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A B S T R A C T

The aim of this paper is to develop robust control schemes for the lateral motion of underactuated autonomous
underwater vehicles (AUVs). The AUV complex dynamics makes their control a challenging task. These
challenges include the AUV nonlinear dynamics, unmodeled dynamics, system uncertainties and environmental
disturbances. The objective of the proposed control schemes is to solve the trajectory tracking problem of AUVs.
These controllers are designed using the concepts of terminal sliding mode control. The control performance of
an example AUV (the REMUS AUV), using the proposed control schemes, is evaluated through computer
simulations. The simulation results show that the proposed control schemes work well. Moreover, simulation
studies are given to evaluate the performance of the proposed control schemes when bounded disturbances are
acting on the vehicle. These studies indicate that the proposed control schemes are robust under bounded
disturbances.

1. Introduction

In the last decades, autonomous underwater vehicles (AUVs) have
been the focus of many oceanic research works due to their emerging
applications in many fields. These applications include the exploration
of oceans, oceanographic mapping, underwater pipelines inspection,
scientific and military missions, and more. These tasks should be
performed in an automated way without the interaction of human
operators under a variety of load conditions and with unknown sea
currents. Therefore, it is necessary to develop robust control schemes
that force an AUV to track a desireer to accomplish such hard tasks.

In the literature, the control of AUVs and marine vehicles has been
targeted by many researchers. To this end, different control techniques
have been used such as sliding mode control (Wang et al., 2012;
Yoerger and Slotine, 1985; Healey and Lienard, 1993), higher order
sliding mode (Joe et al., 2014), learning control (Yuh, 1994), adaptive
control (Qi, 2014; Sahu and Subudhi, 2014; McGann et al., 2008;
Antonelli et al., 2003; Do et al., 2004; Li and Lee, 2005), backstepping
control (Repoulias and Papadopoulos, 2007), Neural network control
(Wang et al., 2014; Yuh, 1990; Fujii and Ura, 1990), fuzzy control
(Khaled and Chalhoub, 2013; Wang and Lee, 2003) and suboptimal
control (Geranmehr and Nekoo, 2015). However, the control of AUVs
continues to be challenging due to the AUV complex dynamics,
dynamic effects not known to the controller, system uncertainties

and environmental disturbances. Furthermore, most practical AUVs
are underactuated where the available actuators are less than the
number of degrees of freedom which adds more challenges to the
control design. These challenges along with the wide applications of
AUVs generate considerable interest on the control of AUVs and serve
as a motivation for this work.

Furthermore, the terminal sliding mode control (TSMC) is used for
the design to provide robustness against unmodeled dynamics, model
uncertainties and external disturbances due to ocean currents and
waves. TSMC is known to be superior over the conventional sliding
mode control technique in terms of the finite-time convergence and
high steady state tracking precision. It has been used in many works in
order to achieve fast and finite-time convergence as well as high
precision, for example, see (Feng et al., 2002, 2013; Neila and Tarak,
2011; Zou et al., 2011; Wang and Sun, 2012).

Control schemes were developed to tackle the trajectory tracking
problem of AUVs. Some of these schemes have drawbacks in their
design such as considering the trajectory tracking problem for some
special cases of reference trajectories as in (Ashrafiuon et al., 2008;
Lefeber et al., 2003; Pettersen and Nijmeijer, 2001; Jiang, 2002). In
Ashrafiuon et al. (2008), a sliding mode controller for the trajectory
tracking of surface vessels was proposed that can only track special
cases of reference trajectories as will be highlighted later. In Lefeber
et al. (2003), Pettersen and Nijmeijer (2001) and Jiang (2002), control
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laws are developed for the trajectory tracking of underactuated ships
using Lyapunov's theory. However, these controllers cannot provide
tracking of straight lines because they have restrictions on the
rotational motion of the vehicle. Therefore, the main contribution of
this work is to develop terminal sliding mode control schemes to solve
the trajectory tracking problem of AUVs in the horizontal plane. These
developed controllers overcome the drawbacks of the controllers
mentioned above by proposing a new design for the AUV's desired
velocities that provides tracking for general cases of reference trajec-
tories.

The organization of this paper is as follows. Section 2 presents a
model of AUVs for the lateral motion. In Section 3, the problem of the
trajectory tracking control of underactuated AUVs is formulated.
Section 4 presents the design of the proposed control schemes using
the terminal sliding mode concepts. The performance of these con-
trollers are validated using computer simulations, and the results are
given in Section 5. Moreover, Section 6 provides simulation studies in
order to investigate the robustness of the derived control schemes
under bounded disturbances. Section 7 highlights the conclusions of
this work.

2. AUV modeling

Following standard practice, modeling an AUV can be treated by
handling two parts which are kinematics and kinetics. The kinematics
refers to the study of the geometrical aspects of motion while the
kinetics deals with the forces causing the motion (Fossen, 2011). In
general, the motion of an AUV involves 6 degrees of freedom (DOFs).
These DOFs correspond to the set of independent displacements and
rotations which determine the position and orientation of the vehicle,
and they are referred to as the surge (longitudinal motion), the sway
(lateral motion), the heave (vertical motion), the roll (rotational motion
about the longitudinal axis), the pitch (rotational motion about the
lateral axis) and the yaw (rotation about the vertical axis) (Fossen,
2002).

In this study, only the motion in the horizontal plane (lateral
dynamics) of the AUV is considered which includes the surge, the sway
and the yaw. The model for the lateral motion of an AUV can be
developed using two special reference frames. These frames are the
Earth-fixed n{ } reference frame, which is considered to be inertial and
its origin is fixed, and the body-fixed b{ } reference frame, which is a
moving frame fixed to the vehicle, as depicted in Fig. 1. The origin of
the body-fixed frame is defined usually to coincide with the vehicle's
center of mass, and the axes of this frame are chosen along the vehicle's
principle axes of inertia.

