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Abstract: This paper provides new developments in the design of observers for nonlinear
systems with unknown inputs. The proposed methods guarantee the error system stability and
yield many additional degrees of freedom available to the designer. The algorithms for designing a
nonlinear observer for nonlinear systems with unknown inputs is derived in detail. The proposed
observers may be used for fault detection and isolation. A nonlinear mass-spring-damper model
is given in order to highlight the efficiency of the proposed method.
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1. INTRODUCTION

Observer design is an important problem that has various
applications such as output feedback control, system mon-
itoring, process identification and fault detection.

The observer was first proposed and developed by Lu-
enberger (1971) in the early 1960s. After the pioneer-
ing work of Luenberger on estimation problems, various
types of estimators have been developed for both linear
and nonlinear systems. An observer for nonlinear sys-
tems whose nonlinearity is globally Lipschitz has been
developed by many researchers including Abbaszadeh and
Marquez (2010). The full order Luenberger-like observer
for nonlinear systems whose nonlinearity satisfy the well
known Lipschitz condition has been proposed in recent
years, see for example Raghavan and Hedrick (1994).

It is of importance to design observers for multivariable
linear or nonlinear systems partially driven by unknown
inputs. In many control systems, the measurement of all
the input signals in the system is impossible. In some cases,
the uncertainties of certain parameters of the system can
be modelled as unknown inputs for designing a robust
observer. For that type of system, an observer, which has
the capability of estimating the states in the presence of
unknown inputs, is required in order to design an appro-
priate control for the system. Such a problem arises in
systems subject to disturbance or with inaccessible inputs
and it may appear in many applications such as fault
detection and isolation or parameter identification, see
Mondal et al. (2009).

Design of observers for linear systems subject to unknown
inputs has attracted considerable attention in the last
three decades. Different approaches have been considered
to design unknown input observers (UIO) for linear sys-
tems following the conventional Luenberger design pro-
cedure or using sliding mode control theory. For both
approaches the existence conditions are exactly the same.
In Floquet and Barbot (2005) the proposed observation
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algorithm allows the user to recover the state and the
unknown inputs in finite time.

Under less restrictive conditions several approaches for
designing reduced order observers have been proposed
by Guan and Saif (1991), Hou and Muller (1992), and
Mehta et al. (2010) and for full order observers many
methods have been presented including Hou et al. (1999)
and Darouach (2009). Achieving less restrictive existence
conditions and more direct design procedures has been a
challenge in this area.

Since the 1990s, many attempts have been made to extend
the existing UIO design from linear systems to nonlinear
systems. UIOs for bilinear systems were designed by many
researchers including Zasadzinski et al. (1998), and Hamidi
et al. (2008). UIOs for more general nonlinear systems were
also proposed in Seliger and Frank (1991), Yang and Saif
(1996), Ha et al. (2003), Barbot et al. (2007) and Barbot
et al. (2009).

More recently, observer architectures utilising the concept
of sliding mode control/observer for uncertain systems, see
for example, Zak (2003), Koshkouei and Zinober (2004),
and Barbot and Floquet (2009). Also a direct extension of
the linear results to the nonlinear case was referred to as
nonlinear unknown input observer (NUIO) and considered
systems with nonlinearities that are functions of inputs
and outputs.

An UIO for nonlinear systems using H,, approach has
been designed by Pertew et al. (2005) and a nonlinear
observer for descriptive type of nonlinear systems with
unknown inputs based on linear matrix inequality (LMTI)
approach has been presented by Koeing (2006), Chen
and Saif (2006a), and Chen and Saif (2006b). This pa-
per present an alternative method to design the NUIOs
for nonlinear systems under certain conditions. Section
2 presents a mathematical description of the nonlinear
system. Design of the NUIO for the nonlinear system
along with theorems and error dynamics and stability
analysis are addressed in Sections 3 and 4, respectively. A
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numerical example is provided in Sections 5. Conclusions
are presented in Section 6.

2. SYSTEM DESCRIPTION

Consider the following nonlinear system

#(t) = Az(t) + Bu(t) + Du(t) + Sg(x, u,t) + Ko fo(t)

y(t) = Cx(t) + K fs(t) 1)
where ¢ € R", v € R™ and y € RP represent the
state, input and output vectors respectively. A € R™"*™
B e Rv™m C € R S € R K, € R"™" and
K, € RP*5 are known matrices, f, and fs are the actuator
and sensor faults. D € R"*4, is referred to as the known
input disturbances distribution matrix and u(t) € R? is an
unknown bounded vector. The function p(t) describes the
disturbances and any kind of modelling uncertainties such
as noise, time-varying terms, and parameter variations.
In system (1), the function g(x,u,t) € R® represents the
known nonlinearity function.

