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Abstract—This paper presents an estimator-based voltage
predictive control strategy for AC islanded microgrids, which is
able to perform voltage control without any communication
facilities. The proposed control strategy is composed of a network
voltage estimator and a voltage predictive controller for each
distributed generator, where the voltage estimator serves as an
essential tool to obtain network voltages response without using
communication links, while the voltage predictive controller is
able to implement offset-free voltage control for a specified bus.
The dynamic performance of the proposed voltage control
strategy is analyzed through small signal analysis method, from
which the design guideline for the controller parameters is
formulated. Furthermore, the robustness of the proposed voltage
control strategy is investigated under a series of parameters
uncertainties, including the line parameters perturbation, load
parameters variation, different disturbance locations, LC filters
perturbation, output impedances perturbation and DG unit fault.
The simulation and experimental results show that the proposed
control approach is able to perform offset-free voltage control
without any communication links and has a good capability to
reject uncertain perturbations of islanded microgrids.

Index Terms—Distributed voltage predictive control, voltage
estimator, dynamic performance, robustness, islanded microgrid.

I. INTRODUCTION

As the expansion of renewable energy utilization, the
small-scale distributed power generation systems such as
microgrid [1-2] and virtual power plants [3] have become
attractive architectures for future active distribution networks.
These small autonomous power systems integrating various
forms of Distributed Generation (DG) units and local loads

improve the reliability and efficiency of electricity services [4].

A microgrid can be operated flexibly either in a
grid-connection mode or in an islanded mode according to the
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power system conditions [5-6]. During the islanded operation,
droop control methods [7-13] are generally employed to
automatically assign the active and reactive power among DG
units without using communication links. Although the droop
control provides the flexibility and reliability for power
sharing, it also results in further drawback. The network
voltages tend to drop as the droop controllers decrease the
terminal voltage of DG units to track the increased reactive
power in the presence of load disturbances [14]. These
steady-state voltage offsets consequently degrade the voltage
quality, and lead to poor performance in load regulation [15].
Note that an improved droop control method with voltage
self-restoration  [16] has been  presented, where
voltage-derivative is adopted to perform output voltage
restoration. However, the method has a poor control
performance in the presence of local disturbances [7] and fails
to perform voltage control for different buses in multi-bus
islanded microgrids.

To deal with the voltage deviation issue, a number of
voltage control methods such as the centralized voltage
control in [17] and the decentralized voltage control [18-19]
have been developed. The use of several PID control
structures for the centralized voltage control in an islanded
microgrid are investigated in [20]. A controller design and
optimization method using particle swarm optimization
algorithms is presented in [14], which are able to coordinate
multiple inverter-interfaced DG units against voltage
disturbances. A potential function method for centralized
secondary voltage control is proposed in [21], where the
dynamic voltage set points are commended using
communication links within the microgrid. Compared to the
centralized control structure, the distributed voltage control
methods also earn an increasing concern, which are able to
perform voltage regulation locally and quickly so that the
whole control system becomes more flexible and reliable. A
distributed secondary voltage control strategy based on
distributed cooperative control of multi-agent systems is
reported in [22], where the one-way communication channels

are needed to exchange information among neighboring agents.

A distributed control method to regulate output power of
multiple photovoltaic generators in a distribution network is
addressed in [23]. A second control layer, compensating for
voltage deviation caused by the droop control, is proposed in
[15]. In [24], an improved droop control method with a
capacity of controlling bus voltage is developed for a DC
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microgrid, which uses local controllers and the low bandwidth
communication link to exchange information between inverter
units. A distributed secondary control approach implementing
voltage control and reactive power sharing is proposed in [25].
However, for these voltage control approaches aforementioned,
the critical communication links are necessary to acquire
voltage responses and send control commands, which
undoubtedly bring network-induced side effects such as data
drop-out and time delay [25]-[26]. In a multi-bus AC islanded
microgrid, when various DG units and loads may be located
far away from each other, the complicated communication
links make such voltage control schemes much less reliable
and flexible. Hence, it would be desirable to avoid using the
critical communication channels to improve the voltage
control system performance.

State estimation methods [27-30] have been presented as an
important approach to extract system dynamics and to reduce
communication system burdens. A linear state estimation
formulation is addressed in [27], which serves as an effective
tool to aid system monitoring, automation and control efforts
in smart distribution systems. A survey on state estimation in
electric power grids [28] is provided and the impact on state
estimation of the technological changes is examined. A Belief
Propagation-based distribution system state estimator is
presented to alleviate data communication burden in [29], but
data acquisition systems require communication links to
accomplish the state estimation process. In [30], a linear
model-based Kalman state estimation approach is proposed,
which operates by using local models of power network
associated with a virtual disturbance model. However, it is
difficult to estimate network voltages and states of DG units
due to the simplified virtual model.

