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Abstract: In the last years, the success of kernel-based regularisation techniques in solving impulse response modelling tasks
has revived the interest on linear system identification. In this work, an alternative perspective on the same problem is
introduced. Instead of relying on a Bayesian framework to include assumptions about the system in the definition of the
covariance matrix of the parameters, here the prior knowledge is injected at the cost function level. The key idea is to define the
regularisation matrix as a filtering operation on the parameters, which allows for a more intuitive formulation of the problem from
an engineering point of view. Moreover, this results in a unified framework to model low-pass, band-pass and high-pass
systems, and systems with one or more resonances. The proposed filter-based approach outperforms the existing regularisation
method based on the TC and DC kernels, as illustrated by means of Monte Carlo simulations on several linear modelling
examples.

1 Introduction
The identification of linear time-invariant systems has been
extensively studied in the last decades, and has been considered a
‘solved’ problem for several years [1, 2]. Nevertheless, recent
developments on the use of regularisation techniques for impulse
response modelling have shed new light on this old problem. In
particular, it has been shown that the standard prediction error
method/maximum likelihood (PEM/ML) approaches can be
outperformed by introducing a clever way to add prior information
in the estimation problem [3, 4].

More in details, robust kernel-based regularisation methods for
impulse response estimation have been recently designed relying
on the theory of Gaussian processes [5]. Exploiting the Bayesian
framework, information about the system properties is included in
the definition of the covariance matrix of the parameters, see [6]
for a recent survey. Typical examples of such properties are the
smoothness and exponential decay of the impulse response, which
result in the definition of the widely used DC and TC kernels (the
latter are also known as first-order stable spline kernels) [4].

The objective of the present work is to study regularised
impulse response modelling from a different perspective. Instead of
designing the regularisation term starting from the covariance
matrix of the parameters, the estimation problem is analysed
directly at the cost function level, allowing for an intuitive
interpretation of regularisation problems from an engineering point
of view. The core idea is to regard the regularisation term in the
cost function as a filtering operation on the parameters to be
estimated. In practice, this results in a definition of the
regularisation matrix that includes the properties that one wants to
penalise, i.e. the inverse of the assumed system properties.

In this way, by exploiting this filter-based approach it is
possible to design a flexible algorithm to model, in a unified
framework, low-pass, band-pass and high-pass systems and
systems with one or multiple resonances.

Recently, examples of more general kernel structures have been
introduced in kernel-based identification to model systems
characterised by complicated dynamics, e.g. based on stochastic
state space models [7] or orthonormal basis functions [8]. A first
step in the direction of extending basic kernel structures was
already taken in [9], where a finite-dimensional parametric
component was added to the stable spline kernel to include high-
frequency poles in the impulse response representation. In this

paper, starting from an alternative interpretation of the problem, we
further increase the flexibility of the regularisation approach, by
defining a general framework in which the user can incorporate
different prior assumptions in a natural way. Furthermore, thanks to
this dual framework, one can hopefully achieve a better
understanding of regularisation methods in system identification,
and explain the reasons for their success.

This paper extends the results presented in [10]. In the present
work, the filter-interpretation ideas are further developed and
several different kernels based on the smoothness and exponential
decay properties are analysed in depth (Section 4), while in [10]
only the simple TC kernel case was discussed. Moreover, the
effectiveness of the proposed method is tested on a wider range of
systems since three, more challenging, examples of systems with
one or two resonances are also considered now (Section 6).

The rest of the paper is organised as follows. The classic and
the regularised approach to impulse response modelling are
presented in Section 2. Section 3 deals with the different ways of
including information about the system in the regularisation
problem. The filterinterpretation idea is further investigated in
Section 4. The details of the filter-based approach for regularised
impulse response modelling are explained in Section 5, and the
results obtained on different Monte Carlo simulation examples are
discussed in Section 6. Concluding remarks end the paper in
Section 7.

2 Problem formulation
In this work, we consider the estimation of finite impulse response
(FIR) models for linear time-invariant systems in a discrete-time
setting, based on a set of input–output data {(�(�), �(�))}� = 1� . The
output data are assumed to be corrupted by additive white Gaussian
noise, characterised by zero mean and variance �2, and independent
from the input signal.

