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The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression

(RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to

the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed method-

ology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal

feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness

function specialized for financial purposes and adopting a sliding window approach. The individual fore-

casts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and

non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the

robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during

the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy

and trading efficiency for all the exchange rates under study. This superiority confirms the success of the im-

plemented fitness function and training procedure, while it validates the benefits of the proposed algorithm.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1

t

n

c

n

e

t

V

t

f

r

(

t

s

f

o

c

c

w

c

p

t

t

a

p

d

t

h

0

A

 

 

. Introduction

Forecasting financial time series appears to be a challenging

ask for the scientific community because of its non-linear and

on-stationary structural nature. On one hand, traditional statisti-

al methods fail to capture this complexity, while on the other hand

on-linear techniques present promising empirical evidence. How-

ver, their practical limitations and the expertise required to optimize

heir parameters are creating skepticism on their utility.

This study introduces a hybrid Rolling Genetic Algorithm-Support

ector Regression (RG-SVR) algorithm for optimal parameter selec-

ion and features subset combination when applied to the task of

orecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange

ates. The proposed model genetically searches over a feature space

pool of individual forecasts) and then combines the optimal feature
∗ Corresponding author. Tel.: +447914053349.
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ubsets for each exchange rate. A novel fitness function specialized

or financial purposes is used to simultaneously minimize the error

f the obtained forecasts, increase the profitability of the final fore-

ast combination and reduce the complexity of the algorithm. This is

rucial in financial applications, where statistical accuracy is not al-

ays synonymous with the financial profitability of the deriving fore-

asts. The reduced complexity of the algorithm decreases the com-

utational cost of the proposed methodology and makes it ideal for

rading applications, where time efficiency is important. At the same

ime, it acts as a protection against overfitting and impeded gener-

lization abilities. The model employs a sliding window training ap-

roach and is capable of capturing the time-varying relationship that

ominates the financial trading series.

RG-SVR is benchmarked against seven models. Their statis-

ical and trading performance is compared during the period of

999–2012. The rationale behind the selection of the benchmarks is

wofold. Firstly, Support Vector Machine (SVM) and Support Vector

egression (SVR) architectures with genetically and non-genetically

ptimized parameters are dominant in the relevant literature. The

ix most popular and promising variants are identified and in-

luded in the study (see Section 4.3). Secondly, it would be unfair to
EURO) within the International Federation of Operational Research Societies (IFORS).
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compare the hybrid RG-SVR only with hybrids of the same method-

ology class, especially when other proposed methodologies have

shown statistical and trading superiority in a similar task. One such

example is the hybrid Neural Network (NN) that combines Adaptive

Radial Basis Functions with Particle Swarm Optimization (ARBF-PSO),

as introduced recently by Sermpinis, Theofilatos, Karathanasopoulos,

Georgopoulos, and Dunis (2013). The authors apply ARBF-PSO to

the task of forecasting and trading the same exchange rates that the

present study is investigating. Their results show that ARBF-PSO is

outperforming several linear and non-linear models, while its struc-

tural complexity is not high. Consequently, ARBF-PSO’s selection as a

benchmark to this application is required and justified.

To the best of our knowledge, the proposed RG-SVR methodol-

ogy has not been presented in the literature. Similar hybrid appli-

cations exist but they are either limited in classification problems

(Dunis, Likothanassis, Karathanasopoulos, Sermpinis & Theofilatos,

2013; Huang & Wang, 2006; Min, Lee, & Han, 2006; Wu, Tzeng, Goo, &

Fang, 2007) or the Genetic Algorithm (GA) does not extend to optimal

feature subset selection (Chen & Wang, 2007; Pai, Lin, Hong, & Chen,

2006; Yuan, 2012). In addition to this fact, the RG-SVR hybrid is the

first GA hybrid SVR algorithm that deploys v-SVR models, minimizes

the number of support vectors and applies a specialized loss function

and a sliding window training approach. A detail comparison of the

algorithm and the previous two algorithms is presented in the next

section. The genetically optimized SVM model (GA-SVM) proposed by

Huang and Wang (2006), Min et al. (2006), Wu et al. (2007) and Dunis

et al. (2013) and the genetically optimized ε-SVR model (GA-ε-SVR)

proposed by Chen and Wang (2007) , Pai et al. (2006) and Yuan (2012)

will act as benchmarks to the RG-SVR algorithm. Compared to non-

adaptive algorithms presented in the literature, the proposed model

does not require from the practitioner to follow any time-consuming

optimization approach (such as cross validation or grid search) and is

free from the data snooping bias (all parameters of RG-SVR are opti-

mized in a single optimization procedure).

From the results of this analysis, it emerges that RG-SVR presents

the best performance in terms of statistical accuracy and trading ef-

ficiency for all exchange rates under study. RG-SVR’s trading perfor-

mance and forecasting superiority not only confirms the success of

the implemented fitness function, but also validates that applying

GAs in this hybrid model to optimize the SVR parameters is more effi-

cient compared to the optimization approaches (cross validation and

grid search algorithms), that dominate the relevant literature.

The rest of the paper is organized as follows. Section 2 is a litera-

ture review of previous relevant research on SVMs and SVRs in fore-

casting. A detailed description of the study’s dataset, the EUR/USD,

EUR/GBP and EUR/JPY European Central Bank (ECB) fixing series, is

presented in Section 3. Section 4 includes the complete description

of the hybrid RG-SVR model, while the statistical and trading perfor-

mance of the implemented models is presented in Sections 5 and 6

respectively. The concluding remarks are provided in Section 7. The

essential theoretical background for the complete understanding of

the proposed methodology is given in Appendices A–D, along with

the technical characteristics of the models used in this study.

2. Literature review

SVMs were originally developed for solving classification prob-

lems in pattern recognition frameworks. The introduction of Vapnik’s

(1995) insensitive loss function has extended their use in non-linear

regression estimation problems. SVRs’ main advantage is that they

provide global and unique solutions and do not suffer from mul-

tiple local minima, while they present a remarkable ability of bal-

ancing model accuracy and model complexity (Kwon & Moon, 2007;

Suykens, De Brabanter, Lukas, & Vandewalle, 2002).

The literature of SVM and SVR applications is voluminous, es-

pecially when they are applied in financial tasks. This study aims
o delve deeper into their hybrid structures that are already very

opular (Lo, 2000). Lee, Lin, and Wahba (2004) propose the multi-

ategory SVM as an extension of the traditional binary SVM and ap-

ly it in two different case studies with promising results. They note

hat their proposed methodology can be a useful addition to the

lass of nonparametric multi-category classification methods. Liu and

hen (2006) advance the previous mentioned approach by present-

ng the multi-category ψ-learning methodology. The main advantage

f their method is that the convex SVM loss function is replaced by a

on-convex ψ-loss function, which leads to smaller number of sup-

ort vectors and sparser solution. Martens, Baesens, van Gestel, and

anthienen (2007) introduce two extraction techniques for SVMs and

rove their utility in a series of tests. Hsu, Hsieh, Chih, and Hsu (2009)

ntegrate SVR in a two-stage architecture for stock price prediction

nd present empirical evidence that shows that its forecasting perfor-

ance can be significantly enhanced compared to a single SVR model.

u, Lee, and Chiu (2009) and Yeh, Huang, and Lee (2011) propose also

ybrid SVR methodologies for forecasting the TAIEX index and con-

lude that that they perform better than simple SVR approaches and

ther autoregressive models. Wu and Liu (2007) introduce the robust

runcated hinge loss SVM and claim that their method can overcome

rawbacks of traditional SVM models, such as the outliers’ sensitiv-

ty in the training sample and the large number of support vectors.

uang, Chuang, Wu, and Lai (2010) forecast the EUR/USD, GBP/USD,

ZD/USD, AUD/USD, JPY/USD and RUB/USD exchange rates with a hy-

rid chaos-based SVR algorithm. In their application, they confirm

he forecasting superiority of their proposed technique compared to

haos-based NNs and several traditional non-linear models. Lin and

ai (2010) introduce a fuzzy SVR model for forecasting indices of busi-

ess cycles, Kim and Sohn (2010) forecast the credit score of small and

edium enterprises with SVM, while Wu and Akbarov (2011) apply

uccessfully weighted SVRs to the task of forecasting warranty claims.

oreover, Jiang and He (2012) propose a hybrid SVR that incorporates

he Grey relational grade weighting function. When applied to finan-

ial time series forecasting, the local Grey SVR outperforms locally

eighted counterparts in terms of computational speed and predic-

ion accuracy. A hybrid architecture for computer products’ sales fore-

asting is also introduced by Lu (2014) based on SVR and multivariate

daptive regression splines.

Most recently, Yao, Crook, and Andreeva (2015) use SVRs in the

redit risk modeling framework. Specifically, the authors evaluate

he predictive ability of SVR over recovery rates of defaulted corpo-

ate instruments between 1985 and 2012. The results show the su-

eriority of the SVR techniques in forecasting these rates compared

o other commonly used methods, such as linear regression, frac-

ional response regression and the two-stage methodology. Finally,

eng, Bose, and Chen (2015) present a forecast competition of

ethodologies, such as NNs, SVM, decision trees and majority vot-

ng classifiers, to the task of predicting financial distress of listed Chi-

ese companies. The empirical evidence of that study shows that NNs

utperform the SVM, but they acknowledge that this is contradicting

revious literature.

Similar applications to the proposed hybrid approach of this study

an be found in the literature. For example Min et al. (2006) and

u et al. (2007) use hybrid GA-SVM models in order to forecast

he bankruptcy risk. In both applications, the GAs optimize the pa-

ameters of the SVM and select the financial ratios that most affect

ankruptcy. Dunis et al. (2013) developed a GA-SVM algorithm and

pplied it to the task of trading the daily and weekly returns of the

TSE 100 and ASE 20 indices. This approach deals with financial fore-

asting as a classification problem and has limited applicability. In

nancial forecasting, though, it is crucial to obtain forecasts that pre-

ict not only the sign but also the size of the examined financial in-

ices.

Pai et al. (2006) apply epsilon SVR with genetically opti-

ized parameters (GA-ε-SVR) in forecasting exchange rates, while 
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Table 1

Theoretical comparison of RG-SVR with other existing hybrid combinations of GAs with SVM/SVR based models.

