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A time-varying sliding-coefficient-based decoupled terminal sliding mode control strategy is presented
for a class of fourth-order systems. First, the fourth-order system is decoupled into two second-order
subsystems. The sliding surface of each subsystem was designed by utilizing time-varying coefficients.
Then, the control target of one subsystem to another subsystem was embedded. Thereafter, a terminal
sliding mode control method was utilized to make both subsystems converge to their equilibrium points
in finite time. The simulation results on the inverted pendulum system demonstrate that the proposed
method exhibits a considerable improvement in terms of a faster dynamic response and lower IAE and
ITAE values as compared with the existing decoupled control methods.

© 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Sliding mode control (SMC) has received much attention due
to its major advantages such as guaranteed stability, robustness
against parameter variations, fast dynamic response and simplicity
in implementation and therefore has been widely applied to the
control of a class of nonlinear systems [1,2]. The design of a SMC
consists of two steps: design of a sliding surface and design of a
control law. Once a suitable sliding surface function and a suitable
control law are designed, the system states can be forced to move
towards the sliding surface and slide on the surface until the
equilibrium (origin) point is reached. In most SMC schemes, the
most commonly used sliding surface is the linear sliding surface
which is based on linear combination of the system states by using
an appropriate time-invariant coefficient (commonly termed as
sliding coefficient). Although this coefficient can be adjusted such
that the convergence rate is arbitrarily fast, the system states
cannot reach the equilibrium point in finite time [3].

In order to achieve finite time convergence of the system states,
a terminal sliding mode control (TSMC) approach has been firstly
proposed [4]. The TSMC approach has been developed further for
the control of a simple second-order nonlinear system and nth-
order nonlinear rigid robotic manipulator system which results
zero tracking error in finite time [5,6]. Thereafter, the TSMC
method has been widely applied to many practical areas [3,7,8].

* Corresponding author. Tel.: +90 392 6301363; fax: +90 392 3650711.
E-mail address: hasan.komurcugil@emu.edu.tr (H. Komurcugil).
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However, the TSMC approaches proposed in all of these studies are
only suitable for second-order systems. The performance of these
TSMC approaches for a class of fourth-order system is question-
able. For example, in a cart-pole system controlled by an existing
TSMC method, either pole or cart can be controlled successfully,
but not both. A remedy to this problem is to decouple the system
states and apply a suitable control law to stabilize the whole
system. Recently, a decoupled sliding mode control (DSMC) has
been developed to cope with this issue [9]. It provides a simple
way to decouple a class of fourth-order nonlinear systems into two
second-order subsystems such that each subsystem has a separate
control objective expressed in terms of a sliding surface. An
important consequence of using the DSMC method is that the
second subsystem is successfully embedded into the first one via a
two-level decoupling strategy. An alternative decoupling approach
termed as single-input decoupled fuzzy-logic control (SIDFLC) is
also proposed as an improved version of the DSMC method [10].
The SIDFLC method embeds the signed distance concept [11]
together with the single-input fuzzy-logic control (SIFLC) and the
DSMC methods. The results have shown a considerable improve-
ment of the SIDFLC method in terms of a reduction in the number
of fuzzy rules and a faster dynamic response as compared with the
DSMC method. However, the time-invariant coefficient based
sliding surface still suffers from the slow convergence speed.
A self-tuning signed-distance fuzzy sliding mode control (DSSFSMC)
and a decoupled sliding-mode control based on neural network
methods are proposed to improve the convergence speed [12,13].
However, these methods are based on complicated algorithms
which increase the complexity of the controller design. Recently,
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a new DSMC method based on time-varying sliding surface slope
(TVSSS) has been developed [14]. The time-varying sliding surface
function of each subsystem is composed of the corresponding
subsystem states and a time-varying sliding coefficient which is
computed by a linear function derived from the input-output map-
ping of the one-dimensional fuzzy rule base. Despite the faster
convergence rate obtained by this method, the system states still
cannot converge to the equilibrium point in finite time. Although the
DSMC method presented in [15] makes use of a multi-objective
particle swarm optimization (MOPSO) algorithm for optimizing the
controller parameters in order to achieve a better performance, again
the states cannot converge to the equilibrium point in finite time.