The order � of the FIR model is considered to be fixed, and the
modelled output can then be written as

�̂(�) = ∑� = 0
� − 1���(� − �), (1)

where �� is the � impulse response coefficients to be estimated.
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2.1 Classic approach

The standard PEM/ML problem formulation is given by

�̂ = arg min� ∑� = 1
� (�(�) − �̂(�, �))2, (2)

where � ∈ ℝ� contains all impulse response coefficients ��,� = 0,…, � − 1.
Solving (2) results in the least squares estimate:�̂ls = arg min� ∥ � − Φ� ∥2 = (ΦTΦ)−1ΦT� . (3)

Note that a compact notation is preferred here, such that all output
data �(�), � = 1,…,� are collected in the column vector �, and the
regressor matrix Φ contains shifted instances of the input data�(�):

Φ = �(1) �(0) ⋯ �( − � + 2)�(2) �(1) ⋯ �( − � + 3)⋮ ⋮ ⋱ ⋮�(�) �(� − 1) ⋯ �(� − � + 1) . (4)

Here, the initial conditions (input samples for � = − � + 2,…, 0)
are assumed to be equal to 0 for simplicity.

2.2 Regularised approach

In regularisation methods, a penalty term on the model complexity
is included in the cost function, to decrease the variance on the
estimated parameters (this comes at the expense of introducing in
the model error a bias component, which is typically quite small).
This results in the regularised estimate:�̂reg = arg min� ∥ � − Φ� ∥2 + �T�� = (ΦTΦ+ �)−1ΦT� . (5)

The regularisation matrix � is a symmetric positive-semidefinite
matrix, which is introduced to impose a different complexity
penalty for the parameters in �. A way of doing this, as will be
explained in the next section, is to incorporate in � prior
knowledge about the underlying system.

3 Two alternative ways of incorporating prior
information in the problem
3.1 Kernel-based problem formulation

To include prior information in the regularisation problem, one can
introduce the covariance matrix � of the parameters �, also known
as the kernel matrix, and define [4]:� = �2�−1 . (6)

This is equivalent to considering the modelled impulse response as
a realisation of a Gaussian process with zero mean and covariance� [3].

In this Bayesian framework, it is possible to include the
assumed system properties by means of a clever parametrisation of�. Since it is reasonable to assume that the true impulse response is
smooth, and exponentially decaying to zero (for stable systems),
one can parametrise � as follows (DC kernel):�DC(�, �) = ��|�− �|�(�+ �)/2 . (7)

The special case for which � = � results in the so-called TC
kernel: �TC(�, �) = � min (��, ��) . (8)

Here � ≥ 0, |�| ≤ 1 and 0 ≤ � ≤ 1 are hyperparameters that need
to be tuned based on the available data, e.g. by marginal likelihood
maximisation (empirical Bayes method). See [4, 11] for more
details on this issue.

3.2 Filter interpretation of the cost function

Alternatively, one can include the available prior knowledge about
the system directly in the regularisation matrix �. In this way,
instead of defining the problem based on the kernel �, one can
focus directly on the cost function.

The approach proposed here starts from the following
decomposition of the � × � matrix �:� = ��T�, (9)

where � is a � × � matrix, and � ∈ ℝ is a global scaling factor for
the regularisation matrix.

The cost function is then reformulated as follows:∥ � − Φ� ∥2 + �T�� = ∥ � − Φ� ∥2 + ��T�T�� (10)= ∥ � − Φ� ∥2 + � ∥ �� ∥2 . (11)

In the above equation, � can be seen as a prefiltering operator on
the coefficients of the impulse response, before they enter the cost
function and are penalised through the regularisation term. This
means that the regularisation filter matrix � should be defined in
such a way that it incorporates the system properties one needs to
penalise to obtain the desired model.

Next section provides a first intuitive understanding of how this
should be achieved. A more detailed discussion about the
implementation of the filter-interpretation ideas to design a novel
regularised FIR modelling approach is presented in Section 5.

4 Understanding the filtering approach for
regularised FIR modelling
4.1 Smoothness

4.1.1 An illustrative example: the ‘random walk’ kernel.: Let
us start from a simple introductory example that will prove useful
in explaining the basic principle of the filtering approach.