Method

SVM

type

Sliding

window

Parameters optimization

using GA

Input subset optimization

using GAs

Minimization of the

support vectors

RG-SVR v-SVR Yes Yes Yes Yes

Chen and Wang (2007) ,

Pai et al. (2006) and

Yuan (2012)

ε-SVR No Yes No No

Min et al. (2006), Wu

et al. (2007) and Dunis

et al. (2013)

RBF-SVM No Yes Yes No
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1 This choice is based on in-sample experimentation. We obtain similar trading

and statistical in-sample RG-SVR performance for test datasets that constitute the

29 percent up to the 47 percent of the in-sample dataset.
2 Confirmation of their stationary property is obtained at the 1 percent signifi-

cance level by both the Augmented Dickey Fuller (ADF) and Phillips–Perron (PP) test

statistics.

 

 

 

hen and Wang (2007) forecast the tourist demand in China with a

imilar model. Yuan (2012) suggests that a GA-ε-SVR model is more

fficient than traditional SVR and NN models, when applied to the

ask of forecasting sales volume. All these GA-ε-SVR applications do

ot deploy the GA to locate the optimal feature subset but restrict

t in optimizing the parameters of the ε-SVR models and select the

odel’s inputs empirically.

As described in the previous paragraph, a variety of hybrid

ethodologies combining SVM/SVR models with GAs have been pro-

osed during the last decade. However, the proposed RG-SVR theoret-

cally outperforms them as it deploys v-SVR models, which are more

uitable to this problem than SVMs and ε-SVR. SVMs are constrained

o classification problems and their applicability is limited. The ε-SVR

odels require the desired accuracy of the approximation to be spec-

fied beforehand and are extremely sensitive to the selection of the ε
arameter compared to the sensitivity of v-SVRs to the v parameter

Schölkopf, Smola, Williamson, & Bartlett, 2000). Moreover, RG-SVR

ptimizes on parallel the SVR’s parameters and the input’s subset, it

eploys a sliding window approach to capture the dynamic nature

f the examined financial time series, it employs a specialized loss

unction and tries to minimize the number of support vectors of the

nal model in order to improve its generalization abilities. The advan-

ages of RG-SVR over other published methodologies are outlined in

able 1.

. The EUR/USD, EUR/GBP and EUR/JPY exchange rates and

elated financial data

The ECB publishes a daily fixing for selected EUR exchange rates.

hese reference mid-rates are based on a daily concentration proce-

ure between central banks within and outside the European System

f Central Banks, which normally takes place at 2.15 p.m. ECT time.

he reference exchange rates are published both by electronic mar-

et information providers and on the ECB’s website shortly after the

oncentration procedure has been completed.

Although only a reference rate, many financial institutions are

eady to trade at the EUR fixing and it is therefore possible to leave or-

ers with a bank for business to be transacted at this level. Thus, the

CB daily fixings of the EUR exchange rate are tradable levels and us-

ng them is a more realistic alternative to, say, London closing prices.

his superiority for financial institutions to transact at the EUR fixing

s a well-known fact by FX markets’ participants. Financial institu-

ions and institutional investors, and therefore through them, High

et Worth individuals (HNW) would definitely be able to transact at

he ECB fixing through their investments with hedge funds, private

anks, etc. Smaller private investors could also benefit from reason-

bly attractive cost conditions (see www.interactivebrokers.com), al-

hough they would not be able to transact at the ECB fixing as consid-

red in this study.

In this paper, the ECB daily fixings of EUR/USD, EUR/GBP and

UR/JPY exchange rates are examined over the period of 01/02/1999–

0/04/2012. The range of these observations (3395 trading days) is

sed in four consecutive forecasting exercises. In order to train the

G-SVR, it is necessary to divide the in-sample dataset to training
nd test subsets (see Section 4.1). The test dataset constitutes approx-

mately the 38 percent1 of the in-sample dataset in each forecasting

xercise. The total dataset and the length of each forecasting exercise

re presented in Table 2.

The graph in Fig. 1 shows the total dataset for the three exchange

ates under study.

The three observed time series are non-normal (Jarque–Bera

tatistics, 1980 confirm their non-normality at the 99 percent con-

dence interval) containing slight skewness and high kurtosis. They

re also non-stationary and hence they are transformed them into

hree daily series of rate returns2 using the following formula:

t = ln

(
Pt

Pt−1

)
(1)

here Rt is the rate of return and Pt is the price level at time t.

The summary statistics of the EUR/USD, EUR/GBP and EUR/JPY

eturn series reveal that the slight skewness and high kurtosis re-

ain. In addition, the Jarque–Bera statistic confirms again their non-

ormality at the 99 percent confidence interval.

The aim of these forecasting exercises is to forecast and trade the

ne day ahead EUR/USD, EUR/GBP and EUR/JPY exchange rate return

E(Rt)). As a first step, we estimate the three return series with sev-

ral linear and non-linear models. Then, these estimations are used

s potential inputs to the RG-SVR algorithm.

. Hybrid RG-SVR model

The hybrid Rolling Genetic-Support Vector Regression (RG-SVR)

odel for optimal parameter selection and feature subset combina-

ion is presented in this section. Initially, the generic architecture of

he proposed methodology is described. Then the feature space, in

hich the model will search for the optimal subsets and combina-

ions, is identified along with the models that are going to be used

s benchmarks. The SVR models are more suitable than the classical

VMs ones for this daily forecasting task, as they provide an exact

rediction instead of a binary output. The exact prediction enables

he effective application of confirmation filters to improve its perfor-

ance and provide a hint about the strength of the trading signal.

.1. Architecture

The proposed model genetically searches over the feature space

pool of individual forecasts) and then combines the optimal feature

ubsets (SVR forecast combinations) for each exchange rate. In order

o achieve this, a simple GA is used where each chromosome com-

rises feature genes that encode the feature subsets and parameter

enes that encode the choice of parameters.
www.Matlabi.irwww.Matlabi.ir
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Table 2

The total dataset—neural networks’ training datasets.

Forecasting exercise Periods Trading days Start date End date

1 Total dataset 1857 01/02/1999 28/04/2006

Training dataset (Ntr)a 831 01/02/1999 30/04/2002

Test dataset 511 02/05/2002 30/04/2004

Out-of-sample dataset 515 03/05/2004 28/04/2006

2 Total dataset 1852 01/02/2001 30/04/2008

Training dataset (Ntr) 826 01/02/2001 30/04/2004

Test dataset 515 03/05/2004 28/04/2006

Out-of-sample dataset 511 02/05/2006 30/04/2008

3 Total dataset 1854 03/02/2003 30/04/2010

Training dataset (Ntr) 832 03/02/2003 28/04/2006

Test dataset 511 02/05/2006 30/04/2008

Out-of-sample dataset 511 02/05/2008 30/04/2010

4 Total dataset 1857 01/02/2005 30/04/2012

Training dataset (Ntr) 830 01/02/2005 30/04/2008

Test dataset 511 02/05/2008 30/04/2010

Out-of-sample dataset 516 03/05/2010 30/04/2012

aThe in-sample dataset is the sum of the training and test dataset.
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Fig. 1. The EUR/USD, EUR/GBP and EUR/JPY total dataset.
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The lack of information about the noise’s nature and parameters

of the training datasets makes the a priori ε-margin setting of ε-SVR

a difficult task. In order to overcome this and decrease the computa-

tional demands of the methodology, the RBF v-SVR approach is ap-

plied in this hybrid RG-SVR model (see Appendix A.2). The impact of

ε parameter in ε-SVR is much more crucial than the impact of ν in ν-

SVR. The ν-SVR method is limiting with an upper and lower bound of

the number of SVs. In this way, the optimization becomes more sta-

ble and the algorithm needs less iterations to find an optimal v value,

which would provide accurate results and good generalization prop-

erties. The use of the RBF kernel is justified by its extensive use in the

literature and its superiority to other types of kernels, when used in

financial time series forecasting (Ince & Trafalis, 2008; Lu et al., 2009).

A RBF kernel is in general specified as:

K(xi, x) = exp (−γ ‖xi − x‖2), γ > 0 (2)

where γ represents the variance of the kernel function. Consequently,

the parameters which should be optimized by the GA are C, v and γ .

Binary representation is used to model the chromosome. Every

feature gene is represented with a binary digit. If that gene takes

value 1 (0), then this indicates that the relevant feature should be
sed (not be used) as input. For the parameter genes 50 bits are used,

hich are specified as follows:

• 10 bits to represent the integer part of parameter C of SVRs (range

[0–1024])
• 10 bits to represent the decimal part of parameter C of SVRs

(∼0.001 precision)
• 10 bits to represent the integer part of the γ parameter of RBF

functions (range [0–1024])
• 10 bits to represent the decimal part of the γ parameter of RBF

functions (∼0.001 precision)
• 10 bits to represent the ν parameter of v-SVR (range [0–1] with

∼0.001 precision)

During the initialization step all genes are randomly set with val-

es 0 or 1 with equal probabilities for both of them.

The GA uses the one-point crossover and the mutation operators.

he one-point crossover creates two offspring from every two par-

nts. The parents and a crossover point cx are selected at random.

he two offsprings are made by both concatenating the genes that

recede cx in the first parent with those that follow (and include) cx

n the second parent. The probability for selecting an individual as a 
www.Matlabi.irwww.Matlabi.ir
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3 Financial markets are vulnerable to behavioral (Froot, Schafrstein, & Stein, 1992)

and exogenous factors such as political decisions (Fisman, 2001). These factors are im-

possible to capture with mathematical models and include noise to time series esti-

mations.
4 For our experiments the CTT time using a simple personal computer with Intel I7

processor ranged from 3 to 4 hours while the CTA time for 10 trading days was a less

than 1 second.

