
Chapter 6
Massive Electric Vehicle Charging Involving
Renewable Energy

6.1 Introduction

In the world today, fossil fuels are the dominant energy sources for both transporta-
tion sector and electricity generation industry. Statistics show that transportation and
electricity generation account for over 60% of global primary energy demands [1].
The future solution for the fossil fuels scarcity, as well as the growing environmental
problems associated with their wide usage, will most likely involve an extensive use
of electric vehicles (EVs) and adopting renewable energy sources for electric energy
production [2]. Under such cases, renewable energy supplied EV charging is becom-
ing a popular approach for greener and more efficient energy usage. Since EVs have
controllable charging rate, they can be considered as flexible loads in grid system
which can benefit the grid system with demand response or load following. Accord-
ingly, charging scheduling of EVs in the presence of renewable energy becomes a
practical and important research problem.

A number of technical and regulatory issues, however, have to be resolved before
renewable energy supplied EV charging becomes a commonplace. The arrival of
EVs and their required energy amount may appear to be random, which increases
the demand-side uncertainties. In addition, while renewable energy offers a cheaper
and cleaner energy supply, it imposes great challenges to the stability and safety
of the charging system because of its high inter-temporal variation and limited pre-
dictability. Therefore, the stochastic characteristics of bothEVsand renewable energy
sources should be carefully considered. Standby generators, back-up energy suppli-
ers, or bulk energy storage systems may be necessary to alleviate the unbalancing
issue caused by renewable energy fluctuation, which results in extra cost. In order to
minimize the cost for obtaining extra energy and to increase energy efficiency, a flexi-
ble and efficient EV charging mechanism has to be properly designed to dynamically
coordinate the renewable energy generation and energy demands of EVs.

In this chapter, we consider charging scheduling of a large number of EVs at a
charging station which is equipped with renewable energy generation devices. The
charging station can also obtain energy through controllable generators or buying
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energy from outside power grid. Stimulated by the fact that in practical scenario, EV
arrival and renewable energy may not follow any determinate process yet obtaining
some statistical information of future EVs’ arrivals (departures) is possible, we pro-
pose a novel two-stage EV charging mechanism to reduce the cost and efficiently
utilize renewable energy. Several uncertain quantities such as the arrival and depar-
ture time of the EVs, their charging requirements and available renewable energies
are all taken into account. In addition, the mechanism allows more information of
EV arrivals (departures) and renewable energy generation to be effectively incorpo-
rated into the charging mechanism when such information is available. The main
contributions of this chapter can be briefly summarized as follows:

• A day-ahead cost minimization problem is formulated and solved based on the
available prediction of future renewable energy generation and EVs’ arrivals
(departures) to determine the amount of energy generated or imported in a day-
ahead manner.

• We propose a real-time EV charging and power regulation scheme based on the
planned energy generation day-ahead to determine the charging rate of each vehicle
and power output adjustments in a dynamic and flexible manner.

• We develop a fast charging rate compression (CRC) algorithm which significantly
reduces the complexity of solving the real-time EV charging scheduling problem.
The proposed algorithm supports real-time operations and enables the large-scale
small-step scheduling more efficiently.

• We further extend our mechanism to be applicable to two practical scenarios: (1)
the charging station needs to track a given load profile; and (2) the EVs only have
discrete charging rates.

Simulation results indicate that our proposed two-stage EV charging mechanism
can effectively reduce the system expenditure and peak-to-average ratio (PAR).
Moreover, the proposed mechanism enhances the system fault tolerance against
renewable energy uncertainties and the noises of real-time data. Note that the pro-
posed charging scheme adopts a universal methodology which is not restricted to the
specific data traces used in the paper: as long as the renewable energy generation data
and EVs pattern data (including EVs battery level, desired charging amount, charg-
ing speed, and arrival/departure times) can be obtained, the proposed EV charging
scheduling scheme can be implemented with virtually no change.

The remainder of this chapter is organized as follows: Sect. 6.2 introduces the
problem formulation and two-stage decision-making process. In Sect. 6.3, we present
the fast charging compression algorithm. The simulation results and discussions are
presented in Sect. 6.4. An extension of the proposed chargingmechanism is discussed
in Sect. 6.5. Finally, we conclude this chapter in Sect. 6.6.
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6.2 Two-Stage Decision-Making Model and Problem
Formulation

6.2.1 Two-Stage Decision-Making Model

As shown in Fig. 6.1, we consider a charging park where an intelligent controller
is responsible for the charging scheduling of a large number of EVs. To meet the
EVs’ energy demands, the intelligent controller (1) acquires electricity from either
controllable energy plants (a dedicated power supply [2]) or central power grid;
and (2) harvests the renewable energy from local solar panels or wind turbines.
Considering the practice of energy acquisition from controllable generators or power
grid and the limited predictability of renewable energy,we propose a two-stagemodel
for decisionmaking as shown in Fig. 6.2. Specifically, at the first stage, we divide time
into discrete time slots with equal length.1 The preliminary energy acquisition profile
Ẽc(h) and energy transfer factor α(h) are determined day-ahead before dispatch
based on the estimated EV energy demand Ẽv(h) and renewable energy generation
Ẽr (h), where h ∈ H is the time slot index andH is the set of time slots in day-ahead
scale. Note that Ẽv(h) is computed through the EVs’ arriving and departing pattern
predictions. On the other hand, the supply of renewable power Pr (t) and EVs’ real
power demand Pv(t) at time t can only be known in real time, which requires the
real-time control to balance the power supply and demand at the second stage (real-
time stage) if necessary. Hence during the real-time EV charging scheduling, we try
to obtain the proper EVs’ charging rates Vi (t) and real-time power acquisition Pc(t)
given the real-time renewable power generation Pr (t), EVs’ real-timeparkingprofiles
and day-ahead dispatched acquired power P̃c(t) (determined in the first stage). Note
that for the first stage, the decisionmaking is done one time day-ahead. For the second
stage, it is done more frequently in real time, i.e., as long as the renewable power
generation or the parking states change, the EVs’ charging decision coordinates
accordingly. Table6.1 lists the main notations to be used in the rest of this chapter.