Consider the case in which each of the parameters � can be
described by a random walk:

�� = ∑� = 1
� �� (12)

where one has �(��) = 0 and �(��2) = ��2.
By using the well-known properties of random walks, one can

compute the covariance matrix of � as follows:�RW(�, �) = Cov�� = �(��, ��) = min (�, �) ⋅ ��2 . (13)

If one computes the inverse of such a covariance matrix, and using
the definition of the regularisation matrix in (6), the following
expression is obtained:

�RW = �2(�RW)−1 = �2��2
2 −1 0 ⋯ 0−1 2 −1 ⋱ ⋮0 ⋱ ⋱ ⋱ 0⋮ ⋱ −1 2 −10 ⋯ 0 −1 1

. (14)

This means that the second term in the cost function (11) can be
written as

�T�RW� = ∑� = 1
� (��− ��− 1)2 (15)
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where �0 has been set equal to 0, and �2/��2 = 1, for simplicity.
The main message here is that what is penalised in the cost

function is actually the squared difference of subsequent values of�. This is one way of imposing smoothness on the parameters,
since large changes between two adjacent impulse response
coefficients are penalised through �RW. Of course at this level
nothing is required about the decay of the impulse response, this
will be taken into account later on in this section.

Bearing the interpretation introduced in Section 3.2 in mind,�RW is factorised to obtain the filtering matrix �RW:

�RW(�, �) = 1 for � = �−1 for � = � + 10 otherwise.  (16)

Note that here and in the remainder of this section the scaling
factor � is set equal to 1 to simplify the notation.

Fig. 1 shows the structure of matrices �RW, �RW and �RW. Note
the tridiagonal structure of �RW, and the bidiagonal structure of�RW. 

In general, one can decide to compute the Cholesky
decomposition to obtain � from � ( � = ��T, with � a lower
triangular matrix, and � = �T) [12]. In this example, however, a
rotated version is preferred ( � = �T�, with � = �), to show more
clearly the nature of the filtering matrix.

Each row of �RW contains the filter coefficients related to a pair
of subsequent � values (since �RW is bidiagonal). Therefore, it
seems natural to study how the filtering operation works on � by
having a look at the frequency response of the rows of �RW, plotted
in Fig. 1d. The high-pass nature of the filtering is evident, which
indicates that only the high-frequency components in the modelled
impulse response enter the cost function and are thus penalised (i.e.
the smoothness property is imposed).

This simple example illustrates how known concepts can be
reinterpreted using the filtering ideas, and gives already an idea of
how specific assumptions about the system can be encoded at the
cost function level.

4.1.2 The correlation kernel.: Let us now have a look at another
way of imposing the smoothness property on the impulse response,
which brings us closer to the definition of the kernels that are
available in the literature.

Consider a ‘correlation’ kernel expressed as�Corr(�, �) = ��|�− �| (17)

where � is a positive constant, and � is a value ( |�| ≤ 1) that can
be tuned to specify how strong the correlation between variables is.
Since �Corr represents the covariance matrix of the parameters �,
here smoothness is imposed in the sense that coefficients of the
impulse response closer to each other are more strongly correlated
(the distance between � and � is smaller) than coefficients that are
further away from each other (larger distance between � and �).

The analytical expression for the regularisation matrix �Corr can
be computed as

Fig. 1  Random walk kernel. Please refer to the online version for colour figures
(a) Covariance matrix of the parameters �RW, (b) Regularisation matrix �RW, (c) Filter matrix �RW, for � = 20, and for specific values �2 = ��2 = 1. The colour map should be read
as follows: green: zero values, (darker) red: (larger) positive values, (darker) blue: (larger) negative values, (d) Magnitude (in dB) of the frequency response of the rows of the filter
matrix �RW
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�Corr = �2(�Corr)−1 = �2�
11 − �2 − �1 − �2 0 ⋯ 0

− �1 − �2 1 + �21 − �2 − �1 − �2 ⋱ ⋮0 ⋱ ⋱ ⋱ 0⋮ ⋱ − �1 − �2 1 + �21 − �2 − �1 − �20 ⋯ 0 − �1 − �2 11 − �2
.

(18)

Since the regularisation matrix has a tridiagonal structure, its
Cholesky decomposition can easily be computed in closed form, as
explained, e.g. in [13]:

�Corr(�, �) =
11 − �2 for � = �, � < �1 for � = � = �− �21 − �2 for � = � − 10 otherwise. 

(19)

Note that in the expression for �Corr the values of � and �2 are set
equal to 1 to simplify the notation.

The structure of matrices �Corr, �Corr and �Corr is shown in Fig.
2. 

To get an idea of how the filtering matrix acts on the parameters�, the frequency response of the rows of �Corr is presented in Fig.
2d.