A complete modeling of AUVs is derived and presented in Fossen
(2002) as well as standard models for horizontal and longitudinal
motions. The model of the horizontal motion of AUVs is the one
considered in this work. The kinematic equations of this model are
such that:

x u ψ v ψy u ψ v ψψ r˙ = cos − sin ˙ = sin + cos ˙ = (1)

where u and v are the surge and the sway linear velocities of the AUV
respectively, r is the yaw angular velocity of the AUV, x and y express

the coordinates of the vehicle's center of mass, and ψ describes the
orientation of the vehicle. The position and orientation of the AUV (i.e.
x y ψ( , , )) are defined in the earth-fixed frame n{ } while the linear and
angular velocities (i.e. u v r( , , )) are defined in the body-fixed frame b{ }.

Consider the following notation: m is the mass of the AUV, Iz is the
vehicle's moment of inertia about the z-axis, X Y,u v and Nr are negative
terms that include the effects of linear damping, and X Y,u v˙ ˙ and Nṙ are
the hydrodynamic added mass terms in the surge, the sway and the yaw
directions of motion respectively. By neglecting the heave, roll and
pitch motions, the lateral dynamics of an AUV can be represented by:

u M X u a vr τ v M Y v a ur r M N r a uv τ˙ = ( + + ) ˙ = ( + ) ˙ = ( + + )u u v r r1 23 2 13 3 12

(2)

where M m X:=1/( − )u1 ˙ , M m Y:=1/( − )v2 ˙ , M I N:=1/( − )z r3 ˙ , a Y X:= −v u12 ˙ ˙,
a X m:= −u13 ˙ and a m Y:= − v23 ˙. The control inputs are the surge force τu
and the yaw moment τr generated by the actuators.

Clearly, the control problem of the AUV model represented by (1)
and (2) is considered to be underactuated since actuation forces and
moments are generated in the surge and yaw directions only while the
sway motion is unactuated .

3. Problem formulation

3.1. Trajectory tracking error coordinates

In order to formulate the trajectory tracking control problem
investigated in this work, consider the model of the AUV for the lateral
motion given by (1) and (2). Define the following position tracking
errors,

x x x y y y= − = −e d e d (3)

where xd and yd are the coordinates of the desired, time-varying
position. The position error dynamics can be obtained by taking the
time derivatives of the position errors in (3), and using (1), as follows:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

x
y

ψ ψ
ψ ψ

u
v

x
y

˙
˙ =

cos − sin
sin cos −

˙
˙ .e

e

d

d (4)

Also, let the velocity tracking errors be such that:

e u u e v v= − = −u d v d (5)

where ud and vd are the desired surge and sway velocities respectively.
Taking the time derivative of (5), and using (2), yields the following,

e M X u a vr τ u e M Y v a ur v˙ = ( + + ) − ˙ ˙ = ( + ) − ˙ .u u u d v v d1 26 2 16 (6)

3.2. Problem formulation

The trajectory tracking control problem of AUVs refers to the design
of control laws so that the vehicle's position (x,y) tracks a desired, time-
varying position x y( , )d d . Fig. 2 shows a block diagram representation of
the control problem considered in this work for the AUV trajectory
tracking. The formulation of this control problem is such that:

For the AUV model in the horizontal plane described by (1) and (2),
derive a control law that computes the applied surge force τu and the
yaw moment τr so that the vehicle's actual position x t y t( ( ), ( )) tracks a
desired, time-varying trajectory x t y t( ( ), ( ))d d .

4. Control design

4.1. Control design overview

In this section, the proposed control schemes for the trajectory
tracking control problem of AUVs are presented. The design is divided
into two parts to reduce the complexity of the overall analysis. In the
first part, the surge and sway velocities are designed on the kinematicFig. 1. The earth-fixed and body-fixed reference frames for an AUV.
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level to ensure the convergence of the vehicle's position tracking errors
to zero. The second part deals with the dynamics of the vehicle in order
to guarantee the convergence of the velocities of the AUV to the desired
ones designed in the first part. This is done using the terminal sliding
mode concepts given in Appendix A. Furthermore, an analysis is made
in order to ensure that the yaw velocity remains bounded under the
application of the proposed controllers.

The work presented in Ashrafiuon et al. (2008), where a controller
for the trajectory tracking of surface vessels is designed using the
sliding mode control techniques, is considered for the design of the
desired velocities. The control scheme developed by Ashrafiuon has
some drawbacks, which are highlighted in Yu et al. (2012), since the
desired surge and sway velocities are chosen in terms of the time
derivatives of the reference position as follows:

u x ψ y ψv x ψ y ψ= ˙ cos + ˙ sin = − ˙ sin + ˙ cosd d d d d d (7)

This design of the desired velocities solves the trajectory tracking
control problem for special cases. This can be shown by considering the
following general form of reference trajectories:

x a t C y b t C= ( ) + , = ( ) + ,d d1 2 (8)

where C1 and C2 are constants, and a(t) and b(t) are differentiable
time-varying functions.

Since the desired velocities in (7) depend only on the derivatives of
the reference trajectories ẋd and ẏd , it is clear that the constant
parameters C1 and C2 in (8) have no effect on the desired velocities.
Thus, the control scheme developed in Ashrafiuon et al. (2008) is valid
only for special cases of the reference trajectories with appropriate
values of C1 and C2. In this work, a different design for the desired
velocities is proposed in order to overcome this problem taking into
account the work proposed in Martins (2008).

Moreover, the proposed control schemes in this paper are designed
using the terminal sliding mode control technique. This technique is
superior over the conventional sliding mode method since it provides
finite-time convergence and steady state error improvement.

It should be mentioned that, the derived control schemes in this
section are based on the following assumptions:

• all the states are measurable and are available for feedback,

• the vehicle is moving forward (i.e. u > 0d ).