6.2.2 Modeling System Uncertainties

It can be noticed that the intelligent charging operation involves several uncertain
quantities including power available from the renewable energy system, the EVs’
arrival and departure time, and their required charging amount. These quantities
are crucial parameters for managing the energy generation and consumption of the
system. Although these quantities are random, there are good reasons to expect that

1For the day-ahead energy generation scheduling, the length of one time slot usually varies between
5 and 30min (as indicated in p. 149, Ref. [3]). Typically, a smaller slot duration enables the energy
generation scheduling more flexible; meanwhile it to a certain level complicated the computation
process. The specific suitable time slot length depends on the scale of the charging system and
accuracy of the demand and load predictions.
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Fig. 6.1 The architecture of the EV charging station

Fig. 6.2 Illustration of two-stage decision-making model. First stage (day-ahead): the decision
variables are acquisition profile Ẽc(h) and energy transfer factor α(h). Second stage (real-time):
the decision variables are the charging speeds of EVs Vi (t)
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Table 6.1 Notations used in this Chapter

Symbol Definition

H Set of time slots in day-ahead scale, |H| = H

h Element in H, time slot index in day-ahead scheduling

t Time index in the real-time scheduling

Ẽc(h) Predetermined energy acquisition at time slot h

Ẽv(h) Estimated EV energy demand at time slot h

P̃v(t) Estimated EV power demand at time t

Ẽr (h) Estimated renewable energy generation at time slot h

T Length of one time slot

α(h) Energy transfer factor at time slot h

M(t) The number of EVs in the charging park at time t

wi (t) Priority factor of EV i at time t

Vimax The maximum charging rate of EV i

Vimin The minimum charging rate of EV i

Vi (t) Charging rate of vehicle i at time t

Vd (t) The desired total charging demand at time t

Pr (t) Renewable power realization at time t

Pc(t) Power generated or imported in real-time

� The set of charging tasks whose charging rates can vary

�S The set of charging tasks whose charging rates are fixed to maximum

τi Charging task of EV i .

some statistical information may be obtained through accumulation of historical
records. For example, the average energy generated by the renewable energy sources
at each time slot can be estimated in a day-ahead manner based on the historical
data and the weather forecast; inspecting a large number of samples of EVs’ arrival
and departure time, a probability distribution trend can be envisioned. We assume
that the parking lot can roughly estimate the following parameters day-ahead: EVs
arrival time distribution f A(x), departure time distribution fD(x), the total number
of EVs being charged in a day N̄ , and the average charging rate of an EV μv . In this
case, the estimated power (energy density) demand at time t can be expressed as:

P̃v(t) =
∫ t

0

(
f A(x) − fD(x)

)
dx · N̄ · μv, (6.1)

and the estimated energy demand during time slot h is:

Ẽv(h) =
∫ h

h−1
P̃v(t)dt, ∀h ∈ H. (6.2)
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6.2.3 Day-Ahead Energy Acquisition Scheduling

The intelligent controller will firstly decide how much energy needs to be generated
or imported in a day-ahead manner to minimize the expected energy acquisition cost
while fulfilling the energy demand of EV charging station. The day-ahead energy
acquisition scheduling problem can be formulated as:

min
Ẽc(h),α(h)

H∑
h=1

Ch
(
Ẽc(h)

)
(6.3)

s.t. Ẽc(h) + Ẽr (h) ≥ Ẽv(h) · α(h) (6.4)
H∑

h=1

Ẽv(h) · α(h) =
H∑

h=1

Ẽv(h) (6.5)

αL ≤ α(h) ≤ αU ,∀h ∈ H, (6.6)

where Ch(·) is the cost function of the electricity acquisition for the charging station,
which is assumed to be an increasing convex function. The convex property reflects
the fact that each additional unit of power needed to serve the demands is provided
at a non-decreasing cost. Example cases include the quadratic cost function [4, 5]
and the piecewise linear cost function [6, 7]. Without loss of generality, we consider
quadratic cost function throughout this chapter. As to the renewable energy cost, for
typical renewable energies (e.g., solar and wind energy), capital cost dominates. The
operation and maintenance costs are typically very low or even negligible [8, 9]. In
this chapter, it is assumed that the renewable energy generators such as solar panels
and wind turbines have already been installed, and the marginal cost of renewable
energy can be neglected, leading to its omission in the objective function [10]. Due
to the flexibility of EVs’ charging tasks, it is possible to shift some energy demand
to other time slots to achieve the demand response target and reduce the total cost.
α(h) > 0 is an energy transfer factor, and 1 − α(h) controls the portion of demand
at time slot h shifted to other time slots. If α(h) > 1, energy demand from other time
slots is transferred to time slot h, whereas ifα(h) < 1, the energy demand in time slot
h is shifted to other time slots. Note thatα(h) can vary within its lower bound αL and
upper bound αU . Constraint (6.4) is the load balance constraint, simply indicating
that energy in each time slot should be balanced. Constraint (6.5) reveals the fact that
the total energy required from EVs during a day remains unchanged, i.e., demand
only transfers between time slots.