As expected, this is, similarly to the random walk example, a
high-pass filter, which is the translation of the smoothness property
in the filtering interpretation suggested in this paper.

4.2 Decay

For the moment being, let us put the concept of smoothness aside,
and analyse a different assumption that is typically made about
stable impulse responses, namely the idea that they should
exponentially decay to zero.

This can be expressed very simply by the following covariance
matrix of the parameters:

�Dec(�, �) = �� for � = �0 otherwise  (20)

where � is a value ( 0 ≤ � ≤ 1) that can be tuned to specify how
fast the coefficients � decay to zero.

In this case, both the regularisation matrix and the filter matrix
are obtained in a straightforward way:

�Dec(�, �) = �2 �−� for � = �0 otherwise  (21)

�Dec(�, �) = �−�/2 for � = �0 otherwise.  (22)

Fig. 2  Correlation kernel. Please refer to the online version for colour figures
(a) Covariance matrix of the parameters �Corr, (b) Regularisation matrix �Corr, (c) Filter matrix �Corr, for � = 20, and for specific values � = 1, �2 = 1 and � = 0.8. The colour map
should be read as follows: green: zero values, (darker) red: (larger) positive values, (darker) blue: (larger) negative values, (d) Magnitude (in dB) of the frequency response of the
rows of the filter matrix �Corr
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Again, in the expression for �Dec the value of �2 is set equal to 1 to
simplify the notation.

The structure of matrices �Dec, �Dec and �Dec is shown in Fig. 3,
together with the frequency response of the different rows. 

Since each row of the filtering matrix contains only a
coefficient ( �−�/2, which increases for higher values of �), each
frequency response is a constant gain factor, with higher gain for
rows with increasing number, i.e. higher gain towards the tail of the
impulse response (last coefficients in �). This means that the
coefficients at the tail of the impulse response are more heavily
penalised than the coefficients at the beginning of the impulse
response (i.e. the exponential decay property is imposed).

4.3 Smoothness and decay

Having studied the two different properties (smoothness and decay)
separately in the previous parts of this section, let us now combine
the knowledge gathered so far, to analyse the widely used DC and
TC kernels [4] using the proposed filtering interpretation.

Let us consider the DC kernel in (7).
Given (6) and (7), the regularisation matrix �DC can be

analytically computed as

�DC(�, �) = �2� ����(�+ �)/2(1 − �2) (23)

where

��� = 1 + �2 for � = �, 1 < � < �1 for � = � = 1 and � = � = �−� for  � − � = 10 otherwise.  (24)

The filter matrix is computed as the Cholesky decomposition of�DC:
�DC(�, �) =

1��(1 − �2) for � = �, � < �1�� for � = � = �− �2��+ 1(1 − �2) for � = � − 10 otherwise. 
(25)

Again, � and �2 are set equal to 1 to simplify the notation.
As already mentioned in Section 3.1, if one chooses � = �,

the TC kernel in (8) is obtained.
The corresponding regularisation matrix �TC therefore becomes:

�TC(�, �) = �2� ����(�+ �)/2(1 − �) (26)

where

��� = 1 + � for � = �, 1 < � < �1 for � = � = 1 and � = � = �− � for  � − � = 10 otherwise  (27)

and its Cholesky decomposition is

Fig. 3  Decay kernel. Please refer to the online version for colour figures
(a) Covariance matrix of the parameters �Dec, (b) Regularisation matrix �Dec, (c) Filter matrix �Dec, for � = 20, and for specific values �2 = 1 and � = 0.8. The colour map should
be read as follows: green: zero values, (darker) red: (larger) positive values, (darker) blue: (larger) negative values, (d) Magnitude (in dB) of the frequency response of the rows of the
filter matrix �Dec. To simplify the plot, only the odd-numbered rows are considered. A darker line is used to indicate rows with increasing number
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�TC(�, �) =
1��(1 − �) for � = �, � < �1�� for � = � = �− 1��(1 − �) for � = � − 10 otherwise 

(28)

with � and �2 equal to 1.
Note that analogous analytical expressions for the inverse of�TC, here denoted �TC, and for the factorisation of �TC were also

independently derived in [14, 15], where maximum entropy
properties of TC and DC kernels are discussed and such a
factorisation is used to reduce the computational complexity of the
estimation algorithm.