In this paper, a time-varying sliding-coefficient-based decoupled
terminal sliding mode (DTSMC) control is proposed for a class of
fourth-order systems ensuring finite time convergence of the system
states. The system under consideration was firstly decoupled into two
second-order subsystems. Then a separate sliding surface function was
defined for each subsystem using the idea in [9]. Afterwards, the idea
of TSMC has been applied to each subsystem separately to ensure that
the states of both subsystems convergence to their equilibrium points
in finite time. Since each subsystem has its own equilibrium point,
then their convergence times are different. When the finite time
expressions of these subsystems are solved analytically, it is seen that
each expression is a function of an initial value of the corresponding
state and a sliding coefficient appearing in the denominator of each
expression. This means that the dynamic characteristics of the
system can be changed by adjusting these sliding coefficients.
Therefore, we propose to tune these coefficients based on time-
varying basis so as to minimize the convergence time of each
subsystem. The proposed DTSMC strategy is applied to control a
cart-pole system. Simulations are carried out and the results are
compared with the TVSSS and DSMC methods.

The rest of this paper is divided into six sections. In Section 2, the
problem formulation is described for fourth-order systems. In Section
3, review of decoupled sliding mode control strategy is given. In
Section 4, the conventional terminal sliding mode control was
described for a second-order system. Then, it has been extended to
a class of fourth-order system. In Section 5, the stability analysis of the
proposed method is derived. In Section 6, the proposed method is
used to control a cart-pole system and the computer simulation
results are presented and compared with the existing decoupled
methods. Finally, the conclusions are addressed in Section 7.

2. Problem formulation

Consider a second-order nonlinear system represented by the
following canonical state-space form

X1(8) = x2(0)

X,(t) = f(x, )+ b(x, t)u(t)+d(t) (1)
where x = [x1,x,]" is the state vector, f(x, t) and b(x, t) are nonlinear
functions representing system dynamics, u(t) is the control input, and
d(t) represents the external disturbance. The control of such systems
can be easily achieved by using well known SMC [1] or any other
nonlinear control method. However, the dynamic representation of
such systems is generally not in a canonical form exactly. For example,

the dynamic representation of a cart-pole (single-inverted pendulum)
system appears in the following form [9]:

X1(8) = x(0)

Xo(t) =f1(X, )+ b1(X, Oug (£) +dq (b)

X3(t) = x4(t)

X4(8) = fo(X, )+ by (X, )iz () +da (b) (2)

where X = [x1,X2,X3,X4]" is the state vector, f(X,t), by(X, 1), f>(X, b),
and b, (x, t) are nonlinear functions representing system dynamics,

uy(t), uy(t) are the control inputs, and d;(t) and d,(t) represent
external disturbances. The disturbances are assumed to be
bounded as |d;(t)] < D1(t) and |d,(t)| < D,(t). The control objective
is to design a control strategy that would force the states (x1, X2, X3
and x,4) to the origin of the state-space (x =[0,0,0,0]"). However,
if uy(t) is used to control the system in (2), only state x; and x, will
tend to zero. On the other hand, if u,(¢) is used to control the same
system, only state x; and x4 will move to zero. This means that
with these control inputs either the pole or the cart can be
controlled, but not both. The main reason behind this control
failure is due to the coupled nature of the system. Therefore, in
order to deal with the coupling problem, a control strategy that
decouples the system states and controls the whole system using a
single control input (u(t) = uq(t) = uy(t)) is needed.