To address these problems aforementioned, a Kalman
Filter-Based state estimation method without communication
links is proposed to accomplish state estimation in our
previous work [31], where the local estimator can dynamically
obtain network status. Furthermore, a communication-less
distributed voltage control strategy for a multi-bus islanded
AC microgrid is proposed in [32], which can implement not
only accurate voltage control for a single-bus, but also optimal
control for multi-bus. However, whether these model-based
state estimation and control methods can work efficiently
under model mismatch is not studied yet.

As a matter of fact, for a multi-bus AC islanded microgrid,
there exists indeed an inherent modeling error for the
microgrid model in comparison to the true microgrid plant.
Modeling mismatch resulting from system parameters
perturbation has a negative influence on the closed-loop
performance [33]-[34]. Therefore, dynamic performance and
robustness for the estimator-based voltage control scheme
under model mismatch should be further analyzed and
investigated.

In the paper, as an extension of the previous work [32], an
estimator-based voltage predictive control scheme with
rejection capability to parameters perturbation is proposed,
and the impact of system uncertainties on the proposed voltage
control strategy is discussed in details. The main contributions
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of this paper are: (1) The critical issues in implementing the
communication-less network voltage control are pointed out;
(2) The dynamic performance of the proposed voltage
controller is analyzed; (3) The robustness of the proposed
voltage controller against parameters perturbations is
investigated in details.

The rest of paper is organized as follows. In Section I, the
conventional voltage control approaches are reviewed. In
SectionIII, the estimator-based voltage predictive control
strategy is proposed, and the concept and principle of the
control strategy is given. In Section [V, the simulations and
experiments are presented to validate the proposed control
strategy. The conclusions are drawn in Section V.

1. INHERENT DRAWBACKS OF THE CONVENTIONAL VOLTAGE
CONTROL APPROACHES

During the islanded operations, network voltages will drop
since droop controller decreases voltage to track the increased
reactive power in the presence of load disturbances. To
compensate for steady-state voltage deviations caused by
droop controllers, secondary voltage control [20-22], [25], [35]
is adopted to implement voltage restoration. In this section, the
conventional voltage control approaches for an AC islanded
microgrid are reviewed, including the centralized voltage
control [17, 20-21] and the distributed voltage control [22-25],
respectively.

A. The Centralized Voltage Control Approach

Fig. 1 illustrates a centralized control-based islanded
microgrid configuration, which is composed of multiple DG
units and loads. Each DG unit is interfaced to the microgrid by
an inverter and controlled by a local power controller. When
network voltages drop, the centralized voltage controller
[17,20-21] will compensate for the voltage deviation. As
shown in Fig. 1, communication links are adopted to obtain
voltage responses at different buses. Also, voltage control
commands from centralized controller are sent to power
controllers by the communication links.

B. The Distributed Voltage Control Approach

Fig. 2 depicts the distributed voltage control approaches
[18-19, 22-25]. Compared with centralized voltage controller,
the distributed voltage controller carries out control commands
locally and quickly. The fault of single distributed voltage
controller will not produce a critical influence on the whole
system, which thus makes the islanded microgrid more
flexible and reliable.

It can be observed that the communication links (even if
low bandwidth) are indispensable to support system operation
for either the centralized voltage controls or the distributed
voltage control. Once communication system fault or data
drop-out happens, these control approaches fail to perform
voltage regulation. In particular, when various DG units and
loads are located far away from each other, the fixed control
structures will make islanded microgrids less flexible and
reliable [2].

Hence, the paper presents an estimator-based voltage
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[2],[36]-[37]. However, the virtual resistors [2],[16] defining p__% o ©)
network voltages between nodes and ground lead to inaccurate 'ostaw,
voltage responses and have a negative influence on dynamic
o . . Q - D 4
stability of whole system [2]. To avoid adverse influences of " st q,
(3

the virtual resistors, network performances are modeled by
linear combination of system states.

In the small signal model to be founded, DG unit can be
represented by a controllable voltage source [16] with the
assumption that current loop and voltage loop have much
faster dynamics than power controller. And the small signal
dynamics of each DG unit are formulated in individual frame
itself (d-g). All the DG units, network dynamic and loads
dynamic are represented on the common reference frame
(D-Q). To found overall model on the common reference
frame, the reference frame of one DG unit is considered as
common reference frame (D-Q) with the rotating frequency of
a,,,» and all the other inverters are transferred to the common

frame by using transformation equation [2] as (1).
{f } _ {cos(@) —sin(@)}{fd} )
fo sin(5;)  cos(s) | f,
The angle of the ith DG reference frame with respect to the

common reference frame, is given in (2), thus §, and §,

expresses angle and initial angle between reference frame of
each inverter itself and common frame respectively,

5i :J‘(a)i _a)com)dt+50 (2)
The power controller, shown in Fig. 6, adopts droop control

v w’
. odi
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28
s+,
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_ S
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Power Calculation Filter Droop Controller

Fig. 6. The power controller of DG unit.

method and provides references v* = to

the voltage sdai

controllable voltage source, along with output angle frequency
w;, of inverter. The average active power P, and reactive power
Q, are obtained respectively from instantaneous power passing
low-pass filters as (3) and (4). @, is cut-off frequency of
low-pass filter.

