricity and spot electricity prices at bus i
for jth load (US $/MW h) level (US $/MW h)

X set of all candidate lines

60 C. Rathore, R. Roy / Electrical Power and Energy Systems 75 (2016) 59–73  

 

TEP problem in a deregulated electricity market has been pre-
sented. The objective is to minimize the investment and operating
costs with the inclusion of N � 1 reliability criterion [16]. In [17],
the impact of distributed generation (DG) on sub-transmission sys-
tem expansion planning has been presented, which gives the
details about the optimal location and capacity of the substation
and DGs.

The wind related issues on TEP problem has been reported in
[19–23]. In [19], the reliability issue considering large wind farm
and load uncertainty has been described. The analyses described
the maximum wind energy capacity that is penetrated to a speci-
fied place. The impacts of large-scale wind integration have been
solved by taking investment, risk and congestion costs, reserve
market and reserve availability costs, and wind power investment
cost in [20–23]. The security and reliability constraints have been
considered to minimize the system cost. However, none of the
mentioned references includes the wind power utilization cost,
underestimation cost, overestimation cost and the optimal
placement of wind turbine on TNEP problem so far.

In a competitive electricity market, new incentive policy influ-
ences the consumers to take more participation in DR programs.
DR can be defined as the changes in electricity consumption pat-
terns by the end-user customers, according to the changes in the
price of electricity over a period of time from their normal usage
patterns [24]. Implementation of DR program is found as an
alternative to generation and transmission expansion [25].
Demand response (DR) programs have been widely studied in unit
commitment (UC) problem some of the papers are in [26–29]. In
[26,27], two types of DR programs have been reported, and their
impacts on load shape, load level, and benefits to the customer
have been analyzed. DR scheduling by a stochastic model for
security-constrained UC in the wholesale electricity market has
been solved, and the benefits of demand-side reserve in electricity
markets has been presented in [28,29]. From the literature
reviewed, it has been found that only few researchers have
reported the implementation of DR programs for TEP problem
[30,31]. In [30], TEP problem has been solved by incorporation of
demand response schedule considering wind power penetration.
In [31], a price-based DR program has been implemented on the
TEP problem. However, in both the papers the objective is to
minimize the total cost of the system, but the detail related to
the minimized value of cost, transmission line configuration and
the impact on load demand have not been adopted.

According to the electric power research institute (EPRI), it is
expected that by 2020 up to 35% of the total vehicles in the U.S. will
be PEVs [32]. The PEVs either in the form of source as a vehicle to
grid (V2G) technology or load as a grid to vehicle (G2V) technology
studies in the different fields of the power systems have been
reported in the literature recently [33–42]. The proper scheduling
of PEVs prevents overloading of the network, which leads to
the congestion free operation. The researches have studied the
applications of PEVs on the distribution network [33–35], UC
problem [36], economic load dispatch problem [37–39] and
transmission network [40–42].
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In [33], the detailed review about the present condition, imple-
mentation, benefits, and impact of V2G/G2V technologies on distri-
bution system has been presented. In [34], coordination of PEVs
and photovoltaic generation systems to minimize the overall cost
of the system has been reported. The impact of capacity variation
of PEV on distribution network investment and losses has been
presented in [35]. In [36], the UC problem has been solved by
incorporating V2G to minimize the cost and emission of the sys-
tem. The coordination of the charging/discharging behaviors of
PEVs to minimize the operational of the total system has been pre-
sented in [37]. To minimize the total generation cost of the entire
system by considering the uncertainties of PEVs and wind power,
an economic dispatch model has been discussed in [38]. In [39],
a probabilistic constrained load flow problem by integrating PEV
and wind power generation to minimize the operation of the sys-
tem has been presented. In [40], the cost-benefit analysis has been
investigated through the optimal PEV coordination schemes on the
transmission network. The integration of PEVs with wind power
penetration on the transmission network in deregulated market
and their impact on the energy cost of PEV has been analyzed
[41,42]. It has been found from the literature reported that the
application of PEVs on the TNEP problem has not been studied.

The gbest-guided artificial bee colony (GABC) optimization
algorithm is the modified version of ABC algorithm, which is a
population-based search optimization technique [43,44]. It is
inspired by the intelligent foraging behavior of honey bees. The
algorithm has been utilized for solving power system problems
such as economic load dispatch, UC and load flow [45–47]. From
the results reported in [45–47] it has been found that the algorithm
proves its fast convergence and robustness.

This paper proposes a mathematical structure, which is a combi-
nation of PEVs and wind power uncertainty along with considera-
tion of wind power utilization cost, underestimation cost and
overestimation cost model with the DR program for solving the DC
power flow model based STNEP problem to minimize the total sys-
tem cost. The GABC algorithm is applied to solve this complex opti-
mization problem because of its versatility and fast convergence.
The algorithm is verified on the modified IEEE-24 bus, Brazilian-46
bus and Colombian-93 bus test system. The performance of the
GABC algorithm is compared with the results reported by other
researchers. The main contributions of this paper are following:

1. To study the effect of wind power uncertainty on STNEP
problem.

2. To study the effect of PEVs concept on STNEP problem.
3. To study the combined effect of the DR program and PEVs with

wind uncertainty on STNEP problem.

The paper is organized as follows: Section ‘‘Basic Artificial Bee
Colony (ABC) optimization algorithm” presents the basic ABC
algorithm. The overview of GABC algorithm is presented in
Section ‘‘Gbest Artificial Bee Colony Algorithm (GABC)”. In
Section ‘‘Problem formulation”, the proposed problem formulation
is described. In Section ‘‘Implementation of GABC algorithm to the
static TNEP problem” implementation of the GABC algorithm on
proposed STNEP problem is described. Illustration of the systems
under study and results are presented in Section ‘‘The systems
under study and results”. Discussions and conclusions are given in
Sections ‘‘Discussion on the results” and ‘‘Conclusion” respectively.
Basic Artificial Bee Colony (ABC) optimization algorithm

Artificial Bee Colony (ABC) is one of the popular meta-heuristic
algorithms, which is inspired by the collective intelligent behavior
of honey bees for hunting for food. The ABC algorithm has been
introduced and developed by Basturk B and Karaboga D [48]. It
consists of three artificial bees groups, namely employed bees,
onlooker bees and scout bees. The position of each food source sig-
nifies a probable and possible solution of the defined optimization
problem. The nectar amount of the food source represents the
quality or fitness of the solution.