4.2. Desired velocities design

Proposition 1. Let the desired surge and sway velocities be as

follows:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

u
v

ψ ψ
ψ ψ

x l x

y l y
=

cos sin
− sin cos

˙ + tanh(− )

˙ + tanh(− )
d
d

d x
k
l e

d y
k
l e

x
x

y

y (9)

where k k, > 0x y and l l, ≠ 0x y . It is guaranteed that the position
tracking errors defined in (3) will asymptotically converge to zero if
the velocity tracking errors in (5) converge to zero.

Proof. Eq. (1) leads to the following equation:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

u
v

ψ ψ
ψ ψ

x
y=

cos sin
− sin cos

˙
˙ (10)

Substituting (9) and (10) into (5) yields the following:

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

Re
e

x l x

y l y
=

˙ − tanh(− )

˙ − tanh(− )
u
v h

e x
k
l e

e y
k
l e

x
x

y

y (11)

where

⎡
⎣⎢

⎤
⎦⎥R

ψ ψ
ψ ψ

=
cos sin

− sin cos .h

It is clear that R| | = 1h which indicates that the matrix Rh is non-
singular. Therefore, according to (11), the convergence of the velocity
errors eu and ev to zero guarantee the following,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟x l k

l
x y l

k
l

y˙ = tanh − ˙ = tanh − .e x
x

x
e e y

y

y
e

(12)

Furthermore, consider the following Lyapunov function candidate:

V x y= 1
2

+ 1
2

.e e1
2 2

(13)

The time derivative of this Lyapunov function along the dynamics in
(12) is such that:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟V x x y y l x k

l
x l y

k
l

y˙ = ˙ + ˙ = − tanh − tanhe e e e x e
x

x
e y e

y

y
e1

(14)

It is evident from (14) that V̇ < 01 for x y( , ) ≠ (0, 0)e e since k k, > 0x y

and l l, ≠ 0x y . Therefore, it is guaranteed that (xe, ye) asymptotically
converge to (0, 0).

Thus, it can be concluded that the convergence of the vehicle's surge
and sway velocities to the desired velocities proposed in (9) ensures the
asymptotic convergence of the position tracking errors x y( , )e e to

Fig. 2. A block diagram of the AUV's trajectory tracking control problem using terminal sliding mode concepts.
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(0, 0).□.
In order to proceed with the control design, The time derivatives of

the proposed desired velocities in (9) are obtained first as follows,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

u
v r

v
u

ψ ψ
ψ ψ

x k x sech x

y k y sech y
˙
˙ = − +

cos sin
− sin cos

¨ − ˙ (− )

¨ − ˙ (− )
.d

d

d
d

d x e
k
l e

d y e
k
l e

2

2

x
x

y

y (15)

Also, the second derivative of the desired sway velocity with respect to
time is obtained as follows,

v Γ u r¨ = − ˙d d (16)

where Γ is defined such that,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Γ x ψ y ψ x r ψ y r ψ u r Υ r ψ

Υ r ψ Υ ψ Υ ψΥ k x sech k
l

x Υ

k y sech
k
l

y

= − sin + cos − ¨ cos − ¨ sin − ˙ + cos

+ sin + ˙ sin − ˙ cos = ˙ −

= ˙ − .

d d d d d

x e
x

x
e

y e
y

y
e

… …
1

2 1 2 1
2

2

2

(17)

The parameters in (17) will be used in the control design. Notice
that these parameters depends on the desired position, velocity,
acceleration and jerk. Therefore, it is required from the AUV's guidance
system to provide them. For complex paths, path planning algorithms
that minimizes the jerk will be more suitable in order to avoid problems
in practical implementations. Many researchers have developed mini-
mum jerk trajectory planners in the literature.

4.3. Terminal sliding mode controller (TSMC)

Let the TSM surfaces be chosen in terms of the surge and sway
velocity errors such that:

S e β e= + ( )∼
u u

q p
1 1

/1 1 (18)

S e β e= ˙ + ( )v v
q p

2 2
/2 2 (19)

where β β, > 01 2 , pi and qi are positive odd integers such that p q>i i for
i=1,2.

By differentiating the proposed TSM surfaces in (18) and (19) along
the error dynamics in (6) and using (16), one can obtain

⎛
⎝⎜

⎞
⎠⎟S M X u a vr τ u β

q
p

e e˙ = ( + + ) − ˙ + ( )∼
u u d u u

q p
1 1 26 1

1

1

/ −11 1

(20)

⎛
⎝⎜

⎞
⎠⎟

S M Y v a ur Γ M M a u u N r a uv τ

β
q
p

e e

˙ = ( ˙ + ˙ ) − + ( + )( + + )

+ ˙ ( )

v d r r

v v
q p

2 2 16 6 2 16 12

2
2

2

/ −12 2

(21)

In order to ensure the finite-time convergence to zero of the
proposed sliding surfaces, we impose the following dynamics:

S W sign S˙ = − ( )1 1 1 (22)

S W sign S˙ = − ( )2 2 2 (23)

where W1 and W2 are positive design parameters.
The required surge and yaw control laws are obtained as follows:

⎛
⎝⎜

⎞
⎠⎟τ X u a vr

M
u β

q
p

e e
M

W sign S= − − + 1 ˙ − ( ) + 1 (− ( ))∼
u u d u u

q
p26

1
1

1

1

−1

1
1 1

1
1

(24)

⎛
⎝⎜

⎞
⎠⎟

τ N r a uv
M M a u u

M Y v a ur Γ

β
q
p

e e W sign S

= − − + 1
( + )

(− ˙ − ˙ ) +

− ˙ ( ) − ( )

r r
d

v

v v
q
p

12
6 2 16

2 16

2
2

2

−1
2 2

2
2

(25)

where Γ is defined in (17).

Theorem 2. Consider the model of the AUV's lateral motion
expressed by (1) and (2). Let the surge and sway controllers be
chosen as in (24) and (25), then the surge and sway velocities will
converge to their desired values in finite time. Furthermore, the
position tracking errors x y( , )e e will converge to (0, 0) while the yaw
motion remains bounded.