And instantaneous active p, and reactive power g can be
represented in d-q rotating frame as (5) and (6):

Pi =Vaailodi + Vogilogi ©)

Qi :Vodiioqi_voqiiodi (6)

V, 4 aNd 4, are output voltage and current of ith DG unit on
individual frame (d-q). The conventional active

power-frequency (P-f) and reactive power-voltage (Q-V)
droop control method [2] for paralleled inverters operation can
be represented as (7) and (8), respectively.

o=0"-m,P, (7)
Vo*di =V~ n,Q ®)
,where m,;.n,are droop coefficients of ith DG unit. Generally,

secondary voltage control input can be embedded into droop
controller [7] to perform voltages restoration so that voltage
control can be achieved locally and quickly. To analyze
influence of the proposed voltage controller on system
dynamic, the voltage control input is embedded and integrated
to the small signal model as Fig. 5.

Further, the reactive power-voltage (Q-V) droop control
method with consideration of voltage control can be rewritten
as (9) by (8), shown in Fig. 6.

Vot:n —Ug =V’ _nqui (9)

Then, the voltage small signal dynamic is represented as (10)
by combing and linearizing (4) and (9)

AVyg; = Ny @ AG — ON oy + O, AU (10)

cVodi
Notice thatu,, is responsible for regulate terminal voltage of

DG unit, which is introduced to compensate voltage deviation
caused by droop controller [7, 15, 25].

The current dynamics of individual inverter in d-q frame
can be formulated as (11) and (12) according to KCL in Fig. 5:

foai = _& fogi — a)iioqi + Livodi - iVbusDi 11)
Lt Ry . . 1 1
qui = _7_ qui — @log; fvoqi - ?VbusQi (12)

Sequentially, the small signal current dynamic is given by
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Aiodqi = A\:urilAa)l + A\curizAVOdqi + '%uriSAiodqi + BcuriAVbusi (13)
where A, Aurizs Awrizs Bori @€ Current  parameters

matrixes, given in appendix.
Now, overall small signal dynamics of each DG unit can be
obtained by combing (2)-(13):
A Xinvi = AnviAXinvi + BinviAVbusi + BciAuic (14)
Further, the combined small signal model of all the inverter
is shown as (15):

AXiny = A A%, + By AV, + BAU, (15)
Mg = [AG, AP, AQ,, AV, Ao Al | :
AV = [AVorsor AVossar ]+ AVius = [AVyg -+ AV ] AV, 8
bus voltage vector. The parameters matrixes A, B, ., B,are

given in details in appendix. The modelling procedure of DG
unit also can be referred in [2].

Similarly, the small signal model of lines currents can be
formulated as on a common reference frame (D-Q):

where

usDi

Ai LineDQ ™ ALineAiLineDQ + BLinalAioDQ + BlineA ioDQ (16)
+ByineaA @, + ByiAlgiong
And the small signal model of loads currents on the

common frame can be represented and linearized according to
KCL in Fig. 5 as

Al adp0= ALoadAlLoadno + BroadAlLineno + Bloas2Alopg (17)

+ BLoadSAioDQ+ BloassAw; + BdisZAidisDQ
As shown in Fig. 5, bus voltages can be represented
according to KCL as (18):
d (iol + iLinej_)
dt
d (ioz + iLine2 — idis)
dt

. . o[ G T
Viouss = Rioads (Fltinet ~1Line2) + Lioads %Lmez

Voua = RLoad:L(iol + iLinel) +Lioan
(18)

VbusZ = RLoadz (IOZ + ILine2 - Idis) + LLoadZ

By transforming (18) onto D-Q common frame and
linearizing them, voltages equation considering load
disturbances can be obtained as (19)

AVbusDQ = CvoI [Axinv]+ Cvol2|:iilLin6DQ:| + D[idisDQ] (19)
LoadDQ

Note that network voltages, in practice, can be represented
as linear combination of certain states.

L and R ,are inductance and resistance of ith load;

iLinepoi @Nd i ~are current of ith line and ith load on
ineDQI LoadDQi

common frame (D-Q). Cvol ’CvoIZ D, ALm 1 Bliner ' Blinez ' Blines »

loadi

Buis 1 A, Bloaat * Bloasz * Broaas * Broass + Buisp 878 Parameters

matrixes regarding bus voltages, lines and loads, shown in

Appendix. iy, s unknown load disturbance. The influence

of disturbance on system dynamic will be further discussed.
Finally, an overall model including inverters, loads,

network with consideration of load disturbance and voltage
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control dynamic in an islanded microgrid by combining (15),
(16), (17) and (19) can be rewritten as

Ax=AAX+ BAi,; + B,Au, (20)
Ay = CAX + DAiy;
Ax is overall state vector of whole microgrid,
Ax= [Axin\/l’AXinvz'AilineiAilineZ!Ailoadl!AiloadZ'Aiload3] ' The

parameters matrixs A B,B.,C,D are given in appendix.