 

 

arent for the crossover operator is called crossover probability and

n this application is set to 0.90. Having a high crossover probability

nables the model to keep some population for the next generation,

oping to create better new chromosomes from good parts of the

ld chromosomes. The offspring produced by the crossover operator

eplaces their parents in the population. The one-point crossover is

sed for simplicity and to allow bigger blogs of genes to be exchanged

uring the crossovers. The uniform crossover is usually better only

hen small mutation probabilities (for example 0.001) are used in

rder to keep the diversity of chromosomes in the population. In this

tudy, the applied mutation probability is quite big (0.1) and thus the

ne-point crossover is adequate. The crossover probability is not set

o 1 to leave a space for very good solutions of a population to pass

hrough the next generation’s population without being altered. The

ther variation operator which is deployed is the mutation one. The

utation operator places random values in randomly selected genes

ith a certain probability named as mutation probability. This opera-

or is very important for avoiding local optima and exploring a larger

urface of the search space. This probability is set to 0.1 in order to

revent the algorithm from performing a random search.

For the selection step of the GA, the roulette wheel selection process

s used (Holland, 1975). In roulette wheel selection chromosomes are

elected according to their fitness. The better the chromosomes are,

he more chances to be selected they have. In the proposed approach,

litism is used to raise the evolutionary pressure in better solutions

nd to accelerate the evolution. In that way, it is assured that the best

olution is copied without changes to the new population, so the best

olution found can survive at the end of every generation.

More specifically, the selection step is used to resemble the sur-

ivor of the fittest principle. In that way better solutions have higher

robabilities to provide offspring in the next generation. After the ap-

lication of selection probability, an intermediate population of solu-

ions is formed with each one of them being identical to the solutions

rom the previous population. Then, crossover and mutation prob-

bilities are applied to provide offsprings combining solutions from

his intermediate population. Before the application of the crossover

perator, the solutions from this intermediate population are used

o make pairs of solutions. Some of these pairs are combined using

he crossover operator (with the crossover probability) to produce

ew solutions, while the others are passed to the next intermediate

opulation without being altered. The offspring is derived from the

rossover operator and the pairs of solutions that are not recombined

orm the next intermediate population. After this process, the inter-

ediate population is altered using the mutation operator. In the case

f this study, binary mutation is used. If a gene is selected for mu-

ation, then a new random binary value (0 or 1) is constructed and

eplaces the previous value in this gene. In order to re-assure that no

ood solutions are missed, elitism is applied. In that way, the best so-

ution is allowed to pass to the next population. The crossover prob-

bility is not set to 1 to leave space also for some solutions that are

lose to optimal not to be recombined, but just change only with the

utation operator (which is applied only in a few genes of the whole

hromosome).

For example, assuming population size is N and elitism of one

ember, the use of the selection operator leads to an intermediate

opulation of N solutions, which form N/2 pairs. Some of these pairs

re selected for crossover using the crossover probability and others

re passing on for mutation, as they are. When the mutation process

s completed, a complete set of final N solutions is derived. The next

teration starts once one solution is randomly replaced with the best

olution of the previous generation.

The RG-SVR hybrid performs a rolling window forecasting exer-

ise. The window size is always ten days (two trading weeks). Else

he parameters and the inputs of the algorithm are re-estimated

very two weeks. This fact allows the model to capture any structural

rake in the dataset. Trading series are exhibiting a highly non-linear
ature and are affected by a wide range of factors. Mathematical

odels with fixed parameters are impossible to model them per-

ectly. Fund managers and professionals apply a range of different

odels and re-estimate their parameters frequently. The nature of

he financial markets and their erratic behavior make impossible a

erfect ex ante configuration of the re-estimation period. Frequent

e-estimations dramatically increase the computational time and

ight induce noise in the estimations.3 Infrequent re-estimations

ill lead to a low trading performance. The ten trading days sliding

indow approach is selected based on a trade-off between the

n-sample trading performances of RG-SVR and the computational

ime needed for its estimation with the used dataset.

The population of chromosomes is initialized in the training sub-

eriod. The optimal selection of chromosomes is achieved, when

heir forecasts maximized the proposed loss function (see Eq. (3))

n the test-sub period. Then, the optimized parameters and selected

redictors of the best solution are used to train the SVR and produce

he final optimized forecast for the next observation. This procedure

s repeated in each of the four forecasting exercises. For each of these

orecasting exercises, the algorithm stores its optimized C, γ and v

arameters and set of optimal predictors.

In order to achieve the optimal selection of the feature subsets

individual forecasts) a three-objective fitness function is applied to

he hybrid approach. Firstly the annualized return of the SVR fore-

ast combinations should be maximized and secondly the Root Mean

quare Error (RMSE) of the output should be minimized in the test

ub-period. The presence of the SVs term in the proposed fitness

unction enables RG-SVR to extract the minimum prediction models

hich present good prediction accuracy improving its generalization

bilities. Based on the above, the fitness function takes the form of

q. (3):

itness = annualized return − 10 × RMSE − 0.001 × (SVs/Ntr)

(3)

here Ntr is the size of the training sample.

The aim is to maximize Eq. (3). The proposed fitness function aims

o bring a balance between trading profitability (first factor of Eq. (3))

nd statistical accuracy (second factor) while retaining the complex-

ty of the algorithm to a minimum. This is very important in trading

pplications as statistical accuracy does not always imply financial

rofitability. Additionally, complex models in trading applications are

ot always applicable due to the increased computation time and

he dangers of over fitting and lack of generalization. There are two

omputational time metrics related to the task of building forecasting

odels and applying them to new data. The first one is the Compu-

ational Time required for Training a model (CTT). The second is the

omputational Time for the Application of the trained model to new

ata (CTA).4 The training phase is an offline procedure. Thus, the CTT

s of minor importance. It is not required to be applied in real time and

an be applied in scheduled times (for example once per week). The

ritical phase in terms of time complexity is the application to new

ata phase, as this is probably applied in real time. In the proposed

pproach, the term SVs/Ntr is introduced in the fitness function. This

erm does not affect the CTT, but dramatically decreases the CTA by

sing simplest models. This approach has also a significant effect in

he model’s generalization properties reducing the danger of overfit-

ing. The RMSE is multiplied by 10 to make the first two factors in

q. (3) more or less equal in levels. SVs is the number of Support
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Table 3

GA characteristics and parameters.

Population size 40

Maximum generations 200

Selection type Roulette wheel selection

Elitism Best member of every population is maintained

in the next generation.

Crossover probability 0.9

Mutation probability 0.1

Fitness function Fitness = annualized return − 10 × RMSE −
0.001 × (SVs/Ntr)

Table 4

The summary description of the linear models.

Linear models Description

Total

individual

forecasts

RW E(Rt) = μ + et , et ∼ N(0, 1) 1

where:
• μ the in-sample mean

AR (p) E(Rt) = β0 + ∑p
i′=1

βi′ Rt−i′ 20

where:
• p = 1,…,20
• β0, βi′ the regression coefficients

MA (q) E(Rt) = (Rt−1 + · · · + Rt −q)/q 23

where:
• q = 3…25

ARMA (m’, n’) E(Rt) = ϕ̄0 + ∑m′
j′=1 ϕ̄ j′ Rt− j′ + ā0 + ∑n′

k′=1 w̄k′ āt−k′ 210

where:
• m’, n’ = 1,…,15
• ϕ̄0, ϕ̄ j′ the regression coefficients
• ā0, āt−k′ the residual terms
• w̄k′ the weights of the residual terms
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5 The inputs in all cases of forecasting exercise 1 are selected based on 5-fold cross

validation, while in forecasting exercises 2 and 3 with grid search. For the forecast-

ing exercise 4, the inputs selected for EUR/USD and EUR/GBP are based on grid search

algorithms, while the ones for EUR/JPY are derived based on 5-fold cross validation.

 

 

Vectors of the trained SVR model. This number is first divided to Ntr

to normalize its values from 0 to 1 and then it is further divided with

1000 to decrease its impact to the final fitness function. Reducing

model complexity is a secondary task compared to forecasting accu-

racy and the trading profitability.

The size of the initial population is set to 40 chromosomes while

the maximum number of generations is set to 200. The algorithm

though terminates when the number of generations is 60 on aver-

age. This number must be reached in combination with a termination

method that stops the evolution, when the population is deemed as

converged. The population is deemed as converged when the average

fitness across the current population is less than 5 percent away from

the best fitness of the current population. More specifically, when it

is less than 5 percent the diversity of the population is very low and

evolving it for more generations is unlikely to produce different and

better individuals than the existing ones or the ones already exam-

ined by the algorithm in previous generations.

The summary of the GA’s characteristics is presented in Table 3.

The flowchart of the proposed methodology is depicted in detail

in Fig. 2.

4.2. Feature space and feature subset selection

The forecasting ability of the proposed methodology is evaluated

over a feature space that is synthesized by individual linear and non-

linear forecasts of each exchange rate over the periods outlined in

Table 2. More specifically, the pool is consisted by a Random Walk

(RW), a series of Autoregressive (AR), Moving Average (MA), Autore-

gressive Moving Average (ARMA) linear models and five non-linear

algorithms, namely a Nearest Neighbors Algorithm (k-NN) a Multi-

Layer Perceptron (MLP), a Recurrent Neural Network (RNN), a Higher

Order Neural Network (HONN) and a Psi-Sigma Neural Network

(PSN). A summary of the used linear models is presented in Table 4,

while the applied non-linear models are explained in Appendix B.
These models create a pool of 259 individual forecasts in total

or each forecasting exercise. The algorithm genetically searches the

bove feature space and selects the optimal feature subsets. In all

ases, GA selects as inputs for the proposed model among the MLP,

ONN, RNN, PSN and k-NN predictors. In other words, the model dis-

ards as inputs the linear predictors in favor of the non-linear models

see Table 5). This was expected to some extent due to the non-linear

ature of the financial time series.

In the final stage of the algorithm, RG-SVR applies a GA to select

he SVR parameters. As mentioned before this process is repeated ev-

ry ten trading days, in order the proposed model captures any possi-

le structural break in the series under study. Although the selection

f the inputs seems to be consisted in the majority of the runs for the

hree exchange rates, this is not the case for the SVR parameters as

he C, v and γ parameters vary between 4.10 and 9.20, 0.35 and 0.84

nd 8.12 and 19.77 respectively. These variations of the parameters

hrough the different sliding window iterations enable it to adjust to

he continuously changing real financial model. It is worth noting that

he proposed RG-SVR methodology is fully adaptive. The practitioner

oes not need to experiment with the parameters of the algorithm in

rder to optimize the forecasts. RG-SVR structure and its parameters

re generated in a single optimization procedure, which prevents the

ata snooping effect.