Employed bees are the bees that are going to the food source
randomly; they carry information and share it with other bees
waiting at the hive regarding location and the profitability of that
particular food source. The bees are waiting in the dance area for
making the decision to choose a food source based upon informa-
tion given by the employee bees known as onlooker bees and bees
which carrying out random search around the swarm to find food
source are scout bees. The ABC algorithm follows the same process
for optimization and the steps mentioned below are repeated until
a termination criterion is reached.

Initialization of the parameters

The algorithm has few input/control parameters such as popu-
lation size (Ns), the number of food source, number of employed
and onlooker bees, the number of trials after which the food source
is assumed to be abandoned called as limit, and finally the stopping
criterion (maximum number of iterations).

Initialization of the populations

After feeding the input parameters, the ABC algorithm gener-
ates arbitrarily distributed initial population Ppop of Ns vectors of
candidate solutions as (1),

Ppop ¼ ½X1; . . .Xi; . . . ;XNs�T ð1Þ

where Xi ¼ ½xi1; . . . ; xij; . . . ; xiD� represents the ith food source of
D-dimensional vector, then each food source is generated as follow:

xij ¼ lowerboundj þ upperboundj � lowerboundj
� � � rand;

for j ¼ 1 . . .D and i ¼ 1 . . .Ns ð2Þ

 

Employed bees phase

At this position, each employed bee finds the new food source
position v ij by utilizing the old position using (3)

v ij ¼ xij þwij � ðxij � xkjÞ ð3Þ

where wij is a random number between [�1,1], and
k 2 f1;2; . . . ;Nsg and j 2 f1;2; . . . ;Dg are randomly chosen indexes.
After selection of a new position, the nectar amount is compared
between new and old position; if the new position is found better
than the old position, a new position is retained; otherwise it is
discarded. The greedy selection method is used for the choice of
the best and the worst.

Onlooker bees phase

The onlooker bees select a food source according to the
probability calculated by (4) associated with that food source.

Pprobabilityi ¼
fitnessiPNs
j¼1fitnessj

ð4Þ

where fitnessi is the fitness value of ith solution, and Ns is the num-
ber of food source. Similar to the employed bees phase, the onlooker
bees also modify their position using (3) and repeat the same.
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Scout bees phase

If a food source position cannot be enhanced during a specified
number of trials (limit) then it is assumed to be abandoned.
Assume that the abandoned source is xij and j 2 f1;2; . . . ;Dg, then
the new food source found by the scout bees to be replaced by the
abandoned position by using (5),

xij ¼ xjmin þ rand 0;1½ � � ðxjmax � xjminÞ ð5Þ
For each candidate source position v ij is produced and estimated by
the artificial bee, its quality is compared with its old position. If the
new position is found better than the old position, it replaces the
old position and if not the old position is retained in memory. In
the complete process, it is considered that at each cycle at maxi-
mum only one scout bee goes outside for hunting a new food
source.

Gbest Artificial Bee Colony Algorithm (GABC)

In ABC algorithm the solution search equation described as in
(3) and the probability of getting a random solution for the best
and the worst solution are same. Also, (3) has good exploration,
but poor exploitation. In order to achieve good optimization, per-
formance the exploration and exploitation abilities should be
equally balanced. Therefore, to achieve this (3) is modified to
improve the exploitation as follows [44]

v ij ¼ xij þ ;ij xij � xkj
� �þ wijðyj � xijÞ ð6Þ

where the term added in (3) is gbest term, yj is the jth element of the
global best solution, and wij is an uniform random number in [0,C],
where C is a non-negative constant. By adding this term the exploita-
tion ability of ABC algorithm is increased, and the modified ABC
algorithm is named as gbest-guided ABC (GABC) algorithm. The
value of C plays an important role in improving the exploitation.

Problem formulation

The objective of the TNEP problem is to minimize the total cost
under various economic and technical constraints. The assump-
tions made for the proposed STNEP problem are:

1. A lossless DC power flow is adopted to model the STNEP
problem.

2. The STNEP problem is solved for 100% load level period, and it is
assumed that the transmission lines expanded are cable to cater
the requirements of rest planning horizon.

3. The spot price and the electricity price are assumed to be same.
4. The group PEVs is installed at a particular location, and they are

considered as a source during peak load periods and as a load
during off-peak periods.

5. The vehicle battery life cost is not included in the cost function
of PEVs.

The proposed STNEP model

In this paper, an equivalent objective of maximizing the social
welfare is to minimize the sum of the investment cost as transmis-
sion line investment cost and the operating cost as a summation of
the fuel cost of thermal generating unit, the wind power utilization
cost, the cost of demand response participation and the energy cost
of the vehicles connected to the grid is considered and it is
formulated as follows:

Minimize
Total Cost,
F ¼ Investment cost þ Operating cost ð7Þ

¼
X
i;k2X

CLik nikð Þþa �
XLd
j

�
XNg

i

Ci P j
gi

� �
þ
XNw

i

Cwdi P j
wi

� ��"(

þCpwi P j
wi;av �Pj

wi

� �
þCrwi P j

wi�Pj
wi;av

� ��
þ
XNv
i

CPEVi P j
PEVi

� �#
þ
XLd
i

CDRi

)

ð8Þ
The model presented by (8) is analyzed by considering different
combinations of cost components. The terms in (8) are explained
as follows:

The first term CLik nikð Þ in the proposed objective function (8) is
the traditional STNEP cost model i.e. cost of new transmission line
[11–13,17,49–51] and is given as

CLik nikð Þ ¼ CLiknik ð9Þ

The second term Ci P j
gi

� �
is the thermal generation cost and it is rep-

resented by the quadratic function of operation cost of thermal gen-
eration considering the valve-point effect, which is given by [52]:

Ci P j
gi

� �
¼ ai P j

gi

� �2
þ biP

j
gi þ ci þ disin ei Pmin

gi � P j
gi

� �n oj k
ð10Þ

The third term Cwdi P j
wi

� �
is a direct cost component and which is the

linear cost function of wind power. This amount is paid by the sys-
tem operator when they consume wind output power; if they do
not own the wind generators self otherwise it’s equal to zero.