The structure of matrices �TC, �TC and �TC is shown in Fig. 4. 
For the sake of simplicity here we will address only the TC

kernel example, but all the following considerations can of course
be generalised to the DC kernel case.

Fig. 4d shows the frequency response of each row in �TC.
One can observe the high-pass nature of the filtering and a

higher gain of the response for rows with increasing number. As
already discussed above, this can be seen as a reformulation in the
dual domain of the filter-based interpretation of the two properties
(smoothness and the exponential decay) included in the Bayesian
framework by specifying the TC kernel parametrisation.

By relying on this alternative interpretation, it becomes possible
to define the regularisation problem in an intuitive way, by
injecting prior information about the system directly at the cost
function level. Thanks to this approach, a unified framework is
developed to deal quite easily with low-pass, high-pass, band-pass
systems and systems with one or multiple resonances, as will be
shown in the next sections.

5 Solving regularisation problems via the filter-
based method
From (5) and (9), it follows that, once the filter matrix � is defined,
one can directly obtain the regularised solution:�̂reg = (ΦTΦ+ ��T�)−1ΦT� . (29)

The formulation of � will typically depend on a number of
hyperparameters that need to be optimised by the user, together
with the scaling factor �, possibly in an automated way.

5.1 Building the regularisation filter matrix �
To be able to accurately model the impulse response of different
type of linear systems, it seems appealing to include in �
information about the frequency band of the system. On the other
hand, when dealing with stable systems, the decaying nature of the
impulse response should also be encoded in �. The idea here is to
construct � in a flexible way to allow for different system
properties, and to tune the hyperparameters in a separate
optimisation step to validate these properties on the available
input–output data (similar to what is already done in kernel-based
regularisation).

Following the intuitive explanation in Section 4, every row of �
should contain filter coefficients that operate on �. Let us denote
by � the order of this regularisation filter, chosen such that � < �
holds, to guarantee that the � + 1 filter coefficients can be included
in the �-dimensional rows of �. This constraint does not constitute
a limitation for the algorithm, since � is typically chosen to be
large enough.

Given two cut-off frequencies �1 and �2, with �1 < �2, and the
filter order �, determine the � + 1 filter coefficients �0, …, ��, e.g.
by using the MATLAB fir1 function (note that many other ways
of designing a suitable filter can be used). Note also that the choice

Fig. 4  TC kernel. Please refer to the online version for colour figures
(a) Covariance matrix of the parameters �TC, (b) Regularisation matrix �TC, (c) Filter matrix �TC, for � = 20, and for specific values � = 1, �2 = 1 and � = 0.8. The colour map
should be read as follows: green: zero values, (darker) red: (larger) positive values, (darker) blue: (larger) negative values, (d) Magnitude (in dB) of the frequency response of the
rows of the filter matrix �TC. To simplify the plot, only the odd-numbered rows are considered. A darker line is used to indicate rows with increasing number
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of using two cut-off frequencies allows us to deal in a
straightforward way with low-pass, high-pass and band-pass
systems.

Once the coefficients �0, …, �� are obtained, the filter matrix � is
built as

� =
�−1/2�0 ⋯ �−1/2�� 0 ⋯ 00 �−1�0 ⋯ �−1�� 0 ⋮⋮ ⋱ ⋱ ⋱ ⋱ 0⋮ ⋱ 0 �−(�− �)/2�0 ⋯ �−(�− �)/2��⋮ ⋱ ⋱ ⋱ ⋱ ⋮0 ⋯ ⋯ ⋯ 0 �−�/2�0

.
(30)

Note that to include the exponential decay component, the �th row
of � is scaled with �−�/2, 0 ≤ � ≤ 1. In this way, filters associated
with rows with higher number will have higher gain, i.e. � values
at the tail of the impulse response will be penalised more.

The filter order �, the two cut-off frequencies �1 and �2, the
decay parameter � and the scaling factor � are hyperparameters
that need to be optimised, as explained in the next section.

To understand how the filter matrix � can be built in the special
case of resonance systems with multiple resonances, the reader is
referred to the discussion in Section 6.2.

It is important to stress that the characteristic of the filter used
to build � needs to be the inverse of the assumed system's
behavior. This is due to the fact that the frequency components
outside the band of the system need to be penalised in the cost
function, while only the frequency components inside the band of
the system should be present in the estimated impulse response. An
example of this is illustrated in Fig. 5, where to model a band-pass
system a band-stop filter is used to construct �. 