6.2.4 Real-Time Power Regulation and Elastic EV Charging

It is assumed that a two-way communication infrastructure (e.g., a local area network
(LAN)) is available between the intelligent controller andvehicles.When anEVplugs
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in, it informs the intelligent controller its unplug time, desired charging amount,
maximum and minimum allowable charging rates. Also, it is assumed that the EV
owners are rational, so that the desired charging amountwill not exceed themaximum
charging capacity of vehicle during its parking period. In other words, if the vehicle
is charged at its maximum speed during the entire parking period, it can definitely
reach the preset desired battery level. For the real-time operation, the intelligent
controller has two tasks. First, given the real renewable generation and EVs’ charging
requirements, it has to determine a proper charging rate for each EV to achieve the
optimal utilization of renewable energy and finish the charging tasks before EVs’
departures. Second, the total acquired power should be properly regulated around the
predetermined generation profile in real-time to match the fluctuant power demand,
i.e., demand and supply should be balanced at any time instance.

From the standpoint of EV owners, it is desirable to reduce their EVs’ charging
time. For example, decreasing the charging time provides more flexibility for the
owners to leave the charging station earlier. This objective can be captured by the
constrained optimization problem as follows:

min
Vi (t)

∑
τi∈�

wi (t)
(
Vimax − Vi (t)

)2
, (6.7)

s.t.
∑
τi∈�

Vi (t) +
∑
τi∈�S

Vimax ≤ Vd(t), (6.8)

Vi (t) ≥ Vimin ∀τi ∈ �, (6.9)

Vi (t) ≤ Vimax ∀τi ∈ �. (6.10)

In (6.7), decision variable is Vi (t) which is the charging speed of EV i to be deter-
mined at time t . τi represents the charging task of vehicle i . Parameter wi (t) ≥ 0
is a priority factor which reflects the urgent degree of a charging task. More urgent
tasks would have larger wi (t). Without loss of generality, wi (t) can be determined
dynamically according to the state of the EV, which is defined as follows:

wi (t) = Er
i

T d
i − t

, ∀τi ∈ �, (6.11)

where Er
i is the amount of remaining requested energy for charging and T d

i is EV
i’s departure time. Equation (6.11) indicates that urgent charging tasks will have a
higher priority factor so as to be charged faster. This is to ensure that EVs depart with
desired battery level.wi also denotes the average charging rate EV i needs to finish the
charging task τi on time. Vimax is themaximumcharging rate (i.e., the desired charging
rate) of EV i . Vimin is the minimum allowable charging rate of EV i . At any time t ,
the charging tasks can be first classified into two categories: � is the set of charging
tasks whose charging rate can vary, i.e., � = {τi | wi (t) < Vimax }. �S denotes the set
of charging tasks whose charging rates have to be fixed at the maximum charging
rates because of the urgent charging time, i.e., �S = {τi | wi (t) = Vimax }. Note that
elements in � and �S may vary with time and for τi ∈ �, Vi ≤ Vimax , for τi ∈ �S ,
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Vi = Vimax . This EV classification approach ensures that all the EVs depart with
satisfactory charging amount. Vd(t) is the desired total charging demand at time t .
The way to set Vd(t) will be introduced later.

Notice that constraint (6.8) simply states the schedulability condition, and the
rest of the constraints bound the charging rates. Due to EVs’ arrivals and departures,
the system is dynamic and the number of vehicles and their charging requirements
will change over time. Therefore, the intelligent controller can solve problem (6.7)–
(6.10) to obtain the charging rate for each EV at time t . When the renewable power
realization changes, or an EV’s status changes (τi changes from � to �S) or a vehicle
enters or departs the system, the intelligent controller will update �, �S , and Vd(t) in
real time and then redo the calculation. Next, we will show how to determine Vd(t)
to optimally utilize the renewable energy.

Let P̃c(t) = Ẽc(h)

T denote the dispatched acquired power (i.e., the day-ahead pre-
scheduled power generation) at time t , where T is the length of a time slot, and Pr (t)
denote the renewable generation realization at time t . Then, Vd(t) can be defined as
follows:

• If
∑

τi∈� Vimin+
∑

τi∈�S
Vimax > P̃c(t)+Pr (t), then Vd(t) = ∑

τi∈� Vimin + ∑
τi∈�S

Vimax , Pc(t) = Vd(t) − Pr (t), Pc(t) is the acquired power in real time. This is for
the case where the renewable energy generation is very low, i.e., even though all
the controllable EVs (EVs that belong to set�) charge at their minimum allowable
charging rates, the demand is still higher than the available supply. Therefore, up
regulation is required to guarantee the power balancing, i.e., more energy has to
be imported, either by raising up the output level of fast-response generators or
buying more electricity from ancillary service markets.