.3. Benchmark models

The statistical and trading efficiency of the hybrid model is

nitially evaluated by benchmarking it with traditional genetic and

on-genetically optimized SVRs and SVMs. For the non-genetically

ptimized SVRs, the selection of the inputs and the SVR parameters

s optimized with the statistical methods that dominate the relevant

iterature (grid search or 5-cross validation over the in-sample

eriod).5 The genetically optimized SVR and SVM benchmarks are

onstructed following the instructions of those introducing them in

he literature (see Table 1). A summary of the SVR-SVM benchmarks

s presented below:

• An ε-SVR model that implements a 5-fold cross-validation and a

simple data-driven calculation on the in-sample dataset to calcu-

late parameters ε, γ and C respectively (ε-SVR1).
• A v-SVR model that calculates its parameters v, γ and C as the

ε-SVR1 (v-SVR1).
• An ε-SVR and v-SVR model that all parameters are selected based

on a grid-search algorithm in the in-sample dataset (ε-SVR2 and

v-SVR2).
• A GA-SVM model as proposed by Min et al. (2006), Wu et al.

(2007) and Dunis et al. (2013).
• A GA-εSVR model as proposed by Chen and Wang (2007) , Pai

et al. (2006) and Yuan (2012).

For more on the ε-SVR1 and v-SVR1 approaches see Duan, Keerthi,

nd Poo (2003) and Cherkassky and Ma (2004), while for the ε-SVR2

nd v-SVR2, see Schölkopf and Smola (2002).

In addition, Sermpinis et al. (2013) introduce the ARBF-PSO

ethod in a forecasting and trading competition of several linear and

on-linear models. Their hybrid NN structure proves to be superior

n statistical and trading terms over the more traditional MLP, RNN

nd PSN. The authors investigate the ECB daily fixings of EUR/USD,

UR/GBP and EUR/JPY over the period of 04/01/1999–29/04/2011

3158 trading days). Their statistical and trading results are not di-

ectly comparable with the ones of this study, since their in-sample

nd out-of-sample periods are overlapping with those of Table 2.
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Fig. 2. Hybrid RG-SVR flowchart.
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onetheless, ARBF-PSO’s performance is impressive over a dataset of

he same three exchange rates that this study is investigating. Thus,

RBF-PSO seems a perfect benchmark for RG-SVR. More details on

he ARBF-PSO can be found in Appendix B.

The selected inputs for all the benchmark models are presented in

able 5.

It is notable that all models apply non-linear predictors as inputs.

he five non-linear predictors seem to contain all the information

hat the 254 linear ones contain. This was expected to some extent

y the non-linear behavior of financial trading series such as the ones

nder study.

. Statistical performance

As it is standard in the literature, in order to evaluate statisti-

ally the obtained forecasts, the Root Mean Squared Error (RMSE) is

omputed. The mathematical formula of this statistic is presented in

ppendix C. The lower the output, the better the forecasting accuracy

f the model concerned. The Pesaran–Timmermann (PT) test (1992)

xamines whether the directional movements of the real and forecast

alues are in step with one another. In other words, it checks how

ell rises and falls in the forecasted value follow the actual rises and

alls of the time series. The null hypothesis is that the model under

tudy has no power on forecasting the relevant exchange rate. The in-

ample statistical performance of the models for the four forecasting

xercises and the EUR/USD, EUR/GBP and EUR/JPY exchange rates is

resented in Table 6.

The results of Table 6 show that RG-SVR presents the best in-

ample statistical performance for every exchange rate under study.

he PT-statistics rejects the null hypothesis of no forecasting power

t the 1 percent confidence interval for all models and series under

tudy. It is also notable that the v-SVR models (v-SVR1 and v-SVR2)

ave lower RMSEs of the statistical measures than the ε-SVR ones

ε-SVR1 and ε-SVR2). Additionally the genetically optimized models

learly outperform their statistical optimized SVR benchmarks. ARBF-

SO presents occasionally better RMSE values than some SVR-SVM

enchmarks, but it always underperforms in comparison to RG-SVR.

able 7 summarizes the statistical performance of the models under

tudy in the out-of-sample period. As a reference, the overall per-

ormance of the best predictor is presented in the first column (see

ppendix D).

From Table 7 it is suggested that RG-SVR retains its forecasting

uperiority in the out-of-sample period. The genetically optimized

VRs and SVMs outperform their statistically optimized benchmarks

hile the PT-statistics indicate that all models continue to forecast

ccurately the directional change of the three exchange rates. In the

ut-of-sample statistical evaluation, ARBF-PSO still remains less ef-

cient than the proposed model, although in most cases it outper-

orms the traditional SVR in terms of RMSE. Tables 5 and 6 show that

he grid-search optimized SVRs outperform their counterparts opti-

ized with 5-cross validation while the v-SVR models produce more

ccurate forecasts than the ε-SVR algorithms. The results support the

rguments of Yuan (2012) on the performance of the GA-εSVR over

he traditional SVR models.

In order to further verify the statistical superiority of the proposed

lgorithm, the Diebold–Mariano (DM) (1995) statistic for predictive

ccuracy is computed, while the MSE is considered as the loss func-

ion. The test is applied in the four consecutive out-of-sample peri-

ds. Table 8 below presents the DM statistic comparing the RG-SVR

ith its benchmarks.

From the above table it is obvious that the null hypothesis of equal

redictive accuracy is rejected for all comparisons and for both loss

unctions at the 1 percent confidence interval (absolute values higher

han the critical value of 2.33). Moreover, the statistical superiority of 
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Table 6

Summary of in-sample statistical performance.

In-Sample Period Series Statistic ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR

01/02/1999–30/04/2004 EUR/USD RMSE 0.0058 0.0061 0.0057 0.0055 0.0054 0.0049 0.0045 0.0041

PT-statistic 12.28 8.13 9.63 10.81 11.06 12.92 13.64 15.28

EUR/GBP RMSE 0.0041 0.0056 0.0053 0.0052 0.0049 0.0047 0.0045 0.0038

PT-statistic 11.58 7.79 9.05 10.28 11.38 12.27 13.79 15.38

EUR/JPY RMSE 0.0060 0.0063 0.0060 0.0057 0.0053 0.0050 0.0049 0.0045

PT-statistic 11.52 7.57 9.17 10.79 11.37 12.02 12.98 15.03

01/02/2001–28/04/2006 EUR/USD RMSE 0.0059 0.0072 0.0064 0.0065 0.0057 0.0053 0.0048 0.0046

PT-statistic 11.31 7.61 8.82 8.64 10.93 11.95 13.22 14.69

EUR/GBP RMSE 0.0046 0.0068 0.0060 0.0058 0.0053 0.0049 0.0047 0.0044

PT-statistic 12.01 7.93 8.81 9.60 10.54 12.06 12.95 14.38

EUR/JPY RMSE 0.0059 0.0062 0.0064 0.0056 0.0051 0.0048 0.0046 0.0043

PT-statistic 11.05 7.76 7.54 9.30 10.57 11.92 12.53 14.21

03/02/2003–30/04/2008 EUR/USD RMSE 0.0056 0.0064 0.0058 0.0053 0.0052 0.0048 0.0045 0.0040

PT-statistic 12.25 7.93 9.22 10.54 12.00 13.12 13.89 14.77

EUR/GBP RMSE 0.0046 0.0065 0.0061 0.0056 0.0057 0.0051 0.0048 0.0043

PT-statistic 10.95 7.88 8.19 10.13 10.84 12.29 13.14 14.81

EUR/JPY RMSE 0.0060 0.0060 0.0058 0.0053 0.0052 0.0049 0.0047 0.0042

PT-statistic 11.48 8.52 9.79 10.18 10.27 12.74 12.68 14.22

01/02/2005–30/04/2010 EUR/USD RMSE 0.0059 0.0070 0.0071 0.0064 0.0057 0.0053 0.0048 0.0047

PT-statistic 12.03 7.44 7.40 8.74 10.23 11.58 12.57 12.83

EUR/GBP RMSE 0.0056 0.0066 0.0061 0.0055 0.0054 0.0052 0.0050 0.0044

PT-statistic 10.56 7.48 9.15 10.80 10.91 11.67 12.41 14.69

EUR/JPY RMSE 0.0069 0.0067 0.0064 0.0059 0.0055 0.0051 0.0052 0.0048

PT-statistic 12.15 7.52 7.88 10.40 11.38 12.56 12.51 12.93

Table 7

Out-of-sample statistical performance.

