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microgrid, which uses local controllers and the low bandwidth 

communication link to exchange information between inverter 

units. A distributed secondary control approach implementing 

voltage control and reactive power sharing is proposed in [25]. 

However, for these voltage control approaches aforementioned, 

the critical communication links are necessary to acquire 

voltage responses and send control commands, which 

undoubtedly bring network-induced side effects such as data 

drop-out and time delay [25]-[26]. In a multi-bus AC islanded 

microgrid, when various DG units and loads may be located 

far away from each other, the complicated communication 

links make such voltage control schemes much less reliable 

and flexible. Hence, it would be desirable to avoid using the 

critical communication channels to improve the voltage 

control system performance.  

State estimation methods [27-30] have been presented as an 

important approach to extract system dynamics and to reduce 

communication system burdens. A linear state estimation 

formulation is addressed in [27], which serves as an effective 

tool to aid system monitoring, automation and control efforts 

in smart distribution systems. A survey on state estimation in 

electric power grids [28] is provided and the impact on state 

estimation of the technological changes is examined. A Belief 

Propagation-based distribution system state estimator is 

presented to alleviate data communication burden in [29], but 

data acquisition systems require communication links to 

accomplish the state estimation process. In [30], a linear 

model-based Kalman state estimation approach is proposed, 

which operates by using local models of power network 

associated with a virtual disturbance model. However, it is 

difficult to estimate network voltages and states of DG units 

due to the simplified virtual model.  

To address these problems aforementioned, a Kalman 

Filter-Based state estimation method without communication 

links is proposed to accomplish state estimation in our 

previous work [31], where the local estimator can dynamically 

obtain network status. Furthermore, a communication-less 

distributed voltage control strategy for a multi-bus islanded 

AC microgrid is proposed in [32], which can implement not 

only accurate voltage control for a single-bus, but also optimal 

control for multi-bus. However, whether these model-based 

state estimation and control methods can work efficiently 

under model mismatch is not studied yet.  

As a matter of fact, for a multi-bus AC islanded microgrid, 

there exists indeed an inherent modeling error for the 

microgrid model in comparison to the true microgrid plant. 

Modeling mismatch resulting from system parameters 

perturbation has a negative influence on the closed-loop 

performance [33]-[34]. Therefore, dynamic performance and 

robustness for the estimator-based voltage control scheme 

under model mismatch should be further analyzed and 

investigated.  

In the paper, as an extension of the previous work [32], an 

estimator-based voltage predictive control scheme with 

rejection capability to parameters perturbation is proposed, 

and the impact of system uncertainties on the proposed voltage 

control strategy is discussed in details. The main contributions 

of this paper are: (1) The critical issues in implementing the 

communication-less network voltage control are pointed out; 

(2) The dynamic performance of the proposed voltage 

controller is analyzed; (3) The robustness of the proposed 

voltage controller against parameters perturbations is 

investigated in details.  

The rest of paper is organized as follows. In SectionⅡ, the 

conventional voltage control approaches are reviewed. In 

SectionⅢ , the estimator-based voltage predictive control 

strategy is proposed, and the concept and principle of the 

control strategy is given. In Section Ⅳ, the simulations and 

experiments are presented to validate the proposed control 

strategy. The conclusions are drawn in SectionⅤ. 

II. INHERENT DRAWBACKS OF THE CONVENTIONAL VOLTAGE 

CONTROL APPROACHES 

During the islanded operations, network voltages will drop 

since droop controller decreases voltage to track the increased 

reactive power in the presence of load disturbances. To 

compensate for steady-state voltage deviations caused by 

droop controllers, secondary voltage control [20-22], [25], [35] 

is adopted to implement voltage restoration. In this section, the 

conventional voltage control approaches for an AC islanded 

microgrid are reviewed, including the centralized voltage 

control [17, 20-21] and the distributed voltage control [22-25], 

respectively. 

A. The Centralized Voltage Control Approach 

Fig. 1 illustrates a centralized control-based islanded 

microgrid configuration, which is composed of multiple DG 

units and loads. Each DG unit is interfaced to the microgrid by 

an inverter and controlled by a local power controller. When 

network voltages drop, the centralized voltage controller 

[17,20-21] will compensate for the voltage deviation. As 

shown in Fig. 1, communication links are adopted to obtain 

voltage responses at different buses. Also, voltage control 

commands from centralized controller are sent to power 

controllers by the communication links.   