y ey

B. The Discrete Time Model.

An important step for the proposed voltage predictive
control strategy is determining discrete time model, which is
developed to support the model predictive control-based
control technology [34]. The resulting discrete time model is
obtained from small signal model according to (20) as (21):

AX(K +1) = A,AX(K) + By Aiy (k) + ByAu (k) (21)
AY(K) = C,AX(K) + Dy Ai g (K) (22)
The matrixes A,,B,,B,,C,,D, are obtained though

Euler discretization. (21)-(22) are well-established relationship
between internal states Ax(k), voltage control inputs Au_(k)

load disturbances Ai,, (k)and system output Ay(k) . Note that

output of the system can be divided into measured output and
unmeasured output in (22). Load changes are then considered
as unknown disturbances. And the details about disturbance
modeling and rejection will be discussed later in the paper.

The discrete time model is adopted to generate output
responses and support voltage estimation in the presence of
load disturbances. To permit a simpler representation, sign’ A’
in increment function is omitted in the following contents.

C. The Network Voltage Estimator.

To lessen communication system burden and improve the
reliability and flexibility of voltage control approaches, a
network voltage estimator is proposed to obtain voltages
response instead of the conventional communication facilities.
(1) Disturbance Model Augmentation

Generally, model mismatch resulting from parameters
perturbations is inevitable in real plant. The disturbance model
[38]-[40] always can be augmented to original plant model to
reject model uncertainties and improve system robustness
according to internal model principle [41]. Thus, disturbance
model is able to provide primarily a support to perform
offset-free control for a specified bus when parameters
perturbation happens. In a multi-bus islanded microgrid, the

model uncertainties resulting from line parameters
perturbation, load parameters perturbation, different
disturbance locations, LC filters perturbation, output

impedances perturbation and DG unit fault, in fact, lead to
voltage control error. To guarantee offset-free voltage control
for the specified bus, the discrete time model founded as (21)
would be augmented with disturbance models. Load changes
are modeled as step-like disturbance sources. In the case
analyzed, the disturbance models that includes input and
output disturbance are proposed to shape the disturbance
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sources as (23)-(24). And closed-loop performance of the
controller is associated with the disturbance model.

Xgis (K +1) = AyiXyis (K) + ByigWyis (K) (23)
Igis (K) = CyiXgis (K) + DyisWess (K) (24)
Ayer By, Cyier Dy, @€ parameter matrixes of the

disturbance model, given in appendix. Furthermore, system
model can be represented by combining (21)-(24):

x(k +1) B A, BCy || x(k) + By Duis W, (K) + By u (k)(25)
Xk +D] [0 Ay [x(®)] | By ][O ]

y(k) = [Cd CaisDy {XX(I((IZ):| + Dy DyisWyis (K) (26)

It can be observed that,c,, , C,.D, determines the effect of

where

dis
the disturbance model on system states and output.
(2) Measurement Noise Model Augmentation.

In addition, the measured output is usually corrupted by
measurement noises such as sampling errors. To imitate
sensors noise, the measurement noise models are also
augmented to output channels, which can be represented in a
state space model as (27)-(28).

X, (k +1) = A x, (k) + B, w, (k) (27)
m(k) = C,x,, (k) + D,w,, (k) (28)
Yin(K) = CyX(K) + Dyigis (k) +m(k) (29)

Then, noises are added to the measured outputs y_for
imitating measurement environment as (29). A B ,C,,D, are

parameters matrixes of the measurement noise model.

Now, an overall model combining full states, disturbances
and measurement noise can be represented by combining
(25)-(29) as follows:

X; (kK +1) = A (K) + By, (K) +W,w (k) (30)
Yo (K) = CoX; (K) + Dwi (k) @31
RPN S
(0] (0] A, 0
CO = [Cd Cdist Cm] ! Do = [Dd Ddls Dm] ! W= BdBlijis 8
o B,

w. =[w, (k) w, (k] . The disturbance and noise model are
driven by the Gaussian noise, (kyandw, (k). The augmented

version of system model will be concerned later.
(3) The Network Voltage Estimator.

Once the aforementioned augmentation model is applicable,
the network voltage estimator can be further developed, which
implements voltage estimation by Kalman-Filter method.
Since unknown disturbances are not directly measurable, the
only indication is its effect on the measured output (local
voltage and current responses of each DG unit). Also, voltage
control input has an influence on system dynamic. Therefore,
the inputs of each estimator is local voltage and current as well
as its voltage control commands as shown in Fig. 7, where
overall states can be updated and revised continuously via
these information update. Then, each DG unit can dynamically
estimate network voltages of the whole islanded microgrid.

6

DG Unit §
- (k (k-1 Estimation
DG Yl )r ym(klk-1)
onie Measured
L ¥ (KIk-1)
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Fig. 7. The operation principle of network voltage estimator.