Cwdi P j
wi

� �
¼ dwiP

j
wi ð11Þ

The fourth term Cpwi P j
wi;av � P j

wi

� �
gives the underestimation cost

(penalty cost) of wind power when the system operators do not uti-
lize all available wind power (i.e. wind power generated is more
than the expected power) and it is determined by using the distri-
bution function [45,53]. This cost function is given by (12)

Cpwi Pj
wi;av �Pj

wi

� �
¼ kpi Pj

wi;av �Pj
wi

� �
¼ kpi

Z Pj
wri

P j
wi

Pw�Pj
wi

� �
f W Pwð ÞdPw

ð12Þ

The fifth term Crwi P j
wi � P j

wi;av

� �
represents the overestimation cost

(reserve cost) model of wind power, which is similar to the under-
estimation cost, but in this case the amount paid by the system
operator due to wind power generated is less than the expected
power and it is found by using the distribution function [45,53], i.e.,

Crwi Pj
wi�Pj

wi;av

� �
¼ kri P j

wi�Pj
wi;av

� �
¼ kri

Z Pj
wi

0
Pj
wi�Pw

� �
f W Pwð ÞdPw

ð13Þ

The sixth term CPEVi P j
PEVi

� �
gives the energy cost of the vehicles. The

vehicle owners may decide their vehicle charging/discharging per-
iod in order to get more benefits depending upon the spot electric-
ity price. The energy cost of the vehicle can be written as [40]

CPEVi P j
PEVi

� �
¼ P j

PEVi � q j
i ð14Þ

Finally, the last term CDRj represents the cost for jth load level of
demand response participation. The execution of various types of
demand response program leads to an extra cost for the indepen-
dent system operator (ISO) [27] and it is calculated by using (15)

CDRj ¼ �dj
oi
� A2 j

i � Ej
i

q j
oi

" #
ð15Þ
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where a is the weighting factor which is used to equalize between
the investment cost and the operating cost, and its value is selected
between 10 and 10,000 after several experimentation.

Equality and Inequality constraints of PEVs and STNEP

The constraints are incorporated in solving process so as to pre-
vent the system from failure. These constraints are organized as
follows:

1. Vehicle balance in STNEP: As per the registered/forecasted PEVs,
the total number of vehicles should be less than or equal to the
maximum number of PEVs for the scheduling of the specified
period.
Xhr
t¼1

NPEV ðtÞ 6 Nmax
PEV ð16Þ
2. Charging–discharging frequency: In this case multiple charging–
discharging facilities of PEVs are considered.

3. State of charge (SoC): It is assumed that each vehicle can store
energy up to 90% and discharge up to 20% of its maximum
energy.

4. Efficiency (gÞ: Battery efficiency should be taken under
consideration.

5. Power balance: PEVs are assumed as a source during peak load
period and as a load in off-peak load period [33–36]. Along with
this, the power supplied by the thermal generators and wind
farms must satisfy the load for that period,
X

8i2Nlk

f ji þ
X
8i2Nlk

P j
giþ

X
8i2Nlk

P j
wi�

X
8i2Nlk

P j
PEVi�Pj

dk ¼0 k¼1; . . . ;Nb

PPEV ¼PPEV ; During Discharging period

PPEV ¼�PPEV ; During Charging period

�
ð17Þ
6. Maximum power flow limits: In order to maintain system stabil-
ity, and the line loading should be less than its thermal limit.
X

8i2Nlk

f j
i

��� ��� 6 no
i þ nj

i

� �
f max
i ð18Þ

In the DC power flow model, power flow between branches in
(18) is calculated by using (19).

f j
ik ¼ cik no

ik þ nj
ik

� �
h j
m � h j

n

� �
; m – n; 8m;n 2 Nb ð19Þ

7. Power generation limits: Each power generating source has gen-
eration range represented as
Pmin
gi 6 P j

gi 6 Pmax
gi ð20Þ

0 6 P j
wi 6 Pwri ð21Þ
8. Line expansion limits: The expansion of new parallel lines should
be within the range specified as
0 6 nj
ik 6 nmax

ik ð22Þ
Wind speed and turbine generator model

The wind energy is highly sensitive to the wind speed and due
to the unpredictable nature of wind, many related models are stud-
ied. However, it is seen from the previous literature that [53,54]
the Weibull distribution is commonly used to represent the wind
speed character. Therefore, in this paper also the Weibull probabil-
ity density function (PDF) is used. The Weibull probability density
function and the cumulative distribution function (CDF) are calcu-
lated by (23) and (24) respectively.

f V ðvÞ ¼
k
c

� 	
v
c

� �k�1
exp� v

cð Þk�1

; 0 < v < 1 ð23Þ

FV ðvÞ ¼
Z v

0
f V ðsÞds ¼ 1� exp� v

cð Þk ð24Þ

Once the intermittent nature of the wind is considered as an arbi-
trary variable, the output power of the wind energy conversion sys-
tem (WECS) may also be considered as a random variable. The
output of the WECS [53] with different wind speeds is stated as:

Pw ¼ 0; for v < vci and v > vco ð25Þ

Pw ¼ Pr
v � vci

v r � vci

� 	
; for vci 6 v 6 v r ð26Þ

Pw ¼ Pr ; for v r 6 v 6 vco ð27Þ
From the Weibull function, the probability of wind power output at
zero, rated and intermediate position between them can be gener-
ated from Weibull PDF by using (28)–(30) respectively [53]:

Prob Pw ¼ 0f g ¼ FV vcið Þ þ 1� FV vcoð Þð Þ

¼ 1� exp � vci

c

� �k� 	
þ exp � vco

c

� �k� 	
ð28Þ

Prob Pw ¼ Prf g ¼ FV vcoð Þ � FV ðv rÞ

¼ exp � v r

c

� �k� 	
� exp � vco

c

� �k� 	
ð29Þ

where k ¼ Pw
Pr

and b ¼ vr�vci
vci

� �

fW Pwð Þ ¼ kbvci

c
1þ kbð Þvci

c

� 	k�1

exp � ð1þ kbÞvci

c

� 	k
 !

ð30Þ

 

Demand response modeling

In a vertical electricity market, the consumers are paying elec-
tricity price irrespective of their consumption. As in the deregu-
lated market the independent system operator (ISO) is
influencing consumers to decrease or shift their loads when the
price is more. DR program is divided into two main categories as
in [24] (i) Incentive-based programs and (ii) Price-based programs.
In this paper incentive-based DR program is implemented and for
different load levels different elasticity factors are considered to
show their effects on price, demand and the consumers benefit.