B. The Distributed Voltage Control Approach 

Fig. 2 depicts the distributed voltage control approaches 

[18-19, 22-25]. Compared with centralized voltage controller, 

the distributed voltage controller carries out control commands 

locally and quickly. The fault of single distributed voltage 

controller will not produce a critical influence on the whole 

system, which thus makes the islanded microgrid more 

flexible and reliable.  

It can be observed that the communication links (even if 

low bandwidth) are indispensable to support system operation 

for either the centralized voltage controls or the distributed 

voltage control. Once communication system fault or data 

drop-out happens, these control approaches fail to perform 

voltage regulation. In particular, when various DG units and 

loads are located far away from each other, the fixed control 

structures will make islanded microgrids less flexible and 

reliable [2]. 

Hence, the paper presents an estimator-based voltage 
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control strategy, which is able to perform offset-free voltage 

control without any communication facilities. 

III. THE PROPOSED ESTIMATOR-BASED VOLTAGE PREDICTIVE 

CONTROL STRATEGY 

Fig. 3 illustrates the block diagram of the proposed 

estimator-based voltage control strategy, which is composed 

of the local voltage estimator and the voltage predictive 

controller respectively. The proposed voltage estimator can 

obtain dynamically network voltages response based on local 

voltage and current of each DG unit. And the voltage 

predictive controller is able to perform offset-free voltage 

control for a specified bus, even if parameters perturbations 

happen. Compared with the conventional voltage control 

approaches, the main benefit of the proposed method is that (1) 

Each DG unit estimates network voltages response just by 

local voltage and current itself rather than using 

communication links; (2) Each voltage predictive controller 

carries out control commands locally so that the voltage 

control approach more flexible and reliable; (3) The proposed 

voltage control strategy has a good ability to reject parameters 

perturbations; (4) The voltage control strategy can be 

implemented easily due to communication-less operation. 

Fig. 4 shows general design flow of the proposed voltage 

control strategy. To support voltage estimation, the discrete 

small signal model is first developed to produce voltages 

response in the presence of load disturbances. Second, with 

consideration of influences from model mismatch and 

measurement noises, the disturbance models and noise models 

are augmented to system model respectively. Then, the 

network voltage estimator and voltage predictive controller 

based on the augmented model are presented to generate 

control commands. Finally, the generated control commands 

are given to original power controller. 

A. The Small Signal Model of an AC Islanded Microgrid. 

To exemplify the proposed estimator-based voltage control 

strategy, the small signal model of a multi-bus islanded AC 

microgrid is developed. Some previous small signal models, 

including power controller, voltage controller, current 

controller, network as well as loads, have been presented in 

 
Fig. 2. The distributed control-based islanded microgrid configuration. 

 

Fig. 1. The centralized control-based islanded microgrid configuration. 

 

 
Fig. 3. The proposed estimator control-based voltage control strategy. 

 
Fig. 4. The design procedures of the proposed control strategy. 
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Fig. 13. The simulation and experimental results of voltage responses under load disturbance with (green curves) and without (black curves) the 

proposed control method. 

 
Fig. 14. The simulation and experimental results for robustness to line parameters perturbations with (green curves) and without (black curves) the 

proposed control strategy. 

 
Fig. 15. The simulation and experimental results for robustness to load parameter perturbation with (green curves) and without (black curves) the 

proposed control strategy. 

 
Fig. 16. The simulation and experimental results for different disturbance positions with (green curves) and without (black curves) the proposed 

control strategy. 
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When the proposed voltage controller is activated,bus3 

voltage rises towards original value even if a slight offset 

occurs, which is within 3% of the voltage droop maximum as 

shown in Fig. 16(c).   

The case shows that the proposed controller is still valid 

when multiple disturbances appear at different buses. The 

experimental results reported in Fig. 16(d)-(f), along with the 

simulation results, point out that the proposed voltage 

predictive controller has a good capability to reject unknown 

multiple disturbances.   

E. Case5: The robustness investigation for LC filters 

perturbation 

The case5 investigates the robustness for LC filters 

perturbation, where LC filters parameters are perturbed 

intentionally as shown in TableⅡ. In simulation, disturbance 

load1 (Ld1/Rd1) appears at bus2. It can be seen that voltages 

drop at different buses (black curves) as shown in Fig. 

17(a)-(c). Also, Fig. 17(d)-(f) reports the voltage responses 

(black curves) from experimental implementation in the 

presence of the disturbance load1. The voltage controller is 

still planned to bring bus3 voltage back to original state. Fig. 

