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a b s t r a c t 

Mortality prediction for patients in intensive care unit (ICU) is necessary to prioritize resources as well as 

to help the medical staff to make decisions, and hence more accurate methods for identifying high risk 

patients are very important for improving clinical care. However, many existing approaches including 

some scoring systems now being used in the hospital are not good enough since they try to establish 

a global/average offline model, which may be unsuitable for a specific patient. Thus, a more robust and 

effective monitoring model adaptable to individual patients is needed. To establish a more personalized 

model, this study proposes a two-step framework, in which the first step is for clustering and while 

the second one is for mortality predication. A novel method combining just-in-time learning (JITL) and 

extreme learning machine (ELM), referred to JITL-ELM, is proposed for mortality prediction, which applies 

global optimization of variables and neighborhood of appropriate samples to build an accurate patient- 

specific model. In addition, a simplified JITL-ELM with less key physiological variables is developed. In the 

experiment, 40 0 0 real clinical records of ICU patients are collected to validate the proposed algorithm, of 

which the AUC index is 0.8568, which is much better than the existing traditional global/average models, 

and furthermore the simplified JITL-ELM still performs well. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Intensive care unit (ICU) admits only the most severely ill pa-

ients who require life-sustaining treatments or extensive moni-

oring. Inside ICU, the most advanced monitoring equipment and

mergency facilities of the hospital are centralized, which makes it

laying an important role in enhancing the success rate of emer-

ency treatment and further reducing the mortality. Mortality pre-

iction in ICU can reflect the severity of disease or the prognosis of

atients, get a more reasonable allocation of medical resources and

elps clinicians to make decisions. Hence, mortality prediction for

CU patients is always one of the most important topics in clin-

cal and healthcare research, which causes a wide concern of re-

earchers. 

Popular methods belonging to generalized linear models are

ommonly used in mortality prediction, in the form of many prog-

ostic scoring systems. Among which three scoring methods are

ostly used, i.e., Acute Physiology and Chronic Health Evaluation
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APACHE) scoring system [1] , Simplified Acute Physiology Score

SAPS) [2] , and mortality probability model (MPM) [3] . For the lat-

st version of these systems, the worst physiological values in the

rst 24 h after patients entered ICU are used to establish the lo-

istic regression (LR) model, whereas the other data are not used,

nd this leads to the loss of information. In addition, linear model

akes it inaccurate to predict the patients’ status as well. 

With deeper research and development of technology, as well

s based on the increasing volume of clinical data in ICU, more and

ore researchers prefer to use data-driven learning approaches for

ortality prediction. Machine learning, which belongs to nonlinear

odeling method, such as artificial neural networks [ 4 , 5 ], support

ector machine [ 6 , 7 ], decision tree [8] , naive Bayesian model [ 9 , 10 ],

s well as more complex models, such as incremental information

etwork [11] , have been explored to portray patients’ characteris-

ics in the past decades, and they also give more accurate results

nly depends on numbers of physiological measurements. 

All these above-mentioned methods tried to use a global pre-

ictive model derived from all available training data to compute

isk scores for a query patient, however, various patients behave

n highly individual ways. Over the last decades, different patient-

pecific models have been developed for decision support [12] or

daptive monitoring in critical care [ 13 , 14 ]. A personalized model
 patients combining just-in-time learning and extreme learning 
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in the context of healthcare applications has recently been in-

vestigated, among which a personalized modeling method that

leverages evolutionary optimization techniques is proposed in [15] ,

which is used in some specific fields such as personalized drug

design. Moreover, just-in-time learning (JITL) and principal com-

ponent analysis (PCA), referred to learning-type PCA (L-PCA) [16] ,

was combined to build an online individual-type model to monitor

the patient’s status, in which JITL gathers the most relevant sam-

ples for adaptive modeling of complex physiological processes, and

PCA was used for personalized modeling. Recently, another novel

personalized modeling approach named JITL-ELM, which integrates

JITL and extreme learning machine (ELM), was proposed [17] . JITL

borrows the diagnostic idea of “similar symptoms characterize sim-

ilar results” by searching for the most relevant samples to establish

a patient-specific model, aiming at improving the precision, while

ELM was chosen for mortality prediction. Based on these studies,

the newly proposed method builds a personalized model that is

more suitable for the query patient using data collected from other

patients, which is also the main difference from traditional mod-

els. In brief, the study aims to make some extensions and increase

the value of its clinical application by developing the personalized

model. 

To evaluate different algorithms, area under the receiver-

operating curve (AUC) is used in the experiment, and algorithms

with AUC closer to 1.0 have better classification performance or

higher diagnostic value. With real physiological data of ICU pa-

tients, the AUC of JITL-ELM is 0.8568, with sensitivity of 0.7655

and specificity of 0.7907. Compared with ELM, Back Propagation

(BP) neural network, LR, and SAPS-I, JITL-ELM gains 3.53%, 8.67%,

22.12%, and 25.69% increases of the AUC index, respectively. In or-

der to improve the calculation speed and to narrow the search

scope, a preprocess work for clustering needs to be conducted be-

fore prediction, which leads to the born of a two-step framework

in this study. In addition, the study tries to establish a more prac-

tical model with a few key physiological variables, which is also

performs much better than the SAPS-I system. 

In summary, the main findings and contributions are as fol-

lows. (1) This study provides several improvements on the method

in [17] , which performs the best for improving mortality predic-

tion accuracy compared with other conventional methods. (2) A

two-step framework is constructed, in which the first step is used

for clustering, whereas the second step for patient-specific mor-

tality prediction. With the virtue of speeding up the calculation,

the framework makes JITL-ELM algorithm more practical and have

more advantages in clinical promotion. (3) Experiments show that

a small number of key variables can also achieve a better mortal-

ity prediction, which is superior to the other typical methods es-

pecially SAPS-I. Moreover, JITL can solve the practical binary classi-

fication problem with unbalanced distribution to some extent, and

the idea of “similar input produces the similar output” makes it

highly descriptive. 