Proof. Choose the following Lyapunov function candidate:

V S S= 1
2

+ 1
21 1

2
2
2

(26)

By using (20) and (21), the time derivative of the proposed
Lyapunov function is such that:

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

V S S S S S M X u a vr τ u β
q
p

e e

S M Y v a ur Γ M M a u u N r a uv τ

β
q
p

e e

˙ = ˙ + ˙ = ( + + ) − ˙ + ( )

+ ( ˙ + ˙ ) − + ( + )( + + )+

˙ ( )

∼
u u d u u

q p

v d r r

v v
q p

1 1 1 2 2 1 1 26 1
1

1

/ −1

2 2 16 6 2 16 12

2
2

2

/ −1

1 1

2 2

(27)

Substituting for the control laws (24) and (25) into (27) yields,

V W S sign S W S sign S W S W S˙ = − ( ) − ( ) = − | | − | |1 1 1 1 2 2 2 1 1 2 2 (28)

Therefore, since W W, > 01 2 , V̇1 is negative definite. This implies that
the system's trajectories will exhibit a finite time reachability to the
sliding surfaces defined in (18) and (19) from any initial condition.
Once the trajectories are on the sliding surfaces S S= = 01 2 , the
following dynamics are obtained

e β e e β e+ ( ) = 0˙ + ( ) = 0∼
u u

q p
v v

q p
1

/
2

/1 1 2 2

Using Lemma 1, these dynamics guarantees the finite-time
convergence of the velocity tracking errors e e( , )u v to (0, 0). Thus, the
velocities will reach the desired values defined by (9) which will
guarantee the convergence of the position tracking errors x y( , )e e to
(0, 0) according to Proposition 1.

Also, the sway dynamics will be such that:

v M Y v a u r˙ = ( + )d v d d2 16 (29)

Substituting for v̇d from (15), one can get,

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟x k x sech k

l
x ψ y k y sech

k
l

y ψ

M Y v M a u r

− ¨ − ˙ − sin + ¨ − ˙ − cos

= + (1 + )

d x e
x

x
e d y e

y

y
e

v d d

2 2

2 2 16 (30)

Since u > 0d , and from (9) and (12), it is clear that ud, vd, ẋe and ẏe are
bounded. Therefore it can be concluded that r will remain bounded.

Moreover, choose the following Lyapunov function candidate:

V r= 1
22

2
(31)

By differentiating with respect to time, one can get

V rr M r N r a uv τ M N r M a uv τ r˙ = ˙ = ( + + ) = + ( + )r r r r2 6 12 6
2

6 12

Since N < 0r (Nr is a damping term) and M > 06 , V̇ < 02 for:

N r a uv τ| | > | + |r r12 (32)

In addition, V̇ < 02 indicates r| | is decreasing in the set
r a uv τ N| | > | + |/| |r r12 .□

4.4. Fast terminal sliding mode controller (FTSMC)

For the FTSM controller design, let α1, α2, β1 and β2 be positive
constants, and pi and qi be positive odd integers such that p q>i i for
i=1,2. Define the following sliding surfaces:
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S e α e β e= + + ( )∼ ∼
u u u

q p
1 1 1

/1 1 (33)

S e α e β e= ˙ + + ( ) .v v v
q p

2 2 2
/2 2 (34)

Also, let Γ be defined as in (17), and W1 and W2 be positive scalars.

Theorem 3. The FTSM control law:

⎛
⎝⎜

⎞
⎠⎟τ X u a vr

M
u α e β

q
p

e e
M

W sign S= − − + 1 ˙ − − ( ) + 1 (− ( ))∼
u u d u u u

q
p26

1
1 1

1

1

−1

1
1 1

1
1

(35)

⎛
⎝⎜

⎞
⎠
⎟⎟

τ N r a uv
M M a u u

M Y v a ur Γ α e β

q
p

e e W sign S

= − − + 1
( + )

(− ˙ − ˙ ) + − ˙ −

˙ ( ) − ( )

r r
d

v v

v v
q
p

12
6 2 16

2 16 2 2

2

2

−1
2 2

2
2

(36)

when applied to an AUV moving in the horizontal plane with the
desired velocities chosen as in (9) guarantees the asymptotic
convergence of the position tracking errors x y( , )e e to (0, 0) while
maintaining the boundedness of the yaw motion.

Proof. Taking the time derivative of the surfaces S1 and S2 in (33) and
(34) along the error dynamics in (6) and using the control laws given by
(35) and (36), we obtain the following:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

S e α e β
q
p

e e M X u a vr τ u α e

β
q
p

e e W sign S

˙ = ˙ + + ( ) = ( + + ) − ˙ +

+ ( ) = − ( )

∼

∼

u u u u
q p

u u d u

u u
q p

1 1 1
1

1

/ −1
1 26 1

1
1

1

/ −1
1 1

1 1

1 1

(37)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

S e α e β
q
p

e e M Y v a ur Γ

M M a u u N r a uv τ α e β
q
p

e e

W sign S

˙ = ¨ + ˙ + ˙ ( ) = ( ˙ + ˙ ) −

+ ( + )( + + ) + ˙ + ˙ ( )

= − ( )

v v v v
q p

v

d r r v v v
q p

2 2 2
2

2

/ −1
2 16

6 2 16 12 2 2
2

2

/ −1

2 2

2 2

2 2

(38)

Now, let the Lyapunov function candidate V3 be such that:

V S S= 1
2

+ 1
23 1

2
2
2

(39)

Differentiating V3 with respect to time and using (37) and (38)
yields:

V S S S S W S sign S W S sign S W S W S˙ = ˙ + ˙ = − ( ) − ( ) = − | | − | |3 1 1 2 2 1 1 1 2 2 2 1 1 2 2

(40)

It is clear from (40) that V̇ < 03 for S S( , ) ≠ (0, 0)1 2 . Therefore, the
surfaces S1 and S2 will reach zero in finite time from any given initial
conditions provided that the design parameters W1 and W2 are chosen
to be positive constants. Once the trajectories are on the sliding
surfaces, the following dynamics are guaranteed:

e α e β e+ + ( ) = 0∼ ∼
u u u

q p
1 1

/1 1 (41)

e α e β e˙ + + ( ) = 0.v v v
q p

2 2
/2 2 (42)

According to Lemma 2, these dynamics ensure the finite-time
convergence of e e e( , , ˙ )u v v to (0, 0, 0). Furthermore, since the desired
velocities are chosen as in (9), the position tracking errors x y( , )e e will
converge to (0, 0) based on Proposition 1.