The principle of voltage estimator is depicted as Fig. 7. Note
that the proposed estimator in practice is a steady-state
Kalman Filter which estimates plant states and the unknown
network voltages by measured information. With assumption
that (Co, Ao) is detectable for augmentation model (30)-(31),
the full state estimation equation could be given by

Xk ] [xtk-1 ] g,
Xy (KK | = e  ~2) [ +] K [(y )=y (kK -1)) G2
Xo(KK) | | %Kk =1) | LKs

[k, K, K,Jisthe Kalman gain [42], which is the solution of

Ricatti matrix equation. Then, the state update equation and
estimated output with voltage control action are given
respectively as (33) and (34) from (30) and (31)

x(k +1K) [ x(k[K)
Xais (K +1K) | = Ay| Xgis (k[K) |+ Bou (K) (33)
X (k +1Jk) | X, (k[K)
[ x(kk -1)
Yo (kK —1) = Cyf X5 (KK ) (34)
| Xy (klk —1)

These estimated states are updated and compensated
continuously via update of the measured voltage and current
of each DG unit as well as the commands from the voltage
controller. Then, the state estimation equation can be rewritten
by combing (30)-(34) as follows:

X; (k+1K) = A x; (k1) + B, y,, (k) + Bu, (k) (35)

A =A-AFK*C o B =ATK: 0 K, :[KHKzxKa]T :
Meanwhile, the estimated output equation can be divided into
two parts as (36) and (37) respectively, including measured
output (local voltage and current) and unmeasured output
(network voltages).

where

Yo (Kl =1) = Cy, x(klk —2) (36)
yum(k‘k _1) = Coumx(k‘k _1) (37)
As shown in Fig.7, measured states vector

Yo (K) = Voi (K), iodi(k)’ioqi(k)'J and voltage control input are seen
as estimator inputs, while estimated states vector
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Fig. 8. The block diagram of the proposed voltage predictive controller.

Y (kK =1) =V (kK =1, i -1 (Kk ~1)] and estimated voltages

vector y (k-1 = akk-1) Viulkk-1 V,qKk-D]  are
viewed as estimator outputs.

D. The Voltage Predictive Controller.

Once the discrete time model and network voltage
estimators are founded, the proposed voltage predictive
controller is a following critical step. The desired behavior of
proposed voltage controller is formulated as an optimal cost
function that minimizes voltage error at specified bus. As it is
known, it’s impossible to hold all the bus voltages at their set
points due to inherent circuit configuration. Therefore, when
there are several voltages to be controlled, it should be set
priority so that controller can hold the most important voltage
at its set point, allowing others varying within an accepted
range. In the paper, cost function computing the control
commands is defined to hold the bus3 voltage at its set point
as shown in Fig. 8. Thus the main quantity to be weighted is
voltage error at bus3. Once the voltages estimator will have
estimated voltages response, the voltage predictive controller
then computes control commands according to these estimated
voltage information, where offset-free control for bus3 can be
implemented. The control commands are obtained by
computing optimization cost function to be minimized, which
can be formulated as (38):

Au(k\k)‘.nliurgm—uk\k) {Z[Z(Wbl (VDUSJ(kH*'le) VJref )) +Z(W Aucj (k+ik))2]}

i=0\ j=0 (38)

In the cost function, w,,w, are weights for network

voltages at different buses and control increments,
respectively; P is prediction horizon; n, =3is number of bus;
n,=2 is number of voltage control input; v Vi (K +i +1K)

denotes the voltages information predicted for time k+i+1
based on the measured information available at time k .

V. (j=123)are set to O (initial equilibrium state defined in

origin).

When computing is finished, the each voltage controller
sends control commands to its power controller and operates
with the control commands until next sampling update.
Periodically, the controller obtains new voltages estimation
due to measurement feedback and consequently revises its
original control plan. Then, the voltage control commands are
provided to compensate for the deviation between estimated
voltage and reference values. The process repeats
independently by voltage controller of each DG unit.

In the voltage controller, an aggressive control increment
must be penalized to avoid instant reactive power fluctuation,
in which the relationship between the voltage control
commands and reactive power dynamic has been established
as (9) in SectionIIl.A. And it is worth noting that the weight
coefficients have a dramatic influence on the closed-loop
dynamic performance, which will be analyzed in details later.
Besides, another important parameter of the cost function is
the length p of the prediction horizon, which is the number of

prediction steps. In the implementation of simulations and
experiments, it has been chosen that p=10. It is the control

horizon that is also an essential parameter associated with
control commands but not occur in cost function. In the
implementation, the control horizon has been chosen that
m=2 in the paper, which means control inputs are executed
during the time span from k to k+2 when predicting system
dynamics, where k is the sampling instant. In general, the
control horizon m should be chosen as small as possible to
reduce the computational effort [34], [43]-[44].