The remainder of this paper is organized as follows. Section 2

outlines the related work including ELM, JITL, their combination

JITL-ELM and its promotion, as well as some related evaluation

metrics. Some introductions about data sources and pretreatment

before the experiment are provided in Section 3 . Then the exper-

imental results and discussion are presented in Section 4 . Finally,

some conclusions are drawn in Section 5 . 

2. Related work 

2.1. Extreme learning machine 

ELM is one of the leading trends for fast learning, which was

proposed in literature [ 18 , 19 ], of which a brief introduction is con-

ducted as follows. 
Please cite this article as: Y. Ding et al., Mortality prediction for ICU

machine, Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017
Given the dataset ( X i , y i ) 
N 
i =1 

, where X i ∈ R 1 × m indicates an input

raining sample, and y i is a scalar, which represents the label of

ategories. Then ELM model can be described as 

 L 

l=1 
βl g l ( w l X 

T 
i + b l ) = y i , i = 1 , 2 , . . . , N (1)

here L denotes the number of hidden nodes, w =
(w 

T 
1 
, w 

T 
2 
, . . . , w 

T 
L 
) ∈ R m ×L indicates the weight vectors between

he input and hidden layers; β = (βT 
1 
, βT 

2 
, . . . , βT 

L 
) ∈ R L ×t is the

eight vector between the hidden and output layers; g ( · ) is the

ctivation function, t indicates the number of output layer. 

By generating the weight matrix w = ( w 1 , w 2 , . . . , w L ) 
T and off-

et vectors b = ( b 1 , b 2 · · · b L ) 
T ∈ R L ×1 randomly, the output matrix

 of hidden layer can be computed as 

( w 1 , w 2 , . . . , w L ; b 1 , b 2 . . . b L ; X 1 , X 2 , . . . , X N ) 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

g( w 1 X 

T 
1 + b 1 ) g( w 2 X 

T 
1 + b 2 ) · · · g( w L X 

T 
1 + b L ) 

g( w 1 X 

T 
2 + b 1 ) g( w 2 X 

T 
2 + b 2 ) · · · g( w L X 

T 
2 + b L ) 

. . . 
. . . · · ·

. . . 

g( w 1 X 

T 
N + b 1 ) g( w 2 X 

T 
N + b 2 ) · · · g( w L X 

T 
N + b L ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

N×L 

(2)

It is clear that the only unknown variable is β , and according

o the mathematical model of the single hidden feedforward net-

orks (SLFNs) given by 

β = Y (3)

f which the least square solution with minimal norm is analyti-

ally determined using Moore-Penrose generalized inverse H † [20] :

= H 

† Y (4)

To obtain a better generalization performance [21] , a regulariza-

ion parameter C is often added into ( 4 ), expressed as 

= 

{ 

H 

T 
(

I 
C 

+ H H 

T 
)−1 

Y when N < L, (
I 
C 

+ H 

T H 

)−1 
H 

T Y when N > L, 
(5)

nd there are two options for users according to the size of train-

ng data. 

Unlike the other traditional learning algorithms, like BP or SVM,

he parameters of hidden layers of ELM are randomly assigned and

refixed, and Huang et al. have proved that SLFNs with randomly

enerated hidden neurons and output weights computed by ridge

egression still maintain the universal approximation capability of

LFNs [22] , which improves the training speed greatly. 

Through the introductions above, it can be concluded that ELM

tands out from the other neural network methods with the fol-

owing virtues: extremely fast training speed, good generalization,

s well as the universal approximation capability. 

.2. Just-in-time learning 

Just-in-time learning (JITL) algorithm has been widely applied

or system identification and online soft sensing in chemical pro-

esses, but rarely applied in medical field. However, its idea of

similar inputs produce similar output” is closely related to the

rocedure of diagnosis disease for patients. Doctors often come

o conclusions based on similar cases that have been diagnosed,

hich is also the gist of our algorithm. The mechanism of JITL is

ntroduced as follows. 

Considering the same dataset ( X i , y i ) 
N 
i =1 

in the previous sec-

ion, a conventional model tries to build a fine mapping rela-

ionship f ( · , · ) between the input and output data written as
 patients combining just-in-time learning and extreme learning 
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Fig. 1. Mechanism comparison of conventional model and JITL-based model. 
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 i = f ( X i , θ ) + ε i , and then it is converted into solving the follow-

ng optimization problem: 

∗ = arg min 

θ

∑ 

( X i , y i ) 

( y i − f ( X i , θ ) ) 
2 

(6) 

here θ indicates the coefficient vector and ɛ i is the modeling er-

or which satisfies a Gaussian distribution. 

Differently, JITL tends to establish a local model in the neighbor-

ood space of each query sample by collecting the corresponding

imilar dataset, which can be expressed as 

∗ = arg min 

θ

∑ 

( X i , y i ) ∈ �
( y i − f ( X i , θ ) ) 

2 μi (7) 

i = exp 

(
−‖ 

X i − X q ‖ 

2 

2 σ 2 

)
(8) 

here � indicates the domain space composed of its k relevant

amples, μi denotes the weight between the training data and the

uery data X q according to Gaussian Kernel Function refer to ( 8 ),

hich reflects the influence on the result that similar samples ex-

rt; and σ reflects the width parameters of the kernel function. 