Also, the sway dynamics will be such that:

v M Y v a u r˙ = ( + )d v d d2 16 (43)

Since u > 0d , and ud, vd and v̇d are bounded, it is clear that r will
remain bounded. □

4.5. Non-singular terminal sliding mode controller (NTSMC)

The proposed TSM and FTSM controllers presented in the previous
subsections may exhibit an unbounded behavior for the case of μ̇ ≠ 0
when μ = 0 before the trajectories reach the sliding surfaces S = 0i

(i=1,2) where μ e e= ,∼
u v. Even after the sliding surface is reached, the

singularity may occur since the trajectories are not guaranteed to stay
on the sliding surface due to computation errors and uncertain factors
especially near the equilibrium point μ μ( ˙ , ) = (0, 0); the singularity due
to the case μ̇ ≠ 0 when μ = 0 may occur occasionally. Therefore, to
overcome this singularity problem, a non-singular terminal sliding
mode (NTSM) controller is proposed in this section motivated by the
work presented in (Feng et al., 2002).

Define the non-singular sliding surfaces in terms of the velocity
tracking errors such that:

S e c e= + ( )∼
u u

p q
1 1

/1 1 (44)

S e c e= + (˙ )v v
p q

2 2
/2 2 (45)

where c c, > 01 2 , pi and qi are odd positive integers satisfying p q>i i for
i=1,2.

Differentiating (44) and (45) with respect to time and using Eqs.
(2), (5) and (16), we obtain

S e c
p
q

e e e c
p
q

M X u a vr τ u e˙ = + ˙ ( ) = + ( ( + + ) − ˙ )( )u u u
p
q u u u d u

p
q1 1

1

1

−1
1

1

1
1 26

−11
1

1
1

(46)

⎞
⎠⎟

S e c
p
q

e e e c
p
q

e M Y v a ur Γ

M M a u u N r a uv τ
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( + )( + + )
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v v
p q

v

d r r

2 2
2

2
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2 16
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2 2 2 2

(47)

We propose the following NTSM controllers:

τ X u a vr u
M c

q
p M

e W
M

sign S= − − + ˙ − 1 1 ( ) − ( )u u
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q26

1 1

1

1 1
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(48)

⎛
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⎞
⎠⎟
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M M a u u
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e W sign S

= − − + 1
( + )

(− ˙ − ˙ ) +

− 1 (˙ ) − ( )

r r
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v
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q

12
6 2 16

2 16

2

2

2

2−
2 2

2
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(49)

where W W, > 01 2 and Γ is defined as in (17).

Theorem 4. The NTSM control laws (48)-(49) with the desired
velocities given by (9) when applied to the AUV model moving in the
horizontal plane guarantee the asymptotic convergence to zero of the

Table 1
The REMUS AUV model parameters.

Parameter Value Units
m 30.48 kg
Iz 3.45 kg m· 2

Xu −8.8065 kg s/
Yv −65.5457 kg s/
Nr −6.7352 kg s/
Xu̇ −0.93 kg
Yv̇ −35.5 kg
Nṙ −35.5 kg m· 2

Fig. 3. The actual and desired paths of the AUV using the proposed control schemes.
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position tracking errors x y( , )e e while maintaining the boundedness of
the yaw motion of the AUV.

Proof. Consider the Lyapunov function candidate V4 such that,

V S S= 1
2

+ 1
24 1

2
2
2

(50)

The time derivative of V4 is obtained using (46) and (47) such that,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

V S S S S S e c
p
q

M X u a vr τ u e

S e c
p
q

e M Y v a ur Γ M M a u u N r a uv τ

˙ = ˙ + ˙ = + ( ( + + ) − ˙ )( )

+ ˙ + ( ˙ ) ( ( ˙ + ˙ ) − + ( + )( + + ))

u u u d u
p
q

v v p q v d r r

4 1 1 2 2 1 1
1

1
1 26

1
1 −1

2 2
2

2
2 / 2−1 2 16 6 2 16 12

(51)

Using (48) and (49) to substitute for the control laws in V̇4 gives the
following,

Fig. 4. The positions, the orientation and the velocities of the AUV versus time using the proposed control schemes.

Fig. 5. The velocity tracking errors of the AUV versus time using the proposed control schemes.

Fig. 6. The position tracking errors of the AUV versus time using the proposed control schemes.

Fig. 7. The surge and yaw controllers of the AUV versus time using the proposed control schemes.
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V W c
p
q

e S sign S W c
p
q

e S sign S˙ = − ( ) ( ) − ( ˙ ) ( )u
p
q v

p
q4 1 1

1

1

−1
1 1 2 2

2

2

−1
2 2

1
1

2
2

(52)

One can define the following:

ρ e c
p
q

e( ) = ( )u u
p q

q1 1
1

1

−1 1
1

(53)

ρ e c
p
q

e( ˙ ) = ( ˙ )v v
p q

q2 2
2

2

−2 2
2

(54)

It is obvious that ρ > 0i for i=1,2 since (i) c p q, , > 0i i i and (ii) pi and qi
are odd integers such that p q>i i which implies that p q−i i is even.
Hence, V̇4 can be written as:

V W ρ e S W ρ e S˙ = − ( )| | − ( ˙ )| |u v4 1 1 1 2 2 2 (55)

Clearly, V̇4 is negative definite provided that W W, > 01 2 . Therefore, the
finite-time convergence of both surfaces S1 and S2 to zero is
guaranteed. Hence, the trajectories will reach the sliding surfaces
S S= = 01 2 . On the sliding surfaces, the following dynamics are
imposed:

e c e+ ( ) = 0∼
u u

p q
1

/1 1 (56)

e c e+ (˙ ) = 0v v
p q

2
/2 2 (57)

The dynamics in (56) and (57) are equivalent to those for the
conventional TSM when S=0 where S is given by (A.2). Hence,
according to Lemma 1, the finite-time convergence of e e e( , , ˙ )u v v to
(0, 0, 0) is ensured. That is, the AUV's velocities will converge to their
desired values associated with (9) in finite time which will guarantee
the convergence of the position tracking errors x y( , )e e to (0, 0) based on
Proposition 1.