3. Review of decoupled sliding mode control

A decoupled control method based on SMC (DSMC) was firstly
proposed to solve the decoupling problem in the fourth-order
nonlinear systems [9]. It provides a simple way to decouple a class
of fourth-order nonlinear systems into two second-order subsys-
tems such that each subsystem has a separate control objective
expressed in terms of a sliding surface. The main idea behind the
decoupled strategy is to decouple a nonlinear system appearing in
the form of (2) into two subsystems as A and B in the form of (1).
The subsystem A is chosen as a primary target while the sub-
system B is used as a secondary target. However, the selection of
the primary and the secondary subsystems is problem dependent.
Here, the control objective is to devise a control strategy that
would move the states of both subsystems towards their sliding
surfaces S; =0 and S, =0, and eventually, converge to the points
[x1,X2]" =[0,0]" and [xs,x4]" =[0,0]", respectively. The subsystem
A involves knowledge from subsystem B if the sliding surface
function S; is defined as

S] Zﬂl(X] —2)+X2, /11 >0 (3)

where 1; is the time-invariant coefficient of the sliding surface
function. In phase plane, S; = 0 represents a line (commonly called
sliding line) passing through the points x; =z and x, =0 with a
slope equal to —1;. The intermediate signal represented by z is
defined as

z:sat(s—2>zu, O<zy<l1 4)
D,

In (4), &7 is the boundary layer of S, used to smooth z and S is
the sliding surface function for subsystem B defined as

/12 >0 (5)

It is important to note here that the control objective for the
subsystem A is changed from [x1,x>]" =[0,0]" to [x1,x2]" =[z,0]".
It is clear from (4) that z is a function of S, transforming S, to the
proper range of x;. This means that the sliding-mode condition
S, =0 for the subsystem B is embedded into S; through the
intermediate signal z. Hence, the control input that controls both
subsystems simultaneously can be obtained easily (see Section 5).

Sy = ﬂzX3 +X4,

Remark 1. Since z is a function of S;, and 0 <zy <1, z can be
considered as a bounded oscillatory signal decaying to zero [14].

In order to verify this, we start our analysis by taking the time
derivative of (3) and equating it to zero as follows:

S1 =A(X1—2)+% =0 (6)

Obviously, (6) is a first-order linear differential equation which can
be rewritten as

)V]XZ +k2 =/112 (7)
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The general solution of x,(t) is given by
t
Xo(t) = X2(0)e A1t + 44 / e~ M-Dzr)dr )
0

where x,(0) is the initial value of x,(t). It is clear that if z(t) is
known, then x,(t) can be determined easily. As mentioned before,
the control objective is to achieve x; =z(t) and x, =0 in the
steady-state. In order to achieve this objective, the second term
in (8) must converge to zero (fée*ll(‘*ﬂi(r)dr—»m which is
possible if and only if z(t) decays to zero.

4. Terminal sliding mode based control strategy
4.1. Conventional TSMC for a second-order system

Let a nonlinear sliding surface function for the second-order
system given (1) be defined as

where 4 >0, and 0 < (y =q/p) <1 where p and q are positive odd
integers satisfying p >q. When the system is in the terminal
sliding mode (S=0), its dynamics can be determined by the
following nonlinear differential equation:

dX] .

G=h= — XY (10)
It has been shown that x; =0 is the terminal attractor [4] of the
system defined in (1). The equation in (10) can also be written as

dX1
dt=—-—— 11
! (a7
Taking integral of both sides of (11) and evaluating the resulting
equation on the closed interval x;{(0)#0,x;(t;)=0) gives the

following equation [6]:

_ X'
-y

Eq. (12) means that when the system enters to the terminal
sliding mode at t = t, with initial condition x;(0) # 0, the system
state x; converges to X;(ts) =0 in finite time and stay there for
t>t;. In other words, when the state trajectory hits the sliding
surface at time t,, the system state cannot leave the sliding line
meaning that the state trajectory will belong to the sliding line for
t > t,. However, for a class of fourth-order systems with strong
coupling, when some of the states reach zero in a finite time, they
will not have any effect on other states.

t (12)

4.2. Decoupled TSMC for a class of fourth-order system

The idea of conventional second-order TSMC can be extended
to the control problem of a class of fourth-order system shown in
(2). Now, let us define two nonlinear sliding surfaces in the
following form:

Sl :A](X] —Z)h +X1 (13)