Out-of-sample period Series Statistic Best predictor ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR

03/05/2004–28/04/2006 EUR/USD RMSE 0.0080 0.0061 0.0074 0.0069 0.0066 0.0062 0.0059 0.0057 0.0054

PT-statistic 5.77 8.15 6.23 7.25 7.72 8.03 8.64 9.27 9.62

EUR/GBP RMSE 0.0077 0.0055 0.0073 0.0068 0.0061 0.0056 0.0055 0.0053 0.0052

PT-statistic 5.86 8.99 6.34 7.22 8.18 8.92 9.12 9.60 9.78

EUR/JPY RMSE 0.0082 0.0065 0.0076 0.0071 0.0070 0.0067 0.0060 0.0056 0.0053

PT-statistic 5.79 8.35 6.21 6.86 7.27 7.91 8.57 9.31 9.73

02/05/2006–30/04/2008 EUR/USD RMSE 0.0075 0.0059 0.0069 0.0066 0.0067 0.0061 0.0058 0.0055 0.0051

PT-statistic 5.88 8.02 7.01 7.52 7.43 8.02 8.64 9.51 9.90

EUR/GBP RMSE 0.0078 0.0058 0.0072 0.0068 0.0063 0.0057 0.0053 0.0053 0.0050

PT-statistic 5.84 9.12 6.27 7.44 7.95 8.81 9.64 9.57 10.13

EUR/JPY RMSE 0.0083 0.0064 0.0073 0.0074 0.0068 0.0066 0.0059 0.0057 0.0055

PT-statistic 5.74 7.81 6.37 6.31 7.33 7.79 8.48 9.30 9.52

02/05/2008–30/04/2010 EUR/USD RMSE 0.0077 0.0057 0.0071 0.0068 0.0067 0.0062 0.0058 0.0056 0.0052

PT-statistic 5.85 7.78 6.63 7.14 7.47 7.83 8.59 9.28 9.71

EUR/GBP RMSE 0.0075 0.0055 0.0070 0.0067 0.0064 0.0061 0.0056 0.0054 0.0051

PT-statistic 5.89 9.12 6.72 7.33 7.98 8.27 9.35 9.66 9.94

EUR/JPY RMSE 0.0085 0.0065 0.0075 0.0071 0.0065 0.0063 0.0060 0.0056 0.0053

PT-statistic 5.69 8.17 6.18 6.92 7.59 7.80 8.41 9.26 9.72

03/05/2010–30/04/2012 EUR/USD RMSE 0.0084 0.0058 0.0078 0.0077 0.0070 0.0065 0.0063 0.0059 0.0055

PT-statistic 5.65 8.86 5.87 5.93 6.68 7.61 7.80 8.38 9.41

EUR/GBP RMSE 0.0077 0.0054 0.0070 0.0066 0.0064 0.0061 0.0059 0.0058 0.0052

PT-statistic 5.88 8.54 6.64 7.40 7.57 8.12 8.66 9.05 9.81

EUR/JPY RMSE 0.0076 0.0063 0.0069 0.0065 0.0064 0.0063 0.0058 0.0059 0.0055

PT-statistic 5.82 7.81 6.87 7.54 7.63 7.74 8.90 8.72 9.33

Table 8

Diebold-Mariano statistic for each exchange rate under study.

Period Best predictor ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR

EUR/USD 03/05/2004–28/04/2006 −7.26 −3.95 −5.47 −5.31 −5.10 −4.66 −3.92 −3.55

02/05/2006 –30/04/2008 −6.90 −3.86 −6.14 −5.20 −5.74 −4.75 −3.46 −3.13

02/05/2008–30/04/2010 −7.05 −3.91 −5.88 −5.42 −5.01 −4.77 −4.01 −3.72

03/05/2010–30/04/2012 −7.47 −3.94 −5.63 −5.84 −5.15 −4.89 −4.35 −4.16

EUR/GBP 03/05/2004–28/04/2006 −6.72 −3.75 −5.47 −5.39 −5.06 −4.53 −3.84 −3.58

02/05/2006 –30/04/2008 −7.14 −3.87 −5.42 −5.11 −4.88 −4.46 −3.69 −3.22

02/05/2008–30/04/2010 −6.81 −3.96 −5.79 −5.62 −5.35 −4.92 −3.57 −3.42

03/05/2010–30/04/2012 −6.92 −3.99 −5.74 −5.23 −4.84 −4.56 −3.88 −3.60

EUR/JPY 03/05/2004–28/04/2006 −7.23 −4.25 −6.49 −6.10 −5.71 −5.39 −4.18 −4.05

02/05/2006 –30/04/2008 −7.56 −4.63 −6.12 −6.45 −5.22 −4.75 −4.51 −4.10

02/05/2008–30/04/2010 −7.61 −4.07 −6.57 −6.19 −5.70 −5.15 −3.73 −3.51

03/05/2010–30/04/2012 −7.18 −4.12 −5.88 −5.51 −4.95 −4.67 −3.75 −3.94
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Table 9

Summary of in-sample trading performance.

In-sample

period Series Statistic ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR

01/02/1999–

30/04/2004

EUR/USD Annualized return (including costs)

(percent)

25.95 18.25 19.99 22.13 22.81 25.77 28.20 32.92

Information ratio (including costs) 2.41 1.69 1.85 2.01 2.09 2.34 2.59 2.99

Maximum drawdown (percent) −20.11 −11.12 −12.11 −11.33 −12.92 −13.45 −12.53 −12.74

EUR/GBP Annualized return (including costs)

(percent)

28.44 19.94 20.18 21.70 23.29 25.62 27.91 29.57

Information ratio (including costs) 2.62 1.81 1.83 1.97 2.12 2.31 2.53 2.69

Maximum drawdown (percent) −14.55 −13.96 −13.58 −12.61 −12.84 −12.28 −12.56 12.16

EUR/JPY Annualized return (including costs)

(percent)

27.07 21.45 21.62 22.47 22.93 27.12 28.38 30.65

Information ratio (including costs) 2.32 1.96 1.99 2.07 2.11 2.48 2. 64 2.74

Maximum drawdown (percent) −21.57 −12.84 13.46 −12.05 −12.88 −12.01 −12.17 −11.93

01/02/2001–

28/04/2006

EUR/USD Annualized return (including costs)

(percent)

23.14 20.53 22.77 21.84 22.98 25.80 27.64 30.04

Information ratio (including costs) 2.25 1.88 2.08 1.97 2.11 2.35 2.53 2.77

Maximum drawdown (percent) −21.35 −13.17 −12.55 −12.26 −14.61 −12.10 −12.04 −12.11

EUR/GBP Annualized return (including costs)

(percent)

30.55 22.79 24.06 26.56 27.85 29.14 31.02 33.43

Information ratio (including costs) 2.78 2.05 2.18 2.39 2.53 2.62 2.81 3.04

Maximum drawdown (percent) 15.39 −14.23 −13.79 −13.32 −14.47 −13.01 −13.94 −13.29

EUR/JPY Annualized return (including costs)

(percent)

30.44 24.71 24.98 25.57 27.99 28.61 30.48 32.80

Information ratio (including costs) 2.76 2.27 2.29 2.34 2.55 2.60 2.79 2.99

Maximum drawdown (percent) −19.05 −13.47 −14.91 −13.03 −14.52 −15.11 −13.18 −13.48

03/02/2003–

30/04/2008

EUR/USD Annualized return (including costs)

(percent)

30.11 23.57 25.66 27.83 28.90 31.29 32.78 33.16

Information ratio (including costs) 2.87 2.19 2.40 2.57 2.68 2.92 3.04 3.09

Maximum drawdown (percent) −23.59 −14.08 −14.72 −14.05 −13.49 −13.63 −14.81 −14.38

EUR/GBP Annualized return (including costs)

(percent)

28.33 22.06 23.61 24.40 25.77 27.83 27.58 29.45

Information ratio (including costs) 2.67 2.07 2.21 2.28 2.42 2.61 2.59 2.76

Maximum drawdown (percent) −15.92 −13.75 −14.42 −13.40 −14.09 −14.45 −14.16 −14.21

EUR/JPY Annualized return (including costs)

(percent)

30.90 23.92 24.58 26.61 27.84 29.15 31.77 32.36

Information ratio (including costs) 2.79 2.14 2.20 2.37 2.49 2.61 2.84 2.91

Maximum drawdown (percent) −18.55 −14.42 −14.68 −14.26 −14.17 −14.85 −14.51 −14.63

01/02/2005–

30/04/2010

EUR/USD Annualized return (including costs)

(percent)

31.05 20.49 21.03 25.37 27.72 30.51 32.00 33.46

Information ratio (including costs) 2.84 1.88 1.92 2.33 2.53 2.79 2.93 3.07

Maximum drawdown (percent) −24.17 −17.91 −18.46 −17.05 −17.88 −17.60 −18.59 −17.96

EUR/GBP Annualized return (including costs)

(percent)

30.87 22.96 24.85 27.54 27.16 29.83 31.48 33.20

Information ratio (including costs) 2.89 2.14 2.28 2.56 2.53 2.78 2.93 3.10

Maximum drawdown (percent) −17.25 −17.49 −17.22 −17.95 −17.20 −17.51 −17.72 −17.38

EUR/JPY Annualized return (including costs)

(percent)

20.36 20.78 22.45 23.39 25.05 28.71 29.99 32.64

Information ratio (including costs) 1.86 1.92 2.08 2.17 2.34 2.68 2.79 3.04

Maximum drawdown (percent) −20.15 −17.74 −18.53 −18.86 −18.02 −18.22 −18.84 −18.49
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RG-SVR forecasts is confirmed as the realizations of the DM statistic

are negative.6

6. Trading performance

Section 5 evaluates the forecasts through a series of statistical ac-

curacy measures and tests. However, statistical accuracy is not always

synonymous with financial profitability. In financial applications, the

practitioner’s utmost interest is to produce models that can be trans-

lated to profitable trades. It is therefore crucial to further examine the

proposed model and evaluate its utility through a trading strategy.

The trading strategy applied is to go or stay ‘long’ when the forecast

return is above zero and go or stay ‘short’ when the forecast return

is below zero. The ‘long’ and ‘short’ EUR/USD, EUR/GBP or EUR/JPY

position is defined as buying and selling Euros at the current price
6 In this study, we apply the DM test to couples of forecasts (RG-SVR vs. another

forecasting model). A negative realization of the DM test statistic indicates that the first

forecast (RG-SVR) is more accurate than the second forecast. The lower the negative

value, the more accurate are the RG-SVR forecasts.

e

t

p

i

t

espectively. Therefore, the trigger for taking a position is the sign of

he daily obtained forecast.

In order to calculate transaction costs, trading positions are

eeded. Transaction costs for a tradable amount, say USD 5–10 mil-

ion, are about 1 pip per trade (one way) between market mak-

rs. But since the EUR/USD, EUR/GBP and EUR/JPY time series are

onsidered as a series of middle rates, the transaction cost is one

pread per round trip. For this dataset a cost of 1 pip is equivalent

o an average cost of 0.0074 percent, 0.0117 percent and 0.0091 per-

ent per position for the EUR/USD, the EUR/GBP and the EUR/JPY

espectively. The annualized return after transaction costs is sim-

ly the annualized return minus the relevant annualized transac-

ion cost. The annualized transaction cost is the annualized number

f transactions multiplied with their relevant cost. Table 9 presents

he summary of the in-sample trading performance of the mod-

ls for each exchange rate under study, while Appendix C includes

he specification of the trading performance measures used in this

aper.