As a reference, note that the rows of the filter matrices �DC and�TC corresponding to the DC and TC kernels (see (25) and (28))
represent first-order filters ( � = 1) with coefficients determined by
the hyperparameters � and �. The proposed filter-based method
allows thus for higher flexibility than the existing approach.

An extension of the stable spline kernels was already introduced
in [9]. However, the main difference with respect to that work is
that here the definition of the filter matrix is done at the cost
function level, while in [9] a finite-dimensional component was
added directly to the kernel (i.e. the inverse of the regularisation
matrix). The reason for this was that in that paper the high-
frequency poles were introduced to capture oscillations due to the
ARMAX noise model. On the other hand, in the approach
presented in this paper the flexibility allowed by the definition of
the filter matrix results in a more general method to include in a
natural way different system properties in the regularisation
approach.

5.2 Tuning the hyperparameters

Tuning the hyperparameters that characterise � is a critical step,
which can affect the performance of the algorithm. The
hyperparameters are typically optimised based on the available
data, to match the properties of the system as accurately as
possible.

In the kernel-based approach, the hyperparameters are tuned on
the estimation data by exploiting the Bayesian framework, in
particular by using the robust marginal likelihood maximisation
method (known as empirical Bayes) [11].

However, since in this work an alternative formulation of the
estimation problem is considered, the hyperparameters are
optimised following a different procedure.

Let � = [�, �1, �2, �, �] be the hyperparameter vector (see
Section 5.1 for the details). Here � is tuned by minimising the �-
fold cross-validation mean square error (MSE) [16]. A simple grid
search in the � space can be considered for the optimisation, or,
alternatively, more sophisticated non-linear optimisation
algorithms can be employed. One could for instance choose to
perform first a fast scan on a coarse grid of values, and then run a
non-linear optimisation algorithm scanning the full hyperparameter
space, starting from the initial values found at the previous step.

The cost function evaluation at each grid search step has
computational complexity �(�3), which is comparable with the
complexity required by each step in the non-linear optimisation
routine for the kernel-based methods, see [11]. The total
complexity of the filter-based approach in its current
implementation depends on the number of points on the
hyperparameter grid for which the cost function is evaluated.

Note that the dimension of the hyperparameter vector for the
DC and TC kernels in (7) and (8) is 4 and 3, respectively, including�2 that typically also needs to be estimated from data. This means
that in the filter-based approach one or two additional
hyperparameters need to be estimated. This additional
computational load is compensated by the higher flexibility offered
by the proposed approach in the design of the filter matrix �, while
it should be noted that the coefficients in �DC and �TC in (25) and
(28) correspond only to a first order filter. Moreover, the direct link
of some hyperparameters with physical properties of the system
(e.g. the cut-off frequencies �1 and �2) makes it easier for the user
to tune their values, and to include prior knowledge, if available.

Note finally that the proposed filter-based method still need to
be fine-tuned. Therefore, although the examples tested in the next
section suggest that the proposed approach is successful in
estimating accurate models, the implementation of the
hyperparameter tuning could still be improved. Moreover, the
possibility of considering non-causal filters to design the matrix �
could also be investigated.

6 Simulation results
6.1 Low-pass, band-pass and high-pass systems

6.1.1 Settings.: The following modelling task is considered:
based on a set of input–output data, find an impulse response
estimate describing the underlying system's behavior as accurately
as possible.

The systems considered in the examples are Chebyshev type 1
filters

Fig. 5  Band-pass system modelling example. Magnitude (in dB) of the
frequency response of the true system (dashed black line), and of a filter
with order 30 used to build matrix � (solid blue line). Note that the filter
content in � needs to compensate for the system behavior, since it appears
in the cost function as a penalty term
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�(�) = �0+ �1�−1+⋯+ ����−��1 + �1�−1+⋯+ ����−��
with 1 dB peak-to-peak ripple in the passband and frequency band
(normalised with respect to the sampling frequency) as detailed
below. The coefficient vectors � and � are obtained running the
MATLAB command cheby1. The FIR model order � is fixed
equal to 100, which is sufficiently large to approximate the true
system response in all cases.