S, :)QX}?:Z +X3 (14)

where 41 >0, 1,>0, 0<(y;=0¢,/p1)<1, 0<(y,=qy/pP2) <1,
D1, D2, q; and g, are positive odd integers satisfying p; > q; and
P2 >(qy. When the system is in the terminal sliding mode
(S1 =0and S, = 0), its dynamics can be determined by the follow-
ing nonlinear differential equations

X1 =—Aix; -2 (15)

X3=— ﬂ.zxgz (16)

It should be noted the solution of x, given in (8) is not valid
here. It is quite difficult to ascertain an analytical solution for x; as
S1 =AMy, —2)"" 1% —2)+%, = 0 is complicated. Nevertheless, it
is clear from (15) that the steady-state solution of x; can be
written as x, = —A(x; —2)”'. Hence, it is obvious that x, — 0 if and
only if (x; —z)—0. Since, x; =0 in the steady-state, then it can be
concluded that z=0 in the steady-state. On the other hand, it
should be noted that x; =z and x3 = 0 are the equilibrium points of
(15) and (16), respectively. Egs. (15) and (16) can also be written as

- dX1
U= Ta—ar an
dX3
dt=— 18
ﬂzx? ( )

Now, the total sliding time of subsystem A from initial point
xz(0) # 0 to equilibrium point xz(ts;) = 0 can be obtained by taking
integral of both sides of (17) as follows:

0

1 /% dxq 1 /° _ (x1—2)' "
tgg = —— = — X1—2) Ndxy = ——F———
St A1 /)Q(O) (X1 —2" A1 /u<o>( 1-2) ! M=y

xz(0)

(19)

where xz(0) is the initial value of x; —z at the beginning of the
sliding mode. Evaluating (19) gives

(20

1-n 1-7,
t51=0—{ x2(0) V]_|xz(0)| ’

_/11(1_)/1) T A -7

In (20), absolute value of xz(0) is included intentionally in order
to avoid a negative tg; when xz(0) is negative. Similarly, the total
sliding time of subsystem B from initial point x3(0) # 0 to equili-
brium point x3(t;3) =0 can be obtained as

Ol
: A2(1—=7,)

where x3(0) is the initial value of x3 at the beginning of the
sliding mode.

The stability of (16) can easily be proved by using a Lyapunov
function V = (1/2)x3. Taking time derivative of V and making use
of (16) yields

4 = X3%3 = 7/12)((3172 +42)/P2 (22)

21

Clearly, since (p,+q,) is even and A, >0, then V is always
negative definite meaning that x3 =0 is terminally stable. On the
other hand, since (15) is a function of z, it is quite difficult to find a
Lyapunov function of (15) and ascertain the stability of (15).
Therefore, the stability of (15) and (16) can be proved by using
the Jacobian evaluated around the equilibrium points x; =z and
X3 = 0, respectively.

The Jacobian of (15) around x; =z can be written as

A7i
x1—2)' "

where J; is the eigenvalue of the first order approximation matrix
for scalar x;. One can easily see that J; » —oco as x; —z which
shows that at the equilibrium point the eigenvalue tends to
negative infinity. The trajectory of subsystem with infinitely
negative eigenvalue will converge to the equilibrium point x; =z
with an infinitely large speed in finite time.

Similarly, the Jacobian of (16) around x3 = 0 can be written as

X1 —1
== X1 —2)1 = —
x 171(X1—2)

i (23)

_0X3 o1 Yo
Is Soxs —dayo Xt = _X;,yz (24)

where J; is the eigenvalue of the first order approximation matrix
for scalar x;. Again, one can easily see that J;—> —oo as x3—0
which shows that the eigenvalue tends to negative infinity.
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The trajectory of subsystem with infinitely negative eigenvalue
will converge to the equilibrium point x; =z with an infinitely
large speed in finite time. Therefore, it can be concluded that both
(15) and (16) are stable.