From the results of Table 9, RG-SVR demonstrates superior trad-

ng performance in terms of annualized return and information ra-

io for all exchange rates and in-sample periods. The maximum 
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Table 10

Summary of out-of-sample trading performance.

Out-of-sample

period Series Statistic Best predictor ARBF-PSO ε-SVR1 ε-SVR2 v-SVR1 v-SVR2 GA-SVM GA-εSVR RG-SVR

03/05/2004–

28/04/2006

EUR/USD Annualized return (including

costs) (percent)

8.17 20.05 10.44 11.06 15.87 17.81 19.90 20.65 24.77

Information ratio (including

costs)

0.76 1.85 0.96 1.02 1.46 1.64 1.83 1.90 2.34

Maximum drawdown (percent) −15.26 −15.03 −14.09 −14.42 −13.01 −13.65 −12.41 −12.69 −12.84

EUR/GBP Annualized return (including

costs) (percent)

10.39 19.87 12.21 14.55 15.40 16.92 18.79 20.26 22.04

Information ratio (including

costs)

1.04 1.91 1.22 1.47 1.54 1.69 1.89 2.03 2.27

Maximum drawdown (percent) −14.36 −10.85 −14.60 −13.85 −13.88 −13.93 −13.86 −13.10 −13.28

EUR/JPY Annualized return (including

costs) (percent)

9.08 18.56 10.96 12.47 15.91 16.53 19.39 20.20 23.65

Information ratio (including

costs)

0.83 1.67 0.99 1.13 1.43 1.50 1.75 1.82 2.13

Maximum drawdown (percent) −15.82 −13.92 −14.19 −14.52 −14.39 −14.01 −13.62 −13.40 −13.81

02/05/2006–

30/04/2008

EUR/USD Annualized return (including

costs) (percent)

8.83 18.92 10.29 13.04 12.85 14.47 18.37 19.86 22.19

Information ratio (including

costs)

0.81 1.71 0.94 1.19 1.17 1.32 1.67 1.80 2.02

Maximum drawdown (percent) −15.53 −14.58 −14.39 −14.23 −13.99 −13.44 −14.61 −14.70 −14.57

EUR/GBP Annualized return (including

costs) (percent)

10.10 20.38 13.64 15.58 16.75 18.16 20.14 21.08 24.61

Information ratio (including

costs)

1.12 2.24 1.49 1.70 1.83 1.98 2.21 2.28 2.79

Maximum drawdown (percent) −16.82 −11.03 −15.61 −15.29 −14.58 −14.33 −14.89 −14.48 −14.84

EUR/JPY Annualized return (including

costs) (percent)

9.29 19.04 12.22 12.83 14.80 15.32 18.41 19.62 22.47

Information ratio (including

costs)

0.81 1.63 1.06 1.11 1.28 1.33 1.58 1.69 1.93

Maximum drawdown (percent) −15.93 −13.14 −15.30 −15.46 −15.04 −15.53 −15.62 −15.45 −15.24

02/05/2008–

30/04/2010

EUR/USD Annualized return (including

costs) (percent)

10.68 23.15 12.25 14.72 16.50 19.00 21.12 22.95 24.71

Information ratio (including

costs)

1.07 2.34 1.23 1.47 1.66 1.89 2.11 2.30 2.49

Maximum drawdown (percent) −15.29 −10.23 −14.08 −14.15 −14.06 −13.48 −13.63 −14.85 −14.30

EUR/GBP Annualized return (including

costs) (percent)

8.59 20.15 10.06 12.61 13.24 14.97 18.34 19.01 20.65

Information ratio (including

costs)

1.05 2.32 1.18 1.49 1.55 1.76 2.16 2.21 2.44

Maximum drawdown (percent) −16.11 −11.47 −15.19 −15.51 −15.70 −14.84 −14.29 −15.02 −15.31

EUR/JPY Annualized return (including

costs) (percent)

8.74 23.19 12.03 13.35 16.42 17.56 20.02 22.87 24.96

Information ratio (including

costs)

0.70 1.89 0.97 1.08 1.33 1.42 1.63 1.86 2.02

Maximum drawdown (percent) −15.18 −9.17 −15.58 −15.32 −16.00 −15.82 −14.73 −14.92 −15.02

03/05/2010–

30/04/2012

EUR/USD Annualized return (including

costs) (percent)

9.54 21.56 11.63 12.48 15.12 16.69 19.09 20.60 23.41

Information ratio (including

costs)

0.86 1.95 1.06 1.15 1.39 1.50 1.75 1.90 2.14

Maximum drawdown (percent) −16.77 −9.32 −16.20 −16.27 −15.84 −16.49 −15.35 −15.58 −15.64

EUR/GBP Annualized return (including

costs) (percent)

9.18 22.19 12.16 12.29 14.76 14.71 18.14 20.77 23.52

Information ratio (including

costs)

1.06 2.59 1.40 1.42 1.73 1.69 2.09 2.37 2.71

Maximum drawdown (percent) −18.52 −12.93 −18.06 −17.17 −17.95 −17.63 −17.22 −17.53 −17.39

EUR/JPY Annualized return (including

costs) (percent)

8.37 20.35 10.25 11.82 12.48 14.02 17.43 18.12 22.08

Information ratio (including

costs)

0.68 1.62 0.79 0.96 1.03 1.15 1.42 1.48 1.80

Maximum drawdown (percent) −14.49 −10.74 −14.81 −14.74 −15.01 −14.36 −14.57 −14.23 −14.40
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rawdowns of the benchmark models are worse than the RG-SVR

nes. Their trading performance in the out-of-sample period is pre-

ented in Table 10.

RG-SVR continues to outperform all other SVR forecast combina-

ion models in terms of trading efficiency. GA-εSVR is found to be the

econd best model in forecasting exercises 1 and 2. RG-SVR presents

n average 3 percent higher annualized returns and 0.33 higher in-

ormation ratios compared to GA-εSVR in these first two simulations.

n the other two exercises the results of ARBF-PSO are better than

A-εSVR, which is ranked third. RG-SVR again achieves higher profits

nd information ratios than ARBF-PSO on an average of 1.46 percent
nd 0.15 respectively. Thus, the proposed methodology clearly out-

erforms its benchmarks in terms of statistical accuracy and financial

rofitability. The non-genetically optimized SVR methodologies re-

ain less efficient in trading terms compared to their counterparts.

ut it is interesting to outline the profitability divergence between

he different SVR models. For instance, between v-SVR2 and ε-SVR1

here is an average difference of 4.55 percent in annualized returns

fter transaction costs for the three exchange rates. Smaller differ-

nces are also evident in the other SVR approaches. The SVR’s trading

erformance appears very sensitive to the parameters optimization

rocess.  
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7. Concluding remarks

The motivation of this paper is to introduce a RG-SVR model

for optimal parameter selection and feature subset combination,

when applied to the task of forecasting and trading the EUR/USD,

EUR/GBP and EUR/JPY exchange rates. The proposed model geneti-

cally searches over a pool of individual forecasts, identifies the op-

timal feature subsets and finally provides a robust single SVR fore-

cast combination for each exchange rate. This is achieved by applying

a fitness function specialized for financial purposes and adopting a

sliding window approach. RG-SVR is benchmarked not only against

genetically and non-genetically optimized SVRs, but also a robust hy-

brid NN, the ARBF-PSO.

RG-SVR presents the best performance in terms of statistical ac-

curacy and trading efficiency for all the exchange rates under study.

RG-SVR’s superiority not only confirms the success of the imple-

mented fitness function, but also validates the benefits of applying

GAs to v-SVR models. The results also support prior evidence of

ARBF-PSO’s efficiency in forecasting and trading the three exchange

rates. ARBF-PSO outperforms in all simulations for the traditional

SVRs. RG-SVR is far more profitable, though. The large differences

in the trading performance of the models under study indicate the

sensitivity of SVRs to their parameters optimization processes. In

summary, the empirical evidence provided by this study should

go some way toward convincing statisticians and practitioners to

experiment beyond the bounds of traditional SVR optimization

techniques.
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Appendix A. Theoretical background

In this section follows a short theoretical background on

SVR, GAs and the issues of parameter and feature subset

selection.
Fig. A.1. (a) The f(x) curve of SVR and the ε-tube, (b) plot of the ε-
.1. The ε-SVR

If we consider the training data {(x1,y1), (x2,y2)…, (xn, yn)}, where

i ∈ X ⊆ R, yi ∈ Y ⊆ R, i = 1 . . . n and n the total number of training

amples, then the SVR function can be specified as:

f (x) = wTϕ(x) + b (A.1)

here w and b are the regression parameter vectors of the function

nd ϕ(x) is the non-linear function that maps the input data vector

into a feature space where the training data exhibit linearity (see

ig. A.1c). The ε-sensitive loss function Lε is defined as:

ε(xi) =
{

0 if |yi − f (xi)| ≤ ε
|yi − f (xi)| − ε if other

, ε ≥ 0 (A.2)

Eq. (A.2) identifies the predicted values that have at most ε devia-

ions from the actual obtained values yi. The ε parameter defines the

tube’, while the two slack variables, ξi and ξ ∗
i

, show the distance of

i and y∗
i

from the upper and lower bound of the ‘tube’ respectively

see Fig. A.1a and b).

The goal is to solve the following argument:

MinimizeC

n∑
i=1

(ξi + ξ ∗
i ) + 1

2
‖w‖2 subjectto

⎧⎨
⎩

ξi ≥ 0

ξ ∗
i

≥ 0

C > 0

⎫⎬
⎭

and

{
yi − wTϕ(xi) − b ≤ +ε + ξi

wTϕ(xi) + b − yi ≤ +ε + ξ ∗
i

}
(A.3)

The above quadratic optimization problem is transformed in a

ual problem and its solution is based on the introduction of two La-

range multipliers ai, a∗
i

and mapping with a kernel function K(xi, x):

f (x) =
n∑

ι=1

(ai − a∗
i )K(xi, x) + b, where 0 ≤ ai, a∗

i ≤ C (A.4)

SVs are called all the xi that contribute to Eq. (A.4), thus they lie

utside the ε-tube, whereas non-SVs lie within the ε-tube. Increasing

leads to less SVs’ selection, whereas decreasing it results to more

flat’ estimates. The norm term ‖w‖2 characterizes the complexity

flatness) of the model and the term {.∑n
i=1 (ξi + ξ ∗

i
)} is the training

 

sensitive loss function and (c) mapping procedure by ϕ(x).  
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7 Based on Table 2, the in-sample datasets of forecasting exercises 1, 2, 3 and 4 are

1342, 1341, 1343 and 1341 trading days respectively. The difference between these

datasets is very small in terms of observations. Therefore, the rounded range of m (and

consequently K) remains the same for all four exercises.

 

 

rror, as specified by the slack variables. Consequently the introduc-

ion of the parameter C satisfies the need to trade model complexity

or training error and vice versa (Cherkassky & Ma, 2004).

.2. The v-SVR

The v-SVR algorithm encompasses the ε parameter in the opti-

ization process and controls it with a new parameter v ∈ (0, 1)
Basak, Pal, & Patranabis, 2007). In v-SVR the optimization problem

ransforms to:

MinimizeC

(
vε + 1

n

n∑
i=1

(ξi + ξ ∗
i )

)
+ 1

2
‖w‖2 subject to

⎧⎨
⎩

ξi ≥ 0

ξ ∗
i

≥ 0

C > 0

⎫⎬
⎭and

{
yi − wTϕ(xi) − b ≤ +ε + ξi

wTϕ(xi) + b − yi ≤ +ε + ξ ∗
i

}
(A.5)

he methodology remains the same as in ε-SVR and the solution

akes a similar form:

f (x) =
n∑

ι=1

(ai − a∗
i )K(xi, x) + b, where 0 ≤ ai, a∗

i ≤ C

n
(A.6)

Based on the ‘v-trick’, as presented by Schölkopf, Bartlett, Smola,

nd Williamson (1999), increasing ε leads to the proportional in-

rease of the first term of {vε + 1
n

∑n
i=1 (ξi + ξ ∗

i
)}, while its second

erm decreases proportionally to the fraction of points outside the ε-

ube. So v can be considered as the upper bound on the fraction of

rrors. On the other hand, decreasing ε leads again to a proportional

hange of the first term, but also the second term’s change is propor-

ional to the fraction of SVs. That means that ε will shrink as long

s the fraction of SVs is smaller than v, therefore v is also the lower

ound in the fraction of SVs.

.3. SVR parameter selection

Although SVR has emerged as a highly effective technique for solv-

ng non-linear regression problems, designing such a model can be

mpeded by the complexity and sensitivity of selecting its parame-

ers. This procedure can be summarized in the following steps:

1. Selection of the kernel function

2. Selection of the regularization parameter C

3. Selection of parameters of the kernel function

4. Selection of the tube size of the ε-sensitive loss function

This selection can be even more complicated and computation-

lly demanding, since individual optimization of the parameters of

he above steps is not sufficient. Thus, SVR’s performance depends

n all parameters being set optimally. Numerous approaches for this

ptimization have been presented in literature. For example in the

-SVR, parameter ε can be set simply as a non-negative constant for

onvenience (ε = 0 or equal to a very small value) (Trafalis & Ince,

000). This parameter can also be calculated by maximizing the sta-

istical efficiency of a location parameter estimator (Smola, Murata,

chölkopf, & Muller, 1998). Many researchers turn to the v-SVR ap-

roach because it is easier to control parameter ε with parameter v

Basak et al., 2007; Schölkopf et al., 1999). Cherkassky and Ma (2004)

pply RBF kernels in v-SVR and propose a data-driven choice of pa-

ameter C, based on the range of the output values of the training

ata. But the most popular approach is to use the cross-validation

echnique (Cao, Chua, & Guan, 2003; Duan et al., 2003) or grid-search

lgorithms over the dataset (Schölkopf & Smola, 2002).

.4. Feature selection and GAs

Feature selection is an optimization problem that refers to the

earch over a space of possible feature subsets in order to find those
hat are optimal with respect to specific criteria. Such a problem re-

uires a search strategy that picks the feature subsets and an evalua-

ion method that tests their goodness of fit. Many searching strate-

ies have been proposed in literature, but those who seem to at-

ract more attention are the randomized searches, where probabilis-

ic steps are applied (Sun, Bebis, & Miller, 2004). GAs are commonly

sed in such cases (Siedlecki & Sklansky, 1989). GAs, formerly intro-

uced by Holland (1975), are search algorithms inspired by the prin-

iple of natural selection. They are useful and efficient if the search

pace is big and complicated or there is not any available math-

matical analysis of the problem. A population of candidate solu-

ions, called chromosomes, is optimized via a number of evolution-

ry cycles and genetic operations, such as crossovers or mutations.

hromosomes consist of genes, which are the optimizing parame-

ers. At each iteration (generation), a fitness function is used to eval-

ate each chromosome, measuring the quality of the correspond-

ng solution, and the fittest chromosomes are selected to survive.

his evolutionary process is continued until some termination cri-

eria are met. In general, GAs can deal with large search spaces and

o not get trapped in local optimal solutions like some other search

lgorithms.

ppendix B. Non-linear models

This appendix section provides a brief description of the k-NN and

he NN algorithms applied in this study.

.1. Nearest Neighbors Algorithm (k-NN)

Nearest Neighbors is a non-linear and non-parametric forecasting

ethod based on the work of Fix and Hodges (1951). It is based on the

dea that pieces of time series in the past have patterns which might

ave resemblance to pieces in the future. Similar patterns of behavior

re located in terms of nearest neighbors using a distance called the

uclidean distance and these patterns are used to predict behavior in

he immediate future. It only uses local information to forecast and

akes no attempt to fit a model to the whole time series at once.

he user defines parameters such as the number of neighbors K, the

ength of the nearest neighbor’s pattern m and the weighting of final

rices in a neighbor α’. When α’ is greater than 1, a greater emphasis

s given to similarity between the more recent observations. Huck and

uégan (2005) suggest that a good approximation for choosing the

arameters K and m is dependent on the size of the information set.

hey choose m from the interval:

= [R( ln (T)), R( ln (T) + 2)] (B.1)

here R is the rounding function rounding to the immediate lower

gure and T the size of the in-sample dataset. They also suggested

hat K should be approximately twice the value of m. Thus, for our

ataset m lies between 7 and 9 and K lies between 14 and 18.7 Based

n the above guidelines and Dunis and Nathani (2007) who apply k-

N in financial series, we experiment in the in-sample dataset. The

et of parameters selected are those that provide the highest trading

erformance in the in-sample period.

.2. Neural Networks (NNs)

The simpler and most popular NN architecture is the Multi-Layer

erceptron (MLP). A standard MLP has at least three layers. The first

ayer is called the input layer (the number of its nodes corresponds

o the number of explanatory variables). The last layer is called the
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Table B.1

Neural network inputs.

MLP RNN HONN PSN

EUR/USD EUR/USD (1)a EUR/USD (3) EUR/USD (2) EUR/USD (1)

EUR/USD (2) EUR/USD (5) EUR/USD (6) EUR/USD (5)

EUR/USD (5) EUR/USD (6) EUR/USD (7) EUR/USD (6)

EUR/USD (6) EUR/USD (8) EUR/USD (9) EUR/USD (8)

EUR/USD (8) EUR/USD (10) EUR/USD (10) EUR/USD (11)

EUR/USD (10) EUR/USD (11) EUR/USD (12) EUR/USD (12)

EUR/USD (11) EUR/GBP (1) EUR/GBP (3) EUR/GBP (1)

EUR/GBP (1) EUR/GBP (5) EUR/GBP (5) EUR/GBP (3)

EUR/GBP (7) – EUR/JPY (4) EUR/GBP (4)

EUR/JPY (2) – EUR/JPY (7) EUR/JPY (4)

EUR/GBP EUR/USD (2) EUR/USD (1) EUR/USD (4) EUR/USD (3)

EUR/USD (3) EUR/USD (2) EUR/USD (5) EUR/USD (4)

EUR/USD (5) EUR/USD (5) EUR/USD (7) EUR/USD (6)

EUR/USD (7) EUR/USD (9) EUR/USD (8) EUR/USD (7)

EUR/USD (8) EUR/USD (10) EUR/USD (11) EUR/USD (10)

EUR/USD (10) EUR/GBP (5) EUR/USD (12) EUR/USD (11)

EUR/GBP (1) EUR/GBP (6) EUR/GBP (1) EUR/GBP (3)

EUR/GBP (5) EUR/JPY (6) EUR/JPY (2) EUR/JPY (4)

EUR/JPY (4) – EUR/JPY (4) –

EUR/JPY (5) – – –

EUR/JPY EUR/USD (1) EUR/USD (2) EUR/USD (1) EUR/USD (3)

EUR/USD (2) EUR/USD (5) EUR/USD (2) EUR/USD (6)

EUR/USD (5) EUR/USD (6) EUR/USD (4) EUR/USD (7)

EUR/USD (8) EUR/USD (7) EUR/USD (7) EUR/USD (9)

EUR/USD (9) EUR/USD (10) EUR/USD (8) EUR/USD (10)

EUR/USD (12) EUR/USD (11) EUR/USD (9) EUR/GBP (1)

EUR/GBP (3) EUR/GBP (2) EUR/GBP (2) EUR/GBP (4)

EUR/GBP (4) EUR/GBP (3) EUR/GBP (4) EUR/JPY (6)

EUR/JPY (1) EUR/JPY (5) – EUR/JPY (7)

EUR/JPY (2) – – –

a EUR/USD (1) means that as input is used the EUR/USD exchange rate lagged by

one day. Thus, today’s closing price is used to forecast the tomorrow’s one.
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9 The PSO algorithm is a population based heuristic search algorithm based on the

social behavior of birds within a flock. In PSO, individuals which are referred to as

particles are placed initially randomly within the hyper dimensional search space.

Changes to the position of particles within the search space are based on the social–

psychological tendency of individuals to emulate the success of other individuals.

 

 

output layer (the number of its nodes corresponds to the number of

response variables). An intermediary layer of nodes, the hidden layer,

separates the input from the output layer. Its number of nodes de-

fines the amount of complexity the model is capable of fitting. In ad-

dition, the input and hidden layer contain an extra node called the

bias node. This node has a fixed value of one and has the same func-

tion as the intercept in traditional regression models. Normally, each

node of one layer has connections to all the other nodes of the next

layer.

The network processes information as follows: the input nodes

contain the value of the explanatory variables. Since each node con-

nection represents a weight factor, the information reaches a single

hidden layer node as the weighted sum of its inputs. Each node of the

hidden layer passes the information through a non-linear activation

function and passes it on to the output layer if the calculated value

is above a threshold. The training of the network (which is the ad-

justment of its weights in the way that the network maps the input

value of the training data to the corresponding output value) starts

with randomly chosen weights and proceeds by applying a learn-

ing algorithm called back-propagation of errors (Shapiro, 2000).8

The maximum number of the allowed back-propagation iterations

is optimized by maximizing a fitness function in the test dataset

(see Table 2) through a trial and error procedure. More specifically,

the learning algorithm tries to find those weights which minimize

an error function (normally the sum of all squared differences be-

tween target and actual values). Since networks with sufficient hid-

den nodes are able to learn the training data (as well as their outliers

and their noise) by heart, it is crucial to stop the training procedure

at the right time to prevent overfitting (this is called ‘early stopping’).

This is achieved by dividing the dataset into 3 subsets respectively

called the training and test sets used for simulating the data cur-

rently available to fit and tune the model and the validation set used

for simulating future values. The network parameters are then esti-

mated by fitting the training data using the backpropagation of er-

rors. The iteration length is optimized by maximizing the forecasting

accuracy for the test dataset. Then the predictive value of the model

is evaluated applying it to the validation dataset (out-of-sample

dataset).

In addition to the classical MLP network, a Recurrent Neural Net-

work is also applied. For an exact specification of recurrent networks,

see Elman (1990). A simple recurrent network has an activation feed-

back which embodies short-term memory. In other words, the RNN

architecture can provide more accurate outputs because the inputs

are (potentially) taken from all previous values. Although RNNs re-

quire substantially more computational time (see Tenti, 1996), they

can yield better results in comparison with simple MLPs due to the

additional memory inputs. The third NN model included in the fea-

ture space is the Higher Order Neural Network (HONN). HONNs are

able to simulate higher frequency, higher order non-linear data, and

consequently provide superior simulations. For more information on

HONNs see Dunis, Laws, and Sermpinis, (2010, 2011). Psi Sigma Net-

works (PSNs) are considered as a class of feed-forward fully con-

nected HONNs. First introduced by Ghosh and Shin (1991), the PSN

creation was motivated by the need to create a network combining

the fast learning property of single layer networks with the powerful

mapping capability of HONNs, while avoiding the combinatorial in-

crease in the required number of weights. The order of the network

in the context of PSN is represented by the number of hidden nodes.

In a PSN the weights from the hidden to the output layer are fixed to 1

and only the weights from the input to the hidden layer are adjusted,

something that greatly reduces the training time. More details on the

PSN model can be found in Ghosh and Shin (1991).
8 Backpropagation networks are the most common multi-layer networks and are the

most commonly used type in financial time series forecasting (Kaastra & Boyd, 1996).

t

m

D

t

As benchmark to the RG-SVR, this study applies an ARBF-PSO

N model. Its complexity, architecture and characteristics differ

rom the previous mentioned NNs. Compared to them, in the ARBF-

SO the parameters are optimized through a Particle Swarm Op-

imization9 algorithm. This protects the ARBF-PSO from the dan-

ers of over-fitting and data snooping. However, the practitioner

till needs to select the network’s inputs (in contrast with RG-

VR which is fully adaptive) through a trial and error approach

n the in-sample dataset. For a complete description of the ARBF-

SO see Sermpinis et al. (2013). In order the forecasting comple-

ion to be fair, the ARBF-PSO has the same pool of inputs as the

G-SVR.

There is no formal theory behind the selection of the NN inputs

nd their characteristics, such as number of hidden neurons, learning

ate, momentum and iterations. For that reason, we conduct NN ex-

eriments and a sensitivity analysis on a pool of autoregressive and

utoregressive-moving average terms of the series in the in-sample

ataset.10 For example for the number of iterations, our experimen-

ation started from 5.000 iterations and stopped at the 200.000 it-

rations, increasing in each experiment the number of iterations by

.000. This is a very common approach in the literature (Tenti, 1996;

hang, Patuwo, & Hu, 1998). Based on these experiments and the sen-

itivity analysis, the sets of variables selected are those that provide
10 We also explored as inputs autoregressive and autoregressive-moving-average

erms of other exchange rates (e.g. the USD/JPY and GBP/JPY exchange rates), com-

odities prices (e.g. Gold Bullion and Brent Oil) and stock market prices (e.g. FTSE100,

JIA, NASDAQ and S&P500). However, the set of inputs presented in Table 2 provide

he highest trading performance in the in-sample period.  
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Table B.2

Neural network design and training characteristics.

Parameters MLP RNN HONN PSN ARBF-PSO

EUR/USD Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Particle swarm optimization

Learning rate 0.004 0.002 0.4 0.3 –

Momentum 0.005 0.003 0.5 0.4 –

Iteration steps 40 000 30 000 20 000 20 000 –

Initialization of weights N(0,1) N(0,1) N(0,1) N(0,1) –

Input nodes 10 8 10 10 4

Hidden nodes 8 7 5 6 8

Output node 1 1 1 1 1

Hidden node activation

function

F(zψ) = 1/(1 + e−zψ ) F(zψ) = 1/(1 + e−zψ ) F(zψ) = 1/(1 + e−zψ ) F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = exp (

‖zψ −C′‖2

2σ ′2 )

Output node activation

function

F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = ∑n′′

ψ=1 zψ F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = 1/(1 + e−zψ ) F(zψ) = ∑n′′

ψ=1 zψ

EUR/GBP Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Particle Swarm Optimization

Learning rate 0.002 0.003 0.5 0.4 –

Momentum 0.004 0.005 0.5 0.5 –

Iteration steps 35 000 30 000 30 000 30 000 –

Initialisation of weights N(0,1) N(0,1) N(0,1) N(0,1) –

Input nodes 10 8 9 8 4

Hidden nodes 9 7 5 5 7

Output node 1 1 1 1 1

Hidden node activation

function

F(zψ) = 1/(1 + e−zψ ) F(zψ) = 1/(1 + e−zψ ) F(zψ) = 1/(1 + e−zψ ) F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = exp (

‖zψ −C′‖2

2σ ′2 )

Output node activation

function

F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = ∑n′′

ψ=1 zψ F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = 1/(1 + e−zψ ) F(zψ) = ∑n′′

ψ=1 zψ

EUR/JPY Learning algorithm Gradient descent Gradient descent Gradient descent Gradient descent Particle Swarm Optimization

Learning rate 0.003 0.003 0.5 0.3 –

Momentum 0.005 0.005 0.5 0.4 –

Iteration steps 45 000 35 000 30 000 20 000 –

Initialisation of weights N(0,1) N(0,1) N(0,1) N(0,1) –

Input nodes 10 9 8 9 5

Hidden nodes 13 11 6 6 5

Output node 1 1 1 1 1

Hidden node activation

function

F(zψ) = 1/(1 + e−zψ ) F(zψ) = 1/(1 + e−zψ ) F(zψ) = 1/(1 + e−zψ ) F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = exp (

‖zψ −C′‖2

2σ ′2 )

Output node activation

function

F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = ∑n′′

ψ=1 zψ F(zψ) = ∑n′′
ψ=1 zψ F(zψ) = 1/(1 + e−zψ ) F(zψ) = ∑n′′

ψ=1 zψ

Note: The input of every node is zψ , where ψ = 1… n′′ and n′′ is the number of nodes of the previous layer. The vector indicating the center of the Gaussian function is C′ and σ ′
is the value indicating its width.
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Table C.2

Trading performance measures and calculation.

Trading

performance

measures Description

Annualized return

(before

transaction costs)

RA = 252 × 1
N′ × (

∑N′
τ=1 Rτ ) where Rτ the daily

return

Annualized

volatility

σ A = √
252 ×

√
1

N′−1
× ∑N′

τ=1 (Rτ − R̄)
2

Information ratio SR = RA

σ A

Maximum

drawdown

Maximum negative value of
∑

(Rτ ) over the period

MD = Minī=1,...,τ ;τ=1,...,N (
∑τ

j̄=ī
R j̄)

 

 

he higher trading performance for each network in the in-sample pe-

iod. For example, in the first forecasting exercise the different sets of

nputs of the four NNs for the three series under study are presented

n Table B.1.

Table B.2 shows the design and training characteristics of all the

bove NN architectures for the first forecasting exercise.

ppendix C. Statistical and trading performance measures

The statistical and trading performance measures are calculated

s shown in Tables C.1 and C.2 respectively.
Table C.1

Statistical performance measures.

Statistical

performance

measures Description

Mean squared error MSE = 1
N′

∑t+N′
τ=t+1 (E(Rτ ) − Yτ )

2
, with Yτ being the

actual value, E(Rτ ) the forecasted value and N′ the

number of forecasts

Root mean squared

error

RMSE =
√

1
N′

∑t+N′
τ=t+1 (E(Rτ ) − Yτ )

2
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ppendix D. Best predictor

Table D.1 presents the best predictors for the four forecasting ex-

rcises and three exchange rates in the in-sample. The overall perfor-

ance of the best predictor in trading terms is used as benchmark to

he SVR and SVM forecast combinations. For example, the best pre-

ictor for the EUR/USD exchange rate is composed by the RNN out-

f-sample forecasts for the first, second and fourth forecasting ex-

rcise and the PSN out-of-sample forecasts for the third forecasting

xercise.  
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Table D.1

Best individual forecasting model.

Forecasting exercise

Best predictor in

trading terms

Best predictor in

terms of RMSE

EUR/USD 1 RNN RNN

2 RNN RNN

3 PSN RNN

4 RNN RNN

EUR/GBP 1 PSN RNN

2 RNN RNN

3 PSN PSN

4 RNN RNN

EUR/JPY 1 RNN RNN

2 PSN PSN

3 PSN RNN

4 PSN RNN
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