• If
∑

τi∈� Vimin + ∑
τi∈�S

Vimax ≤ P̃c(t) + Pr (t) ≤ ∑
τi∈�∪�S

Vimax , then Vd(t) =
P̃c(t) + Pr (t) and Pc(t) = P̃c(t). This investigates the scenario where the renew-
able energy generation deviates not far from the previous prediction, i.e., the power
demand of EVs can be adjusted to match the available supply. This represents
the most common situation the charging system encounters. Under such case, the
power demand of controllable EVs can be adjusted tomatch the supply, thus power
acquisition profile does not need to be changed and is equal to the dispatched load
determined day-ahead.

• If
∑

τi∈�∪�S
Vimax < Pr (t) + P̃c(t), then Vd(t) = ∑

τi∈�∪�S
Vimax and Pc(t) =∑

τi∈�∪�S
Vimax − Pr (t). This corresponds to the case where the renewable energy

generation is plenty enough that even the highest charging demand can be satisfied,
i.e., although all the EVs charge at the maximum charging rates, available power
still exceeds. In this case, down regulation is required to make sure that power is
balanced, i.e., the intelligent controller can reduce the acquired power level or sell
the extra power out and only compensate the mismatch between the maximum
charging demand and the renewable energy output.

Remark In day-ahead energy acquisition scheduling, the intelligent controller aims
at minimizing the expected cost of the charging park given the estimated renew-
able energy supply Ẽr (h) and EVs’ energy demand Ẽv(h), h ∈ H. Decision variable
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Ẽc(h) is the scheduled electricity to be brought fromday-ahead energymarket or gen-
erated by base-load plants. In real-time power regulation, system reliability and EVs’
charging requirements become themain concerns. The aforementioned up/down reg-
ulation is provided by ancillary service markets or fast-response generators [11].

6.3 The Charging Rate Compression Algorithm

The problems (6.7)–(6.10) belongs to the category of convex quadratic programs and
can be solved in polynomial time. Many commercial optimization solvers includ-
ing CPLEX, Mosek, FortMP, and Gurobi can be utilized to solve such problems.
However, solving such a problem using quadratic program solver during run time
can be still too costly, especially when the number of EVs is large and the response
time has to be very short so as to quickly respond to EVs. What makes the above
formulation attractive is that a charging rate compression (CRC) algorithm can be
proposed such that the problem solving can be extremely fast. We first develop the
CRC algorithm and then introduce a lemma and a theorem to prove that it can solve
the problems (6.7)–(6.10).

At each time instance t , the set � of charging tasks can be further divided into
two subsets: a set � f of charging tasks with the minimum charging rate and a set �v

of charging tasks whose charging rate can still be compressed. Let V0 = ∑
i∈� Vimax

be the maximum power level of the charging task set �, Vv0 be the sum of maximum
charging rates of charging tasks in �v , and V f be the sum of the charging rates of
charging tasks in � f . To achieve a desired power level Vd(t) < V0 + ∑

i∈�S
Vimax ,

each charging task has to be compressed up to the following charging rate:

∀τi ∈ �v, Vi = Vimax − (Vv0 − Vm(t) + V f )
Wv

wi
, (6.12)

where

Vm(t) = Vd(t) −
∑
τi∈�S

Vimax (6.13)

Vv0 =
∑
τi∈�v

Vimax (6.14)

V f =
∑
τi∈� f

Vimin (6.15)

Wv = 1∑
τ∈�v

1
wi

. (6.16)

If there exist charging taskswhere Vi < Vimin , then the charging rates of these vehicles
have to be fixed at their minimum value Vimin . Sets � f and �v have to be updated
(therefore, V f , Vv0 , and Wv have to be recomputed), and (6.12) is applied again to
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the charging tasks in �v . If a feasible solution exists, i.e., the desired power level
of the system is higher than or equal to the minimum power level

∑M(t)
i=1 Vimin , the

iterative process ends until each value computed by (6.12) is greater than or equal to
its corresponding minimum Vimin . The algorithm for compressing the charging rate
of a set � of EVs to a desired charging power level Vd(t) is shown in Algorithm 6.1.

Algorithm 6.1 Algorithm for compressing the charging rate for a charging task set
of � at time t .
Input: Vd (t), Vimin , Vimax , wi , ∀τi ∈ �.
Output: Vi , ∀τi ∈ �.
1: Begin
2: V0 = ∑

τi∈� Vimax ;
3: Vmin = ∑

τi∈� Vimin ;
4: Vm(t) = Vd (t) − ∑

τi∈�S
Vimax ;

5: if (Vm(t) < Vmin)
6: Return INFEASIBLE;
7: else
8: do {
9: � f = {τi |Vi = Vimin };
10: �v = � − � f ;
11: Vv0 = ∑

τi∈�v
Vimax ;

12: V f = ∑
τi∈� f

Vimin ;

13: Wv = 1∑
τ∈�v

1
wi

;

14: OK= 1;
15: for (each τi ∈ �v)
16: Vi = Vimax − (Vv0 − Vm(t) + V f )

Wv

wi
;

17: if (Vi < Vimin )
18: Vi = Vimin ;
19: OK= 0;
20: end if
21: end for
22: } while (OK== 0);
23: return FEASIBLE;
24: end if
25: End

Lemma 6.1 Given the constraint optimization problem as specified in (6.7)–(6.10)
and

∑
τi∈� Vimax > Vm(t), any solution, V ∗

i (t), to the problem must satisfy∑
τi∈� V ∗

i (t) = Vm(t) and V ∗
i (t) �= Vimax , for all τi ∈ �.