Elasticity is defined as the demand sensitivity with respect to
the electricity price values [27]. The elasticity of jth load level with
respect to ith bus can be written as:

Ej
i ¼

@ðdj
i Þ

@ðq j
i Þ

¼ q j
oi

d j
oi

� dðdj
i Þ

dðq j
i Þ

ð31Þ

As the electricity price increases in a particular period, the con-
sumers are intended to shift their loads to another interval or other-
wise try to reduce the consumptions. To tackle the price variations,
loads reacts [55] in two ways: single period loads and multi-period
loads. The single period loads are the loads that are not able to shift
to the other intervals, and they could be only connected or discon-
nected to take part in the price variations. These are sensitive to a
single period and known as self-elasticity. The multi-period loads
are the loads that can be shifted from peak load period to off-
peak or low period. These are sensitive to a multi-period and known
as cross-elasticity. In the proposed method, a single period load
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modeling is considered and the participation of customers in DR
programs and the economic load model presented in [26] is applied.

Single period modeling

Based on the incentive Aj
i

� �
and penalty penj

i

� �
values offer, the

consumers changes its demand as

Ddj
i ¼ dj

oi
� d j

i ð32Þ

So, the total incentive price Pinc Ddj
i

� �
paid to the consumers for the

demand for jth load level at ith bus during the DR program is given
as:

Pinc Ddj
i

� �
¼ Aj

i � dj
oi
� d j

i

h i
ð33Þ

If the consumers are participating in DR program and not obeying

the rules, the penalty ðpenj
i Þ will be charged and the total penalty

PEN Ddj
i

� �
will be calculated as:

PEN Ddj
i

� �
¼ penj

i � fdj
oi
� dj

i g ð34Þ

The consumers benefit CB for jth load level will be:

CB ¼ B dj
i

� �
� dj

i � q j
i þ Pinc Ddj

i

� �
� PEN Dd j

i

� �
ð35Þ

For maximizing consumers benefit, @CB
@d j

i

¼ 0

@ B dj
i

� �� �
@ dj

i

� � ¼ q j
i þ Aj

i þ penj
i ð36Þ

And from [22]:

@ B dj
i

� �� �
@ dj

i

� � ¼ q j
oi
� 1þ dj

i � dj
oi

E j
i � d j

oi

( )
ð37Þ

By comparing (36) and (37)

q j
i þ Aj

i þ penj
i ¼ q j

oi
� 1þ dj

i � dj
oi

E j
i � dj

oi

( )
ð38Þ

Therefore, consumer’s consumption will be:

dj
i ¼ dj

oi
� 1þ E j

i � ½q j
i � q j

oi þ Aj
i þ penj

i �
q j

oi

( )
ð39Þ

Accordingly, the cost of demand response participation can be cal-
culated as [27]:

CDRi ¼ Aj
i � dj

oi
� dj

i

� �
ð40Þ

By assuming the electricity price before and after demand response
to be equal and the penalty to be zero, (38) and (39) become

dj
i ¼ dj

oi
� 1þ E j

i � ½Aj
i �

q j
oi

( )
ð41Þ
CDRi ¼ �dj
oi
� A2 j

i � E j
i

q j
oi

" #
ð42Þ

The ISO has to pay this amount to the consumers as an incentive
when they are participating in DR programs.
Implementation of GABC algorithm to the static TNEP problem

This section provides the details of the application of GABC opti-
mization technique to solve the proposed STNEP problem. The flow
chart is illustrated in Fig. 1 and the steps to be followed are:

(1) Read all the network data and the algorithm control
parameters.

(2) Create the random initial population vector of possible opti-
mal solution using (1) according to the case study under
consideration.

(3) The GABC optimization algorithm iterates over the
employed bees, onlooker bees and scout bees phases until
the termination criterion is reached.

(4) Run DC load flow for every change in food source position by
simultaneously checking for the system constraints using
(16)–(22). The penalty factor method is used to handle the
system constraints.

As quick as the stopping criteria is achieved, the solution
obtained by the GABC algorithm is the one with minimum trans-
mission line investment cost and total cost, which at the same time
satisfies all the system constraints.

 

The systems under study and results

System under study

The static TNEP study is performed in MATLAB environment by
applying the GABC optimization algorithm. The test systems used
are (1) a modified IEEE 24-bus system (2) Brazilian 46-bus system
[10] and (3) Colombian 93-bus system [56]. Original IEEE 24-bus
network data has been taken from [48] and the thermal generator
cost characteristic of ith unit are modified by using data available
in [51]. Details are shown in Tables 1 and 2. It is assumed that
the maximum number of three new parallel lines may be installed
in each possible path.

For solving the STNEP problem, the value of Pmin
gi is set to 0 MW.

For the implementation of the DR program at different load levels,
the total duration of 8760 h is considered [41]. The maximum
numbers of PEVs considered are 500,000. Spot electricity price
(SP) is extracted from [25] and the price elasticity of each load level
is taken from [54]. Spot electricity price, price elasticity, incentive
price and penalty price offered to the consumers for jth load level
at ith bus are same. The details of wind generators and PEVs
parameters used are given in Table 3.

To examine the effects of various situations on the proposed
STNEP problem, eight different scenarios are demonstrated.

� The scenario-1 is assumed to be the base case in which the
STNEP problem is solved only for a given generation and load
plan.

� In scenario-2, the power generation of the generating units is
allowed to vary between their minimum and maximum gener-
ating limits.

� The impact of EDRP-DR program is analyzed in scenario-3.
� Integration of wind power and PEVs at load bus is analyzed in
scenario-4 and scenario-5.

� In scenario-6, the DR program is examined with the integration
of PEVs at load bus.

� In scenario-7, the wind power and PEVs are integrated at load
bus for the analysis.

� The combined impact of the PEVs, wind power uncertainty and
DR program is illustrated in scenario-8.
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START

Generate initial food positions (possible candidate solutions) using (1)

Iteration=1
Run DC load flow and evaluate fitness function F using (8) (i.e. calculation of nectar amount)

Load network data , Input the control parameters of      
algorithm, population of  bee colony, Ns, D, C, limit, Max. 
iteration, possible range of  decision variables (Xi) may vary 
depending upon the case studies,  DR programs and PEVs 
parameters                       

Memorize the best  food source/solution

If
Iteration ≤ Max . 

iteration

Update the position using (6)

Run DC load flow, evaluate F and memorize the best food source/solution

Calculate the probability using (4) and update the position using (6)

Find the abandoned food sources

Run DC load flow, evaluate F and memorize the best food source/solution

Change the position of abandoned food sources value using (5)

Iteration= iteration + 1

Run DC load flow, evaluate F and memorize the best food source/solution so far

Display final solutions

STOP

Yes

No

Employee 
bees phase

Onlooker bees 
phase

Scout bee 
phase

Fig. 1. Flow chart of GABC algorithm for the proposed STNEP problem.
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Selection of the control parameters of the GABC algorithm

The GABC algorithm has five input parameters, and these
parameters are highly sensitive to the output. These parameters
also depend on the model under study. Hence the tuning of these
parameters is important. The number of population (=colony size)
(Ns), employed bees, onlooker bees, scout bees and C are the con-
trol parameters of the GABC algorithm. In order to set them care-
fully, 10 trial runs are taken on each one of them. The employed
bees are considered as 50% of the colony size. The control param-
eter variation of the algorithm for scenario-1 is presented in
Table 4.