It is obvious from (20) and (21) that the time to reach the
equilibrium is related to the coefficients A4, 15, y; and y,. Since
y1=¢:/p1 and y, =q,/p, should have predefined fixed values
satisfying the fraction of two odd integers, then A; and A, can be
adjusted in such a way that the time taken to reach the equili-
brium is minimized for both states. In order to investigate the
influence of A; on the convergence rate of state x;, a sample study
has been carried out by computing tg; using (20). In each
computation step, the values of xz(0) and y; were kept constant,
and the value of A; was gradually changed. Fig. 1 shows the
computed convergence time (ts;) for different A; values. It is
evident that the convergence time of state x; becomes shorter
for large values of 1;. Therefore, it is most desirable if the sliding
surface coefficients (4; and A,) could be tuned so as to shorten the
convergence time of the system states.

Inspired from the TVSSS method presented in [14], a decoupled
TSMC strategy using time-varying coefficients is proposed for a
class of fourth-order system. The time-varying coefficient compu-
tations are performed by the following first-order linear functions
derived from the input-output mapping of the one-dimensional
fuzzy rule bases [14]

T = —0.9XA1) +1 25)

T30 = —0.9XA(0) +1 (26)

where XA(t)=|X;|—|Xa| and X5(t)=|X3|—|X4| are single-input
variables of the subsystems A and B, respectively. The variables
X1 =G3x1, X2 =GaX2, X3 =Gex3, and X4 = G;x4 denote the scaled
versions of X1, X2, X3, and x4, respectively. The block diagram of the
proposed approach is shown in Fig. 2. Clearly, the dynamic
performance of the proposed controller depends on the values of
K, q1, q5, p;, and p,. The optimum values of these parameters
resulting in low integral absolute error (IAE) value for x; and x3
can be determined by the help of a program written in Matlab. This

program which contains five nested loops for these parameters works
interactively with the Simulink model of the system. In this
program, an initial and a final value have been defined for each
parameter in each loop. The Simulink model gets the value of each
parameter from the program for each run and computes an IAE
value. This operation is repeated until all values defined in the
program are entered into the Simulink model. Thereafter, the best
set of parameter values satisfying the minimum IAE values are
chosen.

5. Stability analysis

In this section, the stability analysis of the proposed decoupling
method is investigated. The most crucial parameters for the
stability of a fourth-order system are A; and A, which must be
always positive. Since the proposed decoupled control strategy
always ensures A} >0 and A5 >0, then the use of DSMC method
will be sufficient to demonstrate the stability of the proposed method.

Remark 2. Since the state knowledge in S, is transferred into Sy,
then it is sufficient to consider only S; in the following stability
analysis. It is pointed out by many researchers [9,10,12,13,16] that
the stabilization of subsystem A is possible if the knowledge of
subsystem B is made available in the subsystem A.

Taking the derivative of (13) and equating the resulting

equation to zero gives
51 = )«1}’1(2‘(1 —2)(X1 —2z)" -1 +X%,=0 27

Substituting X, (t) =f;(X,t)+ by (X, )u1(t) into (27) and solving
for uq(t) gives

Ay1E—x) X =2 —f1(X,0)
b1 (X, t)

Ueq1 = (28)

Eq. (28) is the equivalent control that is necessary to keep the
states on the sliding surface sliding towards the equilibrium point.
However, it is well known that a switching control action is also
needed to move the system states towards the sliding surface [17].
Therefore, the control input for subsystem A in terms of equivalent

65 -

45

1 11 12 13 14 15 16 17 18 19
t, (sec)

Fig. 1. Computed convergence time (ty;) for different 4, values.
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TVSSS
TVSSS X
}\‘L
) 4 ? xj
> X; —> z .
Iy S, . ‘:_I__: I‘E)nlu;e:r
R R 7 ouple
:xI + \_: S, y TSMC "|  System
%2 | > (4™ order)

Fig. 2. (a) Block diagram of the proposed method, (b) internal representation of the TVSSS block used to compute 2}, (c) internal representation of the TVSSS block used to
compute 25 and (d) internal representation of the TSMC block used compute u.