Theorem 6.1 Given the constraint optimizationproblemas specified in (6.7)–(6.10),∑
τi∈� Vimax > Vm(t), and

∑
τi∈� Vimin < Vm(t), let V̂ (t) = ∑

V ∗
i (t)�=Vimin

Vimax +∑
V ∗
i (t)=Vimin

Vimin . A solution is optimal if and only if

V ∗
i (t) = Vimax −

1
wi (t)

(V̂ (t) − Vm(t))∑
V ∗
j (t)�=Vjmin

(1/w j )
, (6.17)
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for V̂ (t) > Vm(t) and V ∗
i (t) > Vimin , and V ∗

i (t) = Vimin otherwise.

The proofs of Lemma 6.1 and Theorem 6.1 are given in the Appendix B. Based
on the previous lemma and theorem, we can draw the conclusion as follows:

Corollary 6.1 Consider the charging tasks of |� ∪ �S| EVs, where Vi (t) is the
charging rate of the i th vehicle. Let Vimax denote the initial desired charging rate
of charging task τi ∈ � ∪ �S and wi (t) be the set of priority factors. Let Vd(t) be
the desired power level of the system and

∑
τi∈� Vimax > Vm(t). The charging rate

Vi , τi ∈ �, obtained from Algorithm 6.1 minimizes

∑
τi∈�

wi (t)
(
Vimax − Vi (t)

)2

subject to the inequality constraints
∑

τi∈� Vi (t) + ∑
τi∈�S

Vimax ≤ Vd(t), Vi (t) ≥
Vimin , and Vi (t) ≤ Vimax for τi ∈ �.

Remark Through analysis, the time complexity of Algorithm 6.1 is O(n2), where
n is the number of tasks in �.

6.4 Simulation Results and Discussions

In this section, we present simulation results based on real-world traces for assessing
the performance of the proposed two-stage EV charging scheme.

6.4.1 Parameters and Settings

Weassume there are solar panels providing renewable energy for the charging station.
The area of the solar panels in the system is set to be 3.125 × 104 m2. The energy
conversion efficiency is 0.8. The solar radiation intensity statistic is adopted from
[12], from which we employ the solar radiation data of a typical day in winter
(17/01/2013). The data utilized for the day-ahead energy acquisition scheduling and
real-time EV charging are depicted in Fig. 6.3. Note that the predicted average solar
radiance utilized in the day-ahead energy generation scheduling is plotted in the blue
circled line, and the actual real-time solar radiance adopted in the real-time charging
is shown by the red curve. We envision the scenario that the charging station is
located at a workplace (e.g., a campus) that is active from 6:00 AM to 6:00 PM.
Vehicles arrive earlier than 6:00 AM start to charge at 6:00 AM while those depart
later than 6:00 PM finish their charging before 6:00 PM. We simulate the operation
process of a large-scale charging station which serves totally 3000 EVs arriving and
departing independently in a typical day. It is assumed that the arrival timedistribution
and departure time distribution are all Gaussian with parameters shown in Table6.2
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Fig. 6.3 Solar irradiance in
a day
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Table 6.2 Parameters of the arrival and departure time probability distribution

Time parameter Arrival Departure

Mean: μr 10 14

Standard deviation: σr 1.2 1.3

(similar assumptions can be found in many papers, e.g., [13, 14]). EVs are active for
charging during their parking time, and discharging is not permitted. The amount
of energy needed for the EVs are evenly distributed between 20KWh and 50KWh.
The maximum allowable charging rate of an EV is 62.5KW (e.g., high-voltage (up
to 500VDC) high-current (125A) automotive fast charging [15]), and the minimum
charging rate of an EV is 0KW. The cost function of the electricity acquisition is

Ch
(
Ẽc(h)

)
= ah · Ẽc(h)2 and ah = 150 $ · (MWh)−2.

6.4.2 Results and Discussions

The simulation process contains two parts. First, given the estimated solar energy
in each time slot (in the simulation, one time slot is set as one hour), we solve
the day-ahead energy acquisition scheduling problems (6.3)–(6.6) and obtain Ẽc(h)

and α(h) for h = 1, . . . , H . The upper bound and lower bound of energy transfer
parameter α(h) is set to be 2 and 0.5, respectively. Once the dispatched energy
acquisition in each time slot is obtained, we are ready to simulate the charging
process of EVs based on the real-time renewable power generation and EVs’ real-
time arrival (departure) patterns. Adopting the data previously mentioned, all the
simulations are conducted on an Intel workstation with six processors clocking at
3.2GHZ and 16GB of RAM. We repeated the simulation for 10 times. All the 3000
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Fig. 6.4 Energy supply
from conventional generators
under different charging
schemes
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EVs complete chargingwith required amount before their departures. By utilizing the
CRC algorithm introduced in Sect. 6.3, the simulation time is reduced from 1005.1s
to 101.2 s, showing that the proposed CRC algorithm can significantly reduce the
complexity of the problem solving. Note that our CRC algorithm does not sacrifice
the problem-solving accuracy, and we obtain exactly the same results when adopting
quadratic programming solvers and our CRC algorithm.