The estimator-based voltage control strategy has an
attractive advantage that the voltage controller of each DG
unit is completely independent without communication links.
Thus it provides flexibility and reliability due to
communication-less operation.
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E. The Dynamic Performance Analysis

To investigate the relationship between controller
parameters and dynamic performance, the dynamic
performance is analyzed in details. In the case analyzed, the
dynamic performance of the developed voltage controller is
investigated by checking the positions of poles when adjusting
weights in the proposed cost function.

As depicted in Fig. 9(a), the closed-loop poles are plotted
when modifying bus3 voltage error weight of DG1 controller
in cost function. Note that 22 poles can appear in pole map
since the whole system has 22 orders, but just a real pole is
sensitive highly to the weight variation, where it moves
towards origin (improving dynamic response) as bus3 voltage
weight increases. Also, dynamic performance for modifying
voltage control increment weight of DG1 controller is
depicted in Fig. 9(b), where one real pole and one complex

0.6~ T
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0.4r 0.4

0.2/ 0.2}

0" oF

|
T .

0.2\ 0.2

-0.4f

%
. 02 0 02 04 06 08
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Fig. 9. The poles map for weight variation of DG1 controller. (a) The
bus3 voltage weight Wy3(DG1)= 50, 80, 150, 200, 500, 800, 1000. (b)
The control increment weight W.(DG1)= 0.1, 1, 5, 10, 20, 50, 200.
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Fig. 10. The poles map for weight variation of DG2 controller. (a)

The bus3 voltage weight Wy3(DG2)= 50, 80, 150, 200, 500, 800, 1000. (b)
The control increment weight W,(DG2)=0.1, 1, 5, 10, 20, 50, 200.

conjugate pole pair are sensitive for the weight variation in the
case analyzed. With the increase of voltage control increment
weight, the real pole and conjugate pole pair are driven to
move from origin towards one inside unit cycle, slowing down
the speed response for the whole system. Similarly, as shown
in Fig. 10(a), dynamic variation of a real pole is illustrated
when increasing bus3 voltage error weight of DG2 controller.
It can be observed that the real pole moves towards origin,
thus system has a much faster dynamic response. Further, a
real pole, together with a conjugate pole pair varies from
original point towards one inside unit cycle, shown in Fig.
10(b).

The analysis conclusions are drawn that (1) A real pole is
sensitive highly to variation of bus3 voltage weight. With the

8
_| Ln Le Rei Piusi Lioadi  Ricadi
istirhance?
DG Unit/ DI:/IUIh;?mL)L._
a2/Raa
Reiner Lioads  Ricass
Vousa
Liinea Disturbancel
(Lai/Rar)
Rlincl
_| Le R Licar  Rioaiz
Chp

DG Unit2

Fig. 11. The hardware photo of the experiment setup.
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Fig. 12. The hardware photo of the experiment. setup.

increase of it, dynamic response can be improved; (2) A real
pole, along with a conjugate pole pair, is sensitive to variation
of voltage control increment. And the less aggressive voltage
control increment, the slower dynamic response.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION

In order to verify effectiveness of the proposed
estimator-based voltage predictive control strategy, the
simulations in MATLAB/Simulink and experiments are
conducted respectively for a three phase 50 Hz islanded
microgrid. As depicted in Fig. 11, the system consists of two
inverters in parallel operation and three loads. And the photo
of the experiment hardware is shown in Fig. 12. The whole
platform of the islanded microgrid is controlled by dSPACE
1006. As mentioned in section I, the robustness of the
proposed controller to parameters perturbations is an essential
issue. In the paper, to perform offset-free voltage control for
bus3 under parameters perturbations, the disturbance models
are augmented to the proposed controller.

The simulation and experimental verifications are
composed of 7 cases respectively. The casel is adopted to
validate effectiveness of the proposed voltage control strategy.
Furthermore, the robustness investigation under parameters
perturbations consists of following six cases. The case2 is to
study the influence of line parameters perturbations on
robustness of controller. The case3 investigates robustness of
the controller when load parameters vary. The case4 studies
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TABLE |
PARAMETERS FOR SIMULATION AND EXPERIMENT
Parameters Value Parameters Value
La/Le 1.5mH/1.5mH Liinet/Ruiner 2mH/0.2 Q
Cu/Cr, 251F/251F Liine2/RuLine2 2mH/0.2 Q
Lai/Leo 1.8mH/1.8mH Wp3(DG1/DG2) 1000
Mp1/Mp> 2.5e-5/1e-4 We(DG1/DG2) 0.1
Ng1/Ng2 le-3/1e-3 (Simulation)
Inverter Rate 10kW La/Ra 50mH/10 Q@
Switch (Experiment)
Frequency 10k Lai/Ra 70mH/10 Q@
TABLE Il
PARAMETERS FOR ROBUSTNESS INVESTIGATION
Case Parameters Original Model Perturbation
Plant
5 LiineyRuine1 2mH/0.2 @ 3.6mH/0.2 Q
Liine2/RLine2 2mH/0.2 Q 3.6mH/0.2 Q
L Load1/R1oad1 155mH/64.5 Q 145mH/64.5 Q
3 L oad2/Rioad2 156mH/64 Q 146mH/64 Q
L L oad3/R1oads 245mH/80 Q 255mH/80 Q
(Simulation)
(Lat/Rar) 50mH/10 @ 50mH/10 Q
. (Lao/Rap) No 70mH/30 @
(Experiment)
(Lat/Rar) 70mH/10 @ 120mH/20 @
(Lao/Rap) No 150mH/67 @
5 Lu/Ch 1.5mH/251F 1.8mH/251F
L/Cr, 1.5mH/251F 1.5mH/501F
6 Le/Re 1.8mH/0.2Q 2.3mH/0.4 Q
Leo/Re2 1.8mH/0.2Q 2.1mH/0.4 Q