control and switching control can be written as According to the TSMC theory, a terminal sliding-mode will
exist if the following sufficient condition is satisfied:
My E—k)x —2)" T —f1(X, 1) Sib1(x, ) :
That is, if a control law can be written which ensures (30), then
where K > (D(t))/|b1(x,t)| and & > 0. the system will be forced towards the sliding surface and remains
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on it until origin is reached asymptotically. Now, let CoS (X1)
) D10 = [ /3ym, —mp cos 2xp)
V(t) =153 31) b
—(4/3)mpLx3 si i

be a Lyapunov function candidate for the fourth-order system frx,t)= @/3m, ( 42/35)1;(96_13;11;0;,?2??)()61) cos (x1)
described in (2). The time derivative of this Lyapunov function can 0 !
be written as by(x. 1) = 4 (36)

V(t)=5:51<0 (32)

Substitution of (27) and x,(t) = f1(X, t)+ b1 (X, t)uq(t)+d1(¢) into
(32) gives

V(6) = 5151 = S1l(hy1%1 — 71 21 =20 41X, )+ b1 (X, Oup (0 +dy ()] < 0
(33)

Now, substituting the control input derived in (29) into (33)
yields

V(t)=5:51 = | —S1by(x, DK sat (%) +sld1(r)} <0 (34)
1

Since, the switching control gain must satisfy K > (D1(t))
/Ib1(x, )|, then regardless of sign of Sy, V(t) is always negative
for all values of the system states. The proposed control method
forces S; to converge to x; =z and x, = 0 in the steady-state. It is
clear from (8) that x, —»0 if and only if z—0 which implies that
S, — 0. Therefore, it can be concluded that the stabilization of both
subsystems can be achieved.

6. Simulation results and discussion

In order to verify the theoretical considerations and show the
correct operation of the proposed control method, a cart-pole
system is simulated and comparisons between the proposed
method and the existing decoupled methods (DSMC and TVSSS)
are demonstrated. All simulations were carried out by Matlab/
Simulink.

The dynamic behavior of the cart-pole system shown in Fig. 3
can be described by the following nonlinear equations:

x1() = x2(t)

X2(t) = f1(X, )+ b1 (X, Hu(t) +d1(t)

X3(t) = X4(t)

x4() = fH(X, )+ ba(X, Hu(t) + da(t) (35)
where

mg sin (x;) —mpL sin (x1) cos (X1)x3

1100 = 3m, —m, cos 264)

Fig. 3. Cart-pole system.

3((4/3)my —myp cos 2(x1))

where x;(t) is the angular position of the pole from the vertical
axis, x,(t) is the angular velocity of the pole with respect to the
vertical axis, x3(t) is the position of the cart, x4(t) is the velocity of
the cart, m; is the total mass of the system (which includes the
mass of the pole, mp, and the mass of the cart, m.), and L is the
half-length of the pole. The state variables x; and x, are chosen to
form the subsystem A (primary target) and the state variables x3
and x4 are used to form the subsystem B (secondary target). In the
simulation study, the system state is assumed to be x(0)=
[—60°,0,0,0]" and the following parameters were used for the
cart-pole system [9,10]:

m,=0.05kg, mc=1kg, L=05m, and g=98m/s?

The integral of absolute error (IAE) and the integral of time
multiplied by absolute error (ITAE) defined below are used to
make a quantitative comparison

IAE = / le(t)|dt (37)

ITAE = / tle(t)|dt (38)

where e(t) represents the error signal between the actual and the
desired state. The controller parameters used in the simulations
are shown in Table 1.

Fig. 4 shows the response of the angular position of the pole
obtained by the proposed method, DSMC and TVSSS methods.
Clearly, the proposed method exhibits a faster response than the
other methods. This fact can also be seen in the response of the
intermediate signal z presented in Fig. 5. Fig. 6 shows the position
evolution of the cart for the same case. Again, it is obvious that the
proposed control strategy is capable of keeping the cart in a
shorter distance which verifies that it is faster than the other
methods. Fig. 7 shows the control input of the proposed method,
DSMC, and TVSSS. Clearly, the proposed method generates a faster
control input with more undershoot. The time-varying coefficients
obtained from the proposed method are presented in Fig. 8. It is
interesting to note that the change in the coefficients has similar
characteristics to the back and forth action exerted on the cart to
keep both the pole and the cart back to the zero steady-state. The
simulation results of the proposed method are compared with that
of the existing decoupled methods based on the quantitative
measures such as IAE and ITAE. Table 2 gives the IAE and ITAE
values calculated using (37) and (38). As can be seen, the proposed

Table 1
The controller parameters used for the cart-pole system.