We first investigate the effectiveness of our proposed EV charging mechanism.
Specifically, two charging schemes are compared. In the first scheme, EVs are kept
charging during their parking time and the charge speeds are the average rates that
they need to fulfill the charging tasks. Conventional generators generate electricity
for the unbalanced power demand in an on-demand manner. While in the second
scheme, the charging station charges EVs’ batteries according to the mechanism we
proposed, and electricity is generated based on the day-ahead scheduling and real-
time adjustment. The simulation results concerning the power supply curves, total
system cost, and peak-to-average ratio (PAR) under these two schemes are given in
Figs. 6.4 and 6.5, respectively. As we mentioned previously, quadratic cost functions
are adopted to compute the system expenditures for both schemes.

In Fig. 6.4, it is shown that by optimally controlling the charging rates of EVs,
our proposed charging strategy successfully transfers the peak demand to the off-
peak hours, which can help stabilize the operations of the charging system and
reduce the energy cost. As shown in Fig. 6.5, the total expenditure of the charging
station decreases from $4.1 × 104 per day in scheme 1 to $1.8 × 104 per day in our
proposed scheme, achieving a cost saving of 56.1%. Therefore, one of the aims of
the developed charging strategy, which is reducing the expenditure of the system, is
achieved. To investigate the variation of PAR, we study two cases: (1) PAR of the
aggregated supply (i.e., the supply from controllable generators plus the supply from
solar panels); and (2) PAR of the controllable generators’ output. As we observe in
Fig. 6.5, with scheme 1, the PARof the aggregated supply and the PARof controllable
generators’ output are 2.69 and 3.95, respectively. By adopting the proposed charging
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Fig. 6.5 Cost and PAR
comparisons of different
charging schemes
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scheme, these two PAR values reduce to 2.02 and 1.78 (decrease about 25 and
55%), respectively. The proposed EV charging strategy presents much better PAR
performance during the 12-h operation.An interesting observation is that in scheme1,
the PAR of controllable generators’ output is much higher than that of the aggregated
power supply; however, the situation is exactly opposite in our proposed scheme.
In other words, under normal circumstances, utilizing renewable energy will make
the output of controllable generators more fluctuant, whereas EVs can help solve
this problem by properly varying their charging speeds, i.e., charging quickly when
renewable energy is sufficient and reducing the rate when not enough renewable
energy is available.

In our scheme, the first-stage day-ahead energy generation scheduling is based on
the estimated renewable energy generation in next day. Normally, the real renewable
energy generationmight be different from the estimated one. Next, we investigate the
cost sensitivity with respect to this deviation. The simulation results are depicted in
Fig. 6.6. Specifically, we conduct the experiment as follows. In the first step, the day-
ahead energy generation scheduling is done based on the estimated solar irradiance
and EVs’ arriving (departing) patterns. Then, for the real-time charging, we vary the
solar irradiance data based on the real-world trace to represent different estimation
error levels. As it is observed in Fig. 6.6, system cost is much more sensitive in
scheme 1 than that in our scheme when the deviation varies. The reason is that by
applying our charging strategy, deviations of the solar power can be distributed to the
whole time horizon. However in scheme 1, the situation that solar power is excessive
during some time periods and insufficient in some other time becomes more severe.
Under such case, solar energy utilization efficiency fluctuates more extensively when
deviation level increases, and accordingly, system cost varies more violently. Hence,
our charging mechanism can effectively reduce the financial risks caused by the
estimation error of the renewable energy generation.

Figure6.7 illustrates how system cost varies under different fluctuation levels of
solar energy. In this experiment, we add 0-mean Gaussian noise to the real-time solar
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Fig. 6.6 System cost with respect to the real-time renewable generation deviation (�m represents
the deviation of real solar irradiance from the estimated one, and m is the actual data trace)
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Fig. 6.7 Systemcostwith respect to the different fluctuation level of renewable energy (m represents
the actual data trace, and σ represents the standard deviation of noise)



98 6 Massive Electric Vehicle Charging Involving Renewable Energy

irradiance data and then evaluate its impact on the system cost. Different standard
deviations of the noise reflect different fluctuation levels of solar energy. It appears
that the fluctuation of renewable energy has less impact on the system cost when
adopting our proposed scheduling scheme. This observation is intuitive since by
properly altering their charging rates, EVs act as an energy storage which may to
a certain extent alleviate the uncertainty problem. However in scheme 1, the con-
trollable generators have to compensate the solar power fluctuation during the entire
time horizon. In this case, the system cost will be affected more extensively when
fluctuation level increases. Note that this experiment also simulates the scenario that
system data is affected by noises. Thus, we claim that the our proposed EV charging
mechanism shows good performances in dealing with uncertainties of renewable
energy and noises of real-time data.