The domain space � can be determined by several approaches,

nd a brief method using synthetic distance d ( · , · ) [23] , which

ntegrates the Euclidean distance E ( · , · ) and Angle distance cos ( · ,

), is adapted in this study, which can be written as 

 ( X q , X i ) = λ
√ 

e −E ( X q , X i ) 
2 + (1 − λ) cos ( X q , X i ) (9)

here E ( X q , X i ) = 

√ 

( X q − X i ) 
T ( X q − X i ) , cos ( X q , X i ) = 

X q 
T X i ‖ X i ‖ 2 ‖ X i ‖ 2 ,

nd λ∈ (0, 1) indicates the weight coefficient. 

Then � can be described as 

= 

{
X 

1 
q , X 

2 
q . . . , X 

k 
q 

}
= { X i | d ( X i , X q ) < h } (10) 

here h indicates the radius of domain space, determining the size

f the similar data set; X 1 q , X 
2 
q . . . , X 

k 
q indicates the most similar k

amples to the query data X q , which are inside the domain space

ndicated by �. However, the value of h is hard to determine in

ractical application, for which some prior knowledge or a certain

ange of search is needed. The computational difficulty of the al-

orithm will be increased if h is too large while the generalization

bility will decline if h is too small. Therefore, the number of sim-

lar samples k is chosen to determine the size of domain space for

onvenience. 

In conclusion, JITL collects the relevant samples instead of the

hole dataset as the training samples to establish an online model

or each query sample, of which the establishment and prediction

rocess is conducted locally, which leads to a better online adap-

ive capability compared to the conventional modeling methods.

oreover, the collection of similar data contributes a lot to solve

he problem of imbalanced class distribution. 

In order to illustrate the differences between JITL and the con-

entional modeling mechanisms more clearly, their flow diagrams

re given in Fig. 1 . The global modeling method uses the whole

ata as training samples to build an offline model, of which the

tructure is fixed. However, JITL collects the similar samples to the

uery data for online modeling, in which the structure and param-

ters are variable. 

When a new patient comes, doctor will restart to diagnosis of

isease by searching for the similar cases that he has known. Sim-

larly to the diagnosis process, a local model will be established

ewly when a new query test sample is given, which also reflects

he idea “similar illness produces similar symptoms most likely”. 
Please cite this article as: Y. Ding et al., Mortality prediction for ICU

machine, Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017
.3. JITL-ELM 

Based on the idea of “similar inputs produce similar output”,

hree steps including “relevant dataset selection”, “local model

onstruction” as well as “output forecast” will be followed in order

o build a personalized model for each query data sample. In this

tudy, ELM is selected as the locally modeling tool which is men-

ioned in Fig. 1 to achieve the purpose of classification. To make

t clearer, the pseudo code is provided in Table 1 to describe the

ntirely procedure of personalized modeling for the current query

atient. 

In fact, the total number of patients used in this study is only

0 0 0, so “leave one out cross” method is utilized in order to make

ull use of the existing data. In other words, patients available will

e regarded as a test/query sample successively, meanwhile the re-

aining 3999 ones constitute the historical database, from which

ome samples will be chosen for further modeling. It is a mea-

ure to ensure that the samples in the historical database are ad-

quate for use, while in practical applications, there is no need

o use “leave one out cross” method with sufficient data samples.

oreover, if the related dataset belongs to the same category, ELM

annot work properly, and some measures must be taken. As de-

cribed in pseudo code, actually when one of the categories has

oo much samples, namely more than 90% in related dataset, sam-

les of the minority category will be randomly selected from his-

orical database, and then they are added into related dataset. 

It can be seen that the predicted result is estimated only based

n the selected subset of samples, which makes the principle of

imilarity measurement and the selection of similar subset play a

rucial role in the JITL strategy. There are also a lot of other meth-

ds to determine the subset. 

In terms of similarity measurement, Fujiwara et al. confirmed

he relevant subset based on the Q and T 2 statistics after PCA pro-

ection [24] , but it is difficult to be applied in process online mod-

ling due to its great computational cost. Chen et al. [25] proposed

 new similarity measurement utilizing a new SLPP version for re-

ression problems to select relevant samples and determine the

eights of relevant features, which leads to a high precision under

ow computation complexity. The method adopted in this study

ses synthetic distance instead of judging Euclidean distance and

ngle distance, respectively, which is effective and simple both in

alculation and dissemination. 

In terms of the relevant subset selection, the method of “in-

reasing one by one” is also a good candidate by judging the is-

ue whether the performance of the model is improved after the

ddition of a new sample, which evidently leading to a heavy

omputation as well as the possible problem declining the final
 patients combining just-in-time learning and extreme learning 
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Table 1 

Pseudo code of JITL-ELM algorithm. 

Procedures of JITL-ELM: 

Input: 

● history_data: The class-labeled data set in the historical database ( T samples) 

● X q : the current query patient data 

● num_JITL: the number of similar samples belonging to the domain space 

Output: 

● predicted category of query/test sample: query_result 

for the query patient X q 
relevant dataset: relavant_data = JITL (history_data, X q ) 

training dataset: train_data = relavant_data 

query_result = ELM(train_data, X q ) 

end for 

Procedure of JITL (namely JITL function) 

Input: 

● query data: X q 
● historical dataset: history_data 

Output: 

● relevant dataset: relavant_data 

For i = 1 to T 

Compute the synthetic distance: ̄d = 

{
d( X q , X i ) , i f cos ( X q , X i ) ≥ 0 

0 , i f cos ( X q , X i ) < 0 

Sort the N − 1 samples in descending order according to d̄ . 

relavant_data = samples ranking in the top num_JITL. 