Prior to nonlinear observer design, the following assump-
tion is made:

Assumption 1:

There is no fault in the output, fs(t) = 0.

CD # 0 is of full rank.

D, S, and K, are full column rank matrices.

The output y(¢) and its derivative ¢(t) are available.

3. NONLINEAR UNKNOWN INPUT OBSERVER
DESIGN (NUIO):

In this section the design procedure of an observer is
considered. The conditions which eliminate some terms
from the error system are given. These conditions are
sufficient conditions for designing the observer.

3.1 Observer design

An unknown input observer (UIO) for the system (1) is
designed such that its state estimation error vector e(t),
approaches zero asymptotically, regardless of the presence
of the unknown input term in the system.

3.2 NUIO Design

An full-order NUIO could be presented in the following
form:

2(t) = Nz(t) + Ly(t) + Gu(t) + H*Sg(Z,u,t) + H*Dj(t)
+H"Kafa(t)
#() = (1) — By(t) )

where z € R" is the state observer, g(&,u, t), fi(t) and f,(t)
are the estimate of g(z,u,t), u(t) and f,(¢) respectively.
Matrices N € R*™*" [ € R"*P G € R™*™ H* € R"*"
with F € R"*P and Z is an estimate of z. It is desired to
design the observer such that Z eventually tends to x.

The error equation for system (1) and observer (2) is

defined as follows:

ex(t) = x(t) — 2(t) = x(t) — 2(t) + Ey(t) (3)
By substituting the system output defined in (1) into

the error equation (3), the time-derivative of the error
equation (3) will have the following form:

€,(t) = @(t) — £(t) + ECi(t) (4)

Then substituting (1) and (2) into (4), where H = I,,+ EC
and H = H*, yields

€:(t)=Ney(t)+ (HA— NH — LC)xz(t) + (HB — G)u(t)
+HS(g(t7u7x) - g(i7u7t)) + H'D(ILL(t) - ﬂ(t))

FHEL(fal) — fa(t)) (5)

If the following conditions hold,
HD = E, (6)
HB-G=0 (7)
HA-NH-LC=0 (8)

where Fy € R™ ™ has a small norm, then the error
equation (5) is presented as follows,

€x(t)=Ney(t) + AgHSey + AgHDe,,(t) + AgHKqe,4(t)
(9)
where eg(z,u,t) = g(z, u,t) —g(Z, u,t), eu(t) = p(t) — i(t)
and eq(t) = fo(t) — fa(t) represent the nonlinearity, dis-
turbance and actuator fault errors respectively. Matrices
Ay, Ag, and A, are the design matrices.

To obtain matrices N, E, H, G and the observer gain L
the following steps should be followed:

e First substitute H = I,, + EC into (6), the matrix E
may be presented as follows:
E = (Ey—D)(CD)T +T(I - (CD)(CD)") (10)

where (CD)™ is the pseudo-inverse of (CD), T' is an
arbitrary matrix.

e Then by substituting F into H = I,, — EC, matrix H
will be obtained.

o After that substitute H into (7) to obtain matrix G.

e Assume that (HA, C) is an observable pair and Py is
the symmetric positive definite (s.p.d.) solution of the
following algebraic Riccati equation, then the gain K
is selected such that the matrix N = HA — KC' is
stable.

(HA)T Py + Py(HA) = BCTR™'CPy = —Qo (11)

where Qg € R™*"™ and R € RP*P are arbitrary s.p.d.
matrices. By selecting K = PyCT R~! the matrix N
will be an stable matrix.

e Finally by substituting N, K and (6) into (8) the
observer gain L will be obtained:

L=HAE + K(I, — CE). (12)
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4. STABILITY ANALYSIS OF THE ERROR SYSTEM

In this Section the behaviour of the error system (9) is
considered. The desire is to obtain the stability of e, (t),
eq(t) and ey4(z, u,t), to show that each of these errors are
stable, then the stability of error (9) is guaranteed.