the rejection capability for multiple disturbances occurrence.
The case5 investigates robustness for LC filters parameters
perturbation. The case6 investigates robustness for output
impedances perturbation of inverters. The case7 validates
voltage disturbance rejection ability in the presence of DG unit
fault. The key parameters of configuration and controller in
the case setup are given in Table I. And the perturbation
parameters for robustness investigation are reported in Table
IT.

A. Casel: The proposed estimator-based control strategy.

In the setup analyzed, the control objective of proposed
voltage controller is to hold bus3 voltage to track its
steady-state set point. Hence, bus3 weighting coefficient wyzin
voltage controller is set to 1000 and others are set to 0.1,
which means voltage control for bus 3 has a top priority while
others are neglected due to the much smaller weighting
coefficients.

To validate the proposed control strategy, disturbance load1l
(Lg1i/Rgqy) is exerted at bus 2, shown in Fig. 11. It can be seen
from Fig. 13(a)-(c) that bus voltages drop (black curves) since
droop controller decreases voltage to track the increased
reactive power. Further, once the proposed voltage control
strategy is activated, the bus3 voltage is brought to original
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value as shown in Fig. 13(c). And other buses, of course,
appear the steady-state offset due to smaller weighting
coefficients (green curves).

Also, in the corresponding experiment, disturbance loadl
(Lg1i/Ryqy) is exerted at bus2. The voltage responses obtained
from the experimental setup are depicted in Fig. 13(d)-(f). The
experiment results show that the proposed controller drives
bus3 voltage to original value accurately once voltage drops.
One can note the tight correspondence between the simulated
and experimental results. The correctness and reliability of the
proposed control strategy thus is confirmed.

B. Case2: The robustness Investigation for line parameter
perturbation

To verify robustness of the voltage controller for line
parameters perturbation, line parameters are changed
intentionally as shown in TableII. Meanwhile, disturbance
loadl is exerted at bus2. Fig. 14(a)-(c) depicts bus voltage
responses under line parameters perturbation when load
disturbance occurs (black curves), where up to 12V and 9V
voltages drops at bus2 and bus3 respectively. In the case, the
control objective of controller is still forcing bus3 voltage
return to original value. With respect to Fig. 14(c), an about
0.3V steady-state error appears when line parameters
perturbations occur, but voltage control behavior is still
desirable and satisfied. To further validate robustness of the
voltage controller, the further experiments are implemented,
where disturbance loadl (Lqi/Rg1) is exerted at bus2. The
experimental results about line parameters perturbations are
shown in Fig. 14(f). It can be seen that bus3 voltage is brought
to original state even if line parameter is perturbed.

C. Case3: The robustness Investigation for load parameters
variation

The loads parameters perturbation is also a leading factor
that affects the robustness of the voltage controller since loads
parameters are also introduced to the discrete time model
aforementioned. The simulation and experimental results for
loads parameters variation are shown in Fig. 15.

Fig. 15(c) and Fig. 15(f) show that the proposed controller
is able to drive bus3 voltage back to original set point
accurately, even if all the load parameters are perturbed
intentionally within a neighbor range of steady-state values.

D. Case4: The robustness
disturbance locations.

verification for different

The case4 is to investigate rejection ability of the voltage
controller to unknown multiple disturbances, which was not
considered in the design of original controller yet. As
described in Section Il . B, the rejection capability for
unknown disturbances can be achieved by internal model
augmentation. In the case, disturbance load2 (L4/Rg) along
with disturbance loadl, is imposed to exert at bus 2 and 3
respectively as shown in Fig. 11, and voltage restoration for
bus3 is still only control objective. As it can be seen in Fig.
16(a)-(c), multiple disturbances lead to up to 15V and 13V
voltages droop at bus2 and bus3 respectively.
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Fig. 13. The simulation and experimental results of voltage responses under load disturbance with (green curves) and without (black curves) the
proposed control method.
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Fig. 17. The simulation and experimental results for robustness to LC filters perturbations with (green curves) and without (black curves) the
proposed control strategy.
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Fig. 18. The simulation and experimental results for robustness to output impedance perturbations with (green curves) and without (black curves) the
proposed control strategy.
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Fig. 19. The simulation and experimental results for robustness to DG unit fault with (green curves) and without (black curves) the proposed control

strategy.