Moreover, the sway dynamics will be such that:

v M Y v a u r˙ = ( + )d v d d2 16 (58)

which implies that r will remain bounded since ud, vd and v̇d are
bounded, and u > 0d . □

Remark 1. In order to avoid the well known chattering problem, the
discontinuous sign function used in the proposed control laws can be
replaced by using the popular boundary layer concept. Generally, the
boundary layer is defined by replacing sign(S) in the control laws by a
saturating function sat(S) defined as follows:

⎧
⎨⎪
⎩⎪

sat S
S φ

S φ φ S φ
S φ

( ) =
− 1, < −

/ , − ≤ ≤
1, > (59)

where φ is a constant that normally describes the error associated with
the smooth approximation of the sign function by the saturation
function, and the boundary layer thickness is defined as φ2 .

The choice of the function sat(S) given in (59) does not affect the
convergence results obtained in this section. Recall that the proposed
controllers force the following dynamics: S Wsign S˙ = − ( ). By consider-
ing the Lyapanov function candidate V S= 1

2
2 and replacing sign(S)

with sat(S), we get V Wsat S˙ = − ( ). It is clear from (59) that the
condition V̇ < 0 is always satisfied since V W S˙ = − | | < 0 if S φ| | > , and
V S˙ = − < 0W

φ
2 if S φ| | < .

It should be noted that the designed controllers using this
approximation drive the system states to a neighborhood of the sliding
surface, and the ideal sliding no longer takes place. However, this
difference can be negligible by adjusting the width of the boundary
layer φ2 to make it small (Khan, 2003). This approximation is
compared with other approximations for chattering reduction using
experimental results in (De Jager, 1992).

Remark 2. The designed control schemes in (24) and (25), (35) and
(36), and (48) and (49) can be computed easily as long as the AUV's
guidance system provide the control system with the information of the
desired path. This makes these schemes to be easy to implement which
is one of the main features of the sliding mode control technique.

5. Simulation results

The proposed control schemes are applied to the model of lateral
dynamics for an example AUV which is described by the kinematic and
dynamic equations of motion in (1) and (2) respectively. Computer
simulations are performed considering the REMUS AUV; the model
parameters of this vehicle are presented in Table 1. In these simula-
tions, the initial states are taken to be zero (i.e. the vehicle is at rest)
such that: x y ψ u v r(0) = (0) = (0) = (0) = (0) = (0) = 0. Also, the initial
values of errors integrals are taken such that e (0) = 0.05∼

u and e (0) = 0∼
v .

The performance of the system is tested under the proposed
controllers using reference trajectories with the following choice:

x t t m y t t m( ) = 0.5 + 1 , ( ) = 0.25 + 0.5 .d d

The boundary layer approximation presented in (59) is used to
approximate the sign function in the proposed controllers to reduce
the chattering phenomena. The simulations are carried out using the
following design parameters: l l= = 2x y , k k= = 0.5x y , φ = 0.01, and the
design parameters for each control scheme are selected as follows,

• TSMC: β = 1.51 , β = 12 , q p q p/ = / = 3/51 1 2 2 , W = 0.51 and W = 0.152 .

• FTSMC: α α= = 11 2 , β = 1.51 , β = 12 , q p q p/ = / = 3/51 1 2 2 , W = 0.51

Fig. 8. The actual and desired paths of the AUV using the proposed control schemes for
a circular path.

Fig. 9. The velocity tracking errors of the AUV versus time using the proposed control schemes for a circular path.
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and W = 0.252 .

• NTSMC: c = 0.51 , c = 0.32 , q p q p/ = / = 3/51 1 2 2 , W = 1.41 and W = 12 .

Figs. 3–7 show the simulation results using the three proposed
controllers. In Fig. 3, the actual path of the AUV is shown along with
the desired one where a good tracking is achieved. The coordinates of
the AUV's position, the orientation and the velocities of the AUV versus
time are shown in Fig. 4. The boundedness of the velocities is obvious

from this figure. The finite-time convergence of the velocity tracking
errors of the AUV to zero is illustrated in Fig. 5. From this figure, it can
be noticed that the three controllers manage to force the sliding surface
S1 to reach zero in about 0.9 s using the NTSMC and 1.5 s using the
TSMC and FTSMC. Once S1 reaches zero, the surge velocity error starts
converging to zero in finite-time (about 0.5 s, 0.25 s and 0.6 s for
TSMC, FTSMC and NTSMC respectively). As for the second sliding
surface S2, it is forced to reach zero in about 5.2 s using the TSMC and
FTSMC and 4.1 s using the NTSMC. Then, the sway velocity error
converges to zero in finite time (around 0.4 s, 0.3 s and 0.4 s for TSMC,
FTSMC and NTSMC respectively). These results verify the formulas
presented in (A.4) and (A.7) for the convergence time. Since the
proposed TSM and FTSM controllers impose the dynamics
S W sign S˙ = − ( )i i for i( = 1, 2) on the system, the reaching time for the
surfaces can be determined using the following equation,

t S W= | (0)|/ .r i i i, (60)

Using the initial values, S (0)1 is obtained from (19) and (34) such that
S (0) = −0.751 and S (0) = −0.71 for the TSM and FTSM controllers

Fig. 10. The position tracking errors of the AUV versus time using the proposed control schemes for a circular path.