6.5 Extensions

6.5.1 Tracking a Given Load Profile

The electricity utilized for EV charging can be provided by a utility company. The
objective of the utility company may be to flatten the total load profile. The utility
company may also need to buy electricity in day-ahead electricity market and supply
the electricity to the charging parking as well as other energy consumers in real-
time. Under such case, the utility company may want the charging station to properly
schedule the charging of EVs, so that the demand can track the electricity profile it
brought in the day-ahead electricity market. Denote the load profile that the charging
park tracks as L(t). Our charging scheme can be extended to track L(t) by solving
the following constraint optimization problem:

min
Vi (t)

∑
τi∈�

wi (t)
(
Vimax − Vi (t)

)2
, (6.18)

s.t.
∑
τi∈�

Vi (t) +
∑
τi∈�S

Vimax ≤ L(t), (6.19)

Vi (t) ≥ Vimin ∀τi ∈ �, (6.20)

Vi (t) ≤ Vimax ∀τi ∈ �. (6.21)

Figure6.8 shows the simulation results of tracking given target load profiles.
The intelligent controller is in charge of managing 3000 EVs in a day on their
charging schedules. These vehicles plug in uniformly distributed between 6:00 and
14:00, with deadlines uniformly distributed between 10:00 and 18:00. The amount
of energies needed to charge are evenly distributed between 20KWh and 50KWh.
Two testings are conducted to show the load tracking results with different target
profiles. The target profiles are represented by the blue dot-circled curves. The red
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Fig. 6.8 Tracking given
target load profiles
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dash curves and green solid curves correspond to the aggregated charging rates
obtained from our EV charging mechanism and scheme 1, respectively. We observe
that the aggregated charging demand can closely follow the target load profiles when
adopting our proposed charging scheme. There are only small discrepancies around
18:00 due to the early or late departures of EVs.

Remark In order to ensure that the electricity demand of EVs can closely follow
the target load profile, load profile L(t) should not go beyond the variation limits of
EVs’ charging rates, that is:

L(t) ≥
∑
τi∈�

Vimin +
∑
τi∈�S

Vimax (6.22)

and

L(t) ≤
∑
τi∈�

Vimax +
∑
τi∈�S

Vimax (6.23)

6.5.2 Discrete Charging Rates

In our proposed charging scheme, we assume that the charging rate can vary con-
tinuously within the EV’s maximum and minimum allowable rates, determined by
the charger. Similar assumptions can be found in many literature including [16–18].
However in some circumstances, if only a few discrete charging speeds are allowed,
the proposed EV charging scheme can be easily extended to handle such case. Let Vi

denote the set of allowable charging rates of vehicle i . To capture the discrete charg-
ing rate case, we replace constraints (6.9) and (6.10) with the following constraint in
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Table 6.3 Simulation results under continuous charging rate case and discrete charging rate case
(all results are 10 times average)

Charging park size Power level type Charging cost ($) Cost growth (%)

Large scale
(3000 EVs)

Continuous charging
rate case

17993.1 −

Discrete charging rate
case

18028.8 0.2

Medium scale
(500 EVs)

Continuous charging
rate case

497.1 −

Discrete charging rate
case

511.2 2.8

Small scale
(100 EVs)

Continuous charging
rate case

22.2 −

Discrete charging rate
case

27.9 25.7

real-time EV charging:

Vi (t) ∈ Vi ∀τi ∈ �. (6.24)

Although the CRC algorithm is only suitable for the continuous charging rate
case, simulations show that with discrete allowable charging rates, the proposed
two-stage charging mechanism still has an acceptable computation-time perfor-
mance. In the simulation, each EV has four allowable charging speeds, i.e., Vi =
{0 KW, 20 KW, 40 KW, and 62.5 KW}, ∀τi ∈ � [2]. The number of EVs served in
a day is still 3000. The simulation results comparison with the continuous charging
rate case is summarized in the first row of Table6.3. Note that the simulations under
both cases are conducted 10 times, and results in Table6.3 are the average.

As it is shown in Table6.3, two main observations can be found as follows:

• For the discrete charging rate case, though the simulation time is much longer
for the continuous charging rate case, our two-stage EV charging mechanism
still performs acceptably for the real-time scheduling since computation time for
updating the charging rates of active vehicles is about 0.25s on average. Note that
this is the updating time running on the computer whose configuration is specified
in the previous subsection.

• The system cost increases slightly (about 0.2%) when only several discrete charg-
ing rates are allowed. This observation is intuitive since with discrete charging
rates, the scheduling flexibility is abated and mechanism performance gets worse.
In otherwords,whenEVs’ charging rates can vary continuously, the power demand
can follow the desired power supply more closely and thus utilize the renewable
energy in a more efficient manner. However, since the number of EVs is large, dis-
crepancy between the combinations of EVs’ discrete charging rates and desired
energy supply level is not significant. Thus, the cost only increases slightly.
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We further reduce the simulation scale to medium size (e.g., 500 vehicles) and
small size (e.g., 100 vehicles) to investigate how the size of the charging park impacts
the performances of the proposed scheme. Besides the charging park size, simulation
process and system parameters are exactly the same to those in the previous subsec-
tion. The area of the solar panels varies proportionally with the charging park size.
We also simulate 10 times and the results’ data are depicted in Table6.3. It appears
that for large-, medium-, and small-scale charging parks, system costs in discrete
charging rate case are 0.2, 2.8, and 25.7% higher than those in the continuous charg-
ing rate case, respectively. In otherwords, system cost ismore sensitive to the discrete
charging rate condition when the scale of charging park shrinks. The reason for this
phenomenon is that when the number of connected vehicles gets small and only
several discrete charging rates are allowed, the flexibility of the system deteriorates.
There will be a higher probability that aggregated charging demand cannot match
the available power. For instance, when there are only 30KW power available and
two vehicles are active at a given time, for the continuous charging rate case, EVs are
able to follow the supply closely. Whereas for the discrete charging rate case, either
10KW power is wasted or conventional units have to generate 10KW more so that
discrete demand can bematched. Therefore, power utilization becomes less efficient,
and conventional generators have to produce more electricity to ensure that charg-
ing tasks can be finished in time. As we mentioned previously, when the number of
EVs is large, discrepancy between the combinations of EVs’ discrete charging rates
and desired energy supply level becomes less significant, leading to only marginal
increase in cost. The proposed EV charging scheme favors reasonably for a large
charging park when only discrete charging rates are allowed.