The effect of colony size on transmission line investment cost is
studied by varying colony size from 20 to 300 by keeping the limit
value at 4, the value of C at 1.5 and onlooker bees = 30⁄ employed
bees. It is observed from Table 4 that as the colony size is increased
the rate of achievement of the optimal solution is increased.
However, to achieve less computational time its moderate value
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Table 1
Generator characteristics [52].

Unit Max., generation (MW) ai ($/(MW)2 h) bi ($/MW h) ci ($/h) di ($/h) ei (rad/MW)

1 80 0.10908 39.5804 950.606 25 0.0178
2 130 0.12111 39.5104 800.705 30 0.0168
3 240 0.10587 46.1592 451.325 20 0.0163
4 300 0.03546 38.3055 1243.531 20 0.0152
5 340 0.02803 40.3965 1049.998 30 0.0128
6 470 0.0211 36.3278 1658.569 60 0.0136

Table 2
Data of IEEE 24-bus system.

Bus number G0 (MW) G1 (MW) G2 (MW) G3 (MW) G4 (MW) Load Pd (MW) Modified generator cost characteristics

1 576 576 465 576 520 324 Unit (5)+ Unit (3)
2 576 576 576 576 520 291 Unit (5)+ Unit (3)
3 0 0 0 0 0 540 –
4 0 0 0 0 0 222 –
5 0 0 0 0 0 213 –
6 0 0 0 0 0 408 –
7 900 900 722 900 812 375 3⁄Unit (4)
8 0 0 0 0 0 513 –
9 0 0 0 0 0 525 –
10 0 0 0 0 0 585 –
11 0 0 0 0 0 0 –
12 0 0 0 0 0 0 –
13 1773 1773 1424 1457 1599 795 3⁄Unit (5)+ Unit (1)
14 0 0 0 0 0 582 –
15 645 645 645 325 581 951 Unit (5)+ Unit (1)+ Unit (3)
16 465 465 465 282 419 300 Unit (6)
17 0 0 0 0 0 0 –
18 1200 1200 1200 603 718 999 4⁄Unit (4)
19 0 0 0 0 0 543 –
20 0 0 0 0 0 384 –
21 1200 1200 1200 951 1077 0 4⁄Unit (4)
22 900 900 900 900 900 0 3⁄Unit (4)
23 1980 315 953 1980 1404 0 3⁄Unit (6)+ Unit (5)+ Unit (3)
24 0 0 0 0 0 0 –

Table 3
Details of wind generator and PEVs parameters.

Wind generator [53] Cut-in speed = 4 m/s Cut-out speed = 20 m/s Rated speed = 12 m/s
dw = 8 US $/MW h kp = 6 $/MW h kr = 8 $/MW h

PEVs [36] Maximum battery capacity = 25 kW h Minimum battery capacity = 10 kW h Average battery capacity = 15 kW h Inverter efficiency = 85%
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is considered. A similar procedure is followed for the selection of
onlooker bees by keeping other parameters fixed. The limit value
is responsible for the scout bee production in the GABC algorithm.
To see its effect on algorithm performance it is varied from 2 to 12.
From Fig. 2, it is observed that for lower value of limit i.e. 2, the
chance of finding the optimal solution is less and as its value is
increased the chance of getting optimal solution is increased. But
according to [58], for high limit value exploration capability of
the algorithm is more, while with a very low value it reduces the
exploitation capability. Hence, a moderate value is considered for
this study.

From Fig. 2 it is observed that for very high value of C, the algo-
rithm fails to find the optimal solution and for low value it can
obtain the optimal solution but with a higher number of iterations.
Therefore, in this study the value of C is taken as 1.5. From the
graph, it is observed that at this value of C the GABC algorithm
has good exploration and finds the optimal solution in less than
30 iterations. Figs. 3–5 portray the impact of colony size, onlooker
bees and limit value variations in the total cost. It is seen that with
the increase in colony size, the number of onlooker bees and limit
value, the presented optimization algorithm yields the optimal
solution in less number of iterations. To show the convergence per-
formance of ABC and GABC algorithms, a graph is plotted for sce-
nario 1 and it is as shown in Fig. 6. It is observed from the graph
that the GABC algorithm reaches the optimal solution in less than
50 iterations while ABC algorithm takes more than 100 iterations
for the same number of colony size (=50). Hence, this indicates that
the modification made in the basic ABC algorithm is effective.

Based on the above trail runs the following control parameters
are selected for the best solution of the GABC algorithm: popula-
tion size (colony size) Ns = 50, Onlooker bees = 750, limit = 4,
C = 1.5 and the maximum number of iterations = 500. The best
result for minimum total cost TC with these control parameters
is obtained after 30 trails.

Results

In these studies, scenarios 1–8 are analyzed on a modified IEEE
24-bus system and scenario-1 is analyzed on Brazilian 46-bus and
Colombian 93-bus system. The capability of the GABC optimization
algorithm is demonstrated and validated through simulation of the
scenarios 1–8. The simulation results and generating units
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Table 4
Control parameter variations of GABC algorithm (Scenario 1).