4.1 The disturbance error e, (t) stability analysis

The unknown input (disturbance) p(t), could be estimated
from the available known signals as follows:

fi(t) = Myyy(t) + Myoy(t) + Mysi(t) + Mygi(t)
—|—M15Sg(a:,u,t) —|—M16U(t) (13)

where matrices M1, € R?*P, Myy € RI*P, M3 € RI*",
My, € qun, Mis € R?*™ and Mg € R?*™ will be
designed to obtain the observer ji(t).

w1(t) is obtained from equation (1) as follows:

w(t)=D%Vi(t) — DY Az(t) — DY Bu(t) — DT Sg(z,u,t)
— DKo fa(t) (14)

Using (13) and (14), the disturbance error e, (t) can be
rewritten as:

en(t) = p(t) — A(t)
=—(DTA+ My;0)x(t) + (Dt — M15C)i(t)
— (D" B + Myg)u(t) — (DT + My5)Sg(z,u,t)
— My (t) — My (t) — D* Ko fa(t)
(15)

Since e, (t) = x(t) — &(t) then by substituting Z(¢) into
(15), the following is obtained:

eu(t)=—(DT A+ M;C — Mz)x(t) + (DT — M12C —
Mi4)i(t) — (DT B+ Myg)u(t) — (DT + M)
+Sg(£l?, u, t)M13€(t) + M14é(t) - D+Kafa(t)

(16)
Therefore, if the following conditions hold:
My =DV — M,C
My3=—-D"A— M;,C
Mg =—-D"B
M5 =—-D7
DTK, =
(17)

then (16) can be written as follows:
eu(t) = (—=DTA— M1C)ey(t) + (D' — M12C)e,(t) (18)
Equation (18) shows that the disturbance error e, (t) is a

function of e,(t), and if e,(t) is stable then e, (t) tends to
Z€ro.

4.2 The actuator fault error e, (t) stability analysis

The actuator fault f,(t), could also be estimated from the
available known signals as follows:

falt) = Friy(t) + Frag(t) + Fiad(t) + Fiai(t)
+F1559(x, u, t) + Fieu(t) (19)
where matrices [y € R™P, Fj5 € R™P, Fij3 € R™",
Fiyy € RP*™ Fis € R™™ and Fig € R™ "™ need to be
designed. From (1), f,(¢) is giving by:
fult) = KFi(t) — K Aw(t) — K Bult) — K Sg(e,u,1)
— K} Du(t) (20)

Using (19) and (20), eq(t), the actuator fault error is
obtained:

ea(t) = fa(t) = fa(?)
= (K7 A+ FuCa(t) + (K7 — Fi20)i(t)
— (KB + Fig)u(t) — (K} + Fy5)Sg(z,u,t)
— Fisi(t) — Fra2(t) — K Duf(t) (21)
From e, (t) = x(t) — &(t) substitute Z(t) into (21), yields:

ea(t) = —(K;_A + F110 — Flg).il,‘(t) + (K;r — Flgc — F]_4>
#(t) — (K B+ Fig)u(t) — (K} + F15)Sg(z,u,t)

+ Fize(t) + Fraé(t) — K Dpu(t) (22)
Thus if the following conditions hold:
Fi =K — F»C
Fi3=-K/A—-F,C
F¢=-K/B
Fis=-K
0=K/D
(23)

then the fault error (22) is presented as:
eq(t) = (=K} A - F110)e,(t) + (K — F1oC)e(t) (24)

Equation (24) shows that the actuator fault error e, (t) is
a function of e, (t), and tends to zero if e, (t) goes to zero.

4.8 The nonlinearity error ey(t) stability analysis

The nonlinearity g(z,u,t), could be estimated from the
available known signals as follows:

9(#,u,t) = G11y(t) + Gr2y(t) + G132(t) + Graz(t)
+Gis5u(t) + Gisfal(t) (25)
where matrices G117 € R**P, G5 € R**P, G135 € R*",

G14 S Rsxn, G15 € R*™ and G16 € R%%9 need to be
designed. From equation (1), g(z,u,t) is obtained as:

g(z,u,t)=8ST2(t) — ST Azx(t) — STBu(t) — STK,f.(t)
— ST Du(t) (26)

Using (25) and (26), ey(x,u,t), the nonlinearity error is
giving by:
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eq(z,u,t) =g(x,u,t) — g(&,u,t)
=—(STA+GnO)x(t) + (ST — G120)i(t)
— (STB+ Gi5)u(t) — (STKo 4 Gi6) fal(t)