The five different systems under test are:

• a second-order low-pass system with normalised frequency band[0 0.05];
• three-fourth-order band-pass systems with different normalised

frequency band: [0.1 0.15], [0.225 0.275] and [0.35 0.4];
• a second-order high-pass system with normalised frequency

band [0.45 0.5].
The excitation signal is a white Gaussian noise sequence (with zero
mean and unit standard deviation) of length � = 250. The output
is corrupted by white Gaussian noise (with zero mean and standard
deviation equal to 0.1), resulting in a typical SNR of 11 dB. A
Monte Carlo simulation with 100 different input and noise
realisations is performed. At each Monte Carlo run, the procedure
explained in Section 5 is used to estimate the filter-based model
(29). The least squares estimate (3), and the kernel-based
regularised estimates (5) with the DC and TC kernels in (7) and (8)
are also computed.

The kernel-based solutions are obtained with the arxRegul
function with the standard settings in the R2013b version of the
MATLAB System Identification Toolbox [17].

For the filter-based approach, the hyperparameters are tuned by
minimising the two-fold cross validation MSE (i.e. using only the
available 250 estimation data), with a grid search procedure to scan
different values of the regularisation filter order � (ranging from 2
to 30), the normalised cut-off frequencies �1 and �2 (from 0 to 0.5),
the scaling factor � (from 1 to 500) and the decay parameter �
(from 0.7 to 0.9).

The performance of the estimated models is evaluated in terms
of MSE on a very long noiseless validation set ( �val = 10000) as
follows:

MSEval = 1�val ∑� = 1
�val (�val(�) − �̂val(�))2, (31)

where �̂val denotes the modelled validation output.

Since the system is excited with white Gaussian noise, this
criterion is equivalent to the fit of the estimated impulse response
with respect to the true system response, given that

�{MSEval} = ��2 ∑� = 0
� − 1 (��− �̂�)2, (32)

where �{ ⋅ } is the expected value w.r.t. the validation input and ��
is the validation input standard deviation (in this case equal to 1).

6.1.2 Results.: Figs. 6 and 7 show a comparison between the
performance of the models estimated by means of the proposed
filter-based regularisation approach, and the results of the kernel-
based methods. 

All results obtained with the standard least squares approach are
much worse than for the regularised solutions, and are therefore
omitted to improve the readability of the figures. More precisely,
the median of the MSE values for the least squares solution is in all
cases between 0.008 and 0.009, which is 7–15 times higher than
for the proposed approach.

The filter-based approach yields better results (up to two times
lower values for the median MSE) than the TC and the DC kernel
regularisation in all the considered examples. This can be observed
from the boxplots of the MSE values and can also be appreciated
by considering the results for the single Monte Carlo runs. Table 1
reports the percentage values of times in which the filter-based
approach outperforms the TC and DC kernels. Note that the results
obtained with the TC and DC kernels can still be considered
satisfactory since they yield a considerable improvement when
compared with the least squares solution. However, the gain in
performance given by the filter-based regularisation reflects the
flexibility of this approach in dealing with a variety of different
systems. 

The filter-based regularisation gives particularly accurate
estimates of the impulse response in the band-pass and high-pass
examples, but the results are satisfactory also in the low-pass case.

Moreover, it is observed that the selected cut-off frequencies �1
and �2 correspond to the system frequency band in the different
examples. The selected regularisation filter order � also guarantees
the appropriate gain in the band of interest.

These promising results might even be further improved by
implementing a more sophisticated hyperparameter tuning and
filter design strategy, as mentioned in Section 5.2. Note that the
(very few) bad outliers in the boxplot of the errors obtained with
the filter-based approach in the low-pass and in the high-pass cases
are due to a wrong choice of the hyperparameters, and could
therefore be avoided with an improved hyperparameter
optimisation.

Fig. 6  Low-pass and high-pass system examples
(a) Low-pass system (normalised frequency band [0 0.05]) and, (b) High-pass system (normalised frequency band [0.45 0.5]) modelling results. Comparison of the noiseless
validation MSE values ( �val = 10000) for different methods: kernel-based regularisation with TC kernel, with DC kernel, and filter-based approach. For each method, the boxplot
of the MSE values for 100 Monte Carlo realisations is shown

 

IET Control Theory Appl., 2017, Vol. 11 Iss. 2, pp. 194-204
© The Institution of Engineering and Technology 2016

201



6.2 Resonance systems

6.2.1 Settings.: For the resonance systems examples, the settings
are as detailed in Section 6.1.1. A few differences are listed below.