DSMC TVSSS Proposed method
/%2 5/0.5 - -
K 10 - 64
b, /D, 5/15 -/15 5/15
zy 0.9425 0.9425 0.9425
G1/Gy - 1/40 -
G3/Gy4/Gs - 0.05/0.05/5 0.05/0.05/5
Gs/G7/Gs - 0.05/0.05/0.5 0.05/0.05/0.5
|dq] = |da| <0.0873 <0.0873 <0.0873
q:1/P1 - - 19/21
q2/P2 - - 17/21
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control method provides lesser error values in terms of both the
angular position of the pole and the position of the cart.

The performance of the proposed method is also compared
with that of a recently published control method introduced in
[15]. In order to have a fair comparison of the two methods, the
cart-pole system parameters, the initial condition of the state
vector, and other common parameters should be equal to each
other. In this simulation study the cart-pole parameters which are
used in [15] are chosen as m, =0.5 kg, mc=2 kg, L=0.5m. The
initial condition of the state vector is assumed to be x(0)=
[30°,0,0,0]". Other common parameters which exist in both
methods are chosen as @;=1/9.949, ®,=1/0.18574, zy=
0.9966. On the other hand, the control method in [15] utilizes

Table 2
Computed IAE and ITAE values for the cart-pole system.

Ao cnf doxr 5 (b5l
WWW.trans24.ir : %1
PEAVYYYA-F+ (+YY) :oles

http://www.itrans24.com/landingl.html

H. Bayramoglu, H. Komurcugil / ISA Transactions 53 (2014) 1044-1053

time-invariant coefficients for the sliding surface functions which
are chosen as 4; =1.436 and 1, = 0.26172, respectively. It should
be noted that the time-varying coefficients (A and A5) of the
sliding surface functions of the proposed control method converge
to 1.436 and 0.26172 in the steady-state. The gains of proposed
controller were set to K =563, g; =q, =99, and p; =p, = 101.
Fig. 9 shows the responses of the angular position of the pole
(x1) obtained by the proposed method and the method in [15]. It is
clear that the proposed method exhibits a slightly faster response
than that obtained by the method in [15]. The IAE of x; in the
proposed method was computed as 18.55, which is smaller than
[AE=22.47 obtained from the method in [15]. Fig. 10 shows the
position evolution of the cart (x3) obtained by the two methods.
Although the responses of x5 are very similar to each other, the IAE
of x3 in the proposed method was computed as 13.47, which is
smaller than IAE=13.84 obtained from the method in [15].

DSMC TVSSS Proposed method .
7. Conclusions
Angle IAE 125.69 57.48 34.10
» ITAE 37046 7579 54.80 A time-varying sliding-coefficient-based decoupled sliding-
Position IAE 42.29 9.84 6.28 d trol thod h b d f 1 £ fi th
ITAE 156.24 20.41 2164 mode control method has been proposed for a class of fourth-
order systems. The proposed method decouples the nonlinear
30
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20
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Fig. 9. Angular positions of the pole obtained by the two methods.
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Fig. 10. Positions of the cart obtained by the two methods.
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fourth-order system into two second-order subsystems. The slid-
ing surface of each subsystem was designed by utilizing time-
varying sliding coefficients which are generated with the help of
linear functions derived from the input-output mapping of the
one-dimensional fuzzy rule bases. The terminal sliding mode
control (TSMC) method was utilized to make both subsystems
converge to the equilibrium points in finite time. The simulation
results on the inverted pendulum system were given to show the
effectiveness of the proposed method. Simulation results of a cart-
pole system with the proposed control method demonstrate that
the dynamic response is much faster than that of obtained with
the decoupled control methods in literature. In addition, the
proposed method exhibits lower IAE and ITAE values compared
with the existing decoupled control methods.
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