Fig. 11. The surge and yaw controllers of the AUV versus time using the proposed control schemes for a circular path.

Fig. 12. The actual and desired paths of the AUV using the proposed control schemes
with constant disturbances.

Fig. 13. The positions, the orientation and the velocities of the AUV versus time using the proposed control schemes with constant disturbances.
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respectively. This corresponds to a reaching time of t = 1.5r,1 seconds
using the TSM controller and t = 1.4r,1 seconds using the FTSM
controller. Moreover, using the Eqs. (A.4) and (A.7), the convergence
time of the surge velocity errors ts,1 can be calculated to be t = 1.9 ss,1
using the TSM controller (where e t( ) = −0.02∼

u r,1 ) and t = 1.65 ss,1 using
the FTSM controller (where e t( ) = −0.01∼

u r,1 ). Since these values agree
with the obtained results, the formulas given in (A.4) and (A.7) are
verified. It should be mentioned that the reaching time obtained using
(60) can be slightly different than the results since the exact sign
function is replaced using the boundary layer approximation.

Furthermore, the convergence of the position tracking errors of the
AUV to zero can be clearly seen in Fig. 6. The surge and sway
controllers versus time for the three proposed control laws are
presented in Fig. 7. The discontinuous behavior of the controllers can
be observed from this figure when the surfaces change their sign where
the surge controller τu changes its value rapidly making a spike in
about 0.9 s using the NTSMC and 1.5 s using the TSMC and FTSMC. As
for the yaw controller τr, it can be noticed that it changes its value
rapidly twice at different time instants for each controller. The first
change occurs when the first surface S1 changes its sign affecting the
surge controller, and the second change occurs when S2 changes its
value. This amount of change for each controller is governed by the
controllers gains W1 and W2. Consequently, these discontinuous

changes cause the velocities to change in a similar way as can be seen
from the results. For practical considerations, the gains of the
controllers and the thickness of the boundary layer can be selected
properly depending on the ability of the actuators in providing such
changes and how fast they can change.

Additionally, more simulations are performed considering a circu-
lar motion tracking in order to show the performance of the proposed
control schemes with different types of paths. The obtained results for
the circular motion are presented in Figs. 8–11. The desired path to be
tracked is chosen such that x t= 2 cos( ) − 3d and y t= 2 sin( ) + 1d .
Figs. 8 and 10 show that the circular motion tracking is achieved using
the proposed controllers.

The presented results clearly indicate that the proposed control
schemes work well for the trajectory tracking of AUVs moving in the
horizontal plane.

6. Robustness studies

Simulation studies are presented in this section in order to test the
robustness of the proposed control schemes to bounded environmental
disturbances, unmodeled dynamics and model uncertainties. To this
end, their effects are included in the AUV model described by Eqs. (1)
and (2). The effects of environmental disturbances, unmodeled dy-
namics and model uncertainties are regarded as disturbances, and the
new AUV kinematic and dynamic equations including these distur-
bances are,

x u ψ v ψy u ψ v ψψ ru M X u a vr τ d t v

M Y v a ur r M N r a uv τ d t

˙ = cos − sin ˙ = sin + cos ˙ = ˙ = ( + + ) + ( ) ˙

= ( + ) ˙ = ( + + ) + ( )
u u

v r r

1 26 1

2 16 6 12 2 (61)

where the terms d1 and d2 represent the disturbances due to environ-
mental disturbances, unmodeled dynamics and model uncertainties. It
is assumed that the bounds on d1 and d2 are known (or estimated) so
that the gains of the controllers can be selected properly in order to
suppress the effects of the disturbances. This assumption is valid for

Fig. 15. The position errors of the AUV versus time using the proposed control schemes with constant disturbances.

Fig. 16. The surge and yaw controllers of the AUV versus time using the proposed control schemes with constant disturbances.

Fig. 17. The actual and desired paths of the AUV using the proposed control schemes
with sinusoidal disturbances.

Fig. 14. The velocity errors of the AUV versus time using the proposed control schemes with constant disturbances.
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many practical environmental disturbances such as wind disturbances,
wave disturbances, ocean currents, etc (Fischer et al., 2014; Fossen,
2011; Fang et al., 2006; Moreira and Soares, 2008). Moreover, one can
define upper bounds on the unknown terms d t( )1 and d t( )3 based on the
structural or measurable knowledge of them (Fischer et al., 2014).

Simulations are performed using the proposed controllers consid-
ering different scenarios of disturbances which are as follows,

1. Constant Disturbances,

d t d t( ) = 0.15, ( ) = 0.051 2 (62)

2. Sinusoidal Disturbances,

d t t d t t( ) = 0.15 cos( ), ( ) = 0.1 sin( )1 2 (63)

3. Disturbances for a period of time,

Fig. 19. The velocity errors of the AUV versus time using the proposed control schemes with sinusoidal disturbances.

Fig. 20. The position errors of the AUV versus time using the proposed control schemes with sinusoidal disturbances.

Fig. 21. The surge and yaw controllers of the AUV versus time using the proposed control schemes with sinusoidal disturbances.

Fig. 18. The positions, the orientation and the velocities of the AUV versus time using the proposed control schemes with sinusoidal disturbances.
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d t u t u t d t u t u t( ) = 1.5[ ( − 10) − ( − 11)], ( ) = 0.1[ ( − 10) − ( − 11)]s s s s1 2

(64)

where us(t) is a unit step function defined as,

⎧⎨⎩u t t
otherwise

( ) = 1, ≥ 0
0,s

Figs. 12–26 show the obtained results from these simulations for
the three cases of disturbances; The coordinates of the AUV's position,
the orientation and the velocities of the AUV versus time are shown in
Figs. 13, 18 and 23, the position errors of the AUV versus time are
given in Figs. 15, 20 and 25, the velocity errors of the AUV versus time
are shown in Figs. 14, 19 and 24, and the controllers versus time are
given in Figs. 16, 21 and 26. It can be seen that the controllers have
different values at steady state managing to suppress the effect of the

acting disturbances. For the sinusoidal case, the controllers at steady
state update their values in a sinusoidal form. For the third case, once
the disturbances act on the vehicle for the period between 10 s and
11 s, the control schemes start to change the values of the required
surge force and yaw moment in order to suppress the effect of the
disturbances and brings the vehicle back to its path. This case shows
the ability of the system to recovers from such disturbances using the
proposed control schemes.