6.6 Conclusion

In this chapter, we investigate the cost-effective scheduling approach of EV charging
at a renewable energy aided charging station. We design a two-stage EV charging
scheme to determine energy generation and charging rates of EVs. Specifically, at
the first stage, based on the EV pattern and renewable energy generation estimation,
a cost minimization problem is formulated and solved to obtain a preliminary energy
generation or importation scheduling profile in a day-ahead manner. Then at the
second stage, a real-time EV charging and power regulation scheme are proposed.
Such a scheme allows convenient handling of volatile renewable energy and indeter-
minate EV patterns. We also develop an efficient charging compression algorithm to
further lower the complexity of the problem solving. Simulation results indicate the
satisfactory efficiency of the proposed EV charging mechanism and the cost benefits
obtained from it. Moreover, the impacts of renewable energy uncertainties have been
carefully evaluated. The results show that the proposed EV charging scheme has a
good performance in enhancing the system fault tolerance against uncertainties and
the noises of real-time data. Such evaluations, as we believe, reveal that the pro-
posed charging mechanism is suitable for the case with a large number of EVs and
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unstable renewable energy. Furthermore, we extend the mechanism to track a given
load profile and handle the scenario that EVs only have discrete charging rates. As
a universal methodology, the proposed scheme is not restricted to any specific data
traces and can be easily applied to many other cases as well.

References

1. D.B. Richardson, Electric vehicles and the electric grid: a review of modeling approaches,
impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 19, 247–254 (2013)

2. F. Mwasilu, J.J. Justo, E.-K. Kim, T.D. Do, J.-W. Jung, Electric vehicles and smart grid inter-
action: a review on vehicle to grid and renewable energy sources integration. Renew. Sustain.
Energy Rev. 34, 501–516 (2014)

3. C. Harris, Electricity Markets: Pricing, Structures and Economics (Wiley, New York, 2006)
4. A.Mohsenian-Rad, V.Wong, J. Jatskevich, R. Schober, A. Leon-Garcia, Autonomous demand-

side management based on game-theoretic energy consumption scheduling for the future smart
grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)

5. P. Samadi, H. Mohsenian-Rad, R. Schober, V. Wong, Advanced demand side management for
the future smart grid usingmechanism design. IEEE Trans. Smart Grid 3(3), 1170–1180 (2012)

6. C. Joe-Wong, S. Sen, S. Ha, M. Chiang, Optimized day-ahead pricing for smart grids with
device-specific scheduling flexibility. IEEE J. Sel. Areas Commun. 30(6), 1075–1085 (2012)

7. I. Koutsopoulos, L. Tassiulas, Optimal control policies for power demand scheduling in the
smart grid. IEEE J. Sel. Areas Commun. 30(6), 1049–1060 (2012)

8. Renewable power generation costs in 2012: an overview (2012)
9. Handbook for solar photovoltaic (pv) systems (2011)
10. Y. Guo, M. Pan, Y. Fang, Optimal power management of residential customers in the smart

grid. IEEE Trans. Parallel Distrib. Syst. 23(9), 1593–1606 (2012)
11. B. Kirby, Ancillary services: Technical and commercial insights. Retrieved October, vol. 4,

p. 2012 (2007)
12. Nrel: National renewable energy laboratory (2013)
13. C. Jin, X. Sheng, P. Ghosh, Energy efficient algorithms for electric vehicle charging with

intermittent renewable energy sources. In IEEE Power and Energy Soc. General Meeting,
pp. 1–5, IEEE (2013)

14. A. Mohamed, V. Salehi, T. Ma, O. Mohammed, Real-time energy management algorithm
for plug-in hybrid electric vehicle charging parks involving sustainable energy. IEEE Trans.
Sustain. Energy 5(2), 577–586 (2014)

15. Chademo: Dc fast charging
16. W. Tang, S. Bi, Y.J. Zhang, Online speeding optimal charging algorithm for electric vehicles

without future information. In IEEE International Conference on Smart Grid Communications,
pp. 175–180, IEEE (2013)

17. Z. Ma, D. Callaway, I. Hiskens, Decentralized charging control for large populations of plug-in
electric vehicles. In IEEE Annual Conference on Decision and Control, pp. 206–212, IEEE
(2010)

18. L. Gan, U. Topcu, S. Low, Optimal decentralized protocol for electric vehicle charging. IEEE
Trans. Power Syst. 28(2), 940–951 (2013)