Control parameters Result ( INVC US Computation time for 500
iterations, seconds

Best Worst Average Trial Success

20 390,000,000 472,000,000 390,000,000 10 4 259.228
50 390,000,000 390,000,000 390,000,000 10 10 650.649
100 390,000,000 390,000,000 390,000,000 10 10 1319.955
150 390,000,000 390,000,000 390,000,000 10 10 1927.209
200 390,000,000 390,000,000 390,000,000 10 10 2595.437
250 390,000,000 390,000,000 390,000,000 10 10 3251.680
300 390,000,000 390,000,000 390,000,000 10 10 3856.877

Onlooker bees
125 390,000,000 506,000,000 413,200,000 10 8 130.660
250 390,000,000 390,000,000 390,000,000 10 10 246.722
500 390,000,000 390,000,000 390,000,000 10 10 475.122
750 390,000,000 390,000,000 390,000,000 10 10 703.737
1000 390,000,000 390,000,000 390,000,000 10 10 889.622

Limit value
2 390,000,000 390,000,000 390,000,000 10 6 657.546
4 390,000,000 452,000,000 402,400,000 10 8 646.869
6 390,000,000 452,000,000 414,800,000 10 6 651.773
8 390,000,000 452,000,000 402,400,000 10 8 640.880
10 390,000,000 390,000,000 390,000,000 10 10 626.987
12 390,000,000 390,000,000 390,000,000 10 10 639.322

Bold values denote the optimal solution found.

Fig. 2. The impact of different values of C (non-negative number) on Total cost.

Fig. 3. The impact of variations of colony size on total cost.
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scheduling for all the scenarios for IEEE 24-bus system are
enumerated in Tables 5 and 6. The details of the PEVs power output
and number of PEVs are presented in Table 7. Form Table 7, it is
observed that the PEVs power output is reduced for scenario-8 as
compared to scenarios 5–7. The comprehensive results for all the
scenarios are described below:
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Fig. 4. The impact of variations of onlooker bees on total cost.

Fig. 5. The impact of variations of limit value on total cost.

Fig. 6. Cost convergence comparison curve for ABC and GABC.
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Scenario 1: In this scenario, the static TENP problem (8) is solved
only with thermal generating unit. For IEEE 24-bus system simula-
tion, generation plan G1 is considered. In this case the transmission
line investment cost (TLC) obtained with the GABC optimization
algorithm is 390,000,000 US $ with additions of 12 new lines to
the base network and the added line network topology is:
n1�5 ¼ 1, n3�24 ¼ 1, n6�10 ¼ 1, n7�8 ¼ 2, n14�16 ¼ 1, n15�24 ¼ 1,
n16�17 ¼ 2, n16�19 ¼ 1 and n17�18 ¼ 2.

For Brazilian 46-bus network the optimal solution obtained has
TLC = 154,420,000 US $ with additions of 16 new lines to the base 
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Table 5
Dispatch of generating units and PEVs for all scenarios of the proposed STNEP problem.

Scenarios Generating Units (MW) Total
load at
level 1
(MW)

Total
generations
(MW)

Pg1 Pg2 Pg7 Pg13 Pg15 Pg16 Pg18 Pg21 Pg22 Pg23 Pwind PPEV

1 Base Case 576.00 576.00 900.00 1773.00 645.00 465.00 1200.00 1200.00 900.00 315.00 – – 8550.00 8550.00
2 With generation

resize
570.42 570.89 900.00 1577.58 644.79 464.52 942.14 1189.33 65.54 1624.76 – – 8550.00 8550.00

3 With EDRP-DR 576.00 575.03 884.06 1772.95 638.00 464.99 1200.00 387.06 172.78 1531.75 – – 8202.65 8202.65
4 With wind

uncertainty
573.62 573.62 552.79 1769.44 645.00 373.61 737.06 737.06 552.79 1694.48 340.50 – 8550.00 8550.00

5 With PEVs 574.44 574.44 553.24 1773.00 645.00 373.23 737.66 737.66 553.24 1694.14 – 333.82 8549.92 8550.00
6 With EDRP and

PEVs
533.69 533.69 530.11 1773.00 612.80 369.91 706.81 706.81 530.11 1643.43 – 262.27 8202.65 8202.65

7 With wind
uncertainty and
PEVs

576.00 576.00 543.26 1700.03 578.87 306.61 724.35 724.35 543.26 1498.66 446.59 331.98 8549.99 8550.00

8 With EDRP and
PEVs, with
consideration of
wind
uncertainty

576.00 576.00 514.11 1765.71 642.72 243.69 685.48 685.48 514.11 1307.97 444.01 247.32 8202.65 8202.65

Table 6
Overall summary of results obtained for the proposed STNEP problem.

Scenarios Results of STNEP

TLC, US $ Average, US
$

Worst, US $ Standard
deviation

FC, US $/hr TWC, US
$/hr

DRC, US $ PEVs cost,
US $

TC, US $ Total
new
lines
added

1 Base Case 390,000,000 390,000,000 390,000,000 0 – – – – 390,000,000.000 12
2 With generation

resize
152,000,000 169,400,000 184,000,000 12,580,408.048 – – – – 152,000,000.000 5

3 With EDRP-DR 136,000,000 154,400,000 184,000,000 18,968,980.527 – – 4,515.500 – 136,004,515.500 5
4 With wind

uncertainty
136,000,000 143,400,000 172,000,000 1,5027,382.414 441,095.399 3,205.359 – – 136,444,300.758 4

5 With PEVs 132,000,000 213,000,000 278,000,000 44,624,358.072 453,000.845 – – 10,726.099 132,463,726.944 3
6 With EDRP and

PEVs
128,000,000 122,400,000 156,000,000 19,995,555.062 430,834.350 – 4,515.500 5,788.283 128,441,138.133 3

7 With wind
uncertainty and
PEVs

104,000,000 125,400,000 156,000,000 21,869,308.783 435,666.742 3,595.132 – 8,790.282 104,448,052.157 3

8 With EDRP and
PEVs, with
consideration of
wind
uncertainty

100,000,000 108,400,000 128,000,000 1,1027,239.002 424,949.476 3,574.338 4,515.500 5,808.396 100,438,847.709 3

Table 7
Details of PEVs for scenarios 5–8 of the STNEP problem.