When the proposed voltage controller is activated,bus3
voltage rises towards original value even if a slight offset
occurs, which is within 3% of the voltage droop maximum as
shown in Fig. 16(c).

The case shows that the proposed controller is still valid
when multiple disturbances appear at different buses. The
experimental results reported in Fig. 16(d)-(f), along with the
simulation results, point out that the proposed voltage
predictive controller has a good capability to reject unknown
multiple disturbances.

E. Case5: The robustness investigation for LC filters
perturbation
The case5 investigates the robustness for LC filters
perturbation, where LC filters parameters are perturbed
intentionally as shown in TableII. In simulation, disturbance
loadl (Lgi/Ry;) appears at bus2. It can be seen that voltages

drop at different buses (black curves) as shown in Fig.
17(a)-(c). Also, Fig. 17(d)-(f) reports the voltage responses
(black curves) from experimental implementation in the
presence of the disturbance loadl. The voltage controller is
still planned to bring bus3 voltage back to original state. Fig.
17(c) and Fig. 17(f) illustrate that the proposed voltage
controller is able to perform voltage restoration at bus3 even if
LC filters parameters are perturbed. Therefore, the simulation
and experimental results point out that the proposed voltage

controller has a good robustness against LC filters
perturbations.
F. Case6: The robustness investigation for output

impedances perturbation
In addition, the output impedance L, of inverters maybe has

a significant influence on the robustness of the voltage
controller. Hence, the caseb6 is carried out in order to validate
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controller performance under output impedances perturbation.
The output impedances of inverters are changed intentionally
as shown in Tablell. In the implementation of simulation and
experiment, the disturbance loadl is exerted at bus2. The
voltages response (black curves) can be observed in Fig. 18.

It can be seen from Fig. 18(a)-(c) and Fig. 18(d)-(f) that the
proposed voltage controller is able to force bus3 voltage return
to original value when voltages drop (green curves). Thus the
results obtained from simulations and experiments validate
robustness under output impedance perturbations.

G. Case7: The robustness investigation for DG unit fault.

To validate robustness of the proposed voltage controller in
the presence of DG unit fault, the set of simulations and
experiments is performed. With the assumption that DG unitl
fault happens suddenly and disconnects from the system,
disturbance loadl (Lq1/Rq1) is exerted at bus2. Then DG unit2
is just responsible for control system voltages, since DG1
losses the contribution to control voltage. As it can be seen in
Fig. 19, the disturbance results in up to 14V and 15V voltages
droop at bus2 and bus3 respectively (black curves). The
control objective is still to hold bus3 voltage at its original
state. With respect to Fig. 19(c), an about 1.2V control offset
appears in the presence of DG unitl fault. But the control
result is still desirable and accepted.

Similarly, in the accompanying experiment, the DG unitl
is disconnected suddenly from the system setup. And the
disturbance load (70mH/20 Q) occurs at bus2. Then the
voltage controller of DG unit2 is just responsible for voltage
restoration within the whole system. The experimental results
depicted in Fig. 19(d)-(f), together with the simulation results,
point out that the proposed voltage controller is still able to
perform bus3 voltage restoration even if a about 1V voltage
offset occurs under DG unitl fault. Hence, the case validates
the robustness of the proposed controller under DG unit fault.

VII. CONCLUSION

In this paper, an estimator-based voltage predictive control
strategy for AC islanded microgrids has been proposed. First,
a network voltage estimator associated with each DG unit has
been proposed to obtain voltages response without
communication links. Second, a voltage predictive controller
with immunity to parameters perturbation has been developed
to implement the offset-free voltage control for the specified
bus. Furthermore, the dynamic performance of the proposed
controller was analyzed through small signal analysis method.
The analysis results show that voltage error weighting
coefficient and voltage control input increment weighting
coefficient have a dramatic influence on system dynamic
performance. Finally, robustness of the proposed voltage
controller was investigated under system parameters
uncertainties. The investigation results from simulations and
experiments show that the proposed estimator-based voltage
control strategy is able to implement offset-free voltage
control for the specified bus in an AC islanded microgrid, and
has a good capability to reject uncertain parameters
perturbations. The proposed voltage control strategy can be
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implemented easily without communication facilities and thus
improve flexibility and reliability of islanded microgrids.

APPENDIX
TABLE 1
Initial Conditions
Parameter Value Parameter Value
o [0,0.02] o [313.9,313.9]
lodio [6.4,1.6] logio [2.7,3.9]
Vodio [309.87,309.32] Vogio [0,0]
Vboio [307.06,306.73,306.15] Vaoio [3.08,6.28,4.6]
| Linedio [3.4,-1.45] I Lineaio [3.87,1.56]

The small signal model of an individual inverter in d-q
frame can be transferred to common D-Q frame [2] as follow:
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