17(c) and Fig. 17(f) illustrate that the proposed voltage 

controller is able to perform voltage restoration at bus3 even if 

LC filters parameters are perturbed. Therefore, the simulation 

and experimental results point out that the proposed voltage 

controller has a good robustness against LC filters 

perturbations.  

F. Case6: The robustness investigation for output 

impedances perturbation 

In addition, the output impedance
cL of inverters maybe has 

a significant influence on the robustness of the voltage 

controller. Hence, the case6 is carried out in order to validate 

 
Fig. 17. The simulation and experimental results for robustness to LC filters perturbations with (green curves) and without (black curves) the 

proposed control strategy. 

 
Fig. 18. The simulation and experimental results for robustness to output impedance perturbations with (green curves) and without (black curves) the 

proposed control strategy. 

 
Fig. 19. The simulation and experimental results for robustness to DG unit fault with (green curves) and without (black curves) the proposed control 

strategy. 
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controller performance under output impedances perturbation. 

The output impedances of inverters are changed intentionally 

as shown in TableII. In the implementation of simulation and 

experiment, the disturbance load1 is exerted at bus2. The 

voltages response (black curves) can be observed in Fig. 18. 

It can be seen from Fig. 18(a)-(c) and Fig. 18(d)-(f) that the 

proposed voltage controller is able to force bus3 voltage return 

to original value when voltages drop (green curves). Thus the 

results obtained from simulations and experiments validate 

robustness under output impedance perturbations.  

G. Case7: The robustness investigation for DG unit fault.  

To validate robustness of the proposed voltage controller in 

the presence of DG unit fault, the set of simulations and 

experiments is performed. With the assumption that DG unit1 

fault happens suddenly and disconnects from the system, 

disturbance load1 (Ld1/Rd1) is exerted at bus2. Then DG unit2 

is just responsible for control system voltages, since DG1 

losses the contribution to control voltage. As it can be seen in 

Fig. 19, the disturbance results in up to 14V and 15V voltages 

droop at bus2 and bus3 respectively (black curves). The 

control objective is still to hold bus3 voltage at its original 

state. With respect to Fig. 19(c), an about 1.2V control offset 

appears in the presence of DG unit1 fault. But the control 

result is still desirable and accepted.  

 Similarly, in the accompanying experiment, the DG unit1 

is disconnected suddenly from the system setup. And the 

disturbance load (70mH/20Ω ) occurs at bus2. Then the 

voltage controller of DG unit2 is just responsible for voltage 

restoration within the whole system. The experimental results 

depicted in Fig. 19(d)-(f), together with the simulation results, 

point out that the proposed voltage controller is still able to 

perform bus3 voltage restoration even if a about 1V voltage 

offset occurs under DG unit1 fault. Hence, the case validates 

the robustness of the proposed controller under DG unit fault.  
Ⅶ. CONCLUSION 

In this paper, an estimator-based voltage predictive control 

strategy for AC islanded microgrids has been proposed. First, 

a network voltage estimator associated with each DG unit has 

been proposed to obtain voltages response without 

communication links. Second, a voltage predictive controller 

with immunity to parameters perturbation has been developed 

to implement the offset-free voltage control for the specified 

bus. Furthermore, the dynamic performance of the proposed 

controller was analyzed through small signal analysis method. 

The analysis results show that voltage error weighting 

coefficient and voltage control input increment weighting 

coefficient have a dramatic influence on system dynamic 

performance. Finally, robustness of the proposed voltage 

controller was investigated under system parameters 

uncertainties. The investigation results from simulations and 

experiments show that the proposed estimator-based voltage 

control strategy is able to implement offset-free voltage 

control for the specified bus in an AC islanded microgrid, and 

has a good capability to reject uncertain parameters 

perturbations. The proposed voltage control strategy can be 

implemented easily without communication facilities and thus 

improve flexibility and reliability of islanded microgrids. 

APPENDIX 

TABLE 1 

Initial Conditions 

Parameter  Value Parameter Value 

0i  [0,0.02] 0i  [313.9,313.9] 

0odiI  [6.4,1.6] 0oqiI  
[2.7,3.9] 

0odiV  [309.87,309.32] 0oqiV  [0,0] 

0bDiV  [307.06,306.73,306.15] 0bQiV  [3.08,6.28,4.6] 

0LinediI  [3.4,-1.45] 0LineqiI  [3.87,1.56] 

The small signal model of an individual inverter in d-q 

frame can be transferred to common D-Q frame [2] as follow: 
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