Load levels Demand Durations (h) Scenarios

5 With PEVs 6 With EDRP-DR and PEVs 7 With wind uncertainty and
PEVs

8 with EDRP and PEVs, with
consideration of wind
uncertainty

PPEV (MW) Vehicle
number

PPEV (MW) Vehicle
number

PPEV (MW) Vehicle
number

PPPEV (MW) Vehicle
number

1 8550 0–400 333.824 38,907 262.271 30,483 340.502 39,508 247.327 28,679
2 7695 400–900 317.062 36,748 358.091 41,498 348.925 40,498 245.745 28,499
3 6840 900–1500 436.888 50,699 421.389 48,899 417.296 48,599 344.734 40,199
4 5985 1500–2300 625.540 72,797 261.908 30,399 407.165 47,198 603.456 69,997
5 5130 2300–3100 �239.181 26,799 �346.277 38,799 �189.203 21,199 �414.105 46,398
6 5985 3100–4100 657.763 76,333 668.431 77,666 540.933 62,666 651.303 75,666
7 5130 4100–5100 �327.247 36,666 �419.471 47,000 �377.821 42,333 �380.796 42,666
8 4275 5100–6300 �239.185 26,799 �385.552 43,199 �392.691 43,999 �424.821 47,599
9 3420 6300–7500 �474.800 53,199 �496.219 55,599 �478.370 53,599 �431.961 48,399
10 2565 7500–8760 �421.700 47,249 �432.945 48,509 �562.266 62,999 �534.153 59,849
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Table 8
Results of Brazilian 46-bus and Colombian 93-bus test systems for scenario 1.

Results of static TEP Brazilian 46-bus test
system

Colombian 93-bus test
system

Scenario 1 Scenario 1

Best, US $ 154,420,000 296,454,000
Average, US $ 169,544,455 302,202,600
Worst, US $ 179,702,000 338,744,000
Standard deviation 8,162,466.654 13,142,568
Computation for 500

iterations, s
794.353 3505.903
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network and the added line network topology is: n20�21 ¼ 2,
n42�43 ¼ 2, n46�6 ¼ 1, n19�25 ¼ 1, n31�32 ¼ 1, n28�30 ¼ 1, n26�29 ¼ 3,
n24�25 ¼ 2, n29�30 ¼ 2, and n5�6 ¼ 1.

Similarly, for Colombian 93-bus network the optimal solution
obtained has TLC = 296,454,000 US $ with additions of 5 new lines
to the base network and the added line network topology is:
n50�54 ¼ 1, n54�56 ¼ 1, n55�57 ¼ 1, n55�62 ¼ 1, n56�57 ¼ 1. The
simulation results with statistical analysis of the solution obtained
for 46-bus and 93-bus is displayed in Table 8. The cost convergence
curve for 46-bus and 93-bus is shown in Fig. 7. This curve portrays
that the GABC optimization method is able to find the optimal
solution within 100 iterations.

Scenario 2: In this case, for IEEE 24-bus system the optimal
solution found by the GABC optimization algorithm has TLC
= 152,000,000 US $ with additions of 5 new lines to the base net-
work and the added line network topology is: n6�10 ¼ 1, n7�8 ¼ 2,
n10�12 ¼ 1 and n14�16 ¼ 1.

Scenario 3: In this case, incentive-based (EDRP) DR program is
applied to the proposed problem. This program offers maximum
electricity price, incentive and penalty for the customers at the
peak load level. For other load levels, incentive and penalty price
offered is zero. The details of the DR program data are given in
Table 9. The implementation of EDRP program results in the reduc-
tion of peak load to 8202.656 MW from 8550 MW and is shown in
Fig. 8. The optimal solution has TLC = 136,000,000 US $, the cost of
demand response participation (CDR) for peak load leve-
l = 4515.500 US $, TC = 136,004,515.500 US $ and following
configuration: n1�5 ¼ 1, n6�10 ¼ 1, n7�8 ¼ 2, and n11�13 ¼ 1, with 5
new lines added to base network.

Scenario 4: In this case, the wind farm is installed at bus number
3 [20], which is a load bus. The maximum wind penetration of
450 MW is considered and is 5% of the total load connected.
The optimal solution with wind power penetration has
Fig. 7. Cost convergence curves for Brazilian 46-bus
TLC = 136,000,000 US $, the fuel cost of the thermal generation
units (FC) = 441095.399 US $/h, total wind power utilization cost
as a summation of direct cost, overestimation cost, and underesti-
mation cost (TWC) = 3205.359 US $/h and TC = 136,444,300.758 US
$ with the line configuration: n6�10 ¼ 1, n7�8 ¼ 1, n10�12 ¼ 1 and
n14�16 ¼ 1, with 4 new lines added to the base network.

Scenario 5: In this case, the PEVs are considered as a power
source during peak hours and as load during rest of the hours by
assuming all load buses to be the probable location to install PEVs.
However, the minimum cost is achieved when it is installed at bus
8. The optimal solution with PEVs has TLC = 132,000,000 US $,
FC = 453000.845 US $/h, the energy cost of the PEVs (ECV)
= 10726.099 US $ and TC = 132,463,726.944 US $ with the line con-
figuration: n6�10 ¼ 1, n10�12 ¼ 1 and n11�13 ¼ 1, with 3 new lines
added. The impact of PEVs on the load demand curve is shown in
Fig. 8. This figure portrays that during the peak hours the load
demand is reduced and in off-peak hours it is increased due to
the integration of the PEVs. The charging/discharging coordination
graph is presented in Fig. 9.

Scenario 6: The results found with EDRP program has
TLC = 128,000,000 US $, FC = 430834.350 US $/h, CDR = 4515.500
US $, ECV = 5788.283 US $ and TC = 128,441,138.133 US $ with
the line configuration: n6�10 ¼ 1, n10�12 ¼ 1 and n13�14 ¼ 1, and 3
new lines added.

Scenario 7: The results found by the GABC algorithm in
this case has TLC = 104,000,000 US $, FC = 435666.742 US $/h,
TWC = 3595.132 US $/h, ECV = 8790.282 US $ and TC =
104,448,052.157 US $ with having network topology: n1�5 ¼ 1,
n6�10 ¼ 1, and n11�13 ¼ 1, with the addition of 3 new lines to the
base network.

Scenario 8: The results found with the combination of the PEVs,
wind power and EDRP program in this case has TLC =
100,000,000 US $, FC = 425338.630 US $/h, CDR = 4515.500 US $,
TWC = 3574.338 US $/h, ECV = 5808.396 US $ and TC =
100,438,847.709 US $ with the line configuration: n6�10 ¼ 1,
n10�12 ¼ 1 and n13�14 ¼ 1 with addition of 3 new lines to the base
network. The cost convergence curves for all the scenarios are
shown in Fig. 10. This curve portrays that the GABC optimization
technique can find the optimal solution within 100 iterations.

 

Discussion on the results

The results obtained with the GABC optimization algorithm are
compared with the results available in the literature for scenarios 1
and 2 in order to prove its handling capabilities and are displayed
and Colombian 93-bus systems for scenario 1.
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Table 9
Data for demand response program.