Three different systems are considered:

• one resonance: a second-order resonance system with
normalised frequency band [0.145 0.15];

• two resonances (one dominant): sum of two second-order
resonance systems with normalised frequency bands[0.145 0.15] and [0.395 0.4], respectively. The amplitude of the
first resonance system is scaled with a factor 0.2;

• two resonances: sum of two second-order resonance systems
with normalised frequency bands [0.145 0.15] and [0.395 0.4],
respectively (equal amplitude).

For an illustration of the frequency characteristics, the magnitude
of the three considered resonance systems is plotted in the left plots
of Fig. 8. 

During the grid search procedure for the tuning of the
hyperparameters, the same values for �, �1, �2 and � as in Section
6.1.1 are scanned, while values of the decay parameter � are
considered in the range 0.85– 0.95.

6.2.2 Results.: The results obtained with the filter-based
regularisation on the resonance systems identification examples are
shown in Fig. 8, and compared with the performance of the TC and
DC kernel methods.

In the first two cases (one resonance and two resonances of
which one dominant), the filter-based approach clearly outperforms
the kernel-based regularisation.

The third example (two resonances, equal amplitude) is much
more challenging, since the original version of the algorithm does
not allow one to select multiple frequency bands (only two cut-off
frequencies �1 and �2 are considered in the hyperparameter set).
However, even in this case, a small improvement of the standard
filter-based approach can be appreciated in the bottom right plot in
Fig. 8, in comparison with the TC and DC kernel methods.

To obtain a significant decrease of the error values also in this
third example, the algorithm has been modified as follows: instead
of scanning different values of �1 and �2 and select the optimal
ones to build the filter matrix �, a ‘tailored’ filter (with as many
frequency bands as needed) is designed, and its coefficients are
used in the rows of �. This can be realised e.g. using information
from the output spectrum, which gives some ideas about the
characteristics of the system, at least in the case of a white input
signal. The filter order � can still be tuned during the grid search
selection, together with the other hyperparameters.

This results in the fourth boxplot in the bottom right plot of Fig.
8 (tailored filter regularisation). The modified version of the filter-
based regularisation is of course less flexible than the original
approach, and requires additional prior knowledge from the user.
However, in the examples we considered, it turned out that an
approximate guess of the system characteristics is sufficient to
obtain very accurate models. More in details, for the two resonance
systems in the bottom left plot of Fig. 8, it was sufficient to build
the filter by imposing a band-stop behaviour in the normalised
frequency bands [0.1 0.2] and [0.35 0.45], i.e. the inverse of the
assumed system's behavior.

The results on this last example illustrate once more one of the
main ideas behind the proposed approach, namely the possibility to
include in the identification problem any prior knowledge about the
system properties in an intuitive way from an engineering point of
view.

7 Conclusions
In this paper, regularisation methods for impulse response
modelling are studied from an alternative perspective. The filter-
interpretation ideas presented in this work allow one to get more
insight about the existing kernel techniques from an engineering
point of view. Moreover, they are exploited to design a new user-
friendly filter-based regularisation method, by including prior
knowledge about the system's properties directly at the cost
function level.

The effectiveness of the proposed approach is illustrated by
means of Monte Carlo simulations on different modelling

Fig. 7  Band-pass system modelling results (normalised frequency band[0.1 0.15] (top), [0.225 0.275] (middle), [0.35 0.4] (bottom)). Comparison
of the noiseless validation MSE values ( �val = 10000) for different
methods: kernel-based regularisation with TC kernel, with DC kernel, and
filter-based approach. For each method, the boxplot of the MSE values for
100 Monte Carlo realisations is shown

 

Table 1 Percentage values of the amount of Monte Carlo
runs in which the proposed filter-based approach
outperforms (lower noiseless validation MSE) the TC and the
DC kernel-based solutions
Kernel Low Band 1 Band 2 Band 3 High
TC 70 95 97 98 94
DC 67 94 98 91 76
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examples. The filter-based approach outperforms the standard least
squares method and the existing kernel-based regularisation
approaches in all the considered examples, and establishes a
unified framework to deal in an intuitive way with low-pass, band-
pass, high-pass systems, and resonance systems.

Future research steps include the improvement of the hyper-
parameter tuning procedure, which represents a crucial step in the
estimation. Efforts in this direction could lead to even better
performance of the filter-based regularisation approach. Moreover,
the filter design step could also be improved, e.g. by considering,
in addition to what done so far, the possibility to use non-causal
filters to build the matrix �.
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