End for 

If 90% relavant_data belong to the same categary: 

a) num_sample_select = majority class samples number − minority ones 

b) Randomly select num_sample_select samples in minority class category, then add them into relavant_data 

End if 

Procedure of ELM (namely ELM function) 

Input: 

● training dataset: train_data 

● category of the training dataset: Y 

● query data: X q 
Output: 

● predicted category of the testing dataset: query_result 

(a) Randomly generated the weight coefficient w and bias vector b of the input layer 

(b) Compute the output of hidden layer H(w, b, train _ data ) according to Eq. (2) 

(c) Calculate weight coefficient β between the hidden and output layer, according to Eq. (5) 

( d) Predict the category of test/query sample: test _ result = H(w, b, X q ) β
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performance caused by very small subset size [26] . In the practi-

cal application, the similar data sets can be determined by setting

weights according to ( 8 ) or the threshold of synthetic distance, be-

cause there are a wide range of cases available to be chosen in

the actual hospital case library. To guarantee the adequate train-

ing samples, the relevant subset is confirmed by determining the

proper number of similar samples k . 

2.4. Two-step JITL-ELM 

JITL aims to obtain the prediction result of the current testing

patient with the k most relevant samples collected from the histor-

ical database, and the forecast is operated for patients one by one,

namely the model changes for each patient. However, this search

mode has many problems, such as time-consuming and large cal-

culation. 

In order to overcome the problems described above, clustering

analysis is conducted to fractionize the samples firstly, of which

two approaches are offered in the study, that is, “ICU-type cluster-

ing approach” and “Ward’s clustering approach”. 

In terms of “ICU-type clustering approach”, patients are di-

vided into clusters according to known ICU type, in which the

prior knowledge is utilized; while for “Ward’s clustering approach”,

which emphasizes the internal differences of similar samples

should be small (namely the variance or standard deviation) to

ensure a large degree of similarity within the same cluster, but

little similarity between different clusters, which highlights the
Please cite this article as: Y. Ding et al., Mortality prediction for ICU

machine, Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017
omogeneity of the same area. Furthermore, Ward’s method (also

alled the sum of squared deviation method) [27] , which measures

he distance between the two clusters by squared Euclidean dis-

ance. At the initial step, all clusters are singletons (clusters con-

aining a single sample), then the centroid variance will be calcu-

ated so that the clusters with the increase of the minimum will

e merged preferentially, finally the other clusters can be merged

n turn gradually, as desired. 

Hence, the mortality prediction algorithm for ICU patients is di-

ided into two steps, referred to “two-step mortality prediction”

lgorithm in this study, of which the procedure is illustrated in

ig. 2 . The first step, referred to the clustering step, aims to clus-

er the data samples, while the second one, called classification

tep, tries to realize the purpose of mortality prediction using JITL-

LM approach. The addition of clustering step aims to narrow the

earch scope and improve the retrieval speed. 

.5. Evaluation metrics 

To measure the effectiveness of a classifier, several indices are

sed in this section. The traditional index, overall accuracy, is no

onger applied to the dataset with imbalanced problem, because

t has a natural tendency to favor the majority class by assuming

alanced class distribution or equal misclassification cost. For mor-

ality prediction in this study, imbalanced problem also exists with

mall amounts of dead patients and majority of survivals. 
 patients combining just-in-time learning and extreme learning 
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Fig. 2. Procedure of two-step JITL-ELM. 

Table 2 

Confusion matrix. 

Real status 

Positive Negative 

Predicted status Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 
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In the field of medicine, people prefer to use “positive” and

negative” to represent two categories, the former indicates the

ead class, while the latter means the survival ones. 

Confusion matrix is a commonly used method to evaluate the

ccuracy of classification result, as shown in Table 2 , and TP, FP,

N, TN indicate the number of samples of “True Positive”, “False

ositive”, “False Negative” and “True Negative” in the experiment, 

espectively. Furthermore, there are lots of the other indices, such

s, 

sensit i v it y = 

T P 

T P + F N 

peci f icity = 

T N 

T N + F P 

G −mean = 

√ 

T P 

T P + F N 

× T N 

T N + F P 

F P R = 

F P 

T N + F P 
= 1 − speci f icity 

here sensitivity (also called Recall, or True Positive Rate, shorted

or TPR) means the proportions of real positive samples can be de-

ected correctly, and specificity indicates the rate of real negative

amples are not wrongly misclassified; G-mean, referred to the ge-

metric mean of those accuracies, indicates the final result to mea-

ure the functionality of a classifier; False Positive Rate (FPR) de-

otes the rate of real negative samples that are misclassified. 

Another useful tool, receiver-operating curves (ROC) graph

28] , provides a visual illustration of the performance of clas-

ifiers on binary datasets, where a classifier corresponds to a

oint, x -coordinate represents FPR, and y -coordinate denotes TPR,

hich leads to classification results for both the two classes are
Please cite this article as: Y. Ding et al., Mortality prediction for ICU
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erceivable with a single point. That is to say, the performance ex-

ibited by ROC graph is independent of the class distribution and

ost information. 

The classification is carried out by setting a proper threshold,

hen the predictive result values greater than the threshold are set

o 1 (1 indicates death or positive), while the others are 0 (0 indi-

ates survival or negative). Different thresholds will lead to differ-

nt classification performance, including the specificity and sensi-

ivity, and then ROC curve is born. All the researchers need to do

s to find a proper tradeoff between the ability to identify the pos-

tive samples and the negative ones. In this study, the appropriate

hreshold is selected by finding out the best G-mean values, which

an ensure that both of the two categories have a good classifica-

ion accuracy. 

Moreover, a derived index called AUC, referring to the area un-

er the ROC curve, is often used to evaluate the performance of

 binary classifier quantitatively. The closer AUC index to 1.0, the

etter the classification results. 

. Data sources and processing 

.1. Data sources 

In order to validate the performance of the proposed algorithm,

hysiological data of ICU patients are collected from a website

amed PhysioNet [29] , which offers free access to complex physio-

ogical signals and biomedical signal research resources, and its sci-

ntific and rigorous have been widely validated, possessing a high

uthority. 