Load levels 1 2 3 4 5 6 7 8 9 10

% of original load 100 90 80 70 60 70 60 50 40 30
Duration (h) 400 500 600 800 800 1000 1000 1200 1200 1260
Elasticity �0.10 �0.09 �0.085 �0.08 �0.075 �0.08 �0.075 �0.06 �0.05 �0.03
SP, US $/MW h 32 30 28 26 25 26 25 24 23 22
A (incentive), US $/MW h 16 0 0 0 0 0 0 0 0 0

Fig. 8. Load curves with PEVs and demand response programs.

Fig. 9. Coordinated charging/discharging pattern of PEVs for Scenario 5.
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in Table 10. As for the other scenarios results have been not
reported in the literature. The major observations inferred from
the studies are discussed below:

Scenario 1 and Scenario 2: For scenario-1, it is observed from
Table 10 that for IEEE system, Brazilian system and Colombian sys-
tem the GABC optimization technique performs better than other
optimization technique such as CHA [39], CGA [12], DEA [12],
and EGA [57]. For scenario-2, the GABC algorithm yields better
results than the CGA [12], and New DA [50] techniques. However,
the GABC technique can track the results yielded by HSA [15] and
CBGA [51] optimization techniques. The resulting analysis indi-
cates that it is suitable to adopt generation re-dispatch to achieve
less transmission line investment cost. It is also observed from the
results that for scenario-2, the GABC optimization technique has
61% reduction in the total system cost as compared to scenario-1.

Scenario 3: It is observed that with the implementation of EDRP
program, the total cost obtained is found to be lesser than
scenarios-1 and 2. The reduction obtained in total cost with the DR
program is 65% as compared to scenario-1. From the load profile
curves shown in Fig. 8, it is noted that by implementing the DR pro-
gram, a new load demand for load level-1 gets reduced by 4% of the
original peak demand i.e. 8550 MW. This implies that the DR pro-
gram reduces the total cost and load demand of the system.

Scenario 4: It is observed that with the integration of wind
power the total cost obtained is lower than scenarios-1 and-2
and has 65% and 10% reduction respectively. This indicates that
the wind power penetration is helpful to minimize the total cost
of the system. However, the transmission line cost obtained is
same as that of the DR program case.

Scenario 5: In this case impact of the PEVs at a particular loca-
tion is analyzed, and the effect on the total cost of the system is
observed. The total cost obtained is found to be lesser than the
above four scenarios. The integration of PEVs gives 65% reduction
in the total cost as compared to scenario-1. From the load profile
curves (Fig. 8), it is observed that load at the load level-1 gets
reduced by 3.9%. This implies that both reduction in total cost
and load demand of the system can be achieved with the integra-
tion of the PEVs to the system.

Scenario 6: In this case the combined effect of PEVs and DR pro-
gram in the total cost is considered. The results indicate that the
total cost, the fuel cost, the energy cost of the PEVs and the trans-
mission line cost obtained is better than scenarios 1–5 with the
combination of both the factors. The total cost is reduced by 67%
as compared to scenario-1. The reduction in fuel cost is 2% as com-
pared to scenario-4 and the energy cost of the PEVs is reduced by
46% as compared to scenario-5.

Scenario 7: In this case, both PEVs and wind power’s uncertain
nature follower impacts are analyzed in the total cost of the sys-
tem. The results obtained indicate that the combination of wind
power and PEVs reduces the total system cost, and it is found bet-
ter than the above six scenarios. The amount of reduction obtained
in the total cost is 73% as compared to scenario-1, in the fuel cost is
1% as compared to scenario-4 and in the energy cost of the PEVs is
18% as compared to scenario-5.

Scenario 8: The effect of PEVs, wind power and DR program on
the total cost is evaluated in this case. The results illustrate that
the total cost obtained is optimal among all other scenarios 
www.Matlabi.irwww.Matlabi.ir
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Fig. 10. Cost convergence curves of IEEE 24-bus system for all scenarios.

Table 10
Comparison of the proposed STNEP problem results for scenarios 1 and 2.

Methods Optimal cost (US

IEEE 24-bus system Brazilian 46-bus system Colombian 93-bus system

Scenario 1 Scenario 2 Scenario 1 Scenario 1

B&B [9] ————– 152,000,000 154,420,000 ————–
DEA [12] ————– ————– 154,420,000 338,740,000
CGA [12] ————– ————– 162,598,000 ————–
HSA [15] 390,000,000 ————– 154,420,000 ————–
CHA [30] 438,000,000 ————– ————– ————–
New DA [50] ————– 224,000,000 ————– ————–
CBGA [51] ————– 152,000,000 ————– ————–
EGA [57] ————– ————– ————– 316,440,000
GABC 390,000,000 152,000,000 154,420,000 296,454,000

Bold values denote the optimal solution found.
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described above. The significant amount of reductions is observed
in the total cost which is 74% in this case as compared to scenario-
1. The fuel cost is reduced by 3% as compared to scenario-4 and the
reduction in energy cost of vehicles is 45% as compared to
scenario-5. This demonstrates the substantial impact of PEVs, wind
power and DR program on the STNEP problem.

Conclusion

A complex cost model for static TNEP problem with the integra-
tion of wind power uncertainty and PEVs along with an incentive-
based DR program is demonstrated in this paper. The total system
cost is minimized by applying GABC optimization technique. A
comparative analysis of the costs for the various combinations of
these three factors is also presented. The three standard test sys-
tems are adopted to evaluate the robustness of the proposed
method. The following are the main outcomes of all scenarios:

(1) The performance analysis indicates that the adopted GABC
optimization algorithm yields better results than the other
known solutions published in the literature.

(2) The implementation of DR program reduces the total
demand of the system, which results in the reduction of
the total cost of the system. Similarly, with the integration
of wind power, the transmission line investment cost gets
reduced. However, the total cost found with PEVs is better
than the DR program and wind power.
(3) The results obtained with the combination of PEVs and wind
has more impact on the total cost of the system as compared
with the combination of PEVs and DR program. Particularly,
the transmission line investment cost is found to be less.

(4) The performed studies demonstrate that with PEVs, wind
power and DR program, the transmission line investment
cost, the fuel cost of thermal generating units and the energy
cost of the PEVs get reduced, which lowers the total cost of
the system as compared to all other scenarios.

(5) The results obtained with GABC algorithm are competent
and capable to handle the complex static TNEP problem. It
is also observed from the cost convergence curves that the
algorithm is able to find the optimal solution in less number
of iterations.
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