— Gh3i(t) — Grai(t) — STDpu(t) (27)
Eubstituting ex(t) = =(t) — 2(t) into (27), ey(z,u,t)
eg(z,u,t) =—(STA+ G11C — Gi3)x(t) + (ST — G12C

—G14)2(t) — (STB + Gis)u(t) — (STK,
+G16) fo(t) + Gaze(t) + Graé(t) + Grgeq(t)

5" Du(t) (28)
Then if the following conditions hold:
Gi3=—-STA—-G,C
Ga=S" - GC
Gi5=-S*'B
Gis=—-STK,
STD=0
(29)

then the nonlinear error estimation ey (z, u, t) is giving by:

eg(z,u,t) = (=STA — G11C)es(t) + (ST — G120)ey(t)
+ Greea(t) (30)
Now by substituting e, into (30), the error e, is giving by:

69(1‘,U,t) = (—S+A — GHC — GlﬁK;_A — G16F110)€$(t)
+ (S+ — G12C + G16K;_ — G16F120)6'$(t) (31)
)

Equation (31) shows that the nonlinearity error ey (z, u,t
is a function of e, (t), so it tends to zero if e, (t) goes to
Z€r0.

Substituting (18), (24) and (31) into equation (9) yields:

N, (t) = Ge, (1) (32)

with
M =1, — AgHD(D" — M5C) — A,HK (K — Fi3
C) — AgHS(—SJrA — G110 - GiKA— Gy

F,0)
where I, is an identity matrix of size n, and,

(33)

G=N+AHK,(—K/A—F,C)+ AjHD(-D*
—MuC) + AgHS(S+ — G12C + GlGK;_ — Gig
F120). (34)
Since M is nonsingular, 4, € R"™*", A, € R™™ and
Agq € R™™ should be selected to make M ~'G Hurwitz.
If M was not singular and M ! does not exist, then the

singular value decomposition (SVD) technique needs to be
used. Hence the state error equation (32) is represented as:

éo(t) = M1 Ge,(t) (35)

which satisfies the asymptotic stability of the state error
estimation (9). In this method sufficient design degrees of

freedom Ey, M;;, F;; and G;; and nonuniquness of 4,4, Aq
and A, also provides extra design degrees of freedom.
Since error (32) is a function of e, (t), the error is eventu-
ally stable and tends to zero.

5. EXAMPLE SYSTEM

Fig. 1. The mass-spring-damper system.

Consider the mass-spring-damper (M-S-D) system in Fig-
ure 1 where two masses, springs and dampers are con-
nected together serially (Roch-Cozalt et al. (2005)). 1 and
xo are the position and velocity of the first mass and z3
and x4 are the position and velocity of the second mass,
respectively. A,; is a nonsingular damping device whose
damping force is Fu,, = Cysign(zz) In(1+ | x2 |), where
Ch; > 0. On the other hand, an arbitrary and unknown
force pu(t) is applied on the second mass. u; and uy are the
known input forces applied to masses 1 and 2, respectively.
The state equations of the system are presented as

0 1 0 0 0
_kithke bitby k2 by 1
. m m m m m
i = 0 1 0 1 O1 11 T+ O1 U
k2 b kb S
ma ma ma ma ma
01 0 0
= 0.02 0
1 oma | g(@)+ [ Ty | fa(t) + (1) 14(t).(36)
0 _—
0 ma

The actuator fault f,(¢) is any unwanted change in the
length of the springs. The outputs of the system are
y1 = x3 and yo = x4. Using the following values for
parameters: m; = bkg, mo = lkg, k1 = 30N/m, ko =
10N/m, by = 4Ns/m, b = 2Ns/m, Cp,; = 5N, and
p(t) = 0.04sin(t) + 2N, will give:

0 10 0 0 0 0
80 12 20 04 0.20 0
A=10 0 0o 10| B=| 0 o
100 2.0 —10.0 —2.0 0 1.0
0 0
0010 0 0.2
C:(oool)’D: o =1 o
1 0
0 0 0 0
0.2 0 0 0
Ka = 0 5 E= 0 0 5 EO = 0
0 0 —0.9990 0.0001
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error estimation

108% T %
1000 5 10 15 20 25 30
t(s)
disturbance error, emu
500 T T T T
l
0
l ‘ ‘ ‘ ‘
5000 5 10 15 20 25 30
t(s)
actuator fault error, ea
2000[ T ; T ‘
oL ]
_2000 . . . . .