In this study, 40 0 0 records of ICU patients are collected totally,

ncluding 554 dead patient and 3446 survival ones, of which the

verage age is 64.25 years, and men accounts for 56.2% of the pro-

ortion. The largest number of patients was admitted to the med-

cal ICU (35.8%), followed by the surgical (28.4%), cardiac surgery

ecovery (21.1%), and coronary (21.1%) ICUs. 

For each ICU patient, the data collected from the first 48 h of

CU stay are generally composed of three parts, including the ba-

ic information of the hospital admission (RecordID, age, height,

eight, and ICU type), the time series measurements for 36 phys-

ological variables, and the final state (0 = survivor, 1 = died). Tak-

ng two patients for example, the initial ICU data sets are shown

n Table 3 . It is easy to see that, 

• For the same patient, the sampling frequency is not fixed for

the same physiological variable. 

• For the same patient, the sampling frequency of different phys-

iological variables is different. 

• For different patients, only part of physiological data is col-

lected at the same sampling point. 

• The data contain error values, which is not displayed in the ta-

ble. 

Furthermore, part of physiological parameters is illustrated in

able 4 , including their abbreviations and full names. 

.2. Data preprocessing 

Three issues need to be solved according to the analysis above. 

• Selection of effective physiological variables. 

• The method to extract the physiological information for each

patient. 

• Elimination of error values and imputation for missing values. 

First, according to medical information and the missing sta-

us of each physiological variables, 24 physiological parameters

ecorded for more than 75% patients are selected, which are shown

n Table 4 . 
 patients combining just-in-time learning and extreme learning 
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Table 3 

Physiological dataset of two sample patients. 

RecordID = 132539 

Time HR Temp GCS … NIDiasABP 

0:00 −1 −1 −1 … −1 

0:07 73 35.1 15 … 65 

0:37 77 35.6 −1 … 58 

1:37 60 −1 −1 … 62 

2:37 62 −1 −1 … 52 

3:08 −1 −1 −1 … −1 

… … … … … …

46:37 −1 −1 −1 … −1 

47:37 86 37.8 15 … 128 

RecordID = 132540 

Time HR Temp GCS … NIDiasABP 

0:00 −1 −1 −1 … −1 

0:42 −1 −1 −1 … −1 

1:11 88 35.2 −1 … −1 

1:26 88 35.1 3 … −1 

1:27 −1 −1 −1 … −1 

1:31 88 34.8 −1 … −1 

… … … … … …

46:15 −1 −1 −1 … −1 

47:11 −1 37.1 15 … 49 

“−1” denotes the missing value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. ROC curves for ELM, BP, LR, JITL-ELM, two-step strategy methods, and SAPS- 

I scoring system. 400 similar data was selected for the current testing data when 

using JITL-ELM model here. 
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Second, the summary statistics (minimum, maximum, mean,

standard deviation, 1/4 site, and 3/4 site), age and body mass in-

dex (BMI), as well as the indices with physiological meanings are

collected for each patient, and 147 features are obtained in final,

which will be regarded as the input of model. 

Finally, Chauvenet criterion [30] is used to delete the error val-

ues, but for the missing data, the median values are selected as

the interpolation data for each physiological variables according to

the ICU type and age stages. PCA and its variants are often used

for data reduction or monitoring in industrial process [31] . In the

study, PCA is adopted as pre-processing methods to remove noise

and to reduce computational complexity by reducing the dimen-

sions before features are fed into the model. Eventually, the dimen-

sion of data is reduced from the original 147 to 46. 

4. Results and discussion 

4.1. Results using different methods 

In this section, the performance of JITL-ELM is compared with

some typical algorithms, i.e., ELM, LR, BP neural network. In ad-

dition, another reference results of SAPS-I scoring system is also

plotted, because it is often used as a kind of indicator to patients’

status in hospital. 
Table 4 

List of selected physiological parameters and their abbreviations. 

Abbreviation Name A

HR Heart rate (bpm) A G

BUN Blood urea nitrogen (mg/dL) K

GCS Glasgow coma index 〈 3–15 〉 B M

Creatinine Serum creatinine (mg/dL) N

DiasABP Invasive diastolic arterial blood pressure (mmHg) M

NIMAP Non-invasive mean arterial blood pressure (mmHg) S

FiO 2 Fractional inspired O 2 〈 0–1 〉 H

PaO 2 Partial pressure of arterial O 2 (mmHg) P

NIDiasABP Non-invasive diastolic arterial blood pressure (mmHg) N

HCT Hematocrit (%) T

pH Arterial pH 〈 0–14 〉 U

Platelets Blood platelet (cells/nL) W

A: Physical unit. 

B: Range of normal values. 

Please cite this article as: Y. Ding et al., Mortality prediction for ICU
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Performance results in terms of ROC when using different

ethods described above, as well as JITL-ELM based on two-step

ramework are shown in Fig. 3 . As a contrast curve, the diagonal

ine indicates a useless classifier judging death randomly. Gener-

lly, if the curve is closer to the coordinate point (0, 1), the clas-

ifier’s performance will be better. It is clear that the result is im-

roved after adding JITL part, compared with the pure ELM model.

urthermore, JITL-ELM performs best among all these methods,

nd over-fitting occurred when using BP algorithm, which de-

reased its accuracy. Another evaluation index called AUC, which

enotes the area under the ROC curve is utilized for quantita-

ive evaluation, and the results of classification using the above-

entioned algorithms are shown in Table 5 . As far as the AUC in-

ex is concerned, the performance of ELM shows a 3.53% percent

ncrease due to the combination of JITL, and results of JITL-ELM re-

eal an improvement of 8.67%, 22.12% and 25.69% compared to LR,

P and SAPS-I, respectively. 

In addition, although the performance of two-step JITL-ELM

lightly decreases, it still superior to the others. In terms of the

lustering scheme, ward’s method performs better. 

According to the results in [17] , although the AUC value can

e optimized with the increasing k , however, the degree of op-

imization is very weak, and it is at the expense of reducing

ensitivity. Through trial and explore, k is set by 400 in this

tudy when using the JITL-ELM model. Moreover, a grid search
bbreviation Name 

lucose Serum glucose (mg/dL) 

 Serum potassium (mEq/L) 

g Serum magnesium (mmol/L) 

a Serum sodium (mEq/L) 

AP Invasive mean arterial blood pressure (mmHg) 

ysABP Invasive systolic arterial blood pressure (mmHg) 

CO 3 Serum bicarbonate (mmol/L) 

aCO 2 Partial pressure carbon dioxide 

ISysABP Non-invasive systolic arterial blood pressure (mmHg) 

emp Temperature ( °C) 

rine Urine output (mL) 

BC White blood cell count(cells/nL) 

 patients combining just-in-time learning and extreme learning 
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Table 5 

Classification performance results using different modeling methods. 

LR SAPS BP ELM JITL-ELM Two-step (ward) Two-step (ICUType) 

AUC 0.7883 0.6817 0.7016 0.8276 0.8568 0.8477 0.8258 

Maximum G -mean 0.7204 0.6203 0.6520 0.7489 0.7780 0.7689 0.7498 

Sensitivity 0.7449 0.5856 0.6662 0.7327 0.7638 0.7278 0.7194 

Specificity 0.6968 0.6570 0.6381 0.7653 0.7907 0.8123 0.7816 

Accuracy 0.7034 0.6471 0.6420 0.7608 0.7872 0.8006 0.7729 

Table 6 

Classification results using JITL-ELM and simplified 

JITL-ELM. 

JITL-ELM Simplified JITL-ELM 

AUC 0.8568 0.8278 

Max_Gmean 0.7780 0.7472 

Sensitivity 0.7655 0.7014 

Specificity 0.7907 0.7960 

Accuracy 0.7872 0.7829 
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Fig. 4. ROC curves for JITL-ELM and simplified JITL-ELM. 
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f C{ 2 −18 , 2 −16 , . . . , 2 48 , 2 50 } and the number of hidden nodes

 { 10 , 20 , . . . , 90 , 100 } is conducted in seek of the optimal result,

nd finally C = 2 −10 and L = 25 are chosen in the experiment, and

he weight coefficient λ is selected by 0.7. 

Table 5 reports the final sensitivity and specificity for the max-

mum G -mean value. The results are significantly improved after

dding the JITL strategy. Moreover, the higher specificity of two-

tep JITL-ELM (ward-based) denotes it has a better ability to iden-

ify the negative samples among the unknown sample set, but its

ensitivity is not as ideal as JITL-ELM. That is to say, it improves

he specificity at the expense of sensitivity, and that is also the

eason that its traditional evaluation index, accuracy, better than

thers. Researchers can adjust the suitable threshold to achieve a

ice tradeoff to gain a satisfying sensitivity and specificity simulta-

eously. 

What worth mentioning, the traditional models uses the whole

ataset for modeling, which ignores the specific information of the

urrent query patient. By contrast, JITL collected the similar sam-

les to establish patient-specific model for each patient, and it can

lso solve the low prediction accuracy problem caused by the dis-

ribution imbalance of training samples, which helps to build a

ore accurate local model. In summary, JITL-ELM algorithm is a

ood candidate to establish a patient-specific model as well as to

romote the accuracy of the mortality prediction. 

.2. JITL-ELM results after deleting some physiological variables 

In the experiment, 24 physiological variables are selected for

odeling and finally gains a good classification result. However,

ome of the physiological variables may be not measured in the

ctual monitoring process, which will cause a poor performance

ike the scoring criterion, such as the APACHE system. Hence, the

tudy tries to cut some physiological indicators to test the perfor-

ance of the model. 

In this section, only 10 physiological variables including HR,

CS, NIDiasABP, NISysABP, PaCO2, PaO2, pH, Temp, Urine, and WBC

re selected over repeated trials for JITL-ELM modeling. The ROC

urve in Fig. 4 as well as the quantitative results in Table 6 con-

rmed that a small number of key variables can also achieve a

ood effect of mortality prediction, and the results are also bet-

er than other methods, especially than SAPS scoring system com-

only used in the hospital currently, which illustrates a good per-

ormance and feasibility of simplified JITL-ELM. 

By contrast, a brief introduction will be conducted about the

APS-I. In terms of SAPS-I system, the worst physiological values
Please cite this article as: Y. Ding et al., Mortality prediction for ICU

machine, Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017
n the first 24 h after patients entered ICU are collected, where

he missing items are regarded as normal. Finally, 14 physiological

ariables are selected and scores are remarked for them, respec-

ively. The higher the final score, the worse the condition and prog-

osis. However, the scoring system comes into being against the

uropean, which may be not so suitable for Chinese patients. 

As mentioned above, SAPS-I system needs to collect 14 variables

o gain a relatively accurate results, while the simplified JITL-ELM

nly request 10 items. According to the SAPS-I score provided by

he database, as shown in Fig. 4 , the performance of the simplified

ITL-ELM algorithm is still more competitive. 

Additionally, the simplified JITL-ELM has a similar AUC indica-

or to ELM method in Table 6 , but the simplified JITL-ELM uses

ess physiological variables, which makes it a more competitive ap-

roach than ELM. 

What is worth mentioning, as the databases of appropriate pa-

ient information increase in size and complexity, the performance

ill be significantly improved since more useful information will

e collected in similar dataset, which has a potential value to in

linical decision-making. 

. Conclusion 

In this study, a novel combination, referred to JITL-ELM, is in-

roduced and applied to the mortality prediction for ICU patients.

he algorithm offers a general framework, in which JITL can search

or a better domain space for testing samples and while ELM pro-

ides a fast learning method to get better prediction results. For

urther optimizing, a two-step scheme is proposed in this study, in

hich the first stage is for clustering and while the second one is

or prediction. Possessing a high clinical value, it can narrow the

earch scope and improve the retrieval speed for JITL-ELM. Com-

ared with the scoring system commonly used in hospitals cur-

ently, it promotes the classification accuracy significantly, espe-

ially better than the SAPS-I scoring system. Finally, the study tries
 patients combining just-in-time learning and extreme learning 
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to establish a more practical model with less physiological vari-

ables, which is also performs much better than the SAPS-I system.

Through tested on dataset collected from PhysioNet, the proposed

algorithm has better performance compared with the traditional

global modeling methods. 

In summary, JITL-ELM can monitor individual patients with high

adaptability and specificity. It has a potential application value for

early warning systems in the future, which is also in step with the

development trend of personalized medicine. 

Acknowledgments 

This work was supported by the National Natural Science Foun-

dation of China under Grant 61374099 and Research Fund for the

Taishan Scholar Project of Shandong Province of China. 

Competing interests 

No competing financial interests exist. 

References 

[1] W.A . Knaus , E.A . Draper , D.P. Wagner , J.E. Zimmerman , APACHE II: a severity of
disease classification system, Crit. Care Med. 14 (8) (1986) 754–755 . 

[2] G.J. Le , S. Lemeshow , F. Saulnier , A new simplified acute physiology score (SAPS

II) based on a European/North American multicenter study, J. Am. Med. Assoc.
270 (24) (1993) 2957–2963 . 

[3] S. Lemeshow , D. Teres , J. Klar , J.S. Avrunin , S.H. Gehlbach , J. Rapoport , Mortality
probability models (MPM II) based on an international cohort of intensive care

unit patients, JAMA: J. Am. Med. Assoc. 270 (20) (1993) 2478–2486 . 
[4] A.J. Hussain , P. Fergus , H. Al-Askar , D. Al-Jumeily , F. Jager , Dynamic neural net-

work architecture inspired by the immune algorithm to predict preterm deliv-

eries in pregnant women, Neurocomputing 151 (3) (2015) 963–974 . 
[5] K.J. Kim , S.B. Cho , Prediction of colon cancer using an evolutionary neural net-

work, Neurocomputing 61 (1) (2004) 361–379 . 
[6] P. Chen , L. Yuan , Y. He , S. Luo , An improved SVM classifier based on double

chains quantum genetic algorithm and its application in analogue circuit diag-
nosis, Neurocomputing 211 (2016) 202–211 . 

[7] A .T. Azar , S.A . El-Said , Performance analysis of support vector machines classi-
fiers in breast cancer mammography recognition, Neural Comput. Appl. 24 (5)

(2014) 1163–1177 . 

[8] A.T. Azar , S.M. El-Metwally , Decision tree classifiers for automated medical di-
agnosis, Neural Comput. Appl. 23 (7) (2013) 2387–2403 . 

[9] O.P. Ryynänen , E.J. Soini , A. Lindqvist , M Kilpeläinen , T. Laitinen , Bayesian pre-
dictors of very poor health related quality of life and mortality in patients with

COPD, BMC Med. Inform. Decis. Mak. 13 (1) (2013) 1–10 . 
[10] Z. Cui , Y. Wang , X. Gao , J. Li , Y. Zheng , Multispectral image classification based

on improved weighted MRF Bayesian, Neurocomputing 212 (2016) 75–87 . 

[11] M. Last , O. Tosas , T.G. Cassarino , Z. Kozlakidis , J. Edgeworth , Evolving classifi-
cation of intensive care patients from event data, Artif. Intell. Med. 69 (2016)

22–32 . 
[12] J.G. Klann , P. Szolovits , S.M. Downs , G. Schadow , Decision support from local

data: creating adaptive order menus from past clinician behavior, J. Biomed.
Inform. 48 (3) (2014) 84–93 . 

[13] Z. Ying , P. Szolovits , Patient-specific learning in real time for adaptive monitor-

ing in critical care, J. Biomed. Inform. 41 (3) (2008) 452–460 . 
[14] C.G. Enright , M.G. Madden , Modelling and Monitoring the Individual Patient in

Real Time, Springer International Publishing, 2015 . 
[15] N. Kasabov , Y. Hu , Integrated optimisation method for personalised modelling

and case studies for medical decision support, Int. J. Funct. Inform. Person.
Med. 3 (3) (2010) 236–256 . 

[16] X. Li , Y. Wang , Adaptive online monitoring for ICU patients by combining

just-in-time learning and principal component analysis, J. Clin. Monit. Comput.
30 (6) (2015) 1–14 . 

[17] Y. Ding , X. Li , Y. Wang , Mortality prediction for ICU patients using just-in-time
learning and extreme learning machine, in: Proceedings of World Congress on

Intelligent Control and Automation, 2016, pp. 939–944 . 
[18] G.B. Huang , Q.Y. Zhu , C.K. Siew , Extreme learning machine: a new learning

scheme of feedforward neural networks, in: Proceedings of International Joint

Conference on Neural Networks, 2, 2004, pp. 985–990 . 
[19] G.B. Huang , H. Zhou , X. Ding , R. Zhang , Extreme learning machine for regres-

sion and multiclass classification, IEEE Trans. Syst. Man Cybern. B: Cybern. 42
(42) (2012) 513–529 . 

[20] A.J. Mayne , Generalized Inverse of Matrices and its Applications, John Wi-
ley&Sons, Inc., 1972 . 

[21] A.E. Hoerl , R.W. Kennard , Ridge regression: biased estimation for nonorthogo-
nal problems, Technometrics 42 (1) (1970) 80–86 . 
Please cite this article as: Y. Ding et al., Mortality prediction for ICU

machine, Neurocomputing (2017), https://doi.org/10.1016/j.neucom.2017
22] G.B. Huang , L. Chen , Convex incremental extreme learning machine, Neuro-
computing 70 (16–18) (2007) 3056–3062 . 

23] C. Cheng , M.S. Chiu , A new data-based methodology for nonlinear process
modeling, Chem. Eng. Sci. 59 (13) (2004) 2801–2810 . 

[24] K. Fujiwara , M. Kano , S. Hasebe , Development of correlation-based clustering
method and its application to software sensing, Chemom. Intell. Lab. Syst. 101

(2) (2010) 130–138 . 
[25] K. Chen , J. Ji , H. Wang , Y. Liu , Z. Song , Adaptive local kernel-based learning

for soft sensor modeling of nonlinear processes, Chem. Eng. Res. Des. 89 (10)

(2011) 2117–2124 . 
26] Y. Liu , Z. Gao , P. Li , H. Wang , Just-in-time kernel learning with adaptive pa-

rameter selection for soft sensor modeling of batch processes, Ind. Eng. Chem.
Res. 51 (11) (2012) 4313–4327 . 

[27] A. El-Hamdouchi , P. Willett , Hierarchic document custering using Ward’s
method, in: Proceedings of the International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, Pisa, Italy, September 1986,

1986, pp. 149–156 . 
28] T. Fawcett , An introduction to ROC analysis, Pattern Recognit. Lett. 27 (8)

(2006) 861–874 . 
29] M. Saeed , M. Villarroel , A.T. Reisner , G. Clifford , L.W. Lehman , G. Moody , et al. ,

Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A pub-
lic-access intensive care unit database, Crit. Care Med. 39 (5) (2011) 952–960 . 

[30] V.I. Pagurova , On Chauvenet’s test for finding several outliers, Theory Probab.

Appl. 30 (3) (1986) 558–561 . 
[31] Z. Lou , J. Tuo , Y. Wang , Two-step principal component analysis for dynamic

processes, in: Proceedings of International Symposium on Advanced Control of
Industrial Processes, 2017, pp. 73–77 . 

Yangyang Ding was born in 1991 in China. She received
her Bachelor degree from Beijing University of Chemical

Technology in 2015, majoring in Automation. She is cur-

rently working toward the Master degree at the same
university. Her research interests include artificial neural

networks, machine learning, and their biomedical appli-
cations. 

Youqing Wang received his B.S. degree from Shandong
University, Jinan, Shandong, China, in 2003, and his Ph.D.

degree in control science and engineering from Tsinghua

University, Beijing, China, in 2008. He worked as a Re-
search Assistant in the Department of Chemical Engi-

neering, Hong Kong University of Science and Technol-
ogy, from February 2006 to August 2007. From February

2008 to February 2010, he worked as a senior investiga-
tor in the Department of Chemical Engineering, Univer-

sity of California, Santa Barbara, USA. From August 2015

to November 2015, he was a visiting professor in Depart-
ment of Chemical and Materials Engineering, University

of Alberta, Canada. Currently, he is a professor in Shan-
ong University of Science and Technology and also Beijing University of Chemical

echnology. His research interests include fault-tolerant control, state monitoring,
odeling and control of biomedical processes (e.g. artificial pancreas system), and

terative learning control. He is an Associate Editor of Multidimensional Systems and

ignal Processing and Canadian Journal of Chemical Engineering . He holds member-
hip of two IFAC Technical Committees (TC6.1 and TC8.2). He is a recipient of sev-

ral research awards (including Journal of Process Control Survey Paper Prize and
DCHEM2015 Young Author Prize). 

Donghua Zhou received the B.Eng., M.Sci., and Ph.D. de-

grees in electrical engineering from Shanghai Jiaotong
University, China, in 1985, 1988, and 1990, respectively.

He was an Alexander von Humboldt research fellow with
the University of Duisburg, Germany from 1995 to 1996,

and a visiting scholar with Yale university, USA from 2001
to 2002. He joined Tsinghua University in 1996, and was

promoted as a Full Professor in 1997, he was the head of

the department of automation, Tsinghua university, dur-
ing 2008 and 2015. He is now the Vice President, Shan-

dong University of Science and Technology. He has au-
thored and coauthored over 160 peer-reviewed interna-

tional journal papers and 6 monographs in the areas of
rocess identification, fault diagnosis, fault-tolerant control, reliability prediction,

nd optimal maintenance. Dr. Zhou is a member of the IFAC TC on SAFEPROCESS,

 senior member of IEEE, an associate editor of the Journal of Process Control, the
ice Chairman of Chinese Association of Automation (CAA), the Chairman of the na-

ional high education steering committee on automation, the TC Chair of the SAFE-
PROCESS committee, CAA. He was also the NOC Chair of the 6th IFAC Symposium

n SAFEPROCESS 2006. 
 patients combining just-in-time learning and extreme learning 

.10.044 

http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0028
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0028
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0029
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0030
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0030
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0031
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0031
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0031
http://refhub.elsevier.com/S0925-2312(17)31695-8/sbref0031
https://doi.org/10.1016/j.neucom.2017.10.044

	Mortality prediction for ICU patients combining just-in-time learning and extreme learning machine&#13;
	1 Introduction
	2 Related work
	2.1 Extreme learning machine
	2.2 Just-in-time learning
	2.3 JITL-ELM
	2.4 Two-step JITL-ELM
	2.5 Evaluation metrics

	3 Data sources and processing
	3.1 Data sources
	3.2 Data preprocessing

	4 Results and discussion
	4.1 Results using different methods
	4.2 JITL-ELM results after deleting some physiological variables

	5 Conclusion
	 Acknowledgments
	 Competing interests
	 References