We can conclude from these results that the proposed control
schemes force the position and velocity errors of the AUV to converge
to zero even though there are disturbances acting on the AUV.
Therefore, it can be concluded that the proposed control schemes are
robust under bounded disturbances.

7. Conclusion

Trajectory tracking control schemes are proposed for the control of
the lateral motion of AUVs using the concepts of terminal sliding mode.
These controllers aim to force the position of the AUV to track a
desired, time-varying trajectory. Each control design is validated by
simulating their performances where they are applied to an example
AUV. The obtained simulation results indicate that the proposed
control schemes solve the trajectory tracking problem for the lateral
motion of AUVs. Moreover, some simulation studies are presented to
show that these control schemes are robust to bounded disturbances.

Fig. 22. The actual and desired paths of the AUV using the proposed control schemes
with disturbances for a period of time.

Fig. 24. The velocity errors of the AUV versus time using the proposed control schemes with disturbances for a period of time.

Fig. 23. The positions, the orientation and the velocities of the AUV versus time using the proposed control schemes with disturbances for a period of time.
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Appendix A. An overview of terminal sliding mode control

A brief summary of the concepts of terminal sliding mode control is provided here.

Definition 1. (Feng et al., 2002) Consider the following second-order nonlinear system with uncertainties:

x x xx x x f b u d˙ = ˙ = ( ) + ( ) + ( )1 2 2 (A.1)

where x x x= [ , ]T
1 2 represents the states vector of the system, xf ( ) and xb ( ) are smooth nonlinear functions such that xb ( ) ≠ 0, u is the control input

and xd ( ) is a bounded function that represents the disturbances and model uncertainties such that xd D| ( ) | ≤ with D > 0. The terminal sliding mode
(TSM) of such a system can be described using one of the following equivalent TSM surface (manifold) forms:

S x βx= + q p
2 1

/ (A.2)

S x β x sign x= + | | ( )γ
2 1 1 (A.3)

where β is a positive constant, γ0 < < 1 and p and q are positive odd integers satisfying the condition p q> .
The controller u of system (A.1) can be designed to drive the terminal sliding surfaces (A.2) or (A.3) to zero in finite time (i.e. S=0). Once there,

the dynamics of the system become x βx˙ = − q p
1 1

/ or x β x sign x˙ = − | | ( )γ
1 1 1 . This system has a terminal attractor at x = 01 which has been shown in (Zak,

1988) and (Zak, 1989). This mean that the finite time convergence of x1 to zero is guaranteed on the terminal sliding surface in (A.2) and (A.3).
The TSM surfaces described by (A.2) and (A.6) do not differ from each other in terms of the finite-time convergence and the steady-state tracking

precision if the design parameters β, p q, and γ are chosen properly.

Lemma 1. (Feng et al., 2002) The equilibrium point x x( , ) = (0, 0)1 2 of the system (A.1) is globally finite-time stable on the sliding surface S=0
defined by (A.2), [i.e., starting from any initial point x x( (0), (0))1 2 , the system states converge to x x( , ) = (0, 0)1 2 in finite time ts and remain there
for t t≥ s]. This finite time can be determined using the following equation:

t t p
β p q

x t= +
( − )

[ ( )]s r r
p q

p1
−

(A.4)

where tr is the reaching time, the time taken by the trajectories to reach S=0.
When using the dynamics imposed by the TSM surfaces in (A.2) and (A.3), it is noticed that the convergence rate is faster when the trajectories

start closer to the equilibrium resulting in finite time convergence. On the other hand, when the states of the system are far away from the

equilibrium point, the TSM is not superior to the conventional sliding mode control (SMC) because of the terms x( )
q
p1 and x| |γ1 ; these terms reduce the

convergence rates at a distance far from the equilibrium since the powers are less than one. Therefore, a solution was proposed in (Yu et al., 1999)
through the introduction of the so-called fast terminal sliding mode (FTSM).

Definition 2. (Yu et al., 1999; Yu and Zhihong, 2002) For the system (A.1), the FTSM can be described by one of the following nonlinear surfaces:

S x αx β x= + + ( )
q
p2 1 1 (A.5)

S x αx β x sign x= + + | | ( )γ
2 1 1 1 (A.6)

Fig. 25. The position errors of the AUV versus time using the proposed control schemes with disturbances for a period of time.

Fig. 26. The surge and yaw controllers of the AUV versus time using the proposed control schemes with disturbances for a period of time.
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where α β, > 0, γ0 < < 1, and p and q are positive odd integers such that p q> .

Lemma 2. (Yu and Zhihong, 2002) On the sliding surface S=0 where S is defined in (A.5), the equilibrium point x x( , ) = (0, 0)1 2 of the system (A.1)
is globally finite-time stable with a settling time ts such that:

t t p
α p q

ln α x t β
β

= +
( − )

( ( )) +
s r

r
p q

p1
−

(A.7)

where tr is the reaching time, the time taken by the trajectories to reach S=0. Eq. (A.7) indicates faster finite-time stability when compared with
the TSM settling time in (A.4).

The physical interpretation of Lemma 2 is such that when the state x1 is far from the origin, the dynamics of (A.5) can be approximated as:
x αx˙ = −1 1 which leads to fast convergence when far away from zero. When x1 is close to the origin, the dynamics can be approximated as:
x βx˙ = − q p

1 1
/ which is a terminal attractor.
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