5 10 15 20 25 30

t(s)

nonlinearity error, eg
0.2 T T T
i =
0.2 . . h . .
0 5 10 15 20 25 30
t(s)

Fig. 2. The behaviour of state errors e,(t), disturbance
error e, (t), actuator fault error e, (t) and nonlinearity
error ey(x,u,t).

—12.574 0.0012 _12.57 1.20
L[ 3179 0399 [ 317 —0m
=1 35250 1000 | K= 352 0099
0.9915 —0.0006 0.99 1.0
100 0 0 0 0
0100 0 02 0
H=1 965 910 0o [ =0 o
0 0 0 0001 0 0.001
0 1.00 1257 —1.207
v [ ~800-1.20 ~117 0819
=l o 0 —352 0.0085

0.010 0.002 —1.001 —1.404

The matrix M, in equation (33) is

1.0 0 0 0
_ 0 2.0 0 —0.040
M=119"910 o

0 0 0 1.0008

which is invertible
1.0 0 O 0
0

. (o050 0
M=7=119 0 10 o0
0 0 0 09992

Also the matrix G, in (34) is:

0 1.0 12,57 -1.20
G- —-16.00 —2.40 0.82 1.37
- 0 0 —3.52 0.0085

0.020 0.0040 —1.011 —1.406

The design matrices Ag, A, and Ay are selected as follows
to make M ~1G hurwitz:

10 0 0 10 0 0
0 -1 0 0 0 -1 0 0
Aa=1 9 010 ] 4=|0 0 -10
00 0 —1 00 0 —1

error estimation
o | |
o ‘ ‘ ‘ ‘ |
0 5 10 15 20 25 30
t(s)
disturbance error, emu
0.5 T T T T l
0 V\N ]
05 . . . . .
0 5 10 15 20 25 30
t(s)
actuator fault error, ea
1 T T T T
0 Av/\/x
1 . . . .

0 5 10 15 20 25 30

t(s)
nonlinearity error, eg
0.2 T T T J
] — |
02 . . . . .
0 5 10 15 20 25 30
t(s)

Fig. 3. The behaviour of state errors e,(t), disturbance
error e, (t), actuator fault error e, (t) and nonlinearity
error eq(x, u, t) where there is no fault on the system.

—-0.20 0 0 0
0 -020 O 0
0 0 -020 O
0 0 0 -0.20

Ay =

Since the matrix M ~'G is hurwitz with following eigen-
values :

(—0.603 + 2.76i —0.603 — 2.76¢ —1.4033 —3.5207 ).

then the error system (32) is asymptotically stable.
Figure (2) shows that in the time of no fault, the errors
tend to zero asymptotically. When the fault occurs, the
error responses are quite far from zero. If the fault was
small or occurs in a small period of time then the system
needs sufficient time to isolate the fault and reduce the
effect of the fault on the system. Otherwise the system
with fault is not stable unless the fault is bonded, then
the error under some conditions is eventually ultimately
bounded (see Sedighit et al (2008)).

Figure (3) shows the error behaviour of states, disturbance,
fault and nonlinearity where there is no fault in the system.
In this case, the errors are stable and converge to zero
asymptotically. Figure (4) shows that the error estimation
of the system in the absence of faults is stable regardless
of any unknown disturbances.

6. CONCLUSIONS

The robust nonlinear UIO has been designed for nonlinear
systems and the stability of the error systems have been
demonstrated. Sufficient existence conditions were derived
for the nonlinear UIO. In this method sufficient design
degrees of freedom (Fy, My;, F1; and Gy; fori =1,--- ,n+
2) and nonuniquness of A4, A4 and A, also provides extra
design degrees of freedom. This observer may be useful for
state estimation and fault diagnosis for nonlinear systems.
The effectiveness of the observer is shown with a numerical
example. The simulation results show that the designed
NUIO guarantees the asymptotically convergence of the
state to zero in the presence of the unknown inputs.
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5 10 15 20 25 30
t(s)

error response in absence of fault
o

unknown disturbance
nN

0 5 10 15 20 25 30
t(s)

Fig. 4. The behaviour of error estimation and the distur